godot/scene/resources/curve.cpp
Juan Linietsky bc26f90581 Type renames:
Matrix32 -> Transform2D
	Matrix3 -> Basis
	AABB -> Rect3
	RawArray -> PoolByteArray
	IntArray -> PoolIntArray
	FloatArray -> PoolFloatArray
	Vector2Array -> PoolVector2Array
	Vector3Array -> PoolVector3Array
	ColorArray -> PoolColorArray
2017-01-11 00:52:51 -03:00

1395 lines
33 KiB
C++

/*************************************************************************/
/* curve.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "curve.h"
#include "core_string_names.h"
template<class T>
static _FORCE_INLINE_ T _bezier_interp(real_t t, T start, T control_1, T control_2, T end) {
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - t);
real_t omt2 = omt*omt;
real_t omt3 = omt2*omt;
real_t t2 = t*t;
real_t t3 = t2*t;
return start * omt3
+ control_1 * omt2 * t * 3.0
+ control_2 * omt * t2 * 3.0
+ end * t3;
}
#if 0
int Curve2D::get_point_count() const {
return points.size();
}
void Curve2D::add_point(const Vector2& p_pos, const Vector2& p_in, const Vector2& p_out) {
Point n;
n.pos=p_pos;
n.in=p_in;
n.out=p_out;
points.push_back(n);
emit_signal(CoreStringNames::get_singleton()->changed);
}
void Curve2D::set_point_pos(int p_index, const Vector2& p_pos) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].pos=p_pos;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector2 Curve2D::get_point_pos(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector2());
return points[p_index].pos;
}
void Curve2D::set_point_in(int p_index, const Vector2& p_in) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].in=p_in;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector2 Curve2D::get_point_in(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector2());
return points[p_index].in;
}
void Curve2D::set_point_out(int p_index, const Vector2& p_out) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].out=p_out;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector2 Curve2D::get_point_out(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector2());
return points[p_index].out;
}
void Curve2D::remove_point(int p_index) {
ERR_FAIL_INDEX(p_index,points.size());
points.remove(p_index);
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector2 Curve2D::interpolate(int p_index, float p_offset) const {
int pc = points.size();
ERR_FAIL_COND_V(pc==0,Vector2());
if (p_index >= pc-1)
return points[pc-1].pos;
else if (p_index<0)
return points[0].pos;
Vector2 p0 = points[p_index].pos;
Vector2 p1 = p0+points[p_index].out;
Vector2 p3 = points[p_index+1].pos;
Vector2 p2 = p3+points[p_index+1].in;
return _bezier_interp(p_offset,p0,p1,p2,p3);
}
Vector2 Curve2D::interpolatef(real_t p_findex) const {
if (p_findex<0)
p_findex=0;
else if (p_findex>=points.size())
p_findex=points.size();
return interpolate((int)p_findex,Math::fmod(p_findex,1.0));
}
PoolVector<Point2> Curve2D::bake(int p_subdivs) const {
int pc = points.size();
PoolVector<Point2> ret;
if (pc<2)
return ret;
ret.resize((pc-1)*p_subdivs+1);
PoolVector<Point2>::Write w = ret.write();
const Point *r = points.ptr();
for(int i=0;i<pc;i++) {
int ofs = pc*p_subdivs;
int limit=(i==pc-1)?p_subdivs+1:p_subdivs;
for(int j=0;j<limit;j++) {
Vector2 p0 = r[i].pos;
Vector2 p1 = p0+r[i].out;
Vector2 p3 = r[i].pos;
Vector2 p2 = p3+r[i].in;
real_t t = j/(real_t)p_subdivs;
w[ofs+j]=_bezier_interp(t,p0,p1,p2,p3);
}
}
w = PoolVector<Point2>::Write();
return ret;
}
void Curve2D::advance(real_t p_distance,int &r_index, real_t &r_pos) const {
int pc = points.size();
ERR_FAIL_COND(pc<2);
if (r_index<0 || r_index>=(pc-1))
return;
Vector2 pos = interpolate(r_index,r_pos);
float sign=p_distance<0 ? -1 : 1;
p_distance=Math::abs(p_distance);
real_t base = r_index+r_pos;
real_t top = 0.1; //a tenth is in theory representative
int iterations=32;
for(int i=0;i<iterations;i++) {
