godot/thirdparty/thekla_atlas/nvmath/nvmath.h
Rémi Verschelde d6b6dcd20e thekla: Fix build on x86 systems without SSE support
Fixes #14709.

Same as https://github.com/Thekla/thekla_atlas/pull/11,
but adding  comments until it's merged upstream.
2017-12-15 20:35:51 +01:00

347 lines
7.9 KiB
C++

// This code is in the public domain -- castanyo@yahoo.es
#pragma once
#ifndef NV_MATH_H
#define NV_MATH_H
#include "nvcore/nvcore.h"
#include "nvcore/Debug.h" // nvDebugCheck
#include "nvcore/Utils.h" // max, clamp
#include <math.h>
#if NV_OS_WIN32 || NV_OS_XBOX || NV_OS_DURANGO
#include <float.h> // finite, isnan
#endif
// -- GODOT start --
//#if NV_CPU_X86 || NV_CPU_X86_64
// //#include <intrin.h>
// #include <xmmintrin.h>
//#endif
// -- GODOT end --
// Function linkage
#if NVMATH_SHARED
#ifdef NVMATH_EXPORTS
#define NVMATH_API DLL_EXPORT
#define NVMATH_CLASS DLL_EXPORT_CLASS
#else
#define NVMATH_API DLL_IMPORT
#define NVMATH_CLASS DLL_IMPORT
#endif
#else // NVMATH_SHARED
#define NVMATH_API
#define NVMATH_CLASS
#endif // NVMATH_SHARED
// Set some reasonable defaults.
#ifndef NV_USE_ALTIVEC
# define NV_USE_ALTIVEC NV_CPU_PPC
//# define NV_USE_ALTIVEC defined(__VEC__)
#endif
#ifndef NV_USE_SSE
# if NV_CPU_X86_64
// x64 always supports at least SSE2
# define NV_USE_SSE 2
# elif NV_CC_MSVC && defined(_M_IX86_FP)
// Also on x86 with the /arch:SSE flag in MSVC.
# define NV_USE_SSE _M_IX86_FP // 1=SSE, 2=SS2
# elif defined(__SSE__)
# define NV_USE_SSE 1
# elif defined(__SSE2__)
# define NV_USE_SSE 2
# else
// Otherwise we assume no SSE.
# define NV_USE_SSE 0
# endif
#endif
// Internally set NV_USE_SIMD when either altivec or sse is available.
#if NV_USE_ALTIVEC && NV_USE_SSE
# error "Cannot enable both altivec and sse!"
#endif
// -- GODOT start --
#if NV_USE_SSE
//#include <intrin.h>
#include <xmmintrin.h>
#endif
// -- GODOT end --
#ifndef PI
#define PI float(3.1415926535897932384626433833)
#endif
#define NV_EPSILON (0.0001f)
#define NV_NORMAL_EPSILON (0.001f)
/*
#define SQ(r) ((r)*(r))
#define SIGN_BITMASK 0x80000000
/// Integer representation of a floating-point value.
#define IR(x) ((uint32 &)(x))
/// Absolute integer representation of a floating-point value
#define AIR(x) (IR(x) & 0x7fffffff)
/// Floating-point representation of an integer value.
#define FR(x) ((float&)(x))
/// Integer-based comparison of a floating point value.
/// Don't use it blindly, it can be faster or slower than the FPU comparison, depends on the context.
#define IS_NEGATIVE_FLOAT(x) (IR(x)&SIGN_BITMASK)
*/
extern "C" inline double sqrt_assert(const double f)
{
nvDebugCheck(f >= 0.0f);
return sqrt(f);
}
inline float sqrtf_assert(const float f)
{
nvDebugCheck(f >= 0.0f);
return sqrtf(f);
}
extern "C" inline double acos_assert(const double f)
{
nvDebugCheck(f >= -1.0f && f <= 1.0f);
return acos(f);
}
inline float acosf_assert(const float f)
{
nvDebugCheck(f >= -1.0f && f <= 1.0f);
return acosf(f);
}
extern "C" inline double asin_assert(const double f)
{
nvDebugCheck(f >= -1.0f && f <= 1.0f);
return asin(f);
}
inline float asinf_assert(const float f)
{
nvDebugCheck(f >= -1.0f && f <= 1.0f);
return asinf(f);
}
// Replace default functions with asserting ones.
#if !NV_CC_MSVC || (NV_CC_MSVC && (_MSC_VER < 1700)) // IC: Apparently this was causing problems in Visual Studio 2012. See Issue 194: https://code.google.com/p/nvidia-texture-tools/issues/detail?id=194
#define sqrt sqrt_assert
#define sqrtf sqrtf_assert
#define acos acos_assert
#define acosf acosf_assert
#define asin asin_assert
#define asinf asinf_assert
