mirror of
https://github.com/godotengine/godot.git
synced 2024-12-27 11:24:59 +08:00
13327 lines
462 KiB
C++
13327 lines
462 KiB
C++
/*
|
|
Copyright (c) 2014 - 2019, Syoyo Fujita and many contributors.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the Syoyo Fujita nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// TinyEXR contains some OpenEXR code, which is licensed under ------------
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// End of OpenEXR license -------------------------------------------------
|
|
|
|
#ifndef TINYEXR_H_
|
|
#define TINYEXR_H_
|
|
|
|
//
|
|
//
|
|
// Do this:
|
|
// #define TINYEXR_IMPLEMENTATION
|
|
// before you include this file in *one* C or C++ file to create the
|
|
// implementation.
|
|
//
|
|
// // i.e. it should look like this:
|
|
// #include ...
|
|
// #include ...
|
|
// #include ...
|
|
// #define TINYEXR_IMPLEMENTATION
|
|
// #include "tinyexr.h"
|
|
//
|
|
//
|
|
|
|
#include <stddef.h> // for size_t
|
|
#include <stdint.h> // guess stdint.h is available(C99)
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// Use embedded miniz or not to decode ZIP format pixel. Linking with zlib
|
|
// required if this flas is 0.
|
|
#ifndef TINYEXR_USE_MINIZ
|
|
#define TINYEXR_USE_MINIZ (1)
|
|
#endif
|
|
|
|
// Disable PIZ comporession when applying cpplint.
|
|
#ifndef TINYEXR_USE_PIZ
|
|
#define TINYEXR_USE_PIZ (1)
|
|
#endif
|
|
|
|
#ifndef TINYEXR_USE_ZFP
|
|
#define TINYEXR_USE_ZFP (0) // TinyEXR extension.
|
|
// http://computation.llnl.gov/projects/floating-point-compression
|
|
#endif
|
|
|
|
#define TINYEXR_SUCCESS (0)
|
|
#define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1)
|
|
#define TINYEXR_ERROR_INVALID_EXR_VERSION (-2)
|
|
#define TINYEXR_ERROR_INVALID_ARGUMENT (-3)
|
|
#define TINYEXR_ERROR_INVALID_DATA (-4)
|
|
#define TINYEXR_ERROR_INVALID_FILE (-5)
|
|
#define TINYEXR_ERROR_INVALID_PARAMETER (-6)
|
|
#define TINYEXR_ERROR_CANT_OPEN_FILE (-7)
|
|
#define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-8)
|
|
#define TINYEXR_ERROR_INVALID_HEADER (-9)
|
|
#define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-10)
|
|
#define TINYEXR_ERROR_CANT_WRITE_FILE (-11)
|
|
#define TINYEXR_ERROR_SERIALZATION_FAILED (-12)
|
|
|
|
// @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf }
|
|
|
|
// pixel type: possible values are: UINT = 0 HALF = 1 FLOAT = 2
|
|
#define TINYEXR_PIXELTYPE_UINT (0)
|
|
#define TINYEXR_PIXELTYPE_HALF (1)
|
|
#define TINYEXR_PIXELTYPE_FLOAT (2)
|
|
|
|
#define TINYEXR_MAX_HEADER_ATTRIBUTES (1024)
|
|
#define TINYEXR_MAX_CUSTOM_ATTRIBUTES (128)
|
|
|
|
#define TINYEXR_COMPRESSIONTYPE_NONE (0)
|
|
#define TINYEXR_COMPRESSIONTYPE_RLE (1)
|
|
#define TINYEXR_COMPRESSIONTYPE_ZIPS (2)
|
|
#define TINYEXR_COMPRESSIONTYPE_ZIP (3)
|
|
#define TINYEXR_COMPRESSIONTYPE_PIZ (4)
|
|
#define TINYEXR_COMPRESSIONTYPE_ZFP (128) // TinyEXR extension
|
|
|
|
#define TINYEXR_ZFP_COMPRESSIONTYPE_RATE (0)
|
|
#define TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION (1)
|
|
#define TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY (2)
|
|
|
|
#define TINYEXR_TILE_ONE_LEVEL (0)
|
|
#define TINYEXR_TILE_MIPMAP_LEVELS (1)
|
|
#define TINYEXR_TILE_RIPMAP_LEVELS (2)
|
|
|
|
#define TINYEXR_TILE_ROUND_DOWN (0)
|
|
#define TINYEXR_TILE_ROUND_UP (1)
|
|
|
|
typedef struct _EXRVersion {
|
|
int version; // this must be 2
|
|
int tiled; // tile format image
|
|
int long_name; // long name attribute
|
|
int non_image; // deep image(EXR 2.0)
|
|
int multipart; // multi-part(EXR 2.0)
|
|
} EXRVersion;
|
|
|
|
typedef struct _EXRAttribute {
|
|
char name[256]; // name and type are up to 255 chars long.
|
|
char type[256];
|
|
unsigned char *value; // uint8_t*
|
|
int size;
|
|
int pad0;
|
|
} EXRAttribute;
|
|
|
|
typedef struct _EXRChannelInfo {
|
|
char name[256]; // less than 255 bytes long
|
|
int pixel_type;
|
|
int x_sampling;
|
|
int y_sampling;
|
|
unsigned char p_linear;
|
|
unsigned char pad[3];
|
|
} EXRChannelInfo;
|
|
|
|
typedef struct _EXRTile {
|
|
int offset_x;
|
|
int offset_y;
|
|
int level_x;
|
|
int level_y;
|
|
|
|
int width; // actual width in a tile.
|
|
int height; // actual height int a tile.
|
|
|
|
unsigned char **images; // image[channels][pixels]
|
|
} EXRTile;
|
|
|
|
typedef struct _EXRHeader {
|
|
float pixel_aspect_ratio;
|
|
int line_order;
|
|
int data_window[4];
|
|
int display_window[4];
|
|
float screen_window_center[2];
|
|
float screen_window_width;
|
|
|
|
int chunk_count;
|
|
|
|
// Properties for tiled format(`tiledesc`).
|
|
int tiled;
|
|
int tile_size_x;
|
|
int tile_size_y;
|
|
int tile_level_mode;
|
|
int tile_rounding_mode;
|
|
|
|
int long_name;
|
|
int non_image;
|
|
int multipart;
|
|
unsigned int header_len;
|
|
|
|
// Custom attributes(exludes required attributes(e.g. `channels`,
|
|
// `compression`, etc)
|
|
int num_custom_attributes;
|
|
EXRAttribute *custom_attributes; // array of EXRAttribute. size =
|
|
// `num_custom_attributes`.
|
|
|
|
EXRChannelInfo *channels; // [num_channels]
|
|
|
|
int *pixel_types; // Loaded pixel type(TINYEXR_PIXELTYPE_*) of `images` for
|
|
// each channel. This is overwritten with `requested_pixel_types` when
|
|
// loading.
|
|
int num_channels;
|
|
|
|
int compression_type; // compression type(TINYEXR_COMPRESSIONTYPE_*)
|
|
int *requested_pixel_types; // Filled initially by
|
|
// ParseEXRHeaderFrom(Meomory|File), then users
|
|
// can edit it(only valid for HALF pixel type
|
|
// channel)
|
|
|
|
} EXRHeader;
|
|
|
|
typedef struct _EXRMultiPartHeader {
|
|
int num_headers;
|
|
EXRHeader *headers;
|
|
|
|
} EXRMultiPartHeader;
|
|
|
|
typedef struct _EXRImage {
|
|
EXRTile *tiles; // Tiled pixel data. The application must reconstruct image
|
|
// from tiles manually. NULL if scanline format.
|
|
unsigned char **images; // image[channels][pixels]. NULL if tiled format.
|
|
|
|
int width;
|
|
int height;
|
|
int num_channels;
|
|
|
|
// Properties for tile format.
|
|
int num_tiles;
|
|
|
|
} EXRImage;
|
|
|
|
typedef struct _EXRMultiPartImage {
|
|
int num_images;
|
|
EXRImage *images;
|
|
|
|
} EXRMultiPartImage;
|
|
|
|
typedef struct _DeepImage {
|
|
const char **channel_names;
|
|
float ***image; // image[channels][scanlines][samples]
|
|
int **offset_table; // offset_table[scanline][offsets]
|
|
int num_channels;
|
|
int width;
|
|
int height;
|
|
int pad0;
|
|
} DeepImage;
|
|
|
|
// @deprecated { to be removed. }
|
|
// Loads single-frame OpenEXR image. Assume EXR image contains A(single channel
|
|
// alpha) or RGB(A) channels.
|
|
// Application must free image data as returned by `out_rgba`
|
|
// Result image format is: float x RGBA x width x hight
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
extern int LoadEXR(float **out_rgba, int *width, int *height,
|
|
const char *filename, const char **err);
|
|
|
|
// @deprecated { to be removed. }
|
|
// Simple wrapper API for ParseEXRHeaderFromFile.
|
|
// checking given file is a EXR file(by just look up header)
|
|
// @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for
|
|
// others
|
|
extern int IsEXR(const char *filename);
|
|
|
|
// @deprecated { to be removed. }
|
|
// Saves single-frame OpenEXR image. Assume EXR image contains RGB(A) channels.
|
|
// components must be 1(Grayscale), 3(RGB) or 4(RGBA).
|
|
// Input image format is: `float x width x height`, or `float x RGB(A) x width x
|
|
// hight`
|
|
// Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero
|
|
// value.
|
|
// Save image as fp32(FLOAT) format when `save_as_fp16` is 0.
|
|
// Use ZIP compression by default.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
extern int SaveEXR(const float *data, const int width, const int height,
|
|
const int components, const int save_as_fp16,
|
|
const char *filename, const char **err);
|
|
|
|
// Initialize EXRHeader struct
|
|
extern void InitEXRHeader(EXRHeader *exr_header);
|
|
|
|
// Initialize EXRImage struct
|
|
extern void InitEXRImage(EXRImage *exr_image);
|
|
|
|
// Free's internal data of EXRHeader struct
|
|
extern int FreeEXRHeader(EXRHeader *exr_header);
|
|
|
|
// Free's internal data of EXRImage struct
|
|
extern int FreeEXRImage(EXRImage *exr_image);
|
|
|
|
// Free's error message
|
|
extern void FreeEXRErrorMessage(const char *msg);
|
|
|
|
// Parse EXR version header of a file.
|
|
extern int ParseEXRVersionFromFile(EXRVersion *version, const char *filename);
|
|
|
|
// Parse EXR version header from memory-mapped EXR data.
|
|
extern int ParseEXRVersionFromMemory(EXRVersion *version,
|
|
const unsigned char *memory, size_t size);
|
|
|
|
// Parse single-part OpenEXR header from a file and initialize `EXRHeader`.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int ParseEXRHeaderFromFile(EXRHeader *header, const EXRVersion *version,
|
|
const char *filename, const char **err);
|
|
|
|
// Parse single-part OpenEXR header from a memory and initialize `EXRHeader`.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int ParseEXRHeaderFromMemory(EXRHeader *header,
|
|
const EXRVersion *version,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err);
|
|
|
|
// Parse multi-part OpenEXR headers from a file and initialize `EXRHeader*`
|
|
// array.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int ParseEXRMultipartHeaderFromFile(EXRHeader ***headers,
|
|
int *num_headers,
|
|
const EXRVersion *version,
|
|
const char *filename,
|
|
const char **err);
|
|
|
|
// Parse multi-part OpenEXR headers from a memory and initialize `EXRHeader*`
|
|
// array
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int ParseEXRMultipartHeaderFromMemory(EXRHeader ***headers,
|
|
int *num_headers,
|
|
const EXRVersion *version,
|
|
const unsigned char *memory,
|
|
size_t size, const char **err);
|
|
|
|
// Loads single-part OpenEXR image from a file.
|
|
// Application must setup `ParseEXRHeaderFromFile` before calling this function.
|
|
// Application can free EXRImage using `FreeEXRImage`
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRImageFromFile(EXRImage *image, const EXRHeader *header,
|
|
const char *filename, const char **err);
|
|
|
|
// Loads single-part OpenEXR image from a memory.
|
|
// Application must setup `EXRHeader` with
|
|
// `ParseEXRHeaderFromMemory` before calling this function.
|
|
// Application can free EXRImage using `FreeEXRImage`
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRImageFromMemory(EXRImage *image, const EXRHeader *header,
|
|
const unsigned char *memory,
|
|
const size_t size, const char **err);
|
|
|
|
// Loads multi-part OpenEXR image from a file.
|
|
// Application must setup `ParseEXRMultipartHeaderFromFile` before calling this
|
|
// function.
|
|
// Application can free EXRImage using `FreeEXRImage`
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRMultipartImageFromFile(EXRImage *images,
|
|
const EXRHeader **headers,
|
|
unsigned int num_parts,
|
|
const char *filename,
|
|
const char **err);
|
|
|
|
// Loads multi-part OpenEXR image from a memory.
|
|
// Application must setup `EXRHeader*` array with
|
|
// `ParseEXRMultipartHeaderFromMemory` before calling this function.
|
|
// Application can free EXRImage using `FreeEXRImage`
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRMultipartImageFromMemory(EXRImage *images,
|
|
const EXRHeader **headers,
|
|
unsigned int num_parts,
|
|
const unsigned char *memory,
|
|
const size_t size, const char **err);
|
|
|
|
// Saves multi-channel, single-frame OpenEXR image to a file.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int SaveEXRImageToFile(const EXRImage *image,
|
|
const EXRHeader *exr_header, const char *filename,
|
|
const char **err);
|
|
|
|
// Saves multi-channel, single-frame OpenEXR image to a memory.
|
|
// Image is compressed using EXRImage.compression value.
|
|
// Return the number of bytes if success.
|
|
// Return zero and will set error string in `err` when there's an
|
|
// error.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern size_t SaveEXRImageToMemory(const EXRImage *image,
|
|
const EXRHeader *exr_header,
|
|
unsigned char **memory, const char **err);
|
|
|
|
// Loads single-frame OpenEXR deep image.
|
|
// Application must free memory of variables in DeepImage(image, offset_table)
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadDeepEXR(DeepImage *out_image, const char *filename,
|
|
const char **err);
|
|
|
|
// NOT YET IMPLEMENTED:
|
|
// Saves single-frame OpenEXR deep image.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// extern int SaveDeepEXR(const DeepImage *in_image, const char *filename,
|
|
// const char **err);
|
|
|
|
// NOT YET IMPLEMENTED:
|
|
// Loads multi-part OpenEXR deep image.
|
|
// Application must free memory of variables in DeepImage(image, offset_table)
|
|
// extern int LoadMultiPartDeepEXR(DeepImage **out_image, int num_parts, const
|
|
// char *filename,
|
|
// const char **err);
|
|
|
|
// For emscripten.
|
|
// Loads single-frame OpenEXR image from memory. Assume EXR image contains
|
|
// RGB(A) channels.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // TINYEXR_H_
|
|
|
|
#ifdef TINYEXR_IMPLEMENTATION
|
|
#ifndef TINYEXR_IMPLEMENTATION_DEIFNED
|
|
#define TINYEXR_IMPLEMENTATION_DEIFNED
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <sstream>
|
|
|
|
//#include <iostream> // debug
|
|
|
|
#include <limits>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if __cplusplus > 199711L
|
|
// C++11
|
|
#include <cstdint>
|
|
#endif // __cplusplus > 199711L
|
|
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
#if TINYEXR_USE_MINIZ
|
|
#else
|
|
// Issue #46. Please include your own zlib-compatible API header before
|
|
// including `tinyexr.h`
|
|
//#include "zlib.h"
|
|
#endif
|
|
|
|
#if TINYEXR_USE_ZFP
|
|
#include "zfp.h"
|
|
#endif
|
|
|
|
namespace tinyexr {
|
|
|
|
#if __cplusplus > 199711L
|
|
// C++11
|
|
typedef uint64_t tinyexr_uint64;
|
|
typedef int64_t tinyexr_int64;
|
|
#else
|
|
// Although `long long` is not a standard type pre C++11, assume it is defined
|
|
// as a compiler's extension.
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wc++11-long-long"
|
|
#endif
|
|
typedef unsigned long long tinyexr_uint64;
|
|
typedef long long tinyexr_int64;
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
#endif
|
|
|
|
#if TINYEXR_USE_MINIZ
|
|
|
|
namespace miniz {
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wc++11-long-long"
|
|
#pragma clang diagnostic ignored "-Wold-style-cast"
|
|
#pragma clang diagnostic ignored "-Wpadded"
|
|
#pragma clang diagnostic ignored "-Wsign-conversion"
|
|
#pragma clang diagnostic ignored "-Wc++11-extensions"
|
|
#pragma clang diagnostic ignored "-Wconversion"
|
|
#pragma clang diagnostic ignored "-Wunused-function"
|
|
#pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
|
|
#pragma clang diagnostic ignored "-Wundef"
|
|
|
|
#if __has_warning("-Wcomma")
|
|
#pragma clang diagnostic ignored "-Wcomma"
|
|
#endif
|
|
|
|
#if __has_warning("-Wmacro-redefined")
|
|
#pragma clang diagnostic ignored "-Wmacro-redefined"
|
|
#endif
|
|
|
|
#if __has_warning("-Wcast-qual")
|
|
#pragma clang diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
#if __has_warning("-Wzero-as-null-pointer-constant")
|
|
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
|
|
#endif
|
|
|
|
#if __has_warning("-Wtautological-constant-compare")
|
|
#pragma clang diagnostic ignored "-Wtautological-constant-compare"
|
|
#endif
|
|
|
|
#if __has_warning("-Wextra-semi-stmt")
|
|
#pragma clang diagnostic ignored "-Wextra-semi-stmt"
|
|
#endif
|
|
|
|
#endif
|
|
|
|
/* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP
|
|
reading/writing/appending, PNG writing
|
|
See "unlicense" statement at the end of this file.
|
|
Rich Geldreich <richgel99@gmail.com>, last updated Oct. 13, 2013
|
|
Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951:
|
|
http://www.ietf.org/rfc/rfc1951.txt
|
|
|
|
Most API's defined in miniz.c are optional. For example, to disable the
|
|
archive related functions just define
|
|
MINIZ_NO_ARCHIVE_APIS, or to get rid of all stdio usage define MINIZ_NO_STDIO
|
|
(see the list below for more macros).
|
|
|
|
* Change History
|
|
10/13/13 v1.15 r4 - Interim bugfix release while I work on the next major
|
|
release with Zip64 support (almost there!):
|
|
- Critical fix for the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY bug
|
|
(thanks kahmyong.moon@hp.com) which could cause locate files to not find
|
|
files. This bug
|
|
would only have occured in earlier versions if you explicitly used this
|
|
flag, OR if you used mz_zip_extract_archive_file_to_heap() or
|
|
mz_zip_add_mem_to_archive_file_in_place()
|
|
(which used this flag). If you can't switch to v1.15 but want to fix
|
|
this bug, just remove the uses of this flag from both helper funcs (and of
|
|
course don't use the flag).