real_t o=base+top*sign;
if (sign>0 && o >=pc) {
top=pc-base;
break;
} else if (sign<0 && o <0) {
top=-base;
break;
}
Vector2 new_d = interpolatef(o);
if (new_d.distance_to(pos) > p_distance)
break;
top*=2.0;
}
real_t bottom = 0.0;
iterations=8;
real_t final_offset;
for(int i=0;i<iterations;i++) {
real_t middle = (bottom+top)*0.5;
real_t o=base+middle*sign;
Vector2 new_d = interpolatef(o);
if (new_d.distance_to(pos) > p_distance) {
bottom=middle;
} else {
top=middle;
}
final_offset=o;
}
r_index=(int)final_offset;
r_pos=Math::fmod(final_offset,1.0);
}
void Curve2D::get_approx_position_from_offset(real_t p_offset,int &r_index, real_t &r_pos,int p_subdivs) const {
ERR_FAIL_COND(points.size()<2);
real_t accum=0;
for(int i=0;i<points.size();i++) {
Vector2 prev_p=interpolate(i,0);
for(int j=1;j<=p_subdivs;j++) {
real_t frac = j/(real_t)p_subdivs;
Vector2 p = interpolate(i,frac);
real_t d = p.distance_to(prev_p);
accum+=d;
if (accum>p_offset) {
r_index=j-1;
if (d>0) {
real_t mf = (p_offset-(accum-d)) / d;
r_pos=frac-(1.0-mf);
} else {
r_pos=frac;
}
return;
}
prev_p=p;
}
}
r_index=points.size()-1;
r_pos=1.0;
}
void Curve2D::set_points_in(const Vector2Array& p_points) {
points.resize(p_points.size());
for (int i=0; i<p_points.size(); i++) {
Point p = points[i];
p.in = p_points[i];
points[i] = p;
};
};
void Curve2D::set_points_out(const Vector2Array& p_points) {
points.resize(p_points.size());
for (int i=0; i<p_points.size(); i++) {
Point p = points[i];
p.out = p_points[i];
points[i] = p;
};
};
void Curve2D::set_points_pos(const Vector2Array& p_points) {
points.resize(p_points.size());
for (int i=0; i<p_points.size(); i++) {
Point p = points[i];
p.pos = p_points[i];
points[i] = p;
};
};
Vector2Array Curve2D::get_points_in() const {
Vector2Array ret;
ret.resize(points.size());
for (int i=0; i<points.size(); i++) {
ret.set(i, points[i].in);
};
return ret;
};
Vector2Array Curve2D::get_points_out() const {
Vector2Array ret;
ret.resize(points.size());
for (int i=0; i<points.size(); i++) {
ret.set(i, points[i].out);
};
return ret;
};
Vector2Array Curve2D::get_points_pos() const {
Vector2Array ret;
ret.resize(points.size());
for (int i=0; i<points.size(); i++) {
ret.set(i, points[i].pos);
};
return ret;
};
void Curve2D::_bind_methods() {
ClassDB::bind_method(_MD("get_point_count"),&Curve2D::get_point_count);
ClassDB::bind_method(_MD("add_point","pos","in","out"),&Curve2D::add_point,DEFVAL(Vector2()),DEFVAL(Vector2()));
ClassDB::bind_method(_MD("set_point_pos","idx","pos"),&Curve2D::set_point_pos);
ClassDB::bind_method(_MD("get_point_pos","idx"),&Curve2D::get_point_pos);
ClassDB::bind_method(_MD("set_point_in","idx","pos"),&Curve2D::set_point_in);
ClassDB::bind_method(_MD("get_point_in","idx"),&Curve2D::get_point_in);
ClassDB::bind_method(_MD("set_point_out","idx","pos"),&Curve2D::set_point_out);
ClassDB::bind_method(_MD("get_point_out","idx"),&Curve2D::get_point_out);
ClassDB::bind_method(_MD("remove_point","idx"),&Curve2D::remove_point);
ClassDB::bind_method(_MD("interpolate","idx","t"),&Curve2D::interpolate);
ClassDB::bind_method(_MD("bake","subdivs"),&Curve2D::bake,DEFVAL(10));
ClassDB::bind_method(_MD("set_points_in"),&Curve2D::set_points_in);
ClassDB::bind_method(_MD("set_points_out"),&Curve2D::set_points_out);
ClassDB::bind_method(_MD("set_points_pos"),&Curve2D::set_points_pos);
ClassDB::bind_method(_MD("get_points_in"),&Curve2D::get_points_in);
ClassDB::bind_method(_MD("get_points_out"),&Curve2D::get_points_out);
ClassDB::bind_method(_MD("get_points_pos"),&Curve2D::get_points_pos);
ADD_PROPERTY( PropertyInfo( Variant::VECTOR2_ARRAY, "points_in"), _SCS("set_points_in"),_SCS("get_points_in"));
ADD_PROPERTY( PropertyInfo( Variant::VECTOR2_ARRAY, "points_out"), _SCS("set_points_out"),_SCS("get_points_out"));
ADD_PROPERTY( PropertyInfo( Variant::VECTOR2_ARRAY, "points_pos"), _SCS("set_points_pos"),_SCS("get_points_pos"));