#endif
#if NV_CC_MSVC
NV_FORCEINLINE float log2f(float x)
{
nvCheck(x >= 0);
return logf(x) / logf(2.0f);
}
NV_FORCEINLINE float exp2f(float x)
{
return powf(2.0f, x);
}
#endif
namespace nv
{
inline float toRadian(float degree) { return degree * (PI / 180.0f); }
inline float toDegree(float radian) { return radian * (180.0f / PI); }
// Robust floating point comparisons:
// http://realtimecollisiondetection.net/blog/?p=89
inline bool equal(const float f0, const float f1, const float epsilon = NV_EPSILON)
{
//return fabs(f0-f1) <= epsilon;
return fabs(f0-f1) <= epsilon * max3(1.0f, fabsf(f0), fabsf(f1));
}
inline bool isZero(const float f, const float epsilon = NV_EPSILON)
{
return fabs(f) <= epsilon;
}
inline bool isFinite(const float f)
{
#if NV_OS_WIN32 || NV_OS_XBOX || NV_OS_DURANGO
return _finite(f) != 0;
#elif NV_OS_DARWIN || NV_OS_FREEBSD || NV_OS_OPENBSD || NV_OS_ORBIS
return isfinite(f);
#elif NV_OS_LINUX
return finitef(f);
#else
# error "isFinite not supported"
#endif
//return std::isfinite (f);
//return finite (f);
}
inline bool isNan(const float f)
{
#if NV_OS_WIN32 || NV_OS_XBOX || NV_OS_DURANGO
return _isnan(f) != 0;
#elif NV_OS_DARWIN || NV_OS_FREEBSD || NV_OS_OPENBSD || NV_OS_ORBIS
return isnan(f);
#elif NV_OS_LINUX
return isnanf(f);
#else
# error "isNan not supported"
#endif
}
inline uint log2(uint32 i)
{
uint32 value = 0;
while( i >>= 1 ) value++;
return value;
}
inline uint log2(uint64 i)
{
uint64 value = 0;
while (i >>= 1) value++;
return U32(value);
}
inline float lerp(float f0, float f1, float t)
{
const float s = 1.0f - t;
return f0 * s + f1 * t;
}
inline float square(float f) { return f * f; }
inline int square(int i) { return i * i; }
inline float cube(float f) { return f * f * f; }
inline int cube(int i) { return i * i * i; }
inline float frac(float f)
{
return f - floor(f);
}
inline float floatRound(float f)
{
return floorf(f + 0.5f);
}
// Eliminates negative zeros from a float array.
inline void floatCleanup(float * fp, int n)
{
for (int i = 0; i < n; i++) {
//nvDebugCheck(isFinite(fp[i]));
union { float f; uint32 i; } x = { fp[i] };
if (x.i == 0x80000000) fp[i] = 0.0f;
}
}
inline float saturate(float f) {
return clamp(f, 0.0f, 1.0f);
}
inline float linearstep(float edge0, float edge1, float x) {
// Scale, bias and saturate x to 0..1 range
return saturate((x - edge0) / (edge1 - edge0));
}
inline float smoothstep(float edge0, float edge1, float x) {
x = linearstep(edge0, edge1, x);
// Evaluate polynomial
return x*x*(3 - 2*x);
}
inline int sign(float a)
{
return (a > 0) - (a < 0);
//if (a > 0.0f) return 1;
//if (a < 0.0f) return -1;
//return 0;
}
union Float754 {
unsigned int raw;
float value;
struct {
#if NV_BIG_ENDIAN
unsigned int negative:1;
unsigned int biasedexponent:8;
unsigned int mantissa:23;
#else
unsigned int mantissa:23;
unsigned int biasedexponent:8;
unsigned int negative:1;
#endif
} field;
};
// Return the exponent of x ~ Floor(Log2(x))
inline int floatExponent(float x)
{
Float754 f;
f.value = x;
return (f.field.biasedexponent - 127);
}
// FloatRGB9E5
union Float3SE {
uint32 v;
struct {
#if NV_BIG_ENDIAN
uint32 e : 5;
uint32 zm : 9;
uint32 ym : 9;
uint32 xm : 9;
#else
uint32 xm : 9;
uint32 ym : 9;
uint32 zm : 9;
uint32 e : 5;
#endif
};
};
// FloatR11G11B10
union Float3PK {
uint32 v;
struct {
#if NV_BIG_ENDIAN
uint32 ze : 5;
uint32 zm : 5;
uint32 ye : 5;
uint32 ym : 6;
uint32 xe : 5;
uint32 xm : 6;
#else
uint32 xm : 6;
uint32 xe : 5;
uint32 ym : 6;
uint32 ye : 5;
uint32 zm : 5;
uint32 ze : 5;
#endif
};
};
} // nv
#endif // NV_MATH_H