|
|
- Bugfix in mz_zip_reader_extract_to_mem_no_alloc() from kymoon when
|
|
pUser_read_buf is not NULL and compressed size is > uncompressed size
|
|
- Fixing mz_zip_reader_extract_*() funcs so they don't try to extract
|
|
compressed data from directory entries, to account for weird zipfiles which
|
|
contain zero-size compressed data on dir entries.
|
|
Hopefully this fix won't cause any issues on weird zip archives,
|
|
because it assumes the low 16-bits of zip external attributes are DOS
|
|
attributes (which I believe they always are in practice).
|
|
- Fixing mz_zip_reader_is_file_a_directory() so it doesn't check the
|
|
internal attributes, just the filename and external attributes
|
|
- mz_zip_reader_init_file() - missing MZ_FCLOSE() call if the seek failed
|
|
- Added cmake support for Linux builds which builds all the examples,
|
|
tested with clang v3.3 and gcc v4.6.
|
|
- Clang fix for tdefl_write_image_to_png_file_in_memory() from toffaletti
|
|
- Merged MZ_FORCEINLINE fix from hdeanclark
|
|
- Fix <time.h> include before config #ifdef, thanks emil.brink
|
|
- Added tdefl_write_image_to_png_file_in_memory_ex(): supports Y flipping
|
|
(super useful for OpenGL apps), and explicit control over the compression
|
|
level (so you can
|
|
set it to 1 for real-time compression).
|
|
- Merged in some compiler fixes from paulharris's github repro.
|
|
- Retested this build under Windows (VS 2010, including static analysis),
|
|
tcc 0.9.26, gcc v4.6 and clang v3.3.
|
|
- Added example6.c, which dumps an image of the mandelbrot set to a PNG
|
|
file.
|
|
- Modified example2 to help test the
|
|
MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY flag more.
|
|
- In r3: Bugfix to mz_zip_writer_add_file() found during merge: Fix
|
|
possible src file fclose() leak if alignment bytes+local header file write
|
|
faiiled
|
|
- In r4: Minor bugfix to mz_zip_writer_add_from_zip_reader():
|
|
Was pushing the wrong central dir header offset, appears harmless in this
|
|
release, but it became a problem in the zip64 branch
|
|
5/20/12 v1.14 - MinGW32/64 GCC 4.6.1 compiler fixes: added MZ_FORCEINLINE,
|
|
#include <time.h> (thanks fermtect).
|
|
5/19/12 v1.13 - From jason@cornsyrup.org and kelwert@mtu.edu - Fix
|
|
mz_crc32() so it doesn't compute the wrong CRC-32's when mz_ulong is 64-bit.
|
|
- Temporarily/locally slammed in "typedef unsigned long mz_ulong" and
|
|
re-ran a randomized regression test on ~500k files.
|
|
- Eliminated a bunch of warnings when compiling with GCC 32-bit/64.
|
|
- Ran all examples, miniz.c, and tinfl.c through MSVC 2008's /analyze
|
|
(static analysis) option and fixed all warnings (except for the silly
|
|
"Use of the comma-operator in a tested expression.." analysis warning,
|
|
which I purposely use to work around a MSVC compiler warning).
|
|
- Created 32-bit and 64-bit Codeblocks projects/workspace. Built and
|
|
tested Linux executables. The codeblocks workspace is compatible with
|
|
Linux+Win32/x64.
|
|
- Added miniz_tester solution/project, which is a useful little app
|
|
derived from LZHAM's tester app that I use as part of the regression test.
|
|
- Ran miniz.c and tinfl.c through another series of regression testing on
|
|
~500,000 files and archives.
|
|
- Modified example5.c so it purposely disables a bunch of high-level
|
|
functionality (MINIZ_NO_STDIO, etc.). (Thanks to corysama for the
|
|
MINIZ_NO_STDIO bug report.)
|
|
- Fix ftell() usage in examples so they exit with an error on files which
|
|
are too large (a limitation of the examples, not miniz itself).
|
|
4/12/12 v1.12 - More comments, added low-level example5.c, fixed a couple
|
|
minor level_and_flags issues in the archive API's.
|
|
level_and_flags can now be set to MZ_DEFAULT_COMPRESSION. Thanks to Bruce
|
|
Dawson <bruced@valvesoftware.com> for the feedback/bug report.
|
|
5/28/11 v1.11 - Added statement from unlicense.org
|
|
5/27/11 v1.10 - Substantial compressor optimizations:
|
|
- Level 1 is now ~4x faster than before. The L1 compressor's throughput
|
|
now varies between 70-110MB/sec. on a
|
|
- Core i7 (actual throughput varies depending on the type of data, and x64
|
|
vs. x86).
|
|
- Improved baseline L2-L9 compression perf. Also, greatly improved
|
|
compression perf. issues on some file types.
|
|
- Refactored the compression code for better readability and
|
|
maintainability.
|
|
- Added level 10 compression level (L10 has slightly better ratio than
|
|
level 9, but could have a potentially large
|
|
drop in throughput on some files).
|
|
5/15/11 v1.09 - Initial stable release.
|
|
|
|
* Low-level Deflate/Inflate implementation notes:
|
|
|
|
Compression: Use the "tdefl" API's. The compressor supports raw, static,
|
|
and dynamic blocks, lazy or
|
|
greedy parsing, match length filtering, RLE-only, and Huffman-only streams.
|
|
It performs and compresses
|
|
approximately as well as zlib.
|
|
|
|
Decompression: Use the "tinfl" API's. The entire decompressor is
|
|
implemented as a single function
|
|
coroutine: see tinfl_decompress(). It supports decompression into a 32KB
|
|
(or larger power of 2) wrapping buffer, or into a memory
|
|
block large enough to hold the entire file.
|
|
|
|
The low-level tdefl/tinfl API's do not make any use of dynamic memory
|
|
allocation.
|
|
|
|
* zlib-style API notes:
|
|
|
|
miniz.c implements a fairly large subset of zlib. There's enough
|
|
functionality present for it to be a drop-in
|
|
zlib replacement in many apps:
|
|
The z_stream struct, optional memory allocation callbacks
|
|
deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound
|
|
inflateInit/inflateInit2/inflate/inflateEnd
|
|
compress, compress2, compressBound, uncompress
|
|
CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly
|
|
routines.
|
|
Supports raw deflate streams or standard zlib streams with adler-32
|
|
checking.
|
|
|
|
Limitations:
|
|
The callback API's are not implemented yet. No support for gzip headers or
|
|
zlib static dictionaries.
|
|
I've tried to closely emulate zlib's various flavors of stream flushing
|
|
and return status codes, but
|
|
there are no guarantees that miniz.c pulls this off perfectly.
|
|
|
|
* PNG writing: See the tdefl_write_image_to_png_file_in_memory() function,
|
|
originally written by
|
|
Alex Evans. Supports 1-4 bytes/pixel images.
|
|
|
|
* ZIP archive API notes:
|
|
|
|
The ZIP archive API's where designed with simplicity and efficiency in
|
|
mind, with just enough abstraction to
|
|
get the job done with minimal fuss. There are simple API's to retrieve file
|
|
information, read files from
|
|
existing archives, create new archives, append new files to existing
|
|
archives, or clone archive data from
|
|
one archive to another. It supports archives located in memory or the heap,
|
|
on disk (using stdio.h),
|
|
or you can specify custom file read/write callbacks.
|
|
|
|
- Archive reading: Just call this function to read a single file from a
|
|
disk archive:
|
|
|
|
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const
|
|
char *pArchive_name,
|
|
size_t *pSize, mz_uint zip_flags);
|
|
|
|
For more complex cases, use the "mz_zip_reader" functions. Upon opening an
|
|
archive, the entire central
|
|
directory is located and read as-is into memory, and subsequent file access
|
|
only occurs when reading individual files.
|
|
|
|
- Archives file scanning: The simple way is to use this function to scan a
|
|
loaded archive for a specific file:
|
|
|
|
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
|
|
const char *pComment, mz_uint flags);
|
|
|
|
The locate operation can optionally check file comments too, which (as one
|
|
example) can be used to identify
|
|
multiple versions of the same file in an archive. This function uses a
|
|
simple linear search through the central
|
|
directory, so it's not very fast.
|
|
|
|
Alternately, you can iterate through all the files in an archive (using
|
|
mz_zip_reader_get_num_files()) and
|
|
retrieve detailed info on each file by calling mz_zip_reader_file_stat().
|
|
|
|
- Archive creation: Use the "mz_zip_writer" functions. The ZIP writer
|
|
immediately writes compressed file data
|
|
to disk and builds an exact image of the central directory in memory. The
|
|
central directory image is written
|
|
all at once at the end of the archive file when the archive is finalized.
|
|
|
|
The archive writer can optionally align each file's local header and file
|
|
data to any power of 2 alignment,
|
|
which can be useful when the archive will be read from optical media. Also,
|
|
the writer supports placing
|
|
arbitrary data blobs at the very beginning of ZIP archives. Archives
|
|
written using either feature are still
|
|
readable by any ZIP tool.
|
|
|
|
- Archive appending: The simple way to add a single file to an archive is
|
|
to call this function:
|
|
|
|
mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename,
|
|
const char *pArchive_name,
|
|
const void *pBuf, size_t buf_size, const void *pComment, mz_uint16
|
|
comment_size, mz_uint level_and_flags);
|
|
|
|
The archive will be created if it doesn't already exist, otherwise it'll be
|
|
appended to.
|
|
Note the appending is done in-place and is not an atomic operation, so if
|
|
something goes wrong
|
|
during the operation it's possible the archive could be left without a
|
|
central directory (although the local
|
|
file headers and file data will be fine, so the archive will be
|
|
recoverable).
|
|
|
|
For more complex archive modification scenarios:
|
|
1. The safest way is to use a mz_zip_reader to read the existing archive,
|
|
cloning only those bits you want to
|
|
preserve into a new archive using using the
|
|
mz_zip_writer_add_from_zip_reader() function (which compiles the
|
|
compressed file data as-is). When you're done, delete the old archive and
|
|
rename the newly written archive, and
|
|
you're done. This is safe but requires a bunch of temporary disk space or
|
|
heap memory.
|
|
|
|
2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using
|
|
mz_zip_writer_init_from_reader(),
|
|
append new files as needed, then finalize the archive which will write an
|
|
updated central directory to the
|
|
original archive. (This is basically what
|
|
mz_zip_add_mem_to_archive_file_in_place() does.) There's a
|
|
possibility that the archive's central directory could be lost with this
|
|
method if anything goes wrong, though.
|
|
|
|
- ZIP archive support limitations:
|
|
No zip64 or spanning support. Extraction functions can only handle
|
|
unencrypted, stored or deflated files.
|
|
Requires streams capable of seeking.
|
|
|
|
* This is a header file library, like stb_image.c. To get only a header file,
|
|
either cut and paste the
|
|
below header, or create miniz.h, #define MINIZ_HEADER_FILE_ONLY, and then
|
|
include miniz.c from it.
|
|
|
|
* Important: For best perf. be sure to customize the below macros for your
|
|
target platform:
|
|
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
|
|
#define MINIZ_LITTLE_ENDIAN 1
|
|
#define MINIZ_HAS_64BIT_REGISTERS 1
|
|
|
|
* On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before
|
|
including miniz.c to ensure miniz
|
|
uses the 64-bit variants: fopen64(), stat64(), etc. Otherwise you won't be
|
|
able to process large files
|
|
(i.e. 32-bit stat() fails for me on files > 0x7FFFFFFF bytes).
|
|
*/
|
|
|
|
#ifndef MINIZ_HEADER_INCLUDED
|
|
#define MINIZ_HEADER_INCLUDED
|
|
|
|
//#include <stdlib.h>
|
|
|
|
// Defines to completely disable specific portions of miniz.c:
|
|
// If all macros here are defined the only functionality remaining will be
|
|
// CRC-32, adler-32, tinfl, and tdefl.
|
|
|
|
// Define MINIZ_NO_STDIO to disable all usage and any functions which rely on
|
|
// stdio for file I/O.
|
|
//#define MINIZ_NO_STDIO
|
|
|
|
// If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able
|
|
// to get the current time, or
|
|
// get/set file times, and the C run-time funcs that get/set times won't be
|
|
// called.
|
|
// The current downside is the times written to your archives will be from 1979.
|
|
#define MINIZ_NO_TIME
|
|
|
|
// Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's.
|
|
#define MINIZ_NO_ARCHIVE_APIS
|
|
|
|
// Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive
|
|
// API's.
|
|
//#define MINIZ_NO_ARCHIVE_WRITING_APIS
|
|
|
|
// Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression
|
|
// API's.
|
|
//#define MINIZ_NO_ZLIB_APIS
|
|
|
|
// Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent
|
|
// conflicts against stock zlib.
|
|
//#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
|
|
|
|
// Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc.
|
|
// Note if MINIZ_NO_MALLOC is defined then the user must always provide custom
|
|
// user alloc/free/realloc
|
|
// callbacks to the zlib and archive API's, and a few stand-alone helper API's
|
|
// which don't provide custom user
|
|
// functions (such as tdefl_compress_mem_to_heap() and
|
|
// tinfl_decompress_mem_to_heap()) won't work.
|
|
//#define MINIZ_NO_MALLOC
|
|
|
|
#if defined(__TINYC__) && (defined(__linux) || defined(__linux__))
|
|
// TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc
|
|
// on Linux
|
|
#define MINIZ_NO_TIME
|
|
#endif
|
|
|
|
#if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS)
|
|
//#include <time.h>
|
|
#endif
|
|
|
|
#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
|
|
defined(__i386) || defined(__i486__) || defined(__i486) || \
|
|
defined(i386) || defined(__ia64__) || defined(__x86_64__)
|
|
// MINIZ_X86_OR_X64_CPU is only used to help set the below macros.
|
|
#define MINIZ_X86_OR_X64_CPU 1
|
|
#endif
|
|
|
|
#if defined(__sparcv9)
|
|
// Big endian
|
|
#else
|
|
#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
|
|
// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
|
|
#define MINIZ_LITTLE_ENDIAN 1
|
|
#endif
|
|
#endif
|
|
|
|
#if MINIZ_X86_OR_X64_CPU
|
|
// Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient
|
|
// integer loads and stores from unaligned addresses.
|
|
//#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
|
|
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES \
|
|
0 // disable to suppress compiler warnings
|
|
#endif
|
|
|
|
#if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || \
|
|
defined(_LP64) || defined(__LP64__) || defined(__ia64__) || \
|
|
defined(__x86_64__)
|
|
// Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are
|
|
// reasonably fast (and don't involve compiler generated calls to helper
|
|
// functions).
|
|
#define MINIZ_HAS_64BIT_REGISTERS 1
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// ------------------- zlib-style API Definitions.
|
|
|
|
// For more compatibility with zlib, miniz.c uses unsigned long for some
|
|
// parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits!
|
|
typedef unsigned long mz_ulong;
|
|
|
|
// mz_free() internally uses the MZ_FREE() macro (which by default calls free()
|
|
// unless you've modified the MZ_MALLOC macro) to release a block allocated from
|
|
// the heap.
|
|
void mz_free(void *p);
|
|
|
|
#define MZ_ADLER32_INIT (1)
|
|
// mz_adler32() returns the initial adler-32 value to use when called with
|
|
// ptr==NULL.
|
|
mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len);
|
|
|
|
#define MZ_CRC32_INIT (0)
|
|
// mz_crc32() returns the initial CRC-32 value to use when called with
|
|
// ptr==NULL.
|
|
mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len);
|
|
|
|
// Compression strategies.
|
|
enum {
|
|
MZ_DEFAULT_STRATEGY = 0,
|
|
MZ_FILTERED = 1,
|
|
MZ_HUFFMAN_ONLY = 2,
|
|
MZ_RLE = 3,
|
|
MZ_FIXED = 4
|
|
};
|
|
|
|
// Method
|
|
#define MZ_DEFLATED 8
|
|
|
|
#ifndef MINIZ_NO_ZLIB_APIS
|
|
|
|
// Heap allocation callbacks.
|
|
// Note that mz_alloc_func parameter types purpsosely differ from zlib's:
|
|
// items/size is size_t, not unsigned long.
|
|
typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size);
|
|
typedef void (*mz_free_func)(void *opaque, void *address);
|
|
typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items,
|
|
size_t size);
|
|
|
|
#define MZ_VERSION "9.1.15"
|
|
#define MZ_VERNUM 0x91F0
|
|
#define MZ_VER_MAJOR 9
|
|
#define MZ_VER_MINOR 1
|
|
#define MZ_VER_REVISION 15
|
|
#define MZ_VER_SUBREVISION 0
|
|
|
|
// Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The
|
|
// other values are for advanced use (refer to the zlib docs).
|
|
enum {
|
|
MZ_NO_FLUSH = 0,
|
|
MZ_PARTIAL_FLUSH = 1,
|
|
MZ_SYNC_FLUSH = 2,
|
|
MZ_FULL_FLUSH = 3,
|
|
MZ_FINISH = 4,
|
|
MZ_BLOCK = 5
|
|
};
|
|
|
|
// Return status codes. MZ_PARAM_ERROR is non-standard.
|
|
enum {
|
|
MZ_OK = 0,
|
|
MZ_STREAM_END = 1,
|
|
MZ_NEED_DICT = 2,
|
|
MZ_ERRNO = -1,
|
|
MZ_STREAM_ERROR = -2,
|
|
MZ_DATA_ERROR = -3,
|
|
MZ_MEM_ERROR = -4,
|
|
MZ_BUF_ERROR = -5,
|
|
MZ_VERSION_ERROR = -6,
|
|
MZ_PARAM_ERROR = -10000
|
|
};
|
|
|
|
// Compression levels: 0-9 are the standard zlib-style levels, 10 is best
|
|
// possible compression (not zlib compatible, and may be very slow),
|
|
// MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL.
|
|
enum {
|
|
MZ_NO_COMPRESSION = 0,
|
|
MZ_BEST_SPEED = 1,
|
|
MZ_BEST_COMPRESSION = 9,
|
|
MZ_UBER_COMPRESSION = 10,
|
|
MZ_DEFAULT_LEVEL = 6,
|
|
MZ_DEFAULT_COMPRESSION = -1
|
|
};
|
|
|
|
// Window bits
|
|
#define MZ_DEFAULT_WINDOW_BITS 15
|
|
|
|
struct mz_internal_state;
|
|
|
|
// Compression/decompression stream struct.
|
|
typedef struct mz_stream_s {
|
|
const unsigned char *next_in; // pointer to next byte to read
|
|
unsigned int avail_in; // number of bytes available at next_in
|
|
mz_ulong total_in; // total number of bytes consumed so far
|
|
|
|
unsigned char *next_out; // pointer to next byte to write
|
|
unsigned int avail_out; // number of bytes that can be written to next_out
|
|
mz_ulong total_out; // total number of bytes produced so far
|
|
|
|
char *msg; // error msg (unused)
|
|
struct mz_internal_state *state; // internal state, allocated by zalloc/zfree
|
|
|
|
mz_alloc_func
|
|
zalloc; // optional heap allocation function (defaults to malloc)
|
|
mz_free_func zfree; // optional heap free function (defaults to free)
|
|
void *opaque; // heap alloc function user pointer
|
|
|
|
int data_type; // data_type (unused)
|
|
mz_ulong adler; // adler32 of the source or uncompressed data
|
|
mz_ulong reserved; // not used
|
|
} mz_stream;
|
|
|
|
typedef mz_stream *mz_streamp;
|
|
|
|
// Returns the version string of miniz.c.