}
Curve2D::Curve2D()
{
}
#endif
int Curve2D::get_point_count() const {
return points.size();
}
void Curve2D::add_point(const Vector2& p_pos, const Vector2& p_in, const Vector2& p_out,int p_atpos) {
Point n;
n.pos=p_pos;
n.in=p_in;
n.out=p_out;
if (p_atpos>=0 && p_atpos<points.size())
points.insert(p_atpos,n);
else
points.push_back(n);
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
void Curve2D::set_point_pos(int p_index, const Vector2& p_pos) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].pos=p_pos;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector2 Curve2D::get_point_pos(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector2());
return points[p_index].pos;
}
void Curve2D::set_point_in(int p_index, const Vector2& p_in) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].in=p_in;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector2 Curve2D::get_point_in(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector2());
return points[p_index].in;
}
void Curve2D::set_point_out(int p_index, const Vector2& p_out) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].out=p_out;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector2 Curve2D::get_point_out(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector2());
return points[p_index].out;
}
void Curve2D::remove_point(int p_index) {
ERR_FAIL_INDEX(p_index,points.size());
points.remove(p_index);
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
void Curve2D::clear_points() {
if (!points.empty()) {
points.clear();
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
}
Vector2 Curve2D::interpolate(int p_index, float p_offset) const {
int pc = points.size();
ERR_FAIL_COND_V(pc==0,Vector2());
if (p_index >= pc-1)
return points[pc-1].pos;
else if (p_index<0)
return points[0].pos;
Vector2 p0 = points[p_index].pos;
Vector2 p1 = p0+points[p_index].out;
Vector2 p3 = points[p_index+1].pos;
Vector2 p2 = p3+points[p_index+1].in;
return _bezier_interp(p_offset,p0,p1,p2,p3);
}
Vector2 Curve2D::interpolatef(real_t p_findex) const {
if (p_findex<0)
p_findex=0;
else if (p_findex>=points.size())
p_findex=points.size();
return interpolate((int)p_findex,Math::fmod(p_findex,1.0));
}
void Curve2D::_bake_segment2d(Map<float,Vector2>& r_bake, float p_begin, float p_end,const Vector2& p_a,const Vector2& p_out,const Vector2& p_b, const Vector2& p_in,int p_depth,int p_max_depth,float p_tol) const {
float mp = p_begin+(p_end-p_begin)*0.5;
Vector2 beg = _bezier_interp(p_begin,p_a,p_a+p_out,p_b+p_in,p_b);
Vector2 mid = _bezier_interp(mp,p_a,p_a+p_out,p_b+p_in,p_b);
Vector2 end = _bezier_interp(p_end,p_a,p_a+p_out,p_b+p_in,p_b);
Vector2 na = (mid-beg).normalized();
Vector2 nb = (end-mid).normalized();
float dp = na.dot(nb);
if (dp<Math::cos(Math::deg2rad(p_tol))) {
r_bake[mp]=mid;
}
if (p_depth<p_max_depth) {
_bake_segment2d(r_bake,p_begin,mp,p_a,p_out,p_b,p_in,p_depth+1,p_max_depth,p_tol);
_bake_segment2d(r_bake,mp,p_end,p_a,p_out,p_b,p_in,p_depth+1,p_max_depth,p_tol);
}
}
void Curve2D::_bake() const {
if (!baked_cache_dirty)
return;
baked_max_ofs=0;
baked_cache_dirty=false;
if (points.size()==0) {
baked_point_cache.resize(0);
return;
}
if (points.size()==1) {
baked_point_cache.resize(1);
baked_point_cache.set(0,points[0].pos);
return;
}
Vector2 pos=points[0].pos;
List<Vector2> pointlist;
pointlist.push_back(pos); //start always from origin
for(int i=0;i<points.size()-1;i++) {
float step = 0.1; // at least 10 substeps ought to be enough?
float p = 0;
while(p<1.0) {
float np=p+step;
if (np>1.0)
np=1.0;
Vector2 npp = _bezier_interp(np, points[i].pos,points[i].pos+points[i].out,points[i+1].pos+points[i+1].in,points[i+1].pos);
float d = pos.distance_to(npp);
if (d>bake_interval) {
// OK! between P and NP there _has_ to be Something, let's go searching!
