godot/servers/physics_3d/godot_body_3d.h
PouleyKetchoupp fc8c766ef9 Expose local center of mass in physics servers
Center of mass in body's local space is more useful than the transformed
one in some cases, like drawing its position for debug.

It's especially useful to get the generated local center of mass when
in auto mode (by default).

Physics Server BODY_PARAM_CENTER_OF_MASS:
Now always returns the local center of mass, instead of setting a local
center of mass and getting a transformed one.
This causes compatibility breaking, but it makes more sense for the
parameter to be consistent between getter and setter.

Direct Body State:
There are now two properties, because both of them can be useful in
different situations.
center_of_mass: relative position in global coordinates (same as before)
center_of_mass_local: position in local coordinates
2021-11-08 16:17:57 -07:00

374 lines
14 KiB
C++

/*************************************************************************/
/* godot_body_3d.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef GODOT_BODY_3D_H
#define GODOT_BODY_3D_H
#include "godot_area_3d.h"
#include "godot_collision_object_3d.h"
#include "core/templates/vset.h"
class GodotConstraint3D;
class GodotPhysicsDirectBodyState3D;
class GodotBody3D : public GodotCollisionObject3D {
PhysicsServer3D::BodyMode mode = PhysicsServer3D::BODY_MODE_DYNAMIC;
Vector3 linear_velocity;
Vector3 angular_velocity;
Vector3 constant_linear_velocity;
Vector3 constant_angular_velocity;
Vector3 biased_linear_velocity;
Vector3 biased_angular_velocity;
real_t mass = 1.0;
real_t bounce = 0.0;
real_t friction = 1.0;
Vector3 inertia;
PhysicsServer3D::BodyDampMode linear_damp_mode = PhysicsServer3D::BODY_DAMP_MODE_COMBINE;
PhysicsServer3D::BodyDampMode angular_damp_mode = PhysicsServer3D::BODY_DAMP_MODE_COMBINE;
real_t linear_damp = 0.0;
real_t angular_damp = 0.0;
real_t total_linear_damp = 0.0;
real_t total_angular_damp = 0.0;
real_t gravity_scale = 1.0;
uint16_t locked_axis = 0;
real_t _inv_mass = 1.0;
Vector3 _inv_inertia; // Relative to the principal axes of inertia
// Relative to the local frame of reference
Basis principal_inertia_axes_local;
Vector3 center_of_mass_local;
// In world orientation with local origin
Basis _inv_inertia_tensor;
Basis principal_inertia_axes;
Vector3 center_of_mass;
bool calculate_inertia = true;
bool calculate_center_of_mass = true;
Vector3 gravity;
real_t still_time = 0.0;
Vector3 applied_force;
Vector3 applied_torque;
SelfList<GodotBody3D> active_list;
SelfList<GodotBody3D> mass_properties_update_list;
SelfList<GodotBody3D> direct_state_query_list;
VSet<RID> exceptions;
bool omit_force_integration = false;
bool active = true;
bool continuous_cd = false;
bool can_sleep = true;
bool first_time_kinematic = false;
void _mass_properties_changed();
virtual void _shapes_changed();
Transform3D new_transform;
Map<GodotConstraint3D *, int> constraint_map;
Vector<AreaCMP> areas;
struct Contact {
Vector3 local_pos;
Vector3 local_normal;
real_t depth = 0.0;
int local_shape = 0;
Vector3 collider_pos;
int collider_shape = 0;
ObjectID collider_instance_id;
RID collider;
Vector3 collider_velocity_at_pos;
};
Vector<Contact> contacts; //no contacts by default
int contact_count = 0;
void *body_state_callback_instance = nullptr;
PhysicsServer3D::BodyStateCallback body_state_callback = nullptr;
struct ForceIntegrationCallbackData {
Callable callable;
Variant udata;
};
ForceIntegrationCallbackData *fi_callback_data = nullptr;
GodotPhysicsDirectBodyState3D *direct_state = nullptr;
uint64_t island_step = 0;
void _compute_area_gravity_and_damping(const GodotArea3D *p_area);
void _update_transform_dependent();
friend class GodotPhysicsDirectBodyState3D; // i give up, too many functions to expose
public:
void set_state_sync_callback(void *p_instance, PhysicsServer3D::BodyStateCallback p_callback);
void set_force_integration_callback(const Callable &p_callable, const Variant &p_udata = Variant());
GodotPhysicsDirectBodyState3D *get_direct_state();
_FORCE_INLINE_ void add_area(GodotArea3D *p_area) {
int index = areas.find(AreaCMP(p_area));