|
|
const char *mz_version(void);
|
|
|
|
// mz_deflateInit() initializes a compressor with default options:
|
|
// Parameters:
|
|
// pStream must point to an initialized mz_stream struct.
|
|
// level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION].
|
|
// level 1 enables a specially optimized compression function that's been
|
|
// optimized purely for performance, not ratio.
|
|
// (This special func. is currently only enabled when
|
|
// MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.)
|
|
// Return values:
|
|
// MZ_OK on success.
|
|
// MZ_STREAM_ERROR if the stream is bogus.
|
|
// MZ_PARAM_ERROR if the input parameters are bogus.
|
|
// MZ_MEM_ERROR on out of memory.
|
|
int mz_deflateInit(mz_streamp pStream, int level);
|
|
|
|
// mz_deflateInit2() is like mz_deflate(), except with more control:
|
|
// Additional parameters:
|
|
// method must be MZ_DEFLATED
|
|
// window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with
|
|
// zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no
|
|
// header or footer)
|
|
// mem_level must be between [1, 9] (it's checked but ignored by miniz.c)
|
|
int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits,
|
|
int mem_level, int strategy);
|
|
|
|
// Quickly resets a compressor without having to reallocate anything. Same as
|
|
// calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2().
|
|
int mz_deflateReset(mz_streamp pStream);
|
|
|
|
// mz_deflate() compresses the input to output, consuming as much of the input
|
|
// and producing as much output as possible.
|
|
// Parameters:
|
|
// pStream is the stream to read from and write to. You must initialize/update
|
|
// the next_in, avail_in, next_out, and avail_out members.
|
|
// flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or
|
|
// MZ_FINISH.
|
|
// Return values:
|
|
// MZ_OK on success (when flushing, or if more input is needed but not
|
|
// available, and/or there's more output to be written but the output buffer
|
|
// is full).
|
|
// MZ_STREAM_END if all input has been consumed and all output bytes have been
|
|
// written. Don't call mz_deflate() on the stream anymore.
|
|
// MZ_STREAM_ERROR if the stream is bogus.
|
|
// MZ_PARAM_ERROR if one of the parameters is invalid.
|
|
// MZ_BUF_ERROR if no forward progress is possible because the input and/or
|
|
// output buffers are empty. (Fill up the input buffer or free up some output
|
|
// space and try again.)
|
|
int mz_deflate(mz_streamp pStream, int flush);
|
|
|
|
// mz_deflateEnd() deinitializes a compressor:
|
|
// Return values:
|
|
// MZ_OK on success.
|
|
// MZ_STREAM_ERROR if the stream is bogus.
|
|
int mz_deflateEnd(mz_streamp pStream);
|
|
|
|
// mz_deflateBound() returns a (very) conservative upper bound on the amount of
|
|
// data that could be generated by deflate(), assuming flush is set to only
|
|
// MZ_NO_FLUSH or MZ_FINISH.
|
|
mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len);
|
|
|
|
// Single-call compression functions mz_compress() and mz_compress2():
|
|
// Returns MZ_OK on success, or one of the error codes from mz_deflate() on
|
|
// failure.
|
|
int mz_compress(unsigned char *pDest, mz_ulong *pDest_len,
|
|
const unsigned char *pSource, mz_ulong source_len);
|
|
int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len,
|
|
const unsigned char *pSource, mz_ulong source_len, int level);
|
|
|
|
// mz_compressBound() returns a (very) conservative upper bound on the amount of
|
|
// data that could be generated by calling mz_compress().
|
|
mz_ulong mz_compressBound(mz_ulong source_len);
|
|
|
|
// Initializes a decompressor.
|
|
int mz_inflateInit(mz_streamp pStream);
|
|
|
|
// mz_inflateInit2() is like mz_inflateInit() with an additional option that
|
|
// controls the window size and whether or not the stream has been wrapped with
|
|
// a zlib header/footer:
|
|
// window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or
|
|
// -MZ_DEFAULT_WINDOW_BITS (raw deflate).
|
|
int mz_inflateInit2(mz_streamp pStream, int window_bits);
|
|
|
|
// Decompresses the input stream to the output, consuming only as much of the
|
|
// input as needed, and writing as much to the output as possible.
|
|
// Parameters:
|
|
// pStream is the stream to read from and write to. You must initialize/update
|
|
// the next_in, avail_in, next_out, and avail_out members.
|
|
// flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH.
|
|
// On the first call, if flush is MZ_FINISH it's assumed the input and output
|
|
// buffers are both sized large enough to decompress the entire stream in a
|
|
// single call (this is slightly faster).
|
|
// MZ_FINISH implies that there are no more source bytes available beside
|
|
// what's already in the input buffer, and that the output buffer is large
|
|
// enough to hold the rest of the decompressed data.
|
|
// Return values:
|
|
// MZ_OK on success. Either more input is needed but not available, and/or
|
|
// there's more output to be written but the output buffer is full.
|
|
// MZ_STREAM_END if all needed input has been consumed and all output bytes
|
|
// have been written. For zlib streams, the adler-32 of the decompressed data
|
|
// has also been verified.
|
|
// MZ_STREAM_ERROR if the stream is bogus.
|
|
// MZ_DATA_ERROR if the deflate stream is invalid.
|
|
// MZ_PARAM_ERROR if one of the parameters is invalid.
|
|
// MZ_BUF_ERROR if no forward progress is possible because the input buffer is
|
|
// empty but the inflater needs more input to continue, or if the output
|
|
// buffer is not large enough. Call mz_inflate() again
|
|
// with more input data, or with more room in the output buffer (except when
|
|
// using single call decompression, described above).
|
|
int mz_inflate(mz_streamp pStream, int flush);
|
|
|
|
// Deinitializes a decompressor.
|
|
int mz_inflateEnd(mz_streamp pStream);
|
|
|
|
// Single-call decompression.
|
|
// Returns MZ_OK on success, or one of the error codes from mz_inflate() on
|
|
// failure.
|
|
int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len,
|
|
const unsigned char *pSource, mz_ulong source_len);
|
|
|
|
// Returns a string description of the specified error code, or NULL if the
|
|
// error code is invalid.
|
|
const char *mz_error(int err);
|
|
|
|
// Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used
|
|
// as a drop-in replacement for the subset of zlib that miniz.c supports.
|
|
// Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you
|
|
// use zlib in the same project.
|
|
#ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
|
|
typedef unsigned char Byte;
|
|
typedef unsigned int uInt;
|
|
typedef mz_ulong uLong;
|
|
typedef Byte Bytef;
|
|
typedef uInt uIntf;
|
|
typedef char charf;
|
|
typedef int intf;
|
|
typedef void *voidpf;
|
|
typedef uLong uLongf;
|
|
typedef void *voidp;
|
|
typedef void *const voidpc;
|
|
#define Z_NULL 0
|
|
#define Z_NO_FLUSH MZ_NO_FLUSH
|
|
#define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH
|
|
#define Z_SYNC_FLUSH MZ_SYNC_FLUSH
|
|
#define Z_FULL_FLUSH MZ_FULL_FLUSH
|
|
#define Z_FINISH MZ_FINISH
|
|
#define Z_BLOCK MZ_BLOCK
|
|
#define Z_OK MZ_OK
|
|
#define Z_STREAM_END MZ_STREAM_END
|
|
#define Z_NEED_DICT MZ_NEED_DICT
|
|
#define Z_ERRNO MZ_ERRNO
|
|
#define Z_STREAM_ERROR MZ_STREAM_ERROR
|
|
#define Z_DATA_ERROR MZ_DATA_ERROR
|
|
#define Z_MEM_ERROR MZ_MEM_ERROR
|
|
#define Z_BUF_ERROR MZ_BUF_ERROR
|
|
#define Z_VERSION_ERROR MZ_VERSION_ERROR
|
|
#define Z_PARAM_ERROR MZ_PARAM_ERROR
|
|
#define Z_NO_COMPRESSION MZ_NO_COMPRESSION
|
|
#define Z_BEST_SPEED MZ_BEST_SPEED
|
|
#define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION
|
|
#define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION
|
|
#define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY
|
|
#define Z_FILTERED MZ_FILTERED
|
|
#define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY
|
|
#define Z_RLE MZ_RLE
|
|
#define Z_FIXED MZ_FIXED
|
|
#define Z_DEFLATED MZ_DEFLATED
|
|
#define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS
|
|
#define alloc_func mz_alloc_func
|
|
#define free_func mz_free_func
|
|
#define internal_state mz_internal_state
|
|
#define z_stream mz_stream
|
|
#define deflateInit mz_deflateInit
|
|
#define deflateInit2 mz_deflateInit2
|
|
#define deflateReset mz_deflateReset
|
|
#define deflate mz_deflate
|
|
#define deflateEnd mz_deflateEnd
|
|
#define deflateBound mz_deflateBound
|
|
#define compress mz_compress
|
|
#define compress2 mz_compress2
|
|
#define compressBound mz_compressBound
|
|
#define inflateInit mz_inflateInit
|
|
#define inflateInit2 mz_inflateInit2
|
|
#define inflate mz_inflate
|
|
#define inflateEnd mz_inflateEnd
|
|
#define uncompress mz_uncompress
|
|
#define crc32 mz_crc32
|
|
#define adler32 mz_adler32
|
|
#define MAX_WBITS 15
|
|
#define MAX_MEM_LEVEL 9
|
|
#define zError mz_error
|
|
#define ZLIB_VERSION MZ_VERSION
|
|
#define ZLIB_VERNUM MZ_VERNUM
|
|
#define ZLIB_VER_MAJOR MZ_VER_MAJOR
|
|
#define ZLIB_VER_MINOR MZ_VER_MINOR
|
|
#define ZLIB_VER_REVISION MZ_VER_REVISION
|
|
#define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION
|
|
#define zlibVersion mz_version
|
|
#define zlib_version mz_version()
|
|
#endif // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
|
|
|
|
#endif // MINIZ_NO_ZLIB_APIS
|
|
|
|
// ------------------- Types and macros
|
|
|
|
typedef unsigned char mz_uint8;
|
|
typedef signed short mz_int16;
|
|
typedef unsigned short mz_uint16;
|
|
typedef unsigned int mz_uint32;
|
|
typedef unsigned int mz_uint;
|
|
typedef long long mz_int64;
|
|
typedef unsigned long long mz_uint64;
|
|
typedef int mz_bool;
|
|
|
|
#define MZ_FALSE (0)
|
|
#define MZ_TRUE (1)
|
|
|
|
// An attempt to work around MSVC's spammy "warning C4127: conditional
|
|
// expression is constant" message.
|
|
#ifdef _MSC_VER
|
|
#define MZ_MACRO_END while (0, 0)
|
|
#else
|
|
#define MZ_MACRO_END while (0)
|
|
#endif
|
|
|
|
// ------------------- ZIP archive reading/writing
|
|
|
|
#ifndef MINIZ_NO_ARCHIVE_APIS
|
|
|
|
enum {
|
|
MZ_ZIP_MAX_IO_BUF_SIZE = 64 * 1024,
|
|
MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260,
|
|
MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256
|
|
};
|
|
|
|
typedef struct {
|
|
mz_uint32 m_file_index;
|
|
mz_uint32 m_central_dir_ofs;
|
|
mz_uint16 m_version_made_by;
|
|
mz_uint16 m_version_needed;
|
|
mz_uint16 m_bit_flag;
|
|
mz_uint16 m_method;
|
|
#ifndef MINIZ_NO_TIME
|
|
time_t m_time;
|
|
#endif
|
|
mz_uint32 m_crc32;
|
|
mz_uint64 m_comp_size;
|
|
mz_uint64 m_uncomp_size;
|
|
mz_uint16 m_internal_attr;
|
|
mz_uint32 m_external_attr;
|
|
mz_uint64 m_local_header_ofs;
|
|
mz_uint32 m_comment_size;
|
|
char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE];
|
|
char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE];
|
|
} mz_zip_archive_file_stat;
|
|
|
|
typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs,
|
|
void *pBuf, size_t n);
|
|
typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs,
|
|
const void *pBuf, size_t n);
|
|
|
|
struct mz_zip_internal_state_tag;
|
|
typedef struct mz_zip_internal_state_tag mz_zip_internal_state;
|
|
|
|
typedef enum {
|
|
MZ_ZIP_MODE_INVALID = 0,
|
|
MZ_ZIP_MODE_READING = 1,
|
|
MZ_ZIP_MODE_WRITING = 2,
|
|
MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3
|
|
} mz_zip_mode;
|
|
|
|
typedef struct mz_zip_archive_tag {
|
|
mz_uint64 m_archive_size;
|
|
mz_uint64 m_central_directory_file_ofs;
|
|
mz_uint m_total_files;
|
|
mz_zip_mode m_zip_mode;
|
|
|
|
mz_uint m_file_offset_alignment;
|
|
|
|
mz_alloc_func m_pAlloc;
|
|
mz_free_func m_pFree;
|
|
mz_realloc_func m_pRealloc;
|
|
void *m_pAlloc_opaque;
|
|
|
|
mz_file_read_func m_pRead;
|
|
mz_file_write_func m_pWrite;
|
|
void *m_pIO_opaque;
|
|
|
|
mz_zip_internal_state *m_pState;
|
|
|
|
} mz_zip_archive;
|
|
|
|
typedef enum {
|
|
MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100,
|
|
MZ_ZIP_FLAG_IGNORE_PATH = 0x0200,
|
|
MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400,
|
|
MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800
|
|
} mz_zip_flags;
|
|
|
|
// ZIP archive reading
|
|
|
|
// Inits a ZIP archive reader.
|
|
// These functions read and validate the archive's central directory.
|
|
mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size,
|
|
mz_uint32 flags);
|
|
mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem,
|
|
size_t size, mz_uint32 flags);
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename,
|
|
mz_uint32 flags);
|
|
#endif
|
|
|
|
// Returns the total number of files in the archive.
|
|
mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip);
|
|
|
|
// Returns detailed information about an archive file entry.
|
|
mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
|
|
mz_zip_archive_file_stat *pStat);
|
|
|
|
// Determines if an archive file entry is a directory entry.
|
|
mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip,
|
|
mz_uint file_index);
|
|
mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip,
|
|
mz_uint file_index);
|
|
|
|
// Retrieves the filename of an archive file entry.
|
|
// Returns the number of bytes written to pFilename, or if filename_buf_size is
|
|
// 0 this function returns the number of bytes needed to fully store the
|
|
// filename.
|
|
mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index,
|
|
char *pFilename, mz_uint filename_buf_size);
|
|
|
|
// Attempts to locates a file in the archive's central directory.
|
|
// Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH
|
|
// Returns -1 if the file cannot be found.
|
|
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
|
|
const char *pComment, mz_uint flags);
|
|
|
|
// Extracts a archive file to a memory buffer using no memory allocation.
|
|
mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip,
|
|
mz_uint file_index, void *pBuf,
|
|
size_t buf_size, mz_uint flags,
|
|
void *pUser_read_buf,
|
|
size_t user_read_buf_size);
|
|
mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(
|
|
mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size,
|
|
mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size);
|
|
|
|
// Extracts a archive file to a memory buffer.
|
|
mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index,
|
|
void *pBuf, size_t buf_size,
|
|
mz_uint flags);
|
|
mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip,
|
|
const char *pFilename, void *pBuf,
|
|
size_t buf_size, mz_uint flags);
|
|
|
|
// Extracts a archive file to a dynamically allocated heap buffer.
|
|
void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index,
|
|
size_t *pSize, mz_uint flags);
|
|
void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip,
|
|
const char *pFilename, size_t *pSize,
|
|
mz_uint flags);
|
|
|
|
// Extracts a archive file using a callback function to output the file's data.
|
|
mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip,
|
|
mz_uint file_index,
|
|
mz_file_write_func pCallback,
|
|
void *pOpaque, mz_uint flags);
|
|
mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip,
|
|
const char *pFilename,
|
|
mz_file_write_func pCallback,
|
|
void *pOpaque, mz_uint flags);
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
// Extracts a archive file to a disk file and sets its last accessed and
|
|
// modified times.
|
|
// This function only extracts files, not archive directory records.
|
|
mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index,
|
|
const char *pDst_filename, mz_uint flags);
|
|
mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip,
|
|
const char *pArchive_filename,
|
|
const char *pDst_filename,
|
|
mz_uint flags);
|
|
#endif
|
|
|
|
// Ends archive reading, freeing all allocations, and closing the input archive
|
|
// file if mz_zip_reader_init_file() was used.
|
|
mz_bool mz_zip_reader_end(mz_zip_archive *pZip);
|
|
|
|
// ZIP archive writing
|
|
|
|
#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
|
|
|
|
// Inits a ZIP archive writer.
|
|
mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size);
|
|
mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip,
|
|
size_t size_to_reserve_at_beginning,
|
|
size_t initial_allocation_size);
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename,
|
|
mz_uint64 size_to_reserve_at_beginning);
|
|
#endif
|
|
|
|
// Converts a ZIP archive reader object into a writer object, to allow efficient
|
|
// in-place file appends to occur on an existing archive.
|
|
// For archives opened using mz_zip_reader_init_file, pFilename must be the
|
|
// archive's filename so it can be reopened for writing. If the file can't be
|
|
// reopened, mz_zip_reader_end() will be called.
|
|
// For archives opened using mz_zip_reader_init_mem, the memory block must be
|
|
// growable using the realloc callback (which defaults to realloc unless you've
|
|
// overridden it).
|
|
// Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's
|
|
// user provided m_pWrite function cannot be NULL.
|
|
// Note: In-place archive modification is not recommended unless you know what
|
|
// you're doing, because if execution stops or something goes wrong before
|
|
// the archive is finalized the file's central directory will be hosed.
|
|
mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip,
|
|
const char *pFilename);
|
|
|
|
// Adds the contents of a memory buffer to an archive. These functions record
|
|
// the current local time into the archive.
|
|
// To add a directory entry, call this method with an archive name ending in a
|
|
// forwardslash with empty buffer.
|
|
// level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
|
|
// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
|
|
// just set to MZ_DEFAULT_COMPRESSION.
|
|
mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name,
|
|
const void *pBuf, size_t buf_size,
|
|
mz_uint level_and_flags);
|
|
mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip,
|
|
const char *pArchive_name, const void *pBuf,
|
|
size_t buf_size, const void *pComment,
|
|
mz_uint16 comment_size,
|
|
mz_uint level_and_flags, mz_uint64 uncomp_size,
|
|
mz_uint32 uncomp_crc32);
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
// Adds the contents of a disk file to an archive. This function also records
|
|
// the disk file's modified time into the archive.
|
|
// level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
|
|
// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
|
|
// just set to MZ_DEFAULT_COMPRESSION.
|
|
mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name,
|
|
const char *pSrc_filename, const void *pComment,
|
|
mz_uint16 comment_size, mz_uint level_and_flags);
|
|
#endif
|
|
|
|
// Adds a file to an archive by fully cloning the data from another archive.