int iterations = 10; //lots of detail!
float low = p;
float hi = np;
float mid = low+(hi-low)*0.5;
for(int j=0;j<iterations;j++) {
npp = _bezier_interp(mid, points[i].pos,points[i].pos+points[i].out,points[i+1].pos+points[i+1].in,points[i+1].pos);
d = pos.distance_to(npp);
if (bake_interval < d)
hi=mid;
else
low=mid;
mid = low+(hi-low)*0.5;
}
pos=npp;
p=mid;
pointlist.push_back(pos);
} else {
p=np;
}
}
}
Vector2 lastpos = points[points.size()-1].pos;
float rem = pos.distance_to(lastpos);
baked_max_ofs=(pointlist.size()-1)*bake_interval+rem;
pointlist.push_back(lastpos);
baked_point_cache.resize(pointlist.size());
PoolVector2Array::Write w = baked_point_cache.write();
int idx=0;
for(List<Vector2>::Element *E=pointlist.front();E;E=E->next()) {
w[idx]=E->get();
idx++;
}
}
float Curve2D::get_baked_length() const {
if (baked_cache_dirty)
_bake();
return baked_max_ofs;
}
Vector2 Curve2D::interpolate_baked(float p_offset,bool p_cubic) const{
if (baked_cache_dirty)
_bake();
//validate//
int pc = baked_point_cache.size();
if (pc==0) {
ERR_EXPLAIN("No points in Curve2D");
ERR_FAIL_COND_V(pc==0,Vector2());
}
if (pc==1)
return baked_point_cache.get(0);
int bpc=baked_point_cache.size();
PoolVector2Array::Read r = baked_point_cache.read();
if (p_offset<0)
return r[0];
if (p_offset>=baked_max_ofs)
return r[bpc-1];
int idx = Math::floor((double)p_offset/(double)bake_interval);
float frac = Math::fmod(p_offset,bake_interval);
if (idx>=bpc-1) {
return r[bpc-1];
} else if (idx==bpc-2) {
frac/=Math::fmod(baked_max_ofs,bake_interval);
} else {
frac/=bake_interval;
}
if (p_cubic) {
Vector2 pre = idx>0? r[idx-1] : r[idx];
Vector2 post = (idx<(bpc-2))? r[idx+2] : r[idx+1];
return r[idx].cubic_interpolate(r[idx+1],pre,post,frac);
} else {
return r[idx].linear_interpolate(r[idx+1],frac);
}
}
PoolVector2Array Curve2D::get_baked_points() const {
if (baked_cache_dirty)
_bake();
return baked_point_cache;
}
void Curve2D::set_bake_interval(float p_tolerance){
bake_interval=p_tolerance;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
float Curve2D::get_bake_interval() const{
return bake_interval;
}
Dictionary Curve2D::_get_data() const {
Dictionary dc;
PoolVector2Array d;
d.resize(points.size()*3);
PoolVector2Array::Write w = d.write();
for(int i=0;i<points.size();i++) {
w[i*3+0]=points[i].in;
w[i*3+1]=points[i].out;
w[i*3+2]=points[i].pos;
}
w=PoolVector2Array::Write();
dc["points"]=d;
return dc;
}
void Curve2D::_set_data(const Dictionary& p_data){
ERR_FAIL_COND(!p_data.has("points"));
PoolVector2Array rp=p_data["points"];
int pc = rp.size();
ERR_FAIL_COND(pc%3!=0);
points.resize(pc/3);
PoolVector2Array::Read r = rp.read();
for(int i=0;i<points.size();i++) {
points[i].in=r[i*3+0];
points[i].out=r[i*3+1];
points[i].pos=r[i*3+2];
}
baked_cache_dirty=true;
}
PoolVector2Array Curve2D::tesselate(int p_max_stages,float p_tolerance) const {
PoolVector2Array tess;
if (points.size()==0) {
return tess;
}
Vector< Map<float,Vector2> > midpoints;
midpoints.resize(points.size()-1);
int pc=1;
for(int i=0;i<points.size()-1;i++) {
_bake_segment2d(midpoints[i],0,1,points[i].pos,points[i].out,points[i+1].pos,points[i+1].in,0,p_max_stages,p_tolerance);
pc++;
pc+=midpoints[i].size();
}
tess.resize(pc);
PoolVector2Array::Write bpw=tess.write();
bpw[0]=points[0].pos;
int pidx=0;
for(int i=0;i<points.size()-1;i++) {
for(Map<float,Vector2>::Element *E=midpoints[i].front();E;E=E->next()) {
pidx++;
bpw[pidx] = E->get();
}
pidx++;
bpw[pidx] = points[i+1].pos;
}
bpw=PoolVector2Array::Write ();
return tess;
}
void Curve2D::_bind_methods() {