if (index > -1) {
areas.write[index].refCount += 1;
} else {
areas.ordered_insert(AreaCMP(p_area));
}
}
_FORCE_INLINE_ void remove_area(GodotArea3D *p_area) {
int index = areas.find(AreaCMP(p_area));
if (index > -1) {
areas.write[index].refCount -= 1;
if (areas[index].refCount < 1) {
areas.remove(index);
}
}
}
_FORCE_INLINE_ void set_max_contacts_reported(int p_size) {
contacts.resize(p_size);
contact_count = 0;
if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC && p_size) {
set_active(true);
}
}
_FORCE_INLINE_ int get_max_contacts_reported() const { return contacts.size(); }
_FORCE_INLINE_ bool can_report_contacts() const { return !contacts.is_empty(); }
_FORCE_INLINE_ void add_contact(const Vector3 &p_local_pos, const Vector3 &p_local_normal, real_t p_depth, int p_local_shape, const Vector3 &p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID &p_collider, const Vector3 &p_collider_velocity_at_pos);
_FORCE_INLINE_ void add_exception(const RID &p_exception) { exceptions.insert(p_exception); }
_FORCE_INLINE_ void remove_exception(const RID &p_exception) { exceptions.erase(p_exception); }
_FORCE_INLINE_ bool has_exception(const RID &p_exception) const { return exceptions.has(p_exception); }
_FORCE_INLINE_ const VSet<RID> &get_exceptions() const { return exceptions; }
_FORCE_INLINE_ uint64_t get_island_step() const { return island_step; }
_FORCE_INLINE_ void set_island_step(uint64_t p_step) { island_step = p_step; }
_FORCE_INLINE_ void add_constraint(GodotConstraint3D *p_constraint, int p_pos) { constraint_map[p_constraint] = p_pos; }
_FORCE_INLINE_ void remove_constraint(GodotConstraint3D *p_constraint) { constraint_map.erase(p_constraint); }
const Map<GodotConstraint3D *, int> &get_constraint_map() const { return constraint_map; }
_FORCE_INLINE_ void clear_constraint_map() { constraint_map.clear(); }
_FORCE_INLINE_ void set_omit_force_integration(bool p_omit_force_integration) { omit_force_integration = p_omit_force_integration; }
_FORCE_INLINE_ bool get_omit_force_integration() const { return omit_force_integration; }
_FORCE_INLINE_ Basis get_principal_inertia_axes() const { return principal_inertia_axes; }
_FORCE_INLINE_ Vector3 get_center_of_mass() const { return center_of_mass; }
_FORCE_INLINE_ Vector3 get_center_of_mass_local() const { return center_of_mass_local; }
_FORCE_INLINE_ Vector3 xform_local_to_principal(const Vector3 &p_pos) const { return principal_inertia_axes_local.xform(p_pos - center_of_mass_local); }
_FORCE_INLINE_ void set_linear_velocity(const Vector3 &p_velocity) { linear_velocity = p_velocity; }
_FORCE_INLINE_ Vector3 get_linear_velocity() const { return linear_velocity; }
_FORCE_INLINE_ void set_angular_velocity(const Vector3 &p_velocity) { angular_velocity = p_velocity; }
_FORCE_INLINE_ Vector3 get_angular_velocity() const { return angular_velocity; }
_FORCE_INLINE_ const Vector3 &get_biased_linear_velocity() const { return biased_linear_velocity; }
_FORCE_INLINE_ const Vector3 &get_biased_angular_velocity() const { return biased_angular_velocity; }
_FORCE_INLINE_ void apply_central_impulse(const Vector3 &p_impulse) {
linear_velocity += p_impulse * _inv_mass;
}
_FORCE_INLINE_ void apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position = Vector3()) {
linear_velocity += p_impulse * _inv_mass;
angular_velocity += _inv_inertia_tensor.xform((p_position - center_of_mass).cross(p_impulse));
}
_FORCE_INLINE_ void apply_torque_impulse(const Vector3 &p_impulse) {
angular_velocity += _inv_inertia_tensor.xform(p_impulse);
}
_FORCE_INLINE_ void apply_bias_impulse(const Vector3 &p_impulse, const Vector3 &p_position = Vector3(), real_t p_max_delta_av = -1.0) {
biased_linear_velocity += p_impulse * _inv_mass;
if (p_max_delta_av != 0.0) {
Vector3 delta_av = _inv_inertia_tensor.xform((p_position - center_of_mass).cross(p_impulse));
if (p_max_delta_av > 0 && delta_av.length() > p_max_delta_av) {
delta_av = delta_av.normalized() * p_max_delta_av;
}
biased_angular_velocity += delta_av;
}
}
_FORCE_INLINE_ void apply_bias_torque_impulse(const Vector3 &p_impulse) {