|
|
// This function fully clones the source file's compressed data (no
|
|
// recompression), along with its full filename, extra data, and comment fields.
|
|
mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip,
|
|
mz_zip_archive *pSource_zip,
|
|
mz_uint file_index);
|
|
|
|
// Finalizes the archive by writing the central directory records followed by
|
|
// the end of central directory record.
|
|
// After an archive is finalized, the only valid call on the mz_zip_archive
|
|
// struct is mz_zip_writer_end().
|
|
// An archive must be manually finalized by calling this function for it to be
|
|
// valid.
|
|
mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip);
|
|
mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf,
|
|
size_t *pSize);
|
|
|
|
// Ends archive writing, freeing all allocations, and closing the output file if
|
|
// mz_zip_writer_init_file() was used.
|
|
// Note for the archive to be valid, it must have been finalized before ending.
|
|
mz_bool mz_zip_writer_end(mz_zip_archive *pZip);
|
|
|
|
// Misc. high-level helper functions:
|
|
|
|
// mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically)
|
|
// appends a memory blob to a ZIP archive.
|
|
// level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
|
|
// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
|
|
// just set to MZ_DEFAULT_COMPRESSION.
|
|
mz_bool mz_zip_add_mem_to_archive_file_in_place(
|
|
const char *pZip_filename, const char *pArchive_name, const void *pBuf,
|
|
size_t buf_size, const void *pComment, mz_uint16 comment_size,
|
|
mz_uint level_and_flags);
|
|
|
|
// Reads a single file from an archive into a heap block.
|
|
// Returns NULL on failure.
|
|
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
|
|
const char *pArchive_name,
|
|
size_t *pSize, mz_uint zip_flags);
|
|
|
|
#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
|
|
|
|
#endif // #ifndef MINIZ_NO_ARCHIVE_APIS
|
|
|
|
// ------------------- Low-level Decompression API Definitions
|
|
|
|
// Decompression flags used by tinfl_decompress().
|
|
// TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and
|
|
// ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the
|
|
// input is a raw deflate stream.
|
|
// TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available
|
|
// beyond the end of the supplied input buffer. If clear, the input buffer
|
|
// contains all remaining input.
|
|
// TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large
|
|
// enough to hold the entire decompressed stream. If clear, the output buffer is
|
|
// at least the size of the dictionary (typically 32KB).
|
|
// TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the
|
|
// decompressed bytes.
|
|
enum {
|
|
TINFL_FLAG_PARSE_ZLIB_HEADER = 1,
|
|
TINFL_FLAG_HAS_MORE_INPUT = 2,
|
|
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,
|
|
TINFL_FLAG_COMPUTE_ADLER32 = 8
|
|
};
|
|
|
|
// High level decompression functions:
|
|
// tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block
|
|
// allocated via malloc().
|
|
// On entry:
|
|
// pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data
|
|
// to decompress.
|
|
// On return:
|
|
// Function returns a pointer to the decompressed data, or NULL on failure.
|
|
// *pOut_len will be set to the decompressed data's size, which could be larger
|
|
// than src_buf_len on uncompressible data.
|
|
// The caller must call mz_free() on the returned block when it's no longer
|
|
// needed.
|
|
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
|
|
size_t *pOut_len, int flags);
|
|
|
|
// tinfl_decompress_mem_to_mem() decompresses a block in memory to another block
|
|
// in memory.
|
|
// Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes
|
|
// written on success.
|
|
#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
|
|
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
|
|
const void *pSrc_buf, size_t src_buf_len,
|
|
int flags);
|
|
|
|
// tinfl_decompress_mem_to_callback() decompresses a block in memory to an
|
|
// internal 32KB buffer, and a user provided callback function will be called to
|
|
// flush the buffer.
|
|
// Returns 1 on success or 0 on failure.
|
|
typedef int (*tinfl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser);
|
|
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
|
|
tinfl_put_buf_func_ptr pPut_buf_func,
|
|
void *pPut_buf_user, int flags);
|
|
|
|
struct tinfl_decompressor_tag;
|
|
typedef struct tinfl_decompressor_tag tinfl_decompressor;
|
|
|
|
// Max size of LZ dictionary.
|
|
#define TINFL_LZ_DICT_SIZE 32768
|
|
|
|
// Return status.
|
|
typedef enum {
|
|
TINFL_STATUS_BAD_PARAM = -3,
|
|
TINFL_STATUS_ADLER32_MISMATCH = -2,
|
|
TINFL_STATUS_FAILED = -1,
|
|
TINFL_STATUS_DONE = 0,
|
|
TINFL_STATUS_NEEDS_MORE_INPUT = 1,
|
|
TINFL_STATUS_HAS_MORE_OUTPUT = 2
|
|
} tinfl_status;
|
|
|
|
// Initializes the decompressor to its initial state.
|
|
#define tinfl_init(r) \
|
|
do { \
|
|
(r)->m_state = 0; \
|
|
} \
|
|
MZ_MACRO_END
|
|
#define tinfl_get_adler32(r) (r)->m_check_adler32
|
|
|
|
// Main low-level decompressor coroutine function. This is the only function
|
|
// actually needed for decompression. All the other functions are just
|
|
// high-level helpers for improved usability.
|
|
// This is a universal API, i.e. it can be used as a building block to build any
|
|
// desired higher level decompression API. In the limit case, it can be called
|
|
// once per every byte input or output.
|
|
tinfl_status tinfl_decompress(tinfl_decompressor *r,
|
|
const mz_uint8 *pIn_buf_next,
|
|
size_t *pIn_buf_size, mz_uint8 *pOut_buf_start,
|
|
mz_uint8 *pOut_buf_next, size_t *pOut_buf_size,
|
|
const mz_uint32 decomp_flags);
|
|
|
|
// Internal/private bits follow.
|
|
enum {
|
|
TINFL_MAX_HUFF_TABLES = 3,
|
|
TINFL_MAX_HUFF_SYMBOLS_0 = 288,
|
|
TINFL_MAX_HUFF_SYMBOLS_1 = 32,
|
|
TINFL_MAX_HUFF_SYMBOLS_2 = 19,
|
|
TINFL_FAST_LOOKUP_BITS = 10,
|
|
TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS
|
|
};
|
|
|
|
typedef struct {
|
|
mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];
|
|
mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE],
|
|
m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];
|
|
} tinfl_huff_table;
|
|
|
|
#if MINIZ_HAS_64BIT_REGISTERS
|
|
#define TINFL_USE_64BIT_BITBUF 1
|
|
#endif
|
|
|
|
#if TINFL_USE_64BIT_BITBUF
|
|
typedef mz_uint64 tinfl_bit_buf_t;
|
|
#define TINFL_BITBUF_SIZE (64)
|
|
#else
|
|
typedef mz_uint32 tinfl_bit_buf_t;
|
|
#define TINFL_BITBUF_SIZE (32)
|
|
#endif
|
|
|
|
struct tinfl_decompressor_tag {
|
|
mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type,
|
|
m_check_adler32, m_dist, m_counter, m_num_extra,
|
|
m_table_sizes[TINFL_MAX_HUFF_TABLES];
|
|
tinfl_bit_buf_t m_bit_buf;
|
|
size_t m_dist_from_out_buf_start;
|
|
tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];
|
|
mz_uint8 m_raw_header[4],
|
|
m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];
|
|
};
|
|
|
|
// ------------------- Low-level Compression API Definitions
|
|
|
|
// Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly
|
|
// slower, and raw/dynamic blocks will be output more frequently).
|
|
#define TDEFL_LESS_MEMORY 0
|
|
|
|
// tdefl_init() compression flags logically OR'd together (low 12 bits contain
|
|
// the max. number of probes per dictionary search):
|
|
// TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes
|
|
// per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap
|
|
// compression), 4095=Huffman+LZ (slowest/best compression).
|
|
enum {
|
|
TDEFL_HUFFMAN_ONLY = 0,
|
|
TDEFL_DEFAULT_MAX_PROBES = 128,
|
|
TDEFL_MAX_PROBES_MASK = 0xFFF
|
|
};
|
|
|
|
// TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before
|
|
// the deflate data, and the Adler-32 of the source data at the end. Otherwise,
|
|
// you'll get raw deflate data.
|
|
// TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even
|
|
// when not writing zlib headers).
|
|
// TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more
|
|
// efficient lazy parsing.
|
|
// TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's
|
|
// initialization time to the minimum, but the output may vary from run to run
|
|
// given the same input (depending on the contents of memory).
|
|
// TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1)
|
|
// TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled.
|
|
// TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables.
|
|
// TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks.
|
|
// The low 12 bits are reserved to control the max # of hash probes per
|
|
// dictionary lookup (see TDEFL_MAX_PROBES_MASK).
|
|
enum {
|
|
TDEFL_WRITE_ZLIB_HEADER = 0x01000,
|
|
TDEFL_COMPUTE_ADLER32 = 0x02000,
|
|
TDEFL_GREEDY_PARSING_FLAG = 0x04000,
|
|
TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000,
|
|
TDEFL_RLE_MATCHES = 0x10000,
|
|
TDEFL_FILTER_MATCHES = 0x20000,
|
|
TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000,
|
|
TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000
|
|
};
|
|
|
|
// High level compression functions:
|
|
// tdefl_compress_mem_to_heap() compresses a block in memory to a heap block
|
|
// allocated via malloc().
|
|
// On entry:
|
|
// pSrc_buf, src_buf_len: Pointer and size of source block to compress.
|
|
// flags: The max match finder probes (default is 128) logically OR'd against
|
|
// the above flags. Higher probes are slower but improve compression.
|
|
// On return:
|
|
// Function returns a pointer to the compressed data, or NULL on failure.
|
|
// *pOut_len will be set to the compressed data's size, which could be larger
|
|
// than src_buf_len on uncompressible data.
|
|
// The caller must free() the returned block when it's no longer needed.
|
|
void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
|
|
size_t *pOut_len, int flags);
|
|
|
|
// tdefl_compress_mem_to_mem() compresses a block in memory to another block in
|
|
// memory.
|
|
// Returns 0 on failure.
|
|
size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
|
|
const void *pSrc_buf, size_t src_buf_len,
|
|
int flags);
|
|
|
|
// Compresses an image to a compressed PNG file in memory.
|
|
// On entry:
|
|
// pImage, w, h, and num_chans describe the image to compress. num_chans may be
|
|
// 1, 2, 3, or 4.
|
|
// The image pitch in bytes per scanline will be w*num_chans. The leftmost
|
|
// pixel on the top scanline is stored first in memory.
|
|
// level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED,
|
|
// MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL
|
|
// If flip is true, the image will be flipped on the Y axis (useful for OpenGL
|
|
// apps).
|
|
// On return:
|
|
// Function returns a pointer to the compressed data, or NULL on failure.
|
|
// *pLen_out will be set to the size of the PNG image file.
|
|
// The caller must mz_free() the returned heap block (which will typically be
|
|
// larger than *pLen_out) when it's no longer needed.
|
|
void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w,
|
|
int h, int num_chans,
|
|
size_t *pLen_out,
|
|
mz_uint level, mz_bool flip);
|
|
void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h,
|
|
int num_chans, size_t *pLen_out);
|
|
|
|
// Output stream interface. The compressor uses this interface to write
|
|
// compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time.
|
|
typedef mz_bool (*tdefl_put_buf_func_ptr)(const void *pBuf, int len,
|
|
void *pUser);
|
|
|
|
// tdefl_compress_mem_to_output() compresses a block to an output stream. The
|
|
// above helpers use this function internally.
|
|
mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len,
|
|
tdefl_put_buf_func_ptr pPut_buf_func,
|
|
void *pPut_buf_user, int flags);
|
|
|
|
enum {
|
|
TDEFL_MAX_HUFF_TABLES = 3,
|
|
TDEFL_MAX_HUFF_SYMBOLS_0 = 288,
|
|
TDEFL_MAX_HUFF_SYMBOLS_1 = 32,
|
|
TDEFL_MAX_HUFF_SYMBOLS_2 = 19,
|
|
TDEFL_LZ_DICT_SIZE = 32768,
|
|
TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1,
|
|
TDEFL_MIN_MATCH_LEN = 3,
|
|
TDEFL_MAX_MATCH_LEN = 258
|
|
};
|
|
|
|
// TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed
|
|
// output block (using static/fixed Huffman codes).
|
|
#if TDEFL_LESS_MEMORY
|
|
enum {
|
|
TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024,
|
|
TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
|
|
TDEFL_MAX_HUFF_SYMBOLS = 288,
|
|
TDEFL_LZ_HASH_BITS = 12,
|
|
TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
|
|
TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
|
|
TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
|
|
};
|
|
#else
|
|
enum {
|
|
TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024,
|
|
TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
|
|
TDEFL_MAX_HUFF_SYMBOLS = 288,
|
|
TDEFL_LZ_HASH_BITS = 15,
|
|
TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
|
|
TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
|
|
TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
|
|
};
|
|
#endif
|
|
|
|
// The low-level tdefl functions below may be used directly if the above helper
|
|
// functions aren't flexible enough. The low-level functions don't make any heap
|
|
// allocations, unlike the above helper functions.
|
|
typedef enum {
|
|
TDEFL_STATUS_BAD_PARAM = -2,
|
|
TDEFL_STATUS_PUT_BUF_FAILED = -1,
|
|
TDEFL_STATUS_OKAY = 0,
|
|
TDEFL_STATUS_DONE = 1
|
|
} tdefl_status;
|
|
|
|
// Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums
|
|
typedef enum {
|
|
TDEFL_NO_FLUSH = 0,
|
|
TDEFL_SYNC_FLUSH = 2,
|
|
TDEFL_FULL_FLUSH = 3,
|
|
TDEFL_FINISH = 4
|
|
} tdefl_flush;
|
|
|
|
// tdefl's compression state structure.
|
|
typedef struct {
|
|
tdefl_put_buf_func_ptr m_pPut_buf_func;
|
|
void *m_pPut_buf_user;
|
|
mz_uint m_flags, m_max_probes[2];
|
|
int m_greedy_parsing;
|
|
mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size;
|
|
mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end;
|
|
mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in,
|
|
m_bit_buffer;
|
|
mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit,
|
|
m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index,
|
|
m_wants_to_finish;
|
|
tdefl_status m_prev_return_status;
|
|
const void *m_pIn_buf;
|
|
void *m_pOut_buf;
|
|
size_t *m_pIn_buf_size, *m_pOut_buf_size;
|
|
tdefl_flush m_flush;
|
|
const mz_uint8 *m_pSrc;
|
|
size_t m_src_buf_left, m_out_buf_ofs;
|
|
mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1];
|
|
mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
|
|
mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
|
|
mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
|
|
mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE];
|
|
mz_uint16 m_next[TDEFL_LZ_DICT_SIZE];
|
|
mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE];
|
|
mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE];
|
|
} tdefl_compressor;
|
|
|
|
// Initializes the compressor.
|
|
// There is no corresponding deinit() function because the tdefl API's do not
|
|
// dynamically allocate memory.
|
|
// pBut_buf_func: If NULL, output data will be supplied to the specified
|
|
// callback. In this case, the user should call the tdefl_compress_buffer() API
|
|
// for compression.
|
|
// If pBut_buf_func is NULL the user should always call the tdefl_compress()
|
|
// API.
|
|
// flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER,
|
|
// etc.)
|
|
tdefl_status tdefl_init(tdefl_compressor *d,
|
|
tdefl_put_buf_func_ptr pPut_buf_func,
|
|
void *pPut_buf_user, int flags);
|
|
|
|
// Compresses a block of data, consuming as much of the specified input buffer
|
|
// as possible, and writing as much compressed data to the specified output
|
|
// buffer as possible.
|
|
tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf,
|
|
size_t *pIn_buf_size, void *pOut_buf,
|
|
size_t *pOut_buf_size, tdefl_flush flush);
|
|
|
|
// tdefl_compress_buffer() is only usable when the tdefl_init() is called with a
|
|
// non-NULL tdefl_put_buf_func_ptr.
|
|
// tdefl_compress_buffer() always consumes the entire input buffer.
|
|
tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf,
|
|
size_t in_buf_size, tdefl_flush flush);
|
|
|
|
tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d);
|
|
mz_uint32 tdefl_get_adler32(tdefl_compressor *d);
|
|
|
|
// Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't
|
|
// defined, because it uses some of its macros.
|
|
#ifndef MINIZ_NO_ZLIB_APIS
|
|
// Create tdefl_compress() flags given zlib-style compression parameters.
|
|
// level may range from [0,10] (where 10 is absolute max compression, but may be
|
|
// much slower on some files)
|
|
// window_bits may be -15 (raw deflate) or 15 (zlib)
|
|
// strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY,
|
|
// MZ_RLE, or MZ_FIXED
|
|
mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits,
|
|
int strategy);
|
|
#endif // #ifndef MINIZ_NO_ZLIB_APIS
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // MINIZ_HEADER_INCLUDED
|
|
|
|
// ------------------- End of Header: Implementation follows. (If you only want
|
|
// the header, define MINIZ_HEADER_FILE_ONLY.)