ClassDB::bind_method(_MD("get_point_count"),&Curve2D::get_point_count);
ClassDB::bind_method(_MD("add_point","pos","in","out","atpos"),&Curve2D::add_point,DEFVAL(Vector2()),DEFVAL(Vector2()),DEFVAL(-1));
ClassDB::bind_method(_MD("set_point_pos","idx","pos"),&Curve2D::set_point_pos);
ClassDB::bind_method(_MD("get_point_pos","idx"),&Curve2D::get_point_pos);
ClassDB::bind_method(_MD("set_point_in","idx","pos"),&Curve2D::set_point_in);
ClassDB::bind_method(_MD("get_point_in","idx"),&Curve2D::get_point_in);
ClassDB::bind_method(_MD("set_point_out","idx","pos"),&Curve2D::set_point_out);
ClassDB::bind_method(_MD("get_point_out","idx"),&Curve2D::get_point_out);
ClassDB::bind_method(_MD("remove_point","idx"),&Curve2D::remove_point);
ClassDB::bind_method(_MD("clear_points"),&Curve2D::clear_points);
ClassDB::bind_method(_MD("interpolate","idx","t"),&Curve2D::interpolate);
ClassDB::bind_method(_MD("interpolatef","fofs"),&Curve2D::interpolatef);
//ClassDB::bind_method(_MD("bake","subdivs"),&Curve2D::bake,DEFVAL(10));
ClassDB::bind_method(_MD("set_bake_interval","distance"),&Curve2D::set_bake_interval);
ClassDB::bind_method(_MD("get_bake_interval"),&Curve2D::get_bake_interval);
ClassDB::bind_method(_MD("get_baked_length"),&Curve2D::get_baked_length);
ClassDB::bind_method(_MD("interpolate_baked","offset","cubic"),&Curve2D::interpolate_baked,DEFVAL(false));
ClassDB::bind_method(_MD("get_baked_points"),&Curve2D::get_baked_points);
ClassDB::bind_method(_MD("tesselate","max_stages","tolerance_degrees"),&Curve2D::tesselate,DEFVAL(5),DEFVAL(4));
ClassDB::bind_method(_MD("_get_data"),&Curve2D::_get_data);
ClassDB::bind_method(_MD("_set_data"),&Curve2D::_set_data);
ADD_PROPERTY( PropertyInfo( Variant::REAL, "bake_interval",PROPERTY_HINT_RANGE,"0.01,512,0.01"), _SCS("set_bake_interval"),_SCS("get_bake_interval"));
ADD_PROPERTY( PropertyInfo( Variant::INT, "_data",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR), _SCS("_set_data"),_SCS("_get_data"));
/*ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_out"), _SCS("set_points_out"),_SCS("get_points_out"));
ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_pos"), _SCS("set_points_pos"),_SCS("get_points_pos"));
*/
}
Curve2D::Curve2D()
{
baked_cache_dirty=false;
baked_max_ofs=0;
/* add_point(Vector2(-1,0,0));
add_point(Vector2(0,2,0));
add_point(Vector2(0,3,5));*/
bake_interval=5;
}
/***********************************************************************************/
/***********************************************************************************/
/***********************************************************************************/
/***********************************************************************************/
/***********************************************************************************/
/***********************************************************************************/
int Curve3D::get_point_count() const {
return points.size();
}
void Curve3D::add_point(const Vector3& p_pos, const Vector3& p_in, const Vector3& p_out,int p_atpos) {
Point n;
n.pos=p_pos;
n.in=p_in;
n.out=p_out;
if (p_atpos>=0 && p_atpos<points.size())
points.insert(p_atpos,n);
else
points.push_back(n);
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
void Curve3D::set_point_pos(int p_index, const Vector3& p_pos) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].pos=p_pos;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector3 Curve3D::get_point_pos(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector3());
