mirror of
https://github.com/godotengine/godot.git
synced 2025-01-18 20:40:57 +08:00
d95794ec8a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see".
416 lines
17 KiB
C++
416 lines
17 KiB
C++
/**************************************************************************/
|
|
/* test_aabb.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TEST_AABB_H
|
|
#define TEST_AABB_H
|
|
|
|
#include "core/math/aabb.h"
|
|
|
|
#include "tests/test_macros.h"
|
|
|
|
namespace TestAABB {
|
|
|
|
TEST_CASE("[AABB] Constructor methods") {
|
|
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
const AABB aabb_copy = AABB(aabb);
|
|
|
|
CHECK_MESSAGE(
|
|
aabb == aabb_copy,
|
|
"AABBs created with the same dimensions but by different methods should be equal.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] String conversion") {
|
|
CHECK_MESSAGE(
|
|
String(AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6))) == "[P: (-1.5, 2, -2.5), S: (4, 5, 6)]",
|
|
"The string representation should match the expected value.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Basic getters") {
|
|
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.get_position().is_equal_approx(Vector3(-1.5, 2, -2.5)),
|
|
"get_position() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_size().is_equal_approx(Vector3(4, 5, 6)),
|
|
"get_size() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_end().is_equal_approx(Vector3(2.5, 7, 3.5)),
|
|
"get_end() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_center().is_equal_approx(Vector3(0.5, 4.5, 0.5)),
|
|
"get_center() should return the expected value.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Basic setters") {
|
|
AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
aabb.set_end(Vector3(100, 0, 100));
|
|
CHECK_MESSAGE(
|
|
aabb.is_equal_approx(AABB(Vector3(-1.5, 2, -2.5), Vector3(101.5, -2, 102.5))),
|
|
"set_end() should result in the expected AABB.");
|
|
|
|
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
aabb.set_position(Vector3(-1000, -2000, -3000));
|
|
CHECK_MESSAGE(
|
|
aabb.is_equal_approx(AABB(Vector3(-1000, -2000, -3000), Vector3(4, 5, 6))),
|
|
"set_position() should result in the expected AABB.");
|
|
|
|
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
aabb.set_size(Vector3(0, 0, -50));
|
|
CHECK_MESSAGE(
|
|
aabb.is_equal_approx(AABB(Vector3(-1.5, 2, -2.5), Vector3(0, 0, -50))),
|
|
"set_size() should result in the expected AABB.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Volume getters") {
|
|
AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.get_volume() == doctest::Approx(120),
|
|
"get_volume() should return the expected value with positive size.");
|
|
CHECK_MESSAGE(
|
|
aabb.has_volume(),
|
|
"Non-empty volumetric AABB should have a volume.");
|
|
|
|
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.get_volume() == doctest::Approx(-120),
|
|
"get_volume() should return the expected value with negative size (1 component).");
|
|
|
|
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.get_volume() == doctest::Approx(120),
|
|
"get_volume() should return the expected value with negative size (2 components).");
|
|
|
|
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, -6));
|
|
CHECK_MESSAGE(
|
|
aabb.get_volume() == doctest::Approx(-120),
|
|
"get_volume() should return the expected value with negative size (3 components).");
|
|
|
|
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6));
|
|
CHECK_MESSAGE(
|
|
!aabb.has_volume(),
|
|
"Non-empty flat AABB should not have a volume.");
|
|
|
|
CHECK_MESSAGE(
|
|
!AABB().has_volume(),
|
|
"Empty AABB should not have a volume.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Surface getters") {
|
|
AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.has_surface(),
|
|
"Non-empty volumetric AABB should have an surface.");
|
|
|
|
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.has_surface(),
|
|
"Non-empty flat AABB should have a surface.");
|
|
|
|
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 0));
|
|
CHECK_MESSAGE(
|
|
aabb.has_surface(),
|
|
"Non-empty linear AABB should have a surface.");
|
|
|
|
CHECK_MESSAGE(
|
|
!AABB().has_surface(),
|
|
"Empty AABB should not have an surface.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Intersection") {
|
|
const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
|
|
AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersects(aabb_small),
|
|
"intersects() with fully contained AABB (touching the edge) should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersects(aabb_small),
|
|
"intersects() with partially contained AABB (overflowing on Y axis) should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
!aabb_big.intersects(aabb_small),
|
|
"intersects() with non-contained AABB should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersection(aabb_small).is_equal_approx(aabb_small),
|
|
"intersection() with fully contained AABB (touching the edge) should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersection(aabb_small).is_equal_approx(AABB(Vector3(0.5, 2, -2), Vector3(1, 0.5, 1))),