|
|
|
|
#ifndef MINIZ_HEADER_FILE_ONLY
|
|
|
|
typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1];
|
|
typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1];
|
|
typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1];
|
|
|
|
//#include <assert.h>
|
|
//#include <string.h>
|
|
|
|
#define MZ_ASSERT(x) assert(x)
|
|
|
|
#ifdef MINIZ_NO_MALLOC
|
|
#define MZ_MALLOC(x) NULL
|
|
#define MZ_FREE(x) (void)x, ((void)0)
|
|
#define MZ_REALLOC(p, x) NULL
|
|
#else
|
|
#define MZ_MALLOC(x) malloc(x)
|
|
#define MZ_FREE(x) free(x)
|
|
#define MZ_REALLOC(p, x) realloc(p, x)
|
|
#endif
|
|
|
|
#define MZ_MAX(a, b) (((a) > (b)) ? (a) : (b))
|
|
#define MZ_MIN(a, b) (((a) < (b)) ? (a) : (b))
|
|
#define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))
|
|
|
|
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
|
|
#define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
|
|
#define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
|
|
#else
|
|
#define MZ_READ_LE16(p) \
|
|
((mz_uint32)(((const mz_uint8 *)(p))[0]) | \
|
|
((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
|
|
#define MZ_READ_LE32(p) \
|
|
((mz_uint32)(((const mz_uint8 *)(p))[0]) | \
|
|
((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | \
|
|
((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | \
|
|
((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#define MZ_FORCEINLINE __forceinline
|
|
#elif defined(__GNUC__)
|
|
#define MZ_FORCEINLINE inline __attribute__((__always_inline__))
|
|
#else
|
|
#define MZ_FORCEINLINE inline
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// ------------------- zlib-style API's
|
|
|
|
mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len) {
|
|
mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16);
|
|
size_t block_len = buf_len % 5552;
|
|
if (!ptr) return MZ_ADLER32_INIT;
|
|
while (buf_len) {
|
|
for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
|
|
s1 += ptr[0], s2 += s1;
|
|
s1 += ptr[1], s2 += s1;
|
|
s1 += ptr[2], s2 += s1;
|
|
s1 += ptr[3], s2 += s1;
|
|
s1 += ptr[4], s2 += s1;
|
|
s1 += ptr[5], s2 += s1;
|
|
s1 += ptr[6], s2 += s1;
|
|
s1 += ptr[7], s2 += s1;
|
|
}
|
|
for (; i < block_len; ++i) s1 += *ptr++, s2 += s1;
|
|
s1 %= 65521U, s2 %= 65521U;
|
|
buf_len -= block_len;
|
|
block_len = 5552;
|
|
}
|
|
return (s2 << 16) + s1;
|
|
}
|
|
|
|
// Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C
|
|
// implementation that balances processor cache usage against speed":
|
|
// http://www.geocities.com/malbrain/
|
|
mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len) {
|
|
static const mz_uint32 s_crc32[16] = {
|
|
0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4,
|
|
0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
|
|
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c};
|
|
mz_uint32 crcu32 = (mz_uint32)crc;
|
|
if (!ptr) return MZ_CRC32_INIT;
|
|
crcu32 = ~crcu32;
|
|
while (buf_len--) {
|
|
mz_uint8 b = *ptr++;
|
|
crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)];
|
|
crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)];
|
|
}
|
|
return ~crcu32;
|
|
}
|
|
|
|
void mz_free(void *p) { MZ_FREE(p); }
|
|
|
|
#ifndef MINIZ_NO_ZLIB_APIS
|
|
|
|
static void *def_alloc_func(void *opaque, size_t items, size_t size) {
|
|
(void)opaque, (void)items, (void)size;
|
|
return MZ_MALLOC(items * size);
|
|
}
|
|
static void def_free_func(void *opaque, void *address) {
|
|
(void)opaque, (void)address;
|
|
MZ_FREE(address);
|
|
}
|
|
// static void *def_realloc_func(void *opaque, void *address, size_t items,
|
|
// size_t size) {
|
|
// (void)opaque, (void)address, (void)items, (void)size;
|
|
// return MZ_REALLOC(address, items * size);
|
|
//}
|
|
|
|
const char *mz_version(void) { return MZ_VERSION; }
|
|
|
|
int mz_deflateInit(mz_streamp pStream, int level) {
|
|
return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9,
|
|
MZ_DEFAULT_STRATEGY);
|
|
}
|
|
|
|
int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits,
|
|
int mem_level, int strategy) {
|
|
tdefl_compressor *pComp;
|
|
mz_uint comp_flags =
|
|
TDEFL_COMPUTE_ADLER32 |
|
|
tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy);
|
|
|
|
if (!pStream) return MZ_STREAM_ERROR;
|
|
if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) ||
|
|
((window_bits != MZ_DEFAULT_WINDOW_BITS) &&
|
|
(-window_bits != MZ_DEFAULT_WINDOW_BITS)))
|
|
return MZ_PARAM_ERROR;
|
|
|
|
pStream->data_type = 0;
|
|
pStream->adler = MZ_ADLER32_INIT;
|
|
pStream->msg = NULL;
|
|
pStream->reserved = 0;
|
|
pStream->total_in = 0;
|
|
pStream->total_out = 0;
|
|
if (!pStream->zalloc) pStream->zalloc = def_alloc_func;
|
|
if (!pStream->zfree) pStream->zfree = def_free_func;
|
|
|
|
pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1,
|
|
sizeof(tdefl_compressor));
|
|
if (!pComp) return MZ_MEM_ERROR;
|
|
|
|
pStream->state = (struct mz_internal_state *)pComp;
|
|
|
|
if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY) {
|
|
mz_deflateEnd(pStream);
|
|
return MZ_PARAM_ERROR;
|
|
}
|
|
|
|
return MZ_OK;
|
|
}
|
|
|
|
int mz_deflateReset(mz_streamp pStream) {
|
|
if ((!pStream) || (!pStream->state) || (!pStream->zalloc) ||
|
|
(!pStream->zfree))
|
|
return MZ_STREAM_ERROR;
|
|
pStream->total_in = pStream->total_out = 0;
|
|
tdefl_init((tdefl_compressor *)pStream->state, NULL, NULL,
|
|
((tdefl_compressor *)pStream->state)->m_flags);
|
|
return MZ_OK;
|
|
}
|
|
|
|
int mz_deflate(mz_streamp pStream, int flush) {
|
|
size_t in_bytes, out_bytes;
|
|
mz_ulong orig_total_in, orig_total_out;
|
|
int mz_status = MZ_OK;
|
|
|
|
if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) ||
|
|
(!pStream->next_out))
|
|
return MZ_STREAM_ERROR;
|
|
if (!pStream->avail_out) return MZ_BUF_ERROR;
|
|
|
|
if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;
|
|
|
|
if (((tdefl_compressor *)pStream->state)->m_prev_return_status ==
|
|
TDEFL_STATUS_DONE)
|
|
return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR;
|
|
|
|
orig_total_in = pStream->total_in;
|
|
orig_total_out = pStream->total_out;
|
|
for (;;) {
|
|
tdefl_status defl_status;
|
|
in_bytes = pStream->avail_in;
|
|
out_bytes = pStream->avail_out;
|
|
|
|
defl_status = tdefl_compress((tdefl_compressor *)pStream->state,
|
|
pStream->next_in, &in_bytes, pStream->next_out,
|
|
&out_bytes, (tdefl_flush)flush);
|
|
pStream->next_in += (mz_uint)in_bytes;
|
|
pStream->avail_in -= (mz_uint)in_bytes;
|
|
pStream->total_in += (mz_uint)in_bytes;
|
|
pStream->adler = tdefl_get_adler32((tdefl_compressor *)pStream->state);
|
|
|
|
pStream->next_out += (mz_uint)out_bytes;
|
|
pStream->avail_out -= (mz_uint)out_bytes;
|
|
pStream->total_out += (mz_uint)out_bytes;
|
|
|
|
if (defl_status < 0) {
|
|
mz_status = MZ_STREAM_ERROR;
|
|
break;
|
|
} else if (defl_status == TDEFL_STATUS_DONE) {
|
|
mz_status = MZ_STREAM_END;
|
|
break;
|
|
} else if (!pStream->avail_out)
|
|
break;
|
|
else if ((!pStream->avail_in) && (flush != MZ_FINISH)) {
|
|
if ((flush) || (pStream->total_in != orig_total_in) ||
|
|
(pStream->total_out != orig_total_out))
|
|
break;
|
|
return MZ_BUF_ERROR; // Can't make forward progress without some input.
|
|
}
|
|
}
|
|
return mz_status;
|
|
}
|
|
|
|
int mz_deflateEnd(mz_streamp pStream) {
|
|
if (!pStream) return MZ_STREAM_ERROR;
|
|
if (pStream->state) {
|
|
pStream->zfree(pStream->opaque, pStream->state);
|
|
pStream->state = NULL;
|
|
}
|
|
return MZ_OK;
|
|
}
|
|
|
|
mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len) {
|
|
(void)pStream;
|
|
// This is really over conservative. (And lame, but it's actually pretty
|
|
// tricky to compute a true upper bound given the way tdefl's blocking works.)
|
|
return MZ_MAX(128 + (source_len * 110) / 100,
|
|
128 + source_len + ((source_len / (31 * 1024)) + 1) * 5);
|
|
}
|
|
|
|
int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len,
|
|
const unsigned char *pSource, mz_ulong source_len, int level) {
|
|
int status;
|
|
mz_stream stream;
|
|
memset(&stream, 0, sizeof(stream));
|
|
|
|
// In case mz_ulong is 64-bits (argh I hate longs).
|
|
if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;
|
|
|
|
stream.next_in = pSource;
|
|
stream.avail_in = (mz_uint32)source_len;
|
|
stream.next_out = pDest;
|
|
stream.avail_out = (mz_uint32)*pDest_len;
|
|
|
|
status = mz_deflateInit(&stream, level);
|
|
if (status != MZ_OK) return status;
|
|
|
|
status = mz_deflate(&stream, MZ_FINISH);
|
|
if (status != MZ_STREAM_END) {
|
|
mz_deflateEnd(&stream);
|
|
return (status == MZ_OK) ? MZ_BUF_ERROR : status;
|
|
}
|
|
|
|
*pDest_len = stream.total_out;
|
|
return mz_deflateEnd(&stream);
|
|
}
|
|
|
|
int mz_compress(unsigned char *pDest, mz_ulong *pDest_len,
|
|
const unsigned char *pSource, mz_ulong source_len) {
|
|
return mz_compress2(pDest, pDest_len, pSource, source_len,
|
|
MZ_DEFAULT_COMPRESSION);
|
|
}
|
|
|
|
mz_ulong mz_compressBound(mz_ulong source_len) {
|
|
return mz_deflateBound(NULL, source_len);
|
|
}
|
|
|
|
typedef struct {
|
|
tinfl_decompressor m_decomp;
|
|
mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed;
|
|
int m_window_bits;
|
|
mz_uint8 m_dict[TINFL_LZ_DICT_SIZE];
|
|
tinfl_status m_last_status;
|
|
} inflate_state;
|
|
|
|
int mz_inflateInit2(mz_streamp pStream, int window_bits) {
|
|
inflate_state *pDecomp;
|
|
if (!pStream) return MZ_STREAM_ERROR;
|
|
if ((window_bits != MZ_DEFAULT_WINDOW_BITS) &&
|
|
(-window_bits != MZ_DEFAULT_WINDOW_BITS))
|
|
return MZ_PARAM_ERROR;
|
|
|
|
pStream->data_type = 0;
|
|
pStream->adler = 0;
|
|
pStream->msg = NULL;
|
|
pStream->total_in = 0;
|
|
pStream->total_out = 0;
|
|
pStream->reserved = 0;
|
|
if (!pStream->zalloc) pStream->zalloc = def_alloc_func;
|
|
if (!pStream->zfree) pStream->zfree = def_free_func;
|
|
|
|
pDecomp = (inflate_state *)pStream->zalloc(pStream->opaque, 1,
|
|
sizeof(inflate_state));
|
|
if (!pDecomp) return MZ_MEM_ERROR;
|
|
|
|
pStream->state = (struct mz_internal_state *)pDecomp;
|
|
|
|
tinfl_init(&pDecomp->m_decomp);
|
|
pDecomp->m_dict_ofs = 0;
|
|
pDecomp->m_dict_avail = 0;
|
|
pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT;
|
|
pDecomp->m_first_call = 1;
|
|
pDecomp->m_has_flushed = 0;
|
|
pDecomp->m_window_bits = window_bits;
|
|
|
|
return MZ_OK;
|
|
}
|
|
|
|
int mz_inflateInit(mz_streamp pStream) {
|
|
return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS);
|
|
}
|
|
|
|
int mz_inflate(mz_streamp pStream, int flush) {
|
|
inflate_state *pState;
|
|
mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32;
|
|
size_t in_bytes, out_bytes, orig_avail_in;
|
|
tinfl_status status;
|
|
|
|
if ((!pStream) || (!pStream->state)) return MZ_STREAM_ERROR;
|
|
if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;
|
|
if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH))
|
|
return MZ_STREAM_ERROR;
|
|
|
|
pState = (inflate_state *)pStream->state;
|
|
if (pState->m_window_bits > 0) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER;
|
|
orig_avail_in = pStream->avail_in;
|
|
|
|
first_call = pState->m_first_call;
|
|
pState->m_first_call = 0;
|
|
if (pState->m_last_status < 0) return MZ_DATA_ERROR;
|
|
|
|
if (pState->m_has_flushed && (flush != MZ_FINISH)) return MZ_STREAM_ERROR;
|
|
pState->m_has_flushed |= (flush == MZ_FINISH);
|
|
|
|
if ((flush == MZ_FINISH) && (first_call)) {
|
|
// MZ_FINISH on the first call implies that the input and output buffers are
|
|
// large enough to hold the entire compressed/decompressed file.
|
|
decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
|
|
in_bytes = pStream->avail_in;
|
|
out_bytes = pStream->avail_out;
|
|
status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes,
|
|
pStream->next_out, pStream->next_out, &out_bytes,
|
|
decomp_flags);
|
|
pState->m_last_status = status;
|
|
pStream->next_in += (mz_uint)in_bytes;
|
|
pStream->avail_in -= (mz_uint)in_bytes;
|
|
pStream->total_in += (mz_uint)in_bytes;
|
|
pStream->adler = tinfl_get_adler32(&pState->m_decomp);
|
|
pStream->next_out += (mz_uint)out_bytes;
|
|
pStream->avail_out -= (mz_uint)out_bytes;
|
|
pStream->total_out += (mz_uint)out_bytes;
|
|
|
|
if (status < 0)
|
|
return MZ_DATA_ERROR;
|
|
else if (status != TINFL_STATUS_DONE) {
|
|
pState->m_last_status = TINFL_STATUS_FAILED;
|
|
return MZ_BUF_ERROR;
|
|
}
|
|
return MZ_STREAM_END;
|
|
}
|
|
// flush != MZ_FINISH then we must assume there's more input.
|
|
if (flush != MZ_FINISH) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT;
|
|
|
|
if (pState->m_dict_avail) {
|
|
n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
|
|
memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
|
|
pStream->next_out += n;
|
|
pStream->avail_out -= n;
|
|
pStream->total_out += n;
|
|
pState->m_dict_avail -= n;
|
|
pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
|
|
return ((pState->m_last_status == TINFL_STATUS_DONE) &&
|
|
(!pState->m_dict_avail))
|
|
? MZ_STREAM_END
|
|
: MZ_OK;
|
|
}
|
|
|
|
for (;;) {
|
|
in_bytes = pStream->avail_in;
|
|
out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs;
|
|
|
|
status = tinfl_decompress(
|
|
&pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict,
|
|
pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags);
|
|
pState->m_last_status = status;
|
|
|
|
pStream->next_in += (mz_uint)in_bytes;
|
|
pStream->avail_in -= (mz_uint)in_bytes;
|
|
pStream->total_in += (mz_uint)in_bytes;
|
|
pStream->adler = tinfl_get_adler32(&pState->m_decomp);
|
|
|
|
pState->m_dict_avail = (mz_uint)out_bytes;
|
|
|
|
n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
|
|
memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
|
|
pStream->next_out += n;
|
|
pStream->avail_out -= n;
|
|
pStream->total_out += n;
|
|
pState->m_dict_avail -= n;
|
|
pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
|
|
|
|
if (status < 0)
|
|
return MZ_DATA_ERROR; // Stream is corrupted (there could be some
|
|
// uncompressed data left in the output dictionary -
|
|
// oh well).
|
|
else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in))
|
|
return MZ_BUF_ERROR; // Signal caller that we can't make forward progress
|
|
// without supplying more input or by setting flush
|
|
// to MZ_FINISH.
|
|
else if (flush == MZ_FINISH) {
|
|
// The output buffer MUST be large to hold the remaining uncompressed data
|
|
// when flush==MZ_FINISH.
|
|
if (status == TINFL_STATUS_DONE)
|
|
return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END;
|
|
// status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's
|
|
// at least 1 more byte on the way. If there's no more room left in the
|
|
// output buffer then something is wrong.
|
|
else if (!pStream->avail_out)
|
|
return MZ_BUF_ERROR;
|
|
} else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) ||
|
|
(!pStream->avail_out) || (pState->m_dict_avail))
|
|
break;
|
|
}
|
|
|
|
return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail))
|
|
? MZ_STREAM_END
|
|
: MZ_OK;
|
|
}
|
|
|
|
int mz_inflateEnd(mz_streamp pStream) {
|
|
if (!pStream) return MZ_STREAM_ERROR;
|
|
if (pStream->state) {
|
|
pStream->zfree(pStream->opaque, pStream->state);
|
|
pStream->state = NULL;
|
|
}
|
|
return MZ_OK;
|
|
}
|
|
|
|
int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len,
|
|
const unsigned char *pSource, mz_ulong source_len) {
|
|
mz_stream stream;
|
|
int status;
|
|
memset(&stream, 0, sizeof(stream));
|
|
|
|
// In case mz_ulong is 64-bits (argh I hate longs).
|
|
if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;
|
|
|
|
stream.next_in = pSource;
|
|
stream.avail_in = (mz_uint32)source_len;
|
|
stream.next_out = pDest;
|
|
stream.avail_out = (mz_uint32)*pDest_len;
|
|
|
|
status = mz_inflateInit(&stream);
|
|
if (status != MZ_OK) return status;
|
|
|
|
status = mz_inflate(&stream, MZ_FINISH);
|
|
if (status != MZ_STREAM_END) {
|
|
mz_inflateEnd(&stream);
|
|
return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR
|
|
: status;
|
|
}
|
|
*pDest_len = stream.total_out;
|
|
|
|
return mz_inflateEnd(&stream);
|
|
}
|
|
|
|
const char *mz_error(int err) {
|
|
static struct {
|
|
int m_err;
|
|
const char *m_pDesc;
|
|
} s_error_descs[] = {{MZ_OK, ""},
|
|
{MZ_STREAM_END, "stream end"},
|
|
{MZ_NEED_DICT, "need dictionary"},
|
|
{MZ_ERRNO, "file error"},
|
|
{MZ_STREAM_ERROR, "stream error"},
|
|
{MZ_DATA_ERROR, "data error"},
|
|
{MZ_MEM_ERROR, "out of memory"},
|
|
{MZ_BUF_ERROR, "buf error"},
|
|
{MZ_VERSION_ERROR, "version error"},
|
|
{MZ_PARAM_ERROR, "parameter error"}};
|
|
mz_uint i;
|
|
for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i)
|
|
if (s_error_descs[i].m_err == err) return s_error_descs[i].m_pDesc;
|
|
return NULL;
|
|
}
|
|
|
|
#endif // MINIZ_NO_ZLIB_APIS
|
|
|
|
// ------------------- Low-level Decompression (completely independent from all
|
|
// compression API's)
|
|
|
|
#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
|
|
#define TINFL_MEMSET(p, c, l) memset(p, c, l)
|
|
|
|
#define TINFL_CR_BEGIN \
|
|
switch (r->m_state) { \
|
|
case 0:
|
|
#define TINFL_CR_RETURN(state_index, result) \
|
|
do { \
|
|
status = result; \
|
|
r->m_state = state_index; \
|
|
goto common_exit; \
|
|
case state_index:; \
|
|
} \
|
|
MZ_MACRO_END
|
|
#define TINFL_CR_RETURN_FOREVER(state_index, result) \
|
|
do { \
|
|
for (;;) { \
|
|
TINFL_CR_RETURN(state_index, result); \
|
|
} \
|
|
} \
|
|
MZ_MACRO_END
|
|
#define TINFL_CR_FINISH }
|
|
|
|
// TODO: If the caller has indicated that there's no more input, and we attempt
|
|
// to read beyond the input buf, then something is wrong with the input because
|
|
// the inflator never
|
|
// reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of
|
|
// the stream with 0's in this scenario.