return points[p_index].pos;
}
void Curve3D::set_point_tilt(int p_index, float p_tilt) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].tilt=p_tilt;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
float Curve3D::get_point_tilt(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),0);
return points[p_index].tilt;
}
void Curve3D::set_point_in(int p_index, const Vector3& p_in) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].in=p_in;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector3 Curve3D::get_point_in(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector3());
return points[p_index].in;
}
void Curve3D::set_point_out(int p_index, const Vector3& p_out) {
ERR_FAIL_INDEX(p_index,points.size());
points[p_index].out=p_out;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector3 Curve3D::get_point_out(int p_index) const {
ERR_FAIL_INDEX_V(p_index,points.size(),Vector3());
return points[p_index].out;
}
void Curve3D::remove_point(int p_index) {
ERR_FAIL_INDEX(p_index,points.size());
points.remove(p_index);
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
void Curve3D::clear_points() {
if (!points.empty()) {
points.clear();
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
}
Vector3 Curve3D::interpolate(int p_index, float p_offset) const {
int pc = points.size();
ERR_FAIL_COND_V(pc==0,Vector3());
if (p_index >= pc-1)
return points[pc-1].pos;
else if (p_index<0)
return points[0].pos;
Vector3 p0 = points[p_index].pos;
Vector3 p1 = p0+points[p_index].out;
Vector3 p3 = points[p_index+1].pos;
Vector3 p2 = p3+points[p_index+1].in;
return _bezier_interp(p_offset,p0,p1,p2,p3);
}
Vector3 Curve3D::interpolatef(real_t p_findex) const {
if (p_findex<0)
p_findex=0;
else if (p_findex>=points.size())
p_findex=points.size();
return interpolate((int)p_findex,Math::fmod(p_findex,1.0));
}
void Curve3D::_bake_segment3d(Map<float,Vector3>& r_bake, float p_begin, float p_end,const Vector3& p_a,const Vector3& p_out,const Vector3& p_b, const Vector3& p_in,int p_depth,int p_max_depth,float p_tol) const {
float mp = p_begin+(p_end-p_begin)*0.5;
Vector3 beg = _bezier_interp(p_begin,p_a,p_a+p_out,p_b+p_in,p_b);
Vector3 mid = _bezier_interp(mp,p_a,p_a+p_out,p_b+p_in,p_b);
Vector3 end = _bezier_interp(p_end,p_a,p_a+p_out,p_b+p_in,p_b);
Vector3 na = (mid-beg).normalized();
Vector3 nb = (end-mid).normalized();
float dp = na.dot(nb);
if (dp<Math::cos(Math::deg2rad(p_tol))) {
r_bake[mp]=mid;
}
if (p_depth<p_max_depth) {
_bake_segment3d(r_bake,p_begin,mp,p_a,p_out,p_b,p_in,p_depth+1,p_max_depth,p_tol);
_bake_segment3d(r_bake,mp,p_end,p_a,p_out,p_b,p_in,p_depth+1,p_max_depth,p_tol);
}
}
void Curve3D::_bake() const {
if (!baked_cache_dirty)
return;
baked_max_ofs=0;
baked_cache_dirty=false;
if (points.size()==0) {
baked_point_cache.resize(0);
baked_tilt_cache.resize(0);
return;
}
if (points.size()==1) {
baked_point_cache.resize(1);
baked_point_cache.set(0,points[0].pos);
baked_tilt_cache.resize(1);
baked_tilt_cache.set(0,points[0].tilt);
return;
}
Vector3 pos=points[0].pos;
List<Plane> pointlist;
pointlist.push_back(Plane(pos,points[0].tilt));
for(int i=0;i<points.size()-1;i++) {
float step = 0.1; // at least 10 substeps ought to be enough?
float p = 0;
while(p<1.0) {
float np=p+step;
if (np>1.0)
np=1.0;
Vector3 npp = _bezier_interp(np, points[i].pos,points[i].pos+points[i].out,points[i+1].pos+points[i+1].in,points[i+1].pos);
float d = pos.distance_to(npp);
if (d>bake_interval) {
// OK! between P and NP there _has_ to be Something, let's go searching!
int iterations = 10; //lots of detail!
