mirror of
https://github.com/godotengine/godot.git
synced 2025-01-18 20:40:57 +08:00
bf05309af7
As requested by reduz, an import of thekla_atlas into thirdparty/
442 lines
14 KiB
C++
442 lines
14 KiB
C++
// This code is in the public domain -- castanyo@yahoo.es
|
|
|
|
#include "Matrix.inl"
|
|
#include "Vector.inl"
|
|
|
|
#include "nvcore/Array.inl"
|
|
|
|
#include <float.h>
|
|
|
|
#if !NV_CC_MSVC && !NV_OS_ORBIS
|
|
#include <alloca.h>
|
|
#endif
|
|
|
|
using namespace nv;
|
|
|
|
|
|
// Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
|
|
// permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
|
|
// indx[1..n] is an output vector that records the row permutation effected by the partial
|
|
// pivoting; d is output as -1 depending on whether the number of row interchanges was even
|
|
// or odd, respectively. This routine is used in combination with lubksb to solve linear equations
|
|
// or invert a matrix.
|
|
static bool ludcmp(float **a, int n, int *indx, float *d)
|
|
{
|
|
const float TINY = 1.0e-20f;
|
|
|
|
float * vv = (float*)alloca(sizeof(float) * n); // vv stores the implicit scaling of each row.
|
|
|
|
*d = 1.0; // No row interchanges yet.
|
|
for (int i = 0; i < n; i++) { // Loop over rows to get the implicit scaling information.
|
|
|
|
float big = 0.0;
|
|
for (int j = 0; j < n; j++) {
|
|
big = max(big, fabsf(a[i][j]));
|
|
}
|
|
if (big == 0) {
|
|
return false; // Singular matrix
|
|
}
|
|
|
|
// No nonzero largest element.
|
|
vv[i] = 1.0f / big; // Save the scaling.
|
|
}
|
|
|
|
for (int j = 0; j < n; j++) { // This is the loop over columns of Crout's method.
|
|
for (int i = 0; i < j; i++) { // This is equation (2.3.12) except for i = j.
|
|
float sum = a[i][j];
|
|
for (int k = 0; k < i; k++) sum -= a[i][k]*a[k][j];
|
|
a[i][j] = sum;
|
|
}
|
|
|
|
int imax = -1;
|
|
float big = 0.0; // Initialize for the search for largest pivot element.
|
|
for (int i = j; i < n; i++) { // This is i = j of equation (2.3.12) and i = j+ 1 : : : N
|
|
float sum = a[i][j]; // of equation (2.3.13).
|
|
for (int k = 0; k < j; k++) {
|
|
sum -= a[i][k]*a[k][j];
|
|
}
|
|
a[i][j]=sum;
|
|
|
|
float dum = vv[i]*fabs(sum);
|
|
if (dum >= big) {
|
|
// Is the figure of merit for the pivot better than the best so far?
|
|
big = dum;
|
|
imax = i;
|
|
}
|
|
}
|
|
nvDebugCheck(imax != -1);
|
|
|
|
if (j != imax) { // Do we need to interchange rows?
|
|
for (int k = 0; k < n; k++) { // Yes, do so...
|
|
swap(a[imax][k], a[j][k]);
|
|
}
|
|
*d = -(*d); // ...and change the parity of d.
|
|
vv[imax]=vv[j]; // Also interchange the scale factor.
|
|
}
|
|
|
|
indx[j]=imax;
|
|
if (a[j][j] == 0.0) a[j][j] = TINY;
|
|
|
|
// If the pivot element is zero the matrix is singular (at least to the precision of the
|
|
// algorithm). For some applications on singular matrices, it is desirable to substitute
|
|
// TINY for zero.
|
|
if (j != n-1) { // Now, finally, divide by the pivot element.
|
|
float dum = 1.0f / a[j][j];
|
|
for (int i = j+1; i < n; i++) a[i][j] *= dum;
|
|
}
|
|
} // Go back for the next column in the reduction.