|
|
#define TINFL_GET_BYTE(state_index, c) \
|
|
do { \
|
|
if (pIn_buf_cur >= pIn_buf_end) { \
|
|
for (;;) { \
|
|
if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \
|
|
TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \
|
|
if (pIn_buf_cur < pIn_buf_end) { \
|
|
c = *pIn_buf_cur++; \
|
|
break; \
|
|
} \
|
|
} else { \
|
|
c = 0; \
|
|
break; \
|
|
} \
|
|
} \
|
|
} else \
|
|
c = *pIn_buf_cur++; \
|
|
} \
|
|
MZ_MACRO_END
|
|
|
|
#define TINFL_NEED_BITS(state_index, n) \
|
|
do { \
|
|
mz_uint c; \
|
|
TINFL_GET_BYTE(state_index, c); \
|
|
bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
|
|
num_bits += 8; \
|
|
} while (num_bits < (mz_uint)(n))
|
|
#define TINFL_SKIP_BITS(state_index, n) \
|
|
do { \
|
|
if (num_bits < (mz_uint)(n)) { \
|
|
TINFL_NEED_BITS(state_index, n); \
|
|
} \
|
|
bit_buf >>= (n); \
|
|
num_bits -= (n); \
|
|
} \
|
|
MZ_MACRO_END
|
|
#define TINFL_GET_BITS(state_index, b, n) \
|
|
do { \
|
|
if (num_bits < (mz_uint)(n)) { \
|
|
TINFL_NEED_BITS(state_index, n); \
|
|
} \
|
|
b = bit_buf & ((1 << (n)) - 1); \
|
|
bit_buf >>= (n); \
|
|
num_bits -= (n); \
|
|
} \
|
|
MZ_MACRO_END
|
|
|
|
// TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes
|
|
// remaining in the input buffer falls below 2.
|
|
// It reads just enough bytes from the input stream that are needed to decode
|
|
// the next Huffman code (and absolutely no more). It works by trying to fully
|
|
// decode a
|
|
// Huffman code by using whatever bits are currently present in the bit buffer.
|
|
// If this fails, it reads another byte, and tries again until it succeeds or
|
|
// until the
|
|
// bit buffer contains >=15 bits (deflate's max. Huffman code size).
|
|
#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
|
|
do { \
|
|
temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
|
|
if (temp >= 0) { \
|
|
code_len = temp >> 9; \
|
|
if ((code_len) && (num_bits >= code_len)) break; \
|
|
} else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \
|
|
code_len = TINFL_FAST_LOOKUP_BITS; \
|
|
do { \
|
|
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
|
|
} while ((temp < 0) && (num_bits >= (code_len + 1))); \
|
|
if (temp >= 0) break; \
|
|
} \
|
|
TINFL_GET_BYTE(state_index, c); \
|
|
bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
|
|
num_bits += 8; \
|
|
} while (num_bits < 15);
|
|
|
|
// TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex
|
|
// than you would initially expect because the zlib API expects the decompressor
|
|
// to never read
|
|
// beyond the final byte of the deflate stream. (In other words, when this macro
|
|
// wants to read another byte from the input, it REALLY needs another byte in
|
|
// order to fully
|
|
// decode the next Huffman code.) Handling this properly is particularly
|
|
// important on raw deflate (non-zlib) streams, which aren't followed by a byte
|
|
// aligned adler-32.
|
|
// The slow path is only executed at the very end of the input buffer.
|
|
#define TINFL_HUFF_DECODE(state_index, sym, pHuff) \
|
|
do { \
|
|
int temp; \
|
|
mz_uint code_len, c; \
|
|
if (num_bits < 15) { \
|
|
if ((pIn_buf_end - pIn_buf_cur) < 2) { \
|
|
TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
|
|
} else { \
|
|
bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | \
|
|
(((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); \
|
|
pIn_buf_cur += 2; \
|
|
num_bits += 16; \
|
|
} \
|
|
} \
|
|
if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= \
|
|
0) \
|
|
code_len = temp >> 9, temp &= 511; \
|
|
else { \
|
|
code_len = TINFL_FAST_LOOKUP_BITS; \
|
|
do { \
|
|
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
|
|
} while (temp < 0); \
|
|
} \
|
|
sym = temp; \
|
|
bit_buf >>= code_len; \
|
|
num_bits -= code_len; \
|
|
} \
|
|
MZ_MACRO_END
|
|
|
|
tinfl_status tinfl_decompress(tinfl_decompressor *r,
|
|
const mz_uint8 *pIn_buf_next,
|
|
size_t *pIn_buf_size, mz_uint8 *pOut_buf_start,
|
|
mz_uint8 *pOut_buf_next, size_t *pOut_buf_size,
|
|
const mz_uint32 decomp_flags) {
|
|
static const int s_length_base[31] = {
|
|
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
|
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
|
static const int s_length_extra[31] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
|
|
1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
|
|
4, 4, 5, 5, 5, 5, 0, 0, 0};
|
|
static const int s_dist_base[32] = {
|
|
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33,
|
|
49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537,
|
|
2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0};
|
|
static const int s_dist_extra[32] = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
|
|
4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
|
|
9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
|
|
static const mz_uint8 s_length_dezigzag[19] = {
|
|
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
|
static const int s_min_table_sizes[3] = {257, 1, 4};
|
|
|
|
tinfl_status status = TINFL_STATUS_FAILED;
|
|
mz_uint32 num_bits, dist, counter, num_extra;
|
|
tinfl_bit_buf_t bit_buf;
|
|
const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end =
|
|
pIn_buf_next + *pIn_buf_size;
|
|
mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end =
|
|
pOut_buf_next + *pOut_buf_size;
|
|
size_t out_buf_size_mask =
|
|
(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)
|
|
? (size_t)-1
|
|
: ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1,
|
|
dist_from_out_buf_start;
|
|
|
|
// Ensure the output buffer's size is a power of 2, unless the output buffer
|
|
// is large enough to hold the entire output file (in which case it doesn't
|
|
// matter).
|
|
if (((out_buf_size_mask + 1) & out_buf_size_mask) ||
|
|
(pOut_buf_next < pOut_buf_start)) {
|
|
*pIn_buf_size = *pOut_buf_size = 0;
|
|
return TINFL_STATUS_BAD_PARAM;
|
|
}
|
|
|
|
num_bits = r->m_num_bits;
|
|
bit_buf = r->m_bit_buf;
|
|
dist = r->m_dist;
|
|
counter = r->m_counter;
|
|
num_extra = r->m_num_extra;
|
|
dist_from_out_buf_start = r->m_dist_from_out_buf_start;
|
|
TINFL_CR_BEGIN
|
|
|
|
bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0;
|
|
r->m_z_adler32 = r->m_check_adler32 = 1;
|
|
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
|
|
TINFL_GET_BYTE(1, r->m_zhdr0);
|
|
TINFL_GET_BYTE(2, r->m_zhdr1);
|
|
counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) ||
|
|
(r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
|
|
if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
|
|
counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) ||
|
|
((out_buf_size_mask + 1) <
|
|
(size_t)(1ULL << (8U + (r->m_zhdr0 >> 4)))));
|
|
if (counter) {
|
|
TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED);
|
|
}
|
|
}
|
|
|
|
do {
|
|
TINFL_GET_BITS(3, r->m_final, 3);
|
|
r->m_type = r->m_final >> 1;
|
|
if (r->m_type == 0) {
|
|
TINFL_SKIP_BITS(5, num_bits & 7);
|
|
for (counter = 0; counter < 4; ++counter) {
|
|
if (num_bits)
|
|
TINFL_GET_BITS(6, r->m_raw_header[counter], 8);
|
|
else
|
|
TINFL_GET_BYTE(7, r->m_raw_header[counter]);
|
|
}
|
|
if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) !=
|
|
(mz_uint)(0xFFFF ^
|
|
(r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) {
|
|
TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED);
|
|
}
|
|
while ((counter) && (num_bits)) {
|
|
TINFL_GET_BITS(51, dist, 8);
|
|
while (pOut_buf_cur >= pOut_buf_end) {
|
|
TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT);
|
|
}
|
|
*pOut_buf_cur++ = (mz_uint8)dist;
|
|
counter--;
|
|
}
|
|
while (counter) {
|
|
size_t n;
|
|
while (pOut_buf_cur >= pOut_buf_end) {
|
|
TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT);
|
|
}
|
|
while (pIn_buf_cur >= pIn_buf_end) {
|
|
if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) {
|
|
TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT);
|
|
} else {
|
|
TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED);
|
|
}
|
|
}
|
|
n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur),
|
|
(size_t)(pIn_buf_end - pIn_buf_cur)),
|
|
counter);
|
|
TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n);
|
|
pIn_buf_cur += n;
|
|
pOut_buf_cur += n;
|
|
counter -= (mz_uint)n;
|
|
}
|
|
} else if (r->m_type == 3) {
|
|
TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
|
|
} else {
|
|
if (r->m_type == 1) {
|
|
mz_uint8 *p = r->m_tables[0].m_code_size;
|
|
mz_uint i;
|
|
r->m_table_sizes[0] = 288;
|
|
r->m_table_sizes[1] = 32;
|
|
TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
|
|
for (i = 0; i <= 143; ++i) *p++ = 8;
|
|
for (; i <= 255; ++i) *p++ = 9;
|
|
for (; i <= 279; ++i) *p++ = 7;
|
|
for (; i <= 287; ++i) *p++ = 8;
|
|
} else {
|
|
for (counter = 0; counter < 3; counter++) {
|
|
TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]);
|
|
r->m_table_sizes[counter] += s_min_table_sizes[counter];
|
|
}
|
|
MZ_CLEAR_OBJ(r->m_tables[2].m_code_size);
|
|
for (counter = 0; counter < r->m_table_sizes[2]; counter++) {
|
|
mz_uint s;
|
|
TINFL_GET_BITS(14, s, 3);
|
|
r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s;
|
|
}
|
|
r->m_table_sizes[2] = 19;
|
|
}
|
|
for (; (int)r->m_type >= 0; r->m_type--) {
|
|
int tree_next, tree_cur;
|
|
tinfl_huff_table *pTable;
|
|
mz_uint i, j, used_syms, total, sym_index, next_code[17],
|
|
total_syms[16];
|
|
pTable = &r->m_tables[r->m_type];
|
|
MZ_CLEAR_OBJ(total_syms);
|
|
MZ_CLEAR_OBJ(pTable->m_look_up);
|
|
MZ_CLEAR_OBJ(pTable->m_tree);
|
|
for (i = 0; i < r->m_table_sizes[r->m_type]; ++i)
|
|
total_syms[pTable->m_code_size[i]]++;
|
|
used_syms = 0, total = 0;
|
|
next_code[0] = next_code[1] = 0;
|
|
for (i = 1; i <= 15; ++i) {
|
|
used_syms += total_syms[i];
|
|
next_code[i + 1] = (total = ((total + total_syms[i]) << 1));
|
|
}
|
|
if ((65536 != total) && (used_syms > 1)) {
|
|
TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
|
|
}
|
|
for (tree_next = -1, sym_index = 0;
|
|
sym_index < r->m_table_sizes[r->m_type]; ++sym_index) {
|
|
mz_uint rev_code = 0, l, cur_code,
|
|
code_size = pTable->m_code_size[sym_index];
|
|
if (!code_size) continue;
|
|
cur_code = next_code[code_size]++;
|
|
for (l = code_size; l > 0; l--, cur_code >>= 1)
|
|
rev_code = (rev_code << 1) | (cur_code & 1);
|
|
if (code_size <= TINFL_FAST_LOOKUP_BITS) {
|
|
mz_int16 k = (mz_int16)((code_size << 9) | sym_index);
|
|
while (rev_code < TINFL_FAST_LOOKUP_SIZE) {
|
|
pTable->m_look_up[rev_code] = k;
|
|
rev_code += (1 << code_size);
|
|
}
|
|
continue;
|
|
}
|
|
if (0 ==
|
|
(tree_cur = pTable->m_look_up[rev_code &
|
|
(TINFL_FAST_LOOKUP_SIZE - 1)])) {
|
|
pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] =
|
|
(mz_int16)tree_next;
|
|
tree_cur = tree_next;
|
|
tree_next -= 2;
|
|
}
|
|
rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
|
|
for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) {
|
|
tree_cur -= ((rev_code >>= 1) & 1);
|
|
if (!pTable->m_tree[-tree_cur - 1]) {
|
|
pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next;
|
|
tree_cur = tree_next;
|
|
tree_next -= 2;
|
|
} else
|
|
tree_cur = pTable->m_tree[-tree_cur - 1];
|
|
}
|
|
tree_cur -= ((rev_code >>= 1) & 1);
|
|
pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
|
|
}
|
|
if (r->m_type == 2) {
|
|
for (counter = 0;
|
|
counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);) {
|
|
mz_uint s;
|
|
TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]);
|
|
if (dist < 16) {
|
|
r->m_len_codes[counter++] = (mz_uint8)dist;
|
|
continue;
|
|
}
|
|
if ((dist == 16) && (!counter)) {
|
|
TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
|
|
}
|
|
num_extra = "\02\03\07"[dist - 16];
|
|
TINFL_GET_BITS(18, s, num_extra);
|
|
s += "\03\03\013"[dist - 16];
|
|
TINFL_MEMSET(r->m_len_codes + counter,
|
|
(dist == 16) ? r->m_len_codes[counter - 1] : 0, s);
|
|
counter += s;
|
|
}
|
|
if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) {
|
|
TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
|
|
}
|
|
TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes,
|
|
r->m_table_sizes[0]);
|
|
TINFL_MEMCPY(r->m_tables[1].m_code_size,
|
|
r->m_len_codes + r->m_table_sizes[0],
|
|
r->m_table_sizes[1]);
|
|
}
|
|
}
|
|
for (;;) {
|
|
mz_uint8 *pSrc;
|
|
for (;;) {
|
|
if (((pIn_buf_end - pIn_buf_cur) < 4) ||
|
|
((pOut_buf_end - pOut_buf_cur) < 2)) {
|
|
TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
|
|
if (counter >= 256) break;
|
|
while (pOut_buf_cur >= pOut_buf_end) {
|
|
TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT);
|
|
}
|
|
*pOut_buf_cur++ = (mz_uint8)counter;
|
|
} else {
|
|
int sym2;
|
|
mz_uint code_len;
|
|
#if TINFL_USE_64BIT_BITBUF
|
|
if (num_bits < 30) {
|
|
bit_buf |=
|
|
(((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits);
|
|
pIn_buf_cur += 4;
|
|
num_bits += 32;
|
|
}
|
|
#else
|
|
if (num_bits < 15) {
|
|
bit_buf |=
|
|
(((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
|
|
pIn_buf_cur += 2;
|
|
num_bits += 16;
|
|
}
|
|
#endif
|
|
if ((sym2 =
|
|
r->m_tables[0]
|
|
.m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
|
|
0)
|
|
code_len = sym2 >> 9;
|
|
else {
|
|
code_len = TINFL_FAST_LOOKUP_BITS;
|
|
do {
|
|
sym2 = r->m_tables[0]
|
|
.m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
|
|
} while (sym2 < 0);
|
|
}
|
|
counter = sym2;
|
|
bit_buf >>= code_len;
|
|
num_bits -= code_len;
|
|
if (counter & 256) break;
|
|
|
|
#if !TINFL_USE_64BIT_BITBUF
|
|
if (num_bits < 15) {
|
|
bit_buf |=
|
|
(((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
|
|
pIn_buf_cur += 2;
|
|
num_bits += 16;
|
|
}
|
|
#endif
|
|
if ((sym2 =
|
|
r->m_tables[0]
|
|
.m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
|
|
0)
|
|
code_len = sym2 >> 9;
|
|
else {
|
|
code_len = TINFL_FAST_LOOKUP_BITS;
|
|
do {
|
|
sym2 = r->m_tables[0]
|
|
.m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
|
|
} while (sym2 < 0);
|
|
}
|
|
bit_buf >>= code_len;
|
|
num_bits -= code_len;
|
|
|
|
pOut_buf_cur[0] = (mz_uint8)counter;
|
|
if (sym2 & 256) {
|
|
pOut_buf_cur++;
|
|
counter = sym2;
|
|
break;
|
|
}
|
|
pOut_buf_cur[1] = (mz_uint8)sym2;
|
|
pOut_buf_cur += 2;
|
|
}
|
|
}
|
|
if ((counter &= 511) == 256) break;
|
|
|
|
num_extra = s_length_extra[counter - 257];
|
|
counter = s_length_base[counter - 257];
|
|
if (num_extra) {
|
|
mz_uint extra_bits;
|
|
TINFL_GET_BITS(25, extra_bits, num_extra);
|
|
counter += extra_bits;
|
|
}
|
|
|
|
TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
|
|
num_extra = s_dist_extra[dist];
|
|
dist = s_dist_base[dist];
|
|
if (num_extra) {
|
|
mz_uint extra_bits;
|
|
TINFL_GET_BITS(27, extra_bits, num_extra);
|
|
dist += extra_bits;
|
|
}
|
|
|
|
dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
|
|
if ((dist > dist_from_out_buf_start) &&
|
|
(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) {
|
|
TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
|
|
}
|
|
|
|
pSrc = pOut_buf_start +
|
|
((dist_from_out_buf_start - dist) & out_buf_size_mask);
|
|
|
|
if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) {
|
|
while (counter--) {
|
|
while (pOut_buf_cur >= pOut_buf_end) {
|
|
TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT);
|
|
}
|
|
*pOut_buf_cur++ =
|
|
pOut_buf_start[(dist_from_out_buf_start++ - dist) &
|
|
out_buf_size_mask];
|
|
}
|
|
continue;
|
|
}
|
|
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
|
|
else if ((counter >= 9) && (counter <= dist)) {
|
|
const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
|
|
do {
|
|
((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
|
|
((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
|
|
pOut_buf_cur += 8;
|
|
} while ((pSrc += 8) < pSrc_end);
|
|
if ((counter &= 7) < 3) {
|
|
if (counter) {
|
|
pOut_buf_cur[0] = pSrc[0];
|
|
if (counter > 1) pOut_buf_cur[1] = pSrc[1];
|
|
pOut_buf_cur += counter;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
do {
|
|
pOut_buf_cur[0] = pSrc[0];
|
|
pOut_buf_cur[1] = pSrc[1];
|
|
pOut_buf_cur[2] = pSrc[2];
|
|
pOut_buf_cur += 3;
|
|
pSrc += 3;
|
|
} while ((int)(counter -= 3) > 2);
|
|
if ((int)counter > 0) {
|
|
pOut_buf_cur[0] = pSrc[0];
|
|
if ((int)counter > 1) pOut_buf_cur[1] = pSrc[1];
|
|
pOut_buf_cur += counter;
|
|
}
|
|
}
|
|
}
|
|
} while (!(r->m_final & 1));
|
|
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
|
|
TINFL_SKIP_BITS(32, num_bits & 7);
|
|
for (counter = 0; counter < 4; ++counter) {
|
|
mz_uint s;
|
|
if (num_bits)
|
|
TINFL_GET_BITS(41, s, 8);
|
|
else
|
|
TINFL_GET_BYTE(42, s);
|
|
r->m_z_adler32 = (r->m_z_adler32 << 8) | s;
|
|
}
|
|
}
|
|
TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);
|
|
TINFL_CR_FINISH
|
|
|
|
common_exit:
|
|
r->m_num_bits = num_bits;
|
|
r->m_bit_buf = bit_buf;
|
|
r->m_dist = dist;
|
|
r->m_counter = counter;
|
|
r->m_num_extra = num_extra;
|
|
r->m_dist_from_out_buf_start = dist_from_out_buf_start;
|
|
*pIn_buf_size = pIn_buf_cur - pIn_buf_next;
|
|
*pOut_buf_size = pOut_buf_cur - pOut_buf_next;
|
|
if ((decomp_flags &
|
|
(TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) &&
|
|
(status >= 0)) {
|
|
const mz_uint8 *ptr = pOut_buf_next;
|
|
size_t buf_len = *pOut_buf_size;
|
|
mz_uint32 i, s1 = r->m_check_adler32 & 0xffff,
|
|
s2 = r->m_check_adler32 >> 16;
|
|
size_t block_len = buf_len % 5552;
|
|
while (buf_len) {
|
|
for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
|
|
s1 += ptr[0], s2 += s1;
|
|
s1 += ptr[1], s2 += s1;
|
|
s1 += ptr[2], s2 += s1;
|
|
s1 += ptr[3], s2 += s1;
|
|
s1 += ptr[4], s2 += s1;
|
|
s1 += ptr[5], s2 += s1;
|
|
s1 += ptr[6], s2 += s1;
|
|
s1 += ptr[7], s2 += s1;
|
|
}
|
|
for (; i < block_len; ++i) s1 += *ptr++, s2 += s1;
|
|
s1 %= 65521U, s2 %= 65521U;
|
|
buf_len -= block_len;
|
|
block_len = 5552;
|
|
}
|
|
r->m_check_adler32 = (s2 << 16) + s1;
|
|
if ((status == TINFL_STATUS_DONE) &&
|
|
(decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) &&
|
|
(r->m_check_adler32 != r->m_z_adler32))
|
|
status = TINFL_STATUS_ADLER32_MISMATCH;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
// Higher level helper functions.