float low = p;
float hi = np;
float mid = low+(hi-low)*0.5;
for(int j=0;j<iterations;j++) {
npp = _bezier_interp(mid, points[i].pos,points[i].pos+points[i].out,points[i+1].pos+points[i+1].in,points[i+1].pos);
d = pos.distance_to(npp);
if (bake_interval < d)
hi=mid;
else
low=mid;
mid = low+(hi-low)*0.5;
}
pos=npp;
p=mid;
Plane post;
post.normal=pos;
post.d=Math::lerp(points[i].tilt,points[i+1].tilt,mid);
pointlist.push_back(post);
} else {
p=np;
}
}
}
Vector3 lastpos = points[points.size()-1].pos;
float lastilt = points[points.size()-1].tilt;
float rem = pos.distance_to(lastpos);
baked_max_ofs=(pointlist.size()-1)*bake_interval+rem;
pointlist.push_back(Plane(lastpos,lastilt));
baked_point_cache.resize(pointlist.size());
PoolVector3Array::Write w = baked_point_cache.write();
int idx=0;
baked_tilt_cache.resize(pointlist.size());
PoolRealArray::Write wt = baked_tilt_cache.write();
for(List<Plane>::Element *E=pointlist.front();E;E=E->next()) {
w[idx]=E->get().normal;
wt[idx]=E->get().d;
idx++;
}
}
float Curve3D::get_baked_length() const {
if (baked_cache_dirty)
_bake();
return baked_max_ofs;
}
Vector3 Curve3D::interpolate_baked(float p_offset,bool p_cubic) const{
if (baked_cache_dirty)
_bake();
//validate//
int pc = baked_point_cache.size();
if (pc==0) {
ERR_EXPLAIN("No points in Curve3D");
ERR_FAIL_COND_V(pc==0,Vector3());
}
if (pc==1)
return baked_point_cache.get(0);
int bpc=baked_point_cache.size();
PoolVector3Array::Read r = baked_point_cache.read();
if (p_offset<0)
return r[0];
if (p_offset>=baked_max_ofs)
return r[bpc-1];
int idx = Math::floor((double)p_offset/(double)bake_interval);
float frac = Math::fmod(p_offset,bake_interval);
if (idx>=bpc-1) {
return r[bpc-1];
} else if (idx==bpc-2) {
frac/=Math::fmod(baked_max_ofs,bake_interval);
} else {
frac/=bake_interval;
}
if (p_cubic) {
Vector3 pre = idx>0? r[idx-1] : r[idx];
Vector3 post = (idx<(bpc-2))? r[idx+2] : r[idx+1];
return r[idx].cubic_interpolate(r[idx+1],pre,post,frac);
} else {
return r[idx].linear_interpolate(r[idx+1],frac);
}
}
float Curve3D::interpolate_baked_tilt(float p_offset) const{
if (baked_cache_dirty)
_bake();
//validate//
int pc = baked_tilt_cache.size();
if (pc==0) {
ERR_EXPLAIN("No tilts in Curve3D");
ERR_FAIL_COND_V(pc==0,0);
}
if (pc==1)
return baked_tilt_cache.get(0);
int bpc=baked_tilt_cache.size();
PoolRealArray::Read r = baked_tilt_cache.read();
if (p_offset<0)
return r[0];
if (p_offset>=baked_max_ofs)
return r[bpc-1];
int idx = Math::floor((double)p_offset/(double)bake_interval);
float frac = Math::fmod(p_offset,bake_interval);
if (idx>=bpc-1) {
return r[bpc-1];
} else if (idx==bpc-2) {
frac/=Math::fmod(baked_max_ofs,bake_interval);
} else {
frac/=bake_interval;
}
return Math::lerp(r[idx],r[idx+1],frac);
}
PoolVector3Array Curve3D::get_baked_points() const {
if (baked_cache_dirty)
_bake();
return baked_point_cache;
}
PoolRealArray Curve3D::get_baked_tilts() const {
if (baked_cache_dirty)
_bake();
return baked_tilt_cache;
}
void Curve3D::set_bake_interval(float p_tolerance){
bake_interval=p_tolerance;
baked_cache_dirty=true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
float Curve3D::get_bake_interval() const{
return bake_interval;
}
Dictionary Curve3D::_get_data() const {
Dictionary dc;
PoolVector3Array d;
d.resize(points.size()*3);
PoolVector3Array::Write w = d.write();
PoolRealArray t;
t.resize(points.size());
PoolRealArray::Write wt = t.write();
for(int i=0;i<points.size();i++) {
w[i*3+0]=points[i].in;
w[i*3+1]=points[i].out;
w[i*3+2]=points[i].pos;
wt[i]=points[i].tilt;
}
w=PoolVector3Array::Write();
wt=PoolRealArray::Write();
dc["points"]=d;
dc["tilts"]=t;
return dc;
}
void Curve3D::_set_data(const Dictionary& p_data){
ERR_FAIL_COND(!p_data.has("points"));
ERR_FAIL_COND(!p_data.has("tilts"));