biased_angular_velocity += _inv_inertia_tensor.xform(p_impulse);
}
_FORCE_INLINE_ void add_central_force(const Vector3 &p_force) {
applied_force += p_force;
}
_FORCE_INLINE_ void add_force(const Vector3 &p_force, const Vector3 &p_position = Vector3()) {
applied_force += p_force;
applied_torque += (p_position - center_of_mass).cross(p_force);
}
_FORCE_INLINE_ void add_torque(const Vector3 &p_torque) {
applied_torque += p_torque;
}
void set_active(bool p_active);
_FORCE_INLINE_ bool is_active() const { return active; }
_FORCE_INLINE_ void wakeup() {
if ((!get_space()) || mode == PhysicsServer3D::BODY_MODE_STATIC || mode == PhysicsServer3D::BODY_MODE_KINEMATIC) {
return;
}
set_active(true);
}
void set_param(PhysicsServer3D::BodyParameter p_param, const Variant &p_value);
Variant get_param(PhysicsServer3D::BodyParameter p_param) const;
void set_mode(PhysicsServer3D::BodyMode p_mode);
PhysicsServer3D::BodyMode get_mode() const;
void set_state(PhysicsServer3D::BodyState p_state, const Variant &p_variant);
Variant get_state(PhysicsServer3D::BodyState p_state) const;
void set_applied_force(const Vector3 &p_force) { applied_force = p_force; }
Vector3 get_applied_force() const { return applied_force; }
void set_applied_torque(const Vector3 &p_torque) { applied_torque = p_torque; }
Vector3 get_applied_torque() const { return applied_torque; }
_FORCE_INLINE_ void set_continuous_collision_detection(bool p_enable) { continuous_cd = p_enable; }
_FORCE_INLINE_ bool is_continuous_collision_detection_enabled() const { return continuous_cd; }
void set_space(GodotSpace3D *p_space);
void update_mass_properties();
void reset_mass_properties();
_FORCE_INLINE_ real_t get_inv_mass() const { return _inv_mass; }
_FORCE_INLINE_ const Vector3 &get_inv_inertia() const { return _inv_inertia; }
_FORCE_INLINE_ const Basis &get_inv_inertia_tensor() const { return _inv_inertia_tensor; }
_FORCE_INLINE_ real_t get_friction() const { return friction; }
_FORCE_INLINE_ real_t get_bounce() const { return bounce; }
void set_axis_lock(PhysicsServer3D::BodyAxis p_axis, bool lock);
bool is_axis_locked(PhysicsServer3D::BodyAxis p_axis) const;
void integrate_forces(real_t p_step);
void integrate_velocities(real_t p_step);
_FORCE_INLINE_ Vector3 get_velocity_in_local_point(const Vector3 &rel_pos) const {
return linear_velocity + angular_velocity.cross(rel_pos - center_of_mass);
}
_FORCE_INLINE_ real_t compute_impulse_denominator(const Vector3 &p_pos, const Vector3 &p_normal) const {
Vector3 r0 = p_pos - get_transform().origin - center_of_mass;
Vector3 c0 = (r0).cross(p_normal);
Vector3 vec = (_inv_inertia_tensor.xform_inv(c0)).cross(r0);
return _inv_mass + p_normal.dot(vec);
}
_FORCE_INLINE_ real_t compute_angular_impulse_denominator(const Vector3 &p_axis) const {
return p_axis.dot(_inv_inertia_tensor.xform_inv(p_axis));
}
//void simulate_motion(const Transform3D& p_xform,real_t p_step);
void call_queries();
void wakeup_neighbours();
bool sleep_test(real_t p_step);
GodotBody3D();
~GodotBody3D();
};
//add contact inline
void GodotBody3D::add_contact(const Vector3 &p_local_pos, const Vector3 &p_local_normal, real_t p_depth, int p_local_shape, const Vector3 &p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID &p_collider, const Vector3 &p_collider_velocity_at_pos) {
int c_max = contacts.size();
if (c_max == 0) {
return;
}
Contact *c = contacts.ptrw();
int idx = -1;
if (contact_count < c_max) {
idx = contact_count++;
} else {
real_t least_depth = 1e20;
int least_deep = -1;
for (int i = 0; i < c_max; i++) {
if (i == 0 || c[i].depth < least_depth) {
least_deep = i;
least_depth = c[i].depth;
}
}
if (least_deep >= 0 && least_depth < p_depth) {
idx = least_deep;
}
if (idx == -1) {
return; //none least deepe than this
}
}
c[idx].local_pos = p_local_pos;
c[idx].local_normal = p_local_normal;
c[idx].depth = p_depth;
c[idx].local_shape = p_local_shape;
c[idx].collider_pos = p_collider_pos;
c[idx].collider_shape = p_collider_shape;
c[idx].collider_instance_id = p_collider_instance_id;
c[idx].collider = p_collider;
c[idx].collider_velocity_at_pos = p_collider_velocity_at_pos;
}
#endif // GODOT_BODY_3D_H