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Solves the set of n linear equations Ax = b. Here a[1..n][1..n] is input, not as the matrix
|
|
// A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input
|
|
// as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
|
|
// B, and returns with the solution vector X. a, n, and indx are not modified by this routine
|
|
// and can be left in place for successive calls with different right-hand sides b. This routine takes
|
|
// into account the possibility that b will begin with many zero elements, so it is efficient for use
|
|
// in matrix inversion.
|
|
static void lubksb(float **a, int n, int *indx, float b[])
|
|
{
|
|
int ii = 0;
|
|
for (int i=0; i<n; i++) { // When ii is set to a positive value, it will become
|
|
int ip = indx[i]; // the index of the first nonvanishing element of b. We now
|
|
float sum = b[ip]; // do the forward substitution, equation (2.3.6). The
|
|
b[ip] = b[i]; // only new wrinkle is to unscramble the permutation as we go.
|
|
if (ii != 0) {
|
|
for (int j = ii-1; j < i; j++) sum -= a[i][j]*b[j];
|
|
}
|
|
else if (sum != 0.0f) {
|
|
ii = i+1; // A nonzero element was encountered, so from now on we
|
|
}
|
|
b[i] = sum; // will have to do the sums in the loop above.
|
|
}
|
|
for (int i=n-1; i>=0; i--) { // Now we do the backsubstitution, equation (2.3.7).
|
|
float sum = b[i];
|
|
for (int j = i+1; j < n; j++) {
|
|
sum -= a[i][j]*b[j];
|
|
}
|
|
b[i] = sum/a[i][i]; // Store a component of the solution vector X.
|
|
} // All done!
|
|
}
|
|
|
|
|
|
bool nv::solveLU(const Matrix & A, const Vector4 & b, Vector4 * x)
|
|
{
|
|
nvDebugCheck(x != NULL);
|
|
|
|
float m[4][4];
|
|
float *a[4] = {m[0], m[1], m[2], m[3]};
|
|
int idx[4];
|
|
float d;
|
|
|
|
for (int y = 0; y < 4; y++) {
|
|
for (int x = 0; x < 4; x++) {
|
|
a[x][y] = A(x, y);
|
|
}
|
|
}
|
|
|
|
// Create LU decomposition.
|
|
if (!ludcmp(a, 4, idx, &d)) {
|
|
// Singular matrix.
|
|
return false;
|
|
}
|
|
|
|
// Init solution.
|
|
*x = b;
|
|
|
|
// Do back substitution.
|
|
lubksb(a, 4, idx, x->component);
|
|
|
|
return true;
|
|
}
|
|
|
|
// @@ Not tested.
|
|
Matrix nv::inverseLU(const Matrix & A)
|
|
{
|
|
Vector4 Ai[4];
|
|
|
|
solveLU(A, Vector4(1, 0, 0, 0), &Ai[0]);
|
|
solveLU(A, Vector4(0, 1, 0, 0), &Ai[1]);
|
|
solveLU(A, Vector4(0, 0, 1, 0), &Ai[2]);
|
|
solveLU(A, Vector4(0, 0, 0, 1), &Ai[3]);
|
|
|
|
return Matrix(Ai[0], Ai[1], Ai[2], Ai[3]);
|
|
}
|
|
|
|
|
|
|
|
bool nv::solveLU(const Matrix3 & A, const Vector3 & b, Vector3 * x)
|
|
{
|
|
nvDebugCheck(x != NULL);
|
|
|
|
float m[3][3];
|
|
float *a[3] = {m[0], m[1], m[2]};
|
|
int idx[3];
|
|
float d;
|
|
|
|
for (int y = 0; y < 3; y++) {
|
|
for (int x = 0; x < 3; x++) {
|
|
a[x][y] = A(x, y);
|
|
}
|
|
}
|
|
|
|
// Create LU decomposition.
|
|
if (!ludcmp(a, 3, idx, &d)) {
|
|
// Singular matrix.
|
|
return false;
|
|
}
|
|
|
|
// Init solution.
|
|
*x = b;
|
|
|
|
// Do back substitution.
|
|
lubksb(a, 3, idx, x->component);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool nv::solveCramer(const Matrix & A, const Vector4 & b, Vector4 * x)
|
|
{
|
|
nvDebugCheck(x != NULL);
|
|
|
|
*x = transform(inverseCramer(A), b);
|
|
|
|
return true; // @@ Return false if determinant(A) == 0 !
|
|
}
|
|
|
|
bool nv::solveCramer(const Matrix3 & A, const Vector3 & b, Vector3 * x)
|
|
{
|
|
nvDebugCheck(x != NULL);
|
|
|
|
const float det = A.determinant();
|
|
if (equal(det, 0.0f)) { // @@ Use input epsilon.