|
|
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
|
|
size_t *pOut_len, int flags) {
|
|
tinfl_decompressor decomp;
|
|
void *pBuf = NULL, *pNew_buf;
|
|
size_t src_buf_ofs = 0, out_buf_capacity = 0;
|
|
*pOut_len = 0;
|
|
tinfl_init(&decomp);
|
|
for (;;) {
|
|
size_t src_buf_size = src_buf_len - src_buf_ofs,
|
|
dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
|
|
tinfl_status status = tinfl_decompress(
|
|
&decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size,
|
|
(mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL,
|
|
&dst_buf_size,
|
|
(flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
|
|
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
|
|
if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) {
|
|
MZ_FREE(pBuf);
|
|
*pOut_len = 0;
|
|
return NULL;
|
|
}
|
|
src_buf_ofs += src_buf_size;
|
|
*pOut_len += dst_buf_size;
|
|
if (status == TINFL_STATUS_DONE) break;
|
|
new_out_buf_capacity = out_buf_capacity * 2;
|
|
if (new_out_buf_capacity < 128) new_out_buf_capacity = 128;
|
|
pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
|
|
if (!pNew_buf) {
|
|
MZ_FREE(pBuf);
|
|
*pOut_len = 0;
|
|
return NULL;
|
|
}
|
|
pBuf = pNew_buf;
|
|
out_buf_capacity = new_out_buf_capacity;
|
|
}
|
|
return pBuf;
|
|
}
|
|
|
|
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
|
|
const void *pSrc_buf, size_t src_buf_len,
|
|
int flags) {
|
|
tinfl_decompressor decomp;
|
|
tinfl_status status;
|
|
tinfl_init(&decomp);
|
|
status =
|
|
tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf, &src_buf_len,
|
|
(mz_uint8 *)pOut_buf, (mz_uint8 *)pOut_buf, &out_buf_len,
|
|
(flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
|
|
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
|
|
return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED
|
|
: out_buf_len;
|
|
}
|
|
|
|
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
|
|
tinfl_put_buf_func_ptr pPut_buf_func,
|
|
void *pPut_buf_user, int flags) {
|
|
int result = 0;
|
|
tinfl_decompressor decomp;
|
|
mz_uint8 *pDict = (mz_uint8 *)MZ_MALLOC(TINFL_LZ_DICT_SIZE);
|
|
size_t in_buf_ofs = 0, dict_ofs = 0;
|
|
if (!pDict) return TINFL_STATUS_FAILED;
|
|
tinfl_init(&decomp);
|
|
for (;;) {
|
|
size_t in_buf_size = *pIn_buf_size - in_buf_ofs,
|
|
dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
|
|
tinfl_status status =
|
|
tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs,
|
|
&in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
|
|
(flags & ~(TINFL_FLAG_HAS_MORE_INPUT |
|
|
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
|
|
in_buf_ofs += in_buf_size;
|
|
if ((dst_buf_size) &&
|
|
(!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
|
|
break;
|
|
if (status != TINFL_STATUS_HAS_MORE_OUTPUT) {
|
|
result = (status == TINFL_STATUS_DONE);
|
|
break;
|
|
}
|
|
dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
|
|
}
|
|
MZ_FREE(pDict);
|
|
*pIn_buf_size = in_buf_ofs;
|
|
return result;
|
|
}
|
|
|
|
// ------------------- Low-level Compression (independent from all decompression
|
|
// API's)
|
|
|
|
// Purposely making these tables static for faster init and thread safety.
|
|
static const mz_uint16 s_tdefl_len_sym[256] = {
|
|
257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268,
|
|
268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272,
|
|
272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274,
|
|
274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276,
|
|
276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277,
|
|
277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278,
|
|
278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279,
|
|
279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280,
|
|
280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281,
|
|
281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281,
|
|
281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282,
|
|
282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282,
|
|
282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283,
|
|
283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
|
|
283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284,
|
|
284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
|
|
284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
|
|
285};
|
|
|
|
static const mz_uint8 s_tdefl_len_extra[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0};
|
|
|
|
static const mz_uint8 s_tdefl_small_dist_sym[512] = {
|
|
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,
|
|
8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11,
|
|
11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
|
|
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
|
|
12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
|
|
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14,
|
|
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
|
|
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
|
|
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
|
|
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
|
|
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
|
|
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
|
|
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17};
|
|
|
|
static const mz_uint8 s_tdefl_small_dist_extra[512] = {
|
|
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
|
|
|
|
static const mz_uint8 s_tdefl_large_dist_sym[128] = {
|
|
0, 0, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24,
|
|
24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26,
|
|
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27,
|
|
27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
|
|
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
|
|
28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
|
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29};
|
|
|
|
static const mz_uint8 s_tdefl_large_dist_extra[128] = {
|
|
0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11,
|
|
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12,
|
|
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
|
|
12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
|
|
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
|
|
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
|
|
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13};
|
|
|
|
// Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted
|
|
// values.
|
|
typedef struct {
|
|
mz_uint16 m_key, m_sym_index;
|
|
} tdefl_sym_freq;
|
|
static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms,
|
|
tdefl_sym_freq *pSyms0,
|
|
tdefl_sym_freq *pSyms1) {
|
|
mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2];
|
|
tdefl_sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1;
|
|
MZ_CLEAR_OBJ(hist);
|
|
for (i = 0; i < num_syms; i++) {
|
|
mz_uint freq = pSyms0[i].m_key;
|
|
hist[freq & 0xFF]++;
|
|
hist[256 + ((freq >> 8) & 0xFF)]++;
|
|
}
|
|
while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256]))
|
|
total_passes--;
|
|
for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) {
|
|
const mz_uint32 *pHist = &hist[pass << 8];
|
|
mz_uint offsets[256], cur_ofs = 0;
|
|
for (i = 0; i < 256; i++) {
|
|
offsets[i] = cur_ofs;
|
|
cur_ofs += pHist[i];
|
|
}
|
|
for (i = 0; i < num_syms; i++)
|
|
pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] =
|
|
pCur_syms[i];
|
|
{
|
|
tdefl_sym_freq *t = pCur_syms;
|
|
pCur_syms = pNew_syms;
|
|
pNew_syms = t;
|
|
}
|
|
}
|
|
return pCur_syms;
|
|
}
|
|
|
|
// tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat,
|
|
// alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
|
|
static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) {
|
|
int root, leaf, next, avbl, used, dpth;
|
|
if (n == 0)
|
|
return;
|
|
else if (n == 1) {
|
|
A[0].m_key = 1;
|
|
return;
|
|
}
|
|
A[0].m_key += A[1].m_key;
|
|
root = 0;
|
|
leaf = 2;
|
|
for (next = 1; next < n - 1; next++) {
|
|
if (leaf >= n || A[root].m_key < A[leaf].m_key) {
|
|
A[next].m_key = A[root].m_key;
|
|
A[root++].m_key = (mz_uint16)next;
|
|
} else
|
|
A[next].m_key = A[leaf++].m_key;
|
|
if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) {
|
|
A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key);
|
|
A[root++].m_key = (mz_uint16)next;
|
|
} else
|
|
A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key);
|
|
}
|
|
A[n - 2].m_key = 0;
|
|
for (next = n - 3; next >= 0; next--)
|
|
A[next].m_key = A[A[next].m_key].m_key + 1;
|
|
avbl = 1;
|
|
used = dpth = 0;
|
|
root = n - 2;
|
|
next = n - 1;
|
|
while (avbl > 0) {
|
|
while (root >= 0 && (int)A[root].m_key == dpth) {
|
|
used++;
|
|
root--;
|
|
}
|
|
while (avbl > used) {
|
|
A[next--].m_key = (mz_uint16)(dpth);
|
|
avbl--;
|
|
}
|
|
avbl = 2 * used;
|
|
dpth++;
|
|
used = 0;
|
|
}
|
|
}
|
|
|
|
// Limits canonical Huffman code table's max code size.
|
|
enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 };
|
|
static void tdefl_huffman_enforce_max_code_size(int *pNum_codes,
|
|
int code_list_len,
|
|
int max_code_size) {
|
|
int i;
|
|
mz_uint32 total = 0;
|
|
if (code_list_len <= 1) return;
|
|
for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++)
|
|
pNum_codes[max_code_size] += pNum_codes[i];
|
|
for (i = max_code_size; i > 0; i--)
|
|
total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i));
|
|
while (total != (1UL << max_code_size)) {
|
|
pNum_codes[max_code_size]--;
|
|
for (i = max_code_size - 1; i > 0; i--)
|
|
if (pNum_codes[i]) {
|
|
pNum_codes[i]--;
|
|
pNum_codes[i + 1] += 2;
|
|
break;
|
|
}
|
|
total--;
|
|
}
|
|
}
|
|
|
|
static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num,
|
|
int table_len, int code_size_limit,
|
|
int static_table) {
|
|
int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE];
|
|
mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1];
|
|
MZ_CLEAR_OBJ(num_codes);
|
|
if (static_table) {
|
|
for (i = 0; i < table_len; i++)
|
|
num_codes[d->m_huff_code_sizes[table_num][i]]++;
|
|
} else {
|
|
tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS],
|
|
*pSyms;
|
|
int num_used_syms = 0;
|
|
const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0];
|
|
for (i = 0; i < table_len; i++)
|
|
if (pSym_count[i]) {
|
|
syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i];
|
|
syms0[num_used_syms++].m_sym_index = (mz_uint16)i;
|
|
}
|
|
|
|
pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1);
|
|
tdefl_calculate_minimum_redundancy(pSyms, num_used_syms);
|
|
|
|
for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++;
|
|
|
|
tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms,
|
|
code_size_limit);
|
|
|
|
MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]);
|
|
MZ_CLEAR_OBJ(d->m_huff_codes[table_num]);
|
|
for (i = 1, j = num_used_syms; i <= code_size_limit; i++)
|
|
for (l = num_codes[i]; l > 0; l--)
|
|
d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i);
|
|
}
|
|
|
|
next_code[1] = 0;
|
|
for (j = 0, i = 2; i <= code_size_limit; i++)
|
|
next_code[i] = j = ((j + num_codes[i - 1]) << 1);
|
|
|
|
for (i = 0; i < table_len; i++) {
|
|
mz_uint rev_code = 0, code, code_size;
|
|
if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue;
|
|
code = next_code[code_size]++;
|
|
for (l = code_size; l > 0; l--, code >>= 1)
|
|
rev_code = (rev_code << 1) | (code & 1);
|
|
d->m_huff_codes[table_num][i] = (mz_uint16)rev_code;
|
|
}
|
|
}
|
|
|
|
#define TDEFL_PUT_BITS(b, l) \
|
|
do { \
|
|
mz_uint bits = b; \
|
|
mz_uint len = l; \
|
|
MZ_ASSERT(bits <= ((1U << len) - 1U)); \
|
|
d->m_bit_buffer |= (bits << d->m_bits_in); \
|
|
d->m_bits_in += len; \
|
|
while (d->m_bits_in >= 8) { \
|
|
if (d->m_pOutput_buf < d->m_pOutput_buf_end) \
|
|
*d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \
|
|
d->m_bit_buffer >>= 8; \
|
|
d->m_bits_in -= 8; \
|
|
} \
|
|
} \
|
|
MZ_MACRO_END
|
|
|
|
#define TDEFL_RLE_PREV_CODE_SIZE() \
|
|
{ \
|
|
if (rle_repeat_count) { \
|
|
if (rle_repeat_count < 3) { \
|
|
d->m_huff_count[2][prev_code_size] = (mz_uint16)( \
|
|
d->m_huff_count[2][prev_code_size] + rle_repeat_count); \
|
|
while (rle_repeat_count--) \
|
|
packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \
|
|
} else { \
|
|
d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); \
|
|
packed_code_sizes[num_packed_code_sizes++] = 16; \
|
|
packed_code_sizes[num_packed_code_sizes++] = \
|
|
(mz_uint8)(rle_repeat_count - 3); \
|
|
} \
|
|
rle_repeat_count = 0; \
|
|
} \
|
|
}
|
|
|
|
#define TDEFL_RLE_ZERO_CODE_SIZE() \
|
|
{ \
|
|
if (rle_z_count) { \
|
|
if (rle_z_count < 3) { \
|
|
d->m_huff_count[2][0] = \
|
|
(mz_uint16)(d->m_huff_count[2][0] + rle_z_count); \
|
|
while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \
|
|
} else if (rle_z_count <= 10) { \
|
|
d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); \
|
|
packed_code_sizes[num_packed_code_sizes++] = 17; \
|
|
packed_code_sizes[num_packed_code_sizes++] = \
|
|
(mz_uint8)(rle_z_count - 3); \
|
|
} else { \
|
|
d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); \
|
|
packed_code_sizes[num_packed_code_sizes++] = 18; \
|
|
packed_code_sizes[num_packed_code_sizes++] = \
|
|
(mz_uint8)(rle_z_count - 11); \
|
|
} \
|
|
rle_z_count = 0; \
|
|
} \
|
|
}
|
|
|
|
static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = {
|
|
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
|
|
|
static void tdefl_start_dynamic_block(tdefl_compressor *d) {
|
|
int num_lit_codes, num_dist_codes, num_bit_lengths;
|
|
mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count,
|
|
rle_repeat_count, packed_code_sizes_index;
|
|
mz_uint8
|
|
code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1],
|
|
packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1],
|
|
prev_code_size = 0xFF;
|
|
|
|
d->m_huff_count[0][256] = 1;
|
|
|
|
tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE);
|
|
tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE);
|
|
|
|
for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--)
|
|
if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break;
|
|
for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--)
|
|
if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break;
|
|
|
|
memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes);
|
|
memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0],
|
|
num_dist_codes);
|
|
total_code_sizes_to_pack = num_lit_codes + num_dist_codes;
|
|
num_packed_code_sizes = 0;
|
|
rle_z_count = 0;
|
|
rle_repeat_count = 0;
|
|
|
|
memset(&d->m_huff_count[2][0], 0,
|
|
sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2);
|
|
for (i = 0; i < total_code_sizes_to_pack; i++) {
|
|
mz_uint8 code_size = code_sizes_to_pack[i];
|
|
if (!code_size) {
|
|
TDEFL_RLE_PREV_CODE_SIZE();
|
|
if (++rle_z_count == 138) {
|
|
TDEFL_RLE_ZERO_CODE_SIZE();
|
|
}
|
|
} else {
|
|
TDEFL_RLE_ZERO_CODE_SIZE();
|
|
if (code_size != prev_code_size) {
|
|
TDEFL_RLE_PREV_CODE_SIZE();
|
|
d->m_huff_count[2][code_size] =
|
|
(mz_uint16)(d->m_huff_count[2][code_size] + 1);
|
|
packed_code_sizes[num_packed_code_sizes++] = code_size;
|
|
} else if (++rle_repeat_count == 6) {
|
|
TDEFL_RLE_PREV_CODE_SIZE();
|
|
}
|
|
}
|
|
prev_code_size = code_size;
|
|
}
|
|
if (rle_repeat_count) {
|
|
TDEFL_RLE_PREV_CODE_SIZE();
|
|
} else {
|
|
TDEFL_RLE_ZERO_CODE_SIZE();
|
|
}
|
|
|
|
tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE);
|
|
|
|
TDEFL_PUT_BITS(2, 2);
|
|
|
|
TDEFL_PUT_BITS(num_lit_codes - 257, 5);
|
|
TDEFL_PUT_BITS(num_dist_codes - 1, 5);
|
|
|
|
for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--)
|
|
if (d->m_huff_code_sizes
|
|
[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]])
|
|
break;
|
|
num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1));
|
|
TDEFL_PUT_BITS(num_bit_lengths - 4, 4);
|
|
for (i = 0; (int)i < num_bit_lengths; i++)
|
|
TDEFL_PUT_BITS(
|
|
d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3);
|
|
|
|
for (packed_code_sizes_index = 0;
|
|
packed_code_sizes_index < num_packed_code_sizes;) {
|
|
mz_uint code = packed_code_sizes[packed_code_sizes_index++];
|
|
MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2);
|
|
TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]);
|
|
if (code >= 16)
|
|
TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++],
|
|
"\02\03\07"[code - 16]);
|
|
}
|
|
}
|
|
|
|
static void tdefl_start_static_block(tdefl_compressor *d) {
|
|
mz_uint i;
|
|
mz_uint8 *p = &d->m_huff_code_sizes[0][0];
|
|
|
|
for (i = 0; i <= 143; ++i) *p++ = 8;
|
|
for (; i <= 255; ++i) *p++ = 9;
|
|
for (; i <= 279; ++i) *p++ = 7;
|
|
for (; i <= 287; ++i) *p++ = 8;
|
|
|
|
memset(d->m_huff_code_sizes[1], 5, 32);
|
|
|
|
tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE);
|
|
tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE);
|
|
|
|
TDEFL_PUT_BITS(1, 2);
|
|
}
|
|
|
|
static const mz_uint mz_bitmasks[17] = {
|
|
0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
|
|
0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF};
|
|
|
|
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && \
|
|
MINIZ_HAS_64BIT_REGISTERS
|
|
static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) {
|
|
mz_uint flags;
|
|
mz_uint8 *pLZ_codes;
|
|
mz_uint8 *pOutput_buf = d->m_pOutput_buf;
|
|
mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf;
|
|
mz_uint64 bit_buffer = d->m_bit_buffer;
|
|
mz_uint bits_in = d->m_bits_in;
|
|
|
|
#define TDEFL_PUT_BITS_FAST(b, l) \
|
|
{ \
|
|
bit_buffer |= (((mz_uint64)(b)) << bits_in); \
|
|
bits_in += (l); \
|
|
}
|
|
|
|
flags = 1;
|
|
for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end;
|
|
flags >>= 1) {
|
|
if (flags == 1) flags = *pLZ_codes++ | 0x100;
|
|
|
|
if (flags & 1) {
|
|
mz_uint s0, s1, n0, n1, sym, num_extra_bits;
|
|
mz_uint match_len = pLZ_codes[0],
|
|
match_dist = *(const mz_uint16 *)(pLZ_codes + 1);
|
|
pLZ_codes += 3;
|
|
|
|
MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
|
|
TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]],
|
|
d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
|
|
TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]],
|
|
s_tdefl_len_extra[match_len]);
|
|
|
|
// This sequence coaxes MSVC into using cmov's vs. jmp's.