|
|
"intersection() with partially contained AABB (overflowing on Y axis) should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersection(aabb_small).is_equal_approx(AABB()),
|
|
"intersection() with non-contained AABB should return the expected result.");
|
|
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersects_plane(Plane(Vector3(0, 1, 0), 4)),
|
|
"intersects_plane() should return the expected result.");
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersects_plane(Plane(Vector3(0, -1, 0), -4)),
|
|
"intersects_plane() should return the expected result.");
|
|
CHECK_MESSAGE(
|
|
!aabb_big.intersects_plane(Plane(Vector3(0, 1, 0), 200)),
|
|
"intersects_plane() should return the expected result.");
|
|
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersects_segment(Vector3(1, 3, 0), Vector3(0, 3, 0)),
|
|
"intersects_segment() should return the expected result.");
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersects_segment(Vector3(0, 3, 0), Vector3(0, -300, 0)),
|
|
"intersects_segment() should return the expected result.");
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersects_segment(Vector3(-50, 3, -50), Vector3(50, 3, 50)),
|
|
"intersects_segment() should return the expected result.");
|
|
CHECK_MESSAGE(
|
|
!aabb_big.intersects_segment(Vector3(-50, 25, -50), Vector3(50, 25, 50)),
|
|
"intersects_segment() should return the expected result.");
|
|
CHECK_MESSAGE(
|
|
aabb_big.intersects_segment(Vector3(0, 3, 0), Vector3(0, 3, 0)),
|
|
"intersects_segment() should return the expected result with segment of length 0.");
|
|
CHECK_MESSAGE(
|
|
!aabb_big.intersects_segment(Vector3(0, 300, 0), Vector3(0, 300, 0)),
|
|
"intersects_segment() should return the expected result with segment of length 0.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Merging") {
|
|
const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
|
|
AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.merge(aabb_small).is_equal_approx(aabb_big),
|
|
"merge() with fully contained AABB (touching the edge) should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.merge(aabb_small).is_equal_approx(AABB(Vector3(-1.5, 1.5, -2.5), Vector3(4, 5.5, 6))),
|
|
"merge() with partially contained AABB (overflowing on Y axis) should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.merge(aabb_small).is_equal_approx(AABB(Vector3(-1.5, -10, -10), Vector3(12.5, 17, 13.5))),
|
|
"merge() with non-contained AABB should return the expected result.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Encloses") {
|
|
const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
|
|
AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
aabb_big.encloses(aabb_small),
|
|
"encloses() with fully contained AABB (touching the edge) should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
!aabb_big.encloses(aabb_small),
|
|
"encloses() with partially contained AABB (overflowing on Y axis) should return the expected result.");
|
|
|
|
aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
|
|
CHECK_MESSAGE(
|
|
!aabb_big.encloses(aabb_small),
|
|
"encloses() with non-contained AABB should return the expected result.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Get endpoints") {
|
|
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(0).is_equal_approx(Vector3(-1.5, 2, -2.5)),
|
|
"The endpoint at index 0 should match the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(1).is_equal_approx(Vector3(-1.5, 2, 3.5)),
|
|
"The endpoint at index 1 should match the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(2).is_equal_approx(Vector3(-1.5, 7, -2.5)),
|
|
"The endpoint at index 2 should match the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(3).is_equal_approx(Vector3(-1.5, 7, 3.5)),
|
|
"The endpoint at index 3 should match the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(4).is_equal_approx(Vector3(2.5, 2, -2.5)),
|
|
"The endpoint at index 4 should match the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(5).is_equal_approx(Vector3(2.5, 2, 3.5)),
|
|
"The endpoint at index 5 should match the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(6).is_equal_approx(Vector3(2.5, 7, -2.5)),
|
|
"The endpoint at index 6 should match the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(7).is_equal_approx(Vector3(2.5, 7, 3.5)),
|
|
"The endpoint at index 7 should match the expected value.");
|
|
|
|
ERR_PRINT_OFF;
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(8).is_equal_approx(Vector3()),
|
|
"The endpoint at invalid index 8 should match the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_endpoint(-1).is_equal_approx(Vector3()),
|
|
"The endpoint at invalid index -1 should match the expected value.");
|
|
ERR_PRINT_ON;
|
|
}
|
|
|
|
TEST_CASE("[AABB] Get longest/shortest axis") {
|
|
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.get_longest_axis() == Vector3(0, 0, 1),
|
|
"get_longest_axis() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_longest_axis_index() == Vector3::AXIS_Z,
|
|