|
|
return false;
|
|
}
|
|
|
|
Matrix3 Ai = inverseCramer(A);
|
|
|
|
*x = transform(Ai, b);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// Inverse using gaussian elimination. From Jon's code.
|
|
Matrix nv::inverse(const Matrix & m) {
|
|
|
|
Matrix A = m;
|
|
Matrix B(identity);
|
|
|
|
int i, j, k;
|
|
float max, t, det, pivot;
|
|
|
|
det = 1.0;
|
|
for (i=0; i<4; i++) { /* eliminate in column i, below diag */
|
|
max = -1.;
|
|
for (k=i; k<4; k++) /* find pivot for column i */
|
|
if (fabs(A(k, i)) > max) {
|
|
max = fabs(A(k, i));
|
|
j = k;
|
|
}
|
|
if (max<=0.) return B; /* if no nonzero pivot, PUNT */
|
|
if (j!=i) { /* swap rows i and j */
|
|
for (k=i; k<4; k++)
|
|
swap(A(i, k), A(j, k));
|
|
for (k=0; k<4; k++)
|
|
swap(B(i, k), B(j, k));
|
|
det = -det;
|
|
}
|
|
pivot = A(i, i);
|
|
det *= pivot;
|
|
for (k=i+1; k<4; k++) /* only do elems to right of pivot */
|
|
A(i, k) /= pivot;
|
|
for (k=0; k<4; k++)
|
|
B(i, k) /= pivot;
|
|
/* we know that A(i, i) will be set to 1, so don't bother to do it */
|
|
|
|
for (j=i+1; j<4; j++) { /* eliminate in rows below i */
|
|
t = A(j, i); /* we're gonna zero this guy */
|
|
for (k=i+1; k<4; k++) /* subtract scaled row i from row j */
|
|
A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
|
|
for (k=0; k<4; k++)
|
|
B(j, k) -= B(i, k)*t;
|
|
}
|
|
}
|
|
|
|
/*---------- backward elimination ----------*/
|
|
|
|
for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */
|
|
for (j=0; j<i; j++) { /* eliminate in rows above i */
|
|
t = A(j, i); /* we're gonna zero this guy */
|
|
for (k=0; k<4; k++) /* subtract scaled row i from row j */
|
|
B(j, k) -= B(i, k)*t;
|
|
}
|
|
}
|
|
|
|
return B;
|
|
}
|
|
|
|
|
|
Matrix3 nv::inverse(const Matrix3 & m) {
|
|
|
|
Matrix3 A = m;
|
|
Matrix3 B(identity);
|
|
|
|
int i, j, k;
|
|
float max, t, det, pivot;
|
|
|
|
det = 1.0;
|
|
for (i=0; i<3; i++) { /* eliminate in column i, below diag */
|
|
max = -1.;
|
|
for (k=i; k<3; k++) /* find pivot for column i */
|
|
if (fabs(A(k, i)) > max) {
|
|
max = fabs(A(k, i));
|
|
j = k;
|
|
}
|
|
if (max<=0.) return B; /* if no nonzero pivot, PUNT */
|
|
if (j!=i) { /* swap rows i and j */
|
|
for (k=i; k<3; k++)
|
|
swap(A(i, k), A(j, k));
|
|
for (k=0; k<3; k++)
|
|
swap(B(i, k), B(j, k));
|
|
det = -det;
|
|
}
|
|
pivot = A(i, i);
|
|
det *= pivot;
|
|
for (k=i+1; k<3; k++) /* only do elems to right of pivot */
|
|
A(i, k) /= pivot;
|
|
for (k=0; k<3; k++)
|
|
B(i, k) /= pivot;
|
|
/* we know that A(i, i) will be set to 1, so don't bother to do it */
|
|
|
|
for (j=i+1; j<3; j++) { /* eliminate in rows below i */
|
|
t = A(j, i); /* we're gonna zero this guy */
|
|
for (k=i+1; k<3; k++) /* subtract scaled row i from row j */
|
|
A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
|
|
for (k=0; k<3; k++)
|
|
B(j, k) -= B(i, k)*t;
|
|
}
|
|
}
|
|
|
|
/*---------- backward elimination ----------*/
|
|
|
|
for (i=3-1; i>0; i--) { /* eliminate in column i, above diag */
|
|
for (j=0; j<i; j++) { /* eliminate in rows above i */
|
|
t = A(j, i); /* we're gonna zero this guy */
|
|
for (k=0; k<3; k++) /* subtract scaled row i from row j */
|
|
B(j, k) -= B(i, k)*t;
|
|
}
|
|
}
|
|
|
|
return B;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
// Copyright (C) 1999-2004 Michael Garland.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a