PoolVector3Array rp=p_data["points"];
int pc = rp.size();
ERR_FAIL_COND(pc%3!=0);
points.resize(pc/3);
PoolVector3Array::Read r = rp.read();
PoolRealArray rtl=p_data["tilts"];
PoolRealArray::Read rt=rtl.read();
for(int i=0;i<points.size();i++) {
points[i].in=r[i*3+0];
points[i].out=r[i*3+1];
points[i].pos=r[i*3+2];
points[i].tilt=rt[i];
}
baked_cache_dirty=true;
}
PoolVector3Array Curve3D::tesselate(int p_max_stages,float p_tolerance) const {
PoolVector3Array tess;
if (points.size()==0) {
return tess;
}
Vector< Map<float,Vector3> > midpoints;
midpoints.resize(points.size()-1);
int pc=1;
for(int i=0;i<points.size()-1;i++) {
_bake_segment3d(midpoints[i],0,1,points[i].pos,points[i].out,points[i+1].pos,points[i+1].in,0,p_max_stages,p_tolerance);
pc++;
pc+=midpoints[i].size();
}
tess.resize(pc);
PoolVector3Array::Write bpw=tess.write();
bpw[0]=points[0].pos;
int pidx=0;
for(int i=0;i<points.size()-1;i++) {
for(Map<float,Vector3>::Element *E=midpoints[i].front();E;E=E->next()) {
pidx++;
bpw[pidx] = E->get();
}
pidx++;
bpw[pidx] = points[i+1].pos;
}
bpw=PoolVector3Array::Write ();
return tess;
}
void Curve3D::_bind_methods() {
ClassDB::bind_method(_MD("get_point_count"),&Curve3D::get_point_count);
ClassDB::bind_method(_MD("add_point","pos","in","out","atpos"),&Curve3D::add_point,DEFVAL(Vector3()),DEFVAL(Vector3()),DEFVAL(-1));
ClassDB::bind_method(_MD("set_point_pos","idx","pos"),&Curve3D::set_point_pos);
ClassDB::bind_method(_MD("get_point_pos","idx"),&Curve3D::get_point_pos);
ClassDB::bind_method(_MD("set_point_tilt","idx","tilt"),&Curve3D::set_point_tilt);
ClassDB::bind_method(_MD("get_point_tilt","idx"),&Curve3D::get_point_tilt);
ClassDB::bind_method(_MD("set_point_in","idx","pos"),&Curve3D::set_point_in);
ClassDB::bind_method(_MD("get_point_in","idx"),&Curve3D::get_point_in);
ClassDB::bind_method(_MD("set_point_out","idx","pos"),&Curve3D::set_point_out);
ClassDB::bind_method(_MD("get_point_out","idx"),&Curve3D::get_point_out);
ClassDB::bind_method(_MD("remove_point","idx"),&Curve3D::remove_point);
ClassDB::bind_method(_MD("clear_points"),&Curve3D::clear_points);
ClassDB::bind_method(_MD("interpolate","idx","t"),&Curve3D::interpolate);
ClassDB::bind_method(_MD("interpolatef","fofs"),&Curve3D::interpolatef);
//ClassDB::bind_method(_MD("bake","subdivs"),&Curve3D::bake,DEFVAL(10));
ClassDB::bind_method(_MD("set_bake_interval","distance"),&Curve3D::set_bake_interval);
ClassDB::bind_method(_MD("get_bake_interval"),&Curve3D::get_bake_interval);
ClassDB::bind_method(_MD("get_baked_length"),&Curve3D::get_baked_length);
ClassDB::bind_method(_MD("interpolate_baked","offset","cubic"),&Curve3D::interpolate_baked,DEFVAL(false));
ClassDB::bind_method(_MD("get_baked_points"),&Curve3D::get_baked_points);
ClassDB::bind_method(_MD("get_baked_tilts"),&Curve3D::get_baked_tilts);
ClassDB::bind_method(_MD("tesselate","max_stages","tolerance_degrees"),&Curve3D::tesselate,DEFVAL(5),DEFVAL(4));
ClassDB::bind_method(_MD("_get_data"),&Curve3D::_get_data);
ClassDB::bind_method(_MD("_set_data"),&Curve3D::_set_data);
ADD_PROPERTY( PropertyInfo( Variant::REAL, "bake_interval",PROPERTY_HINT_RANGE,"0.01,512,0.01"), _SCS("set_bake_interval"),_SCS("get_bake_interval"));
ADD_PROPERTY( PropertyInfo( Variant::INT, "_data",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR), _SCS("_set_data"),_SCS("_get_data"));
/*ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_out"), _SCS("set_points_out"),_SCS("get_points_out"));
ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_pos"), _SCS("set_points_pos"),_SCS("get_points_pos"));
*/
}
Curve3D::Curve3D()
{
baked_cache_dirty=false;
baked_max_ofs=0;
/* add_point(Vector3(-1,0,0));
add_point(Vector3(0,2,0));
add_point(Vector3(0,3,5));*/
bake_interval=0.2;
}