"get_longest_axis_index() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_longest_axis_size() == 6,
|
|
"get_longest_axis_size() should return the expected value.");
|
|
|
|
CHECK_MESSAGE(
|
|
aabb.get_shortest_axis() == Vector3(1, 0, 0),
|
|
"get_shortest_axis() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_shortest_axis_index() == Vector3::AXIS_X,
|
|
"get_shortest_axis_index() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_shortest_axis_size() == 4,
|
|
"get_shortest_axis_size() should return the expected value.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Get support") {
|
|
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.get_support(Vector3(1, 0, 0)).is_equal_approx(Vector3(2.5, 2, -2.5)),
|
|
"get_support() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_support(Vector3(0.5, 1, 0)).is_equal_approx(Vector3(2.5, 7, -2.5)),
|
|
"get_support() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_support(Vector3(0.5, 1, -400)).is_equal_approx(Vector3(2.5, 7, -2.5)),
|
|
"get_support() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_support(Vector3(0, -1, 0)).is_equal_approx(Vector3(-1.5, 2, -2.5)),
|
|
"get_support() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_support(Vector3(0, -0.1, 0)).is_equal_approx(Vector3(-1.5, 2, -2.5)),
|
|
"get_support() should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.get_support(Vector3()).is_equal_approx(Vector3(-1.5, 2, -2.5)),
|
|
"get_support() should return the expected value with a null vector.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Grow") {
|
|
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.grow(0.25).is_equal_approx(AABB(Vector3(-1.75, 1.75, -2.75), Vector3(4.5, 5.5, 6.5))),
|
|
"grow() with positive value should return the expected AABB.");
|
|
CHECK_MESSAGE(
|
|
aabb.grow(-0.25).is_equal_approx(AABB(Vector3(-1.25, 2.25, -2.25), Vector3(3.5, 4.5, 5.5))),
|
|
"grow() with negative value should return the expected AABB.");
|
|
CHECK_MESSAGE(
|
|
aabb.grow(-10).is_equal_approx(AABB(Vector3(8.5, 12, 7.5), Vector3(-16, -15, -14))),
|
|
"grow() with large negative value should return the expected AABB.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Has point") {
|
|
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.has_point(Vector3(-1, 3, 0)),
|
|
"has_point() with contained point should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
aabb.has_point(Vector3(2, 3, 0)),
|
|
"has_point() with contained point should return the expected value.");
|
|
CHECK_MESSAGE(
|
|
!aabb.has_point(Vector3(-20, 0, 0)),
|
|
"has_point() with non-contained point should return the expected value.");
|
|
|
|
CHECK_MESSAGE(
|
|
aabb.has_point(Vector3(-1.5, 3, 0)),
|
|
"has_point() with positive size should include point on near face (X axis).");
|
|
CHECK_MESSAGE(
|
|
aabb.has_point(Vector3(2.5, 3, 0)),
|
|
"has_point() with positive size should include point on far face (X axis).");
|
|
CHECK_MESSAGE(
|
|
aabb.has_point(Vector3(0, 2, 0)),
|
|
"has_point() with positive size should include point on near face (Y axis).");
|
|
CHECK_MESSAGE(
|
|
aabb.has_point(Vector3(0, 7, 0)),
|
|
"has_point() with positive size should include point on far face (Y axis).");
|
|
CHECK_MESSAGE(
|
|
aabb.has_point(Vector3(0, 3, -2.5)),
|
|
"has_point() with positive size should include point on near face (Z axis).");
|
|
CHECK_MESSAGE(
|
|
aabb.has_point(Vector3(0, 3, 3.5)),
|
|
"has_point() with positive size should include point on far face (Z axis).");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Expanding") {
|
|
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
|
|
CHECK_MESSAGE(
|
|
aabb.expand(Vector3(-1, 3, 0)).is_equal_approx(aabb),
|
|
"expand() with contained point should return the expected AABB.");
|
|
CHECK_MESSAGE(
|
|
aabb.expand(Vector3(2, 3, 0)).is_equal_approx(aabb),
|
|
"expand() with contained point should return the expected AABB.");
|
|
CHECK_MESSAGE(
|
|
aabb.expand(Vector3(-1.5, 3, 0)).is_equal_approx(aabb),
|
|
"expand() with contained point on negative edge should return the expected AABB.");
|
|
CHECK_MESSAGE(
|
|
aabb.expand(Vector3(2.5, 3, 0)).is_equal_approx(aabb),
|
|
"expand() with contained point on positive edge should return the expected AABB.");
|
|
CHECK_MESSAGE(
|
|
aabb.expand(Vector3(-20, 0, 0)).is_equal_approx(AABB(Vector3(-20, 0, -2.5), Vector3(22.5, 7, 6))),
|
|
"expand() with non-contained point should return the expected AABB.");
|
|
}
|
|
|
|
TEST_CASE("[AABB] Finite number checks") {
|
|
const Vector3 x(0, 1, 2);
|
|
const Vector3 infinite(NAN, NAN, NAN);
|
|
|
|
CHECK_MESSAGE(
|
|
AABB(x, x).is_finite(),
|
|
"AABB with all components finite should be finite");
|
|
|
|
CHECK_FALSE_MESSAGE(
|
|
AABB(infinite, x).is_finite(),
|
|
"AABB with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
AABB(x, infinite).is_finite(),
|
|
"AABB with one component infinite should not be finite.");
|
|
|
|
CHECK_FALSE_MESSAGE(
|
|
AABB(infinite, infinite).is_finite(),
|
|
"AABB with two components infinite should not be finite.");
|
|
}
|
|
|
|
} // namespace TestAABB
|
|
|
|
#endif // TEST_AABB_H
|