|
|
// copy of this software and associated documentation files (the
|
|
// "Software"), to deal in the Software without restriction, including
|
|
// without limitation the rights to use, copy, modify, merge, publish,
|
|
// distribute, and/or sell copies of the Software, and to permit persons
|
|
// to whom the Software is furnished to do so, provided that the above
|
|
// copyright notice(s) and this permission notice appear in all copies of
|
|
// the Software and that both the above copyright notice(s) and this
|
|
// permission notice appear in supporting documentation.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
|
|
// OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
// HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
|
|
// INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
|
|
// FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
|
|
// NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
|
|
// WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
//
|
|
// Except as contained in this notice, the name of a copyright holder
|
|
// shall not be used in advertising or otherwise to promote the sale, use
|
|
// or other dealings in this Software without prior written authorization
|
|
// of the copyright holder.
|
|
|
|
|
|
// Matrix inversion code for 4x4 matrices using Gaussian elimination
|
|
// with partial pivoting. This is a specialized version of a
|
|
// procedure originally due to Paul Heckbert <ph@cs.cmu.edu>.
|
|
//
|
|
// Returns determinant of A, and B=inverse(A)
|
|
// If matrix A is singular, returns 0 and leaves trash in B.
|
|
//
|
|
#define SWAP(a, b, t) {t = a; a = b; b = t;}
|
|
double invert(Mat4& B, const Mat4& m)
|
|
{
|
|
Mat4 A = m;
|
|
int i, j, k;
|
|
double max, t, det, pivot;
|
|
|
|
/*---------- forward elimination ----------*/
|
|
|
|
for (i=0; i<4; i++) /* put identity matrix in B */
|
|
for (j=0; j<4; j++)
|
|
B(i, j) = (double)(i==j);
|
|
|
|
det = 1.0;
|
|
for (i=0; i<4; i++) { /* eliminate in column i, below diag */
|
|
max = -1.;
|
|
for (k=i; k<4; k++) /* find pivot for column i */
|
|
if (fabs(A(k, i)) > max) {
|
|
max = fabs(A(k, i));
|
|
j = k;
|
|
}
|
|
if (max<=0.) return 0.; /* if no nonzero pivot, PUNT */
|
|
if (j!=i) { /* swap rows i and j */
|
|
for (k=i; k<4; k++)
|
|
SWAP(A(i, k), A(j, k), t);
|
|
for (k=0; k<4; k++)
|
|
SWAP(B(i, k), B(j, k), t);
|
|
det = -det;
|
|
}
|
|
pivot = A(i, i);
|
|
det *= pivot;
|
|
for (k=i+1; k<4; k++) /* only do elems to right of pivot */
|
|
A(i, k) /= pivot;
|
|
for (k=0; k<4; k++)
|
|
B(i, k) /= pivot;
|
|
/* we know that A(i, i) will be set to 1, so don't bother to do it */
|
|
|
|
for (j=i+1; j<4; j++) { /* eliminate in rows below i */
|
|
t = A(j, i); /* we're gonna zero this guy */
|
|
for (k=i+1; k<4; k++) /* subtract scaled row i from row j */
|
|
A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
|
|
for (k=0; k<4; k++)
|
|
B(j, k) -= B(i, k)*t;
|
|
}
|
|
}
|
|
|
|
/*---------- backward elimination ----------*/
|
|
|
|
for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */
|
|
for (j=0; j<i; j++) { /* eliminate in rows above i */
|
|
t = A(j, i); /* we're gonna zero this guy */
|
|
for (k=0; k<4; k++) /* subtract scaled row i from row j */
|
|
B(j, k) -= B(i, k)*t;
|
|
}
|
|
}
|
|
|
|
return det;
|
|
}
|
|
|
|
#endif // 0
|
|
|
|
|
|
|