|
|
s0 = s_tdefl_small_dist_sym[match_dist & 511];
|
|
n0 = s_tdefl_small_dist_extra[match_dist & 511];
|
|
s1 = s_tdefl_large_dist_sym[match_dist >> 8];
|
|
n1 = s_tdefl_large_dist_extra[match_dist >> 8];
|
|
sym = (match_dist < 512) ? s0 : s1;
|
|
num_extra_bits = (match_dist < 512) ? n0 : n1;
|
|
|
|
MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
|
|
TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym],
|
|
d->m_huff_code_sizes[1][sym]);
|
|
TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits],
|
|
num_extra_bits);
|
|
} else {
|
|
mz_uint lit = *pLZ_codes++;
|
|
MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
|
|
TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
|
|
d->m_huff_code_sizes[0][lit]);
|
|
|
|
if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) {
|
|
flags >>= 1;
|
|
lit = *pLZ_codes++;
|
|
MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
|
|
TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
|
|
d->m_huff_code_sizes[0][lit]);
|
|
|
|
if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) {
|
|
flags >>= 1;
|
|
lit = *pLZ_codes++;
|
|
MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
|
|
TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
|
|
d->m_huff_code_sizes[0][lit]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pOutput_buf >= d->m_pOutput_buf_end) return MZ_FALSE;
|
|
|
|
*(mz_uint64 *)pOutput_buf = bit_buffer;
|
|
pOutput_buf += (bits_in >> 3);
|
|
bit_buffer >>= (bits_in & ~7);
|
|
bits_in &= 7;
|
|
}
|
|
|
|
#undef TDEFL_PUT_BITS_FAST
|
|
|
|
d->m_pOutput_buf = pOutput_buf;
|
|
d->m_bits_in = 0;
|
|
d->m_bit_buffer = 0;
|
|
|
|
while (bits_in) {
|
|
mz_uint32 n = MZ_MIN(bits_in, 16);
|
|
TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n);
|
|
bit_buffer >>= n;
|
|
bits_in -= n;
|
|
}
|
|
|
|
TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
|
|
|
|
return (d->m_pOutput_buf < d->m_pOutput_buf_end);
|
|
}
|
|
#else
|
|
static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) {
|
|
mz_uint flags;
|
|
mz_uint8 *pLZ_codes;
|
|
|
|
flags = 1;
|
|
for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf;
|
|
flags >>= 1) {
|
|
if (flags == 1) flags = *pLZ_codes++ | 0x100;
|
|
if (flags & 1) {
|
|
mz_uint sym, num_extra_bits;
|
|
mz_uint match_len = pLZ_codes[0],
|
|
match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8));
|
|
pLZ_codes += 3;
|
|
|
|
MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
|
|
TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]],
|
|
d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
|
|
TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]],
|
|
s_tdefl_len_extra[match_len]);
|
|
|
|
if (match_dist < 512) {
|
|
sym = s_tdefl_small_dist_sym[match_dist];
|
|
num_extra_bits = s_tdefl_small_dist_extra[match_dist];
|
|
} else {
|
|
sym = s_tdefl_large_dist_sym[match_dist >> 8];
|
|
num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8];
|
|
}
|
|
MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
|
|
TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);
|
|
TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);
|
|
} else {
|
|
mz_uint lit = *pLZ_codes++;
|
|
MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
|
|
TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
|
|
}
|
|
}
|
|
|
|
TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
|
|
|
|
return (d->m_pOutput_buf < d->m_pOutput_buf_end);
|
|
}
|
|
#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN &&
|
|
// MINIZ_HAS_64BIT_REGISTERS
|
|
|
|
static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) {
|
|
if (static_block)
|
|
tdefl_start_static_block(d);
|
|
else
|
|
tdefl_start_dynamic_block(d);
|
|
return tdefl_compress_lz_codes(d);
|
|
}
|
|
|
|
static int tdefl_flush_block(tdefl_compressor *d, int flush) {
|
|
mz_uint saved_bit_buf, saved_bits_in;
|
|
mz_uint8 *pSaved_output_buf;
|
|
mz_bool comp_block_succeeded = MZ_FALSE;
|
|
int n, use_raw_block =
|
|
((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) &&
|
|
(d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size;
|
|
mz_uint8 *pOutput_buf_start =
|
|
((d->m_pPut_buf_func == NULL) &&
|
|
((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE))
|
|
? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs)
|
|
: d->m_output_buf;
|
|
|
|
d->m_pOutput_buf = pOutput_buf_start;
|
|
d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16;
|
|
|
|
MZ_ASSERT(!d->m_output_flush_remaining);
|
|
d->m_output_flush_ofs = 0;
|
|
d->m_output_flush_remaining = 0;
|
|
|
|
*d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left);
|
|
d->m_pLZ_code_buf -= (d->m_num_flags_left == 8);
|
|
|
|
if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) {
|
|
TDEFL_PUT_BITS(0x78, 8);
|
|
TDEFL_PUT_BITS(0x01, 8);
|
|
}
|
|
|
|
TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1);
|
|
|
|
pSaved_output_buf = d->m_pOutput_buf;
|
|
saved_bit_buf = d->m_bit_buffer;
|
|
saved_bits_in = d->m_bits_in;
|
|
|
|
if (!use_raw_block)
|
|
comp_block_succeeded =
|
|
tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) ||
|
|
(d->m_total_lz_bytes < 48));
|
|
|
|
// If the block gets expanded, forget the current contents of the output
|
|
// buffer and send a raw block instead.
|
|
if (((use_raw_block) ||
|
|
((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >=
|
|
d->m_total_lz_bytes))) &&
|
|
((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size)) {
|
|
mz_uint i;
|
|
d->m_pOutput_buf = pSaved_output_buf;
|
|
d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
|
|
TDEFL_PUT_BITS(0, 2);
|
|
if (d->m_bits_in) {
|
|
TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
|
|
}
|
|
for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) {
|
|
TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16);
|
|
}
|
|
for (i = 0; i < d->m_total_lz_bytes; ++i) {
|
|
TDEFL_PUT_BITS(
|
|
d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK],
|
|
8);
|
|
}
|
|
}
|
|
// Check for the extremely unlikely (if not impossible) case of the compressed
|
|
// block not fitting into the output buffer when using dynamic codes.
|
|
else if (!comp_block_succeeded) {
|
|
d->m_pOutput_buf = pSaved_output_buf;
|
|
d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
|
|
tdefl_compress_block(d, MZ_TRUE);
|
|
}
|
|
|
|
if (flush) {
|
|
if (flush == TDEFL_FINISH) {
|
|
if (d->m_bits_in) {
|
|
TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
|
|
}
|
|
if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) {
|
|
mz_uint i, a = d->m_adler32;
|
|
for (i = 0; i < 4; i++) {
|
|
TDEFL_PUT_BITS((a >> 24) & 0xFF, 8);
|
|
a <<= 8;
|
|
}
|
|
}
|
|
} else {
|
|
mz_uint i, z = 0;
|
|
TDEFL_PUT_BITS(0, 3);
|
|
if (d->m_bits_in) {
|
|
TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
|
|
}
|
|
for (i = 2; i; --i, z ^= 0xFFFF) {
|
|
TDEFL_PUT_BITS(z & 0xFFFF, 16);
|
|
}
|
|
}
|
|
}
|
|
|
|
MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end);
|
|
|
|
memset(&d->m_huff_count[0][0], 0,
|
|
sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
|
|
memset(&d->m_huff_count[1][0], 0,
|
|
sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
|
|
|
|
d->m_pLZ_code_buf = d->m_lz_code_buf + 1;
|
|
d->m_pLZ_flags = d->m_lz_code_buf;
|
|
d->m_num_flags_left = 8;
|
|
d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes;
|
|
d->m_total_lz_bytes = 0;
|
|
d->m_block_index++;
|
|
|
|
if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) {
|
|
if (d->m_pPut_buf_func) {
|
|
*d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
|
|
if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user))
|
|
return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED);
|
|
} else if (pOutput_buf_start == d->m_output_buf) {
|
|
int bytes_to_copy = (int)MZ_MIN(
|
|
(size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs));
|
|
memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf,
|
|
bytes_to_copy);
|
|
d->m_out_buf_ofs += bytes_to_copy;
|
|
if ((n -= bytes_to_copy) != 0) {
|
|
d->m_output_flush_ofs = bytes_to_copy;
|
|
d->m_output_flush_remaining = n;
|
|
}
|
|
} else {
|
|
d->m_out_buf_ofs += n;
|
|
}
|
|
}
|
|
|
|
return d->m_output_flush_remaining;
|
|
}
|
|
|
|
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
|
|
#define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16 *)(p)
|
|
static MZ_FORCEINLINE void tdefl_find_match(
|
|
tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist,
|
|
mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) {
|
|
mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK,
|
|
match_len = *pMatch_len, probe_pos = pos, next_probe_pos,
|
|
probe_len;
|
|
mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
|
|
const mz_uint16 *s = (const mz_uint16 *)(d->m_dict + pos), *p, *q;
|
|
mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]),
|
|
s01 = TDEFL_READ_UNALIGNED_WORD(s);
|
|
MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN);
|
|
if (max_match_len <= match_len) return;
|
|
for (;;) {
|
|
for (;;) {
|
|
if (--num_probes_left == 0) return;
|
|
#define TDEFL_PROBE \
|
|
next_probe_pos = d->m_next[probe_pos]; \
|
|
if ((!next_probe_pos) || \
|
|
((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \
|
|
return; \
|
|
probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
|
|
if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) \
|
|
break;
|
|
TDEFL_PROBE;
|
|
TDEFL_PROBE;
|
|
TDEFL_PROBE;
|
|
}
|
|
if (!dist) break;
|
|
q = (const mz_uint16 *)(d->m_dict + probe_pos);
|
|
if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue;
|
|
p = s;
|
|
probe_len = 32;
|
|
do {
|
|
} while (
|
|
(TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
|
|
(TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
|
|
(TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
|
|
(TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
|
|
(--probe_len > 0));
|
|
if (!probe_len) {
|
|
*pMatch_dist = dist;
|
|
*pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN);
|
|
break;
|
|
} else if ((probe_len = ((mz_uint)(p - s) * 2) +
|
|
(mz_uint)(*(const mz_uint8 *)p ==
|
|
*(const mz_uint8 *)q)) > match_len) {
|
|
*pMatch_dist = dist;
|
|
if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) ==
|
|
max_match_len)
|
|
break;
|
|
c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static MZ_FORCEINLINE void tdefl_find_match(
|
|
tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist,
|
|
mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) {
|
|
mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK,
|
|
match_len = *pMatch_len, probe_pos = pos, next_probe_pos,
|
|
probe_len;
|
|
mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
|
|
const mz_uint8 *s = d->m_dict + pos, *p, *q;
|
|
mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1];
|
|
MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN);
|
|
if (max_match_len <= match_len) return;
|
|
for (;;) {
|
|
for (;;) {
|
|
if (--num_probes_left == 0) return;
|
|
#define TDEFL_PROBE \
|
|
next_probe_pos = d->m_next[probe_pos]; \
|
|
if ((!next_probe_pos) || \
|
|
((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \
|
|
return; \
|
|
probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
|
|
if ((d->m_dict[probe_pos + match_len] == c0) && \
|
|
(d->m_dict[probe_pos + match_len - 1] == c1)) \
|
|
break;
|
|
TDEFL_PROBE;
|
|
TDEFL_PROBE;
|
|
TDEFL_PROBE;
|
|
}
|
|
if (!dist) break;
|
|
p = s;
|
|
q = d->m_dict + probe_pos;
|
|
for (probe_len = 0; probe_len < max_match_len; probe_len++)
|
|
if (*p++ != *q++) break;
|
|
if (probe_len > match_len) {
|
|
*pMatch_dist = dist;
|
|
if ((*pMatch_len = match_len = probe_len) == max_match_len) return;
|
|
c0 = d->m_dict[pos + match_len];
|
|
c1 = d->m_dict[pos + match_len - 1];
|
|
}
|
|
}
|
|
}
|
|
#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
|
|
|
|
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
|
|
static mz_bool tdefl_compress_fast(tdefl_compressor *d) {
|
|
// Faster, minimally featured LZRW1-style match+parse loop with better
|
|
// register utilization. Intended for applications where raw throughput is
|
|
// valued more highly than ratio.
|
|
mz_uint lookahead_pos = d->m_lookahead_pos,
|
|
lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size,
|
|
total_lz_bytes = d->m_total_lz_bytes,
|
|
num_flags_left = d->m_num_flags_left;
|
|
mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags;
|
|
mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
|
|
|
|
while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) {
|
|
const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096;
|
|
mz_uint dst_pos =
|
|
(lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;
|
|
mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(
|
|
d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size);
|
|
d->m_src_buf_left -= num_bytes_to_process;
|
|
lookahead_size += num_bytes_to_process;
|
|
|
|
while (num_bytes_to_process) {
|
|
mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process);
|
|
memcpy(d->m_dict + dst_pos, d->m_pSrc, n);
|
|
if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
|
|
memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc,
|
|
MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos));
|
|
d->m_pSrc += n;
|
|
dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK;
|
|
num_bytes_to_process -= n;
|
|
}
|
|
|
|
dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size);
|
|
if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE))
|
|
break;
|
|
|
|
while (lookahead_size >= 4) {
|
|
mz_uint cur_match_dist, cur_match_len = 1;
|
|
mz_uint8 *pCur_dict = d->m_dict + cur_pos;
|
|
mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF;
|
|
mz_uint hash =
|
|
(first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) &
|
|
TDEFL_LEVEL1_HASH_SIZE_MASK;
|
|
mz_uint probe_pos = d->m_hash[hash];
|
|
d->m_hash[hash] = (mz_uint16)lookahead_pos;
|
|
|
|
if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <=
|
|
dict_size) &&
|
|
((*(const mz_uint32 *)(d->m_dict +
|
|
(probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) &
|
|
0xFFFFFF) == first_trigram)) {
|
|
const mz_uint16 *p = (const mz_uint16 *)pCur_dict;
|
|
const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos);
|
|
mz_uint32 probe_len = 32;
|
|
do {
|
|
} while ((TDEFL_READ_UNALIGNED_WORD(++p) ==
|
|
TDEFL_READ_UNALIGNED_WORD(++q)) &&
|
|
(TDEFL_READ_UNALIGNED_WORD(++p) ==
|
|
TDEFL_READ_UNALIGNED_WORD(++q)) &&
|
|
(TDEFL_READ_UNALIGNED_WORD(++p) ==
|
|
TDEFL_READ_UNALIGNED_WORD(++q)) &&
|
|
(TDEFL_READ_UNALIGNED_WORD(++p) ==
|
|
TDEFL_READ_UNALIGNED_WORD(++q)) &&
|
|
(--probe_len > 0));
|
|
cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) +
|
|
(mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q);
|
|
if (!probe_len)
|
|
cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0;
|
|
|
|
if ((cur_match_len < TDEFL_MIN_MATCH_LEN) ||
|
|
((cur_match_len == TDEFL_MIN_MATCH_LEN) &&
|
|
(cur_match_dist >= 8U * 1024U))) {
|
|
cur_match_len = 1;
|
|
*pLZ_code_buf++ = (mz_uint8)first_trigram;
|
|
*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
|
|
d->m_huff_count[0][(mz_uint8)first_trigram]++;
|
|
} else {
|
|
mz_uint32 s0, s1;
|
|
cur_match_len = MZ_MIN(cur_match_len, lookahead_size);
|
|
|
|
MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) &&
|
|
(cur_match_dist >= 1) &&
|
|
(cur_match_dist <= TDEFL_LZ_DICT_SIZE));
|
|
|
|
cur_match_dist--;
|
|
|
|
pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN);
|
|
*(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist;
|
|
pLZ_code_buf += 3;
|
|
*pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80);
|
|
|
|
s0 = s_tdefl_small_dist_sym[cur_match_dist & 511];
|
|
s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8];
|
|
d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++;
|
|
|
|
d->m_huff_count[0][s_tdefl_len_sym[cur_match_len -
|
|
TDEFL_MIN_MATCH_LEN]]++;
|
|
}
|
|
} else {
|
|
*pLZ_code_buf++ = (mz_uint8)first_trigram;
|
|
*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
|
|
d->m_huff_count[0][(mz_uint8)first_trigram]++;
|
|
}
|
|
|
|
if (--num_flags_left == 0) {
|
|
num_flags_left = 8;
|
|
pLZ_flags = pLZ_code_buf++;
|
|
}
|
|
|
|
total_lz_bytes += cur_match_len;
|
|
lookahead_pos += cur_match_len;
|
|
dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE);
|
|
cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK;
|
|
MZ_ASSERT(lookahead_size >= cur_match_len);
|
|
lookahead_size -= cur_match_len;
|
|
|
|
if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) {
|
|
int n;
|
|
d->m_lookahead_pos = lookahead_pos;
|
|
d->m_lookahead_size = lookahead_size;
|
|
d->m_dict_size = dict_size;
|
|
d->m_total_lz_bytes = total_lz_bytes;
|
|
d->m_pLZ_code_buf = pLZ_code_buf;
|
|
d->m_pLZ_flags = pLZ_flags;
|
|
d->m_num_flags_left = num_flags_left;
|
|
if ((n = tdefl_flush_block(d, 0)) != 0)
|
|
return (n < 0) ? MZ_FALSE : MZ_TRUE;
|
|
total_lz_bytes = d->m_total_lz_bytes;
|
|
pLZ_code_buf = d->m_pLZ_code_buf;
|
|
pLZ_flags = d->m_pLZ_flags;
|
|
num_flags_left = d->m_num_flags_left;
|
|
}
|
|
}
|
|
|
|
while (lookahead_size) {
|
|
mz_uint8 lit = d->m_dict[cur_pos];
|
|
|
|
total_lz_bytes++;
|
|
*pLZ_code_buf++ = lit;
|
|
*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
|
|
if (--num_flags_left == 0) {
|
|
num_flags_left = 8;
|
|
pLZ_flags = pLZ_code_buf++;
|
|
}
|
|
|
|
d->m_huff_count[0][lit]++;
|
|
|
|
lookahead_pos++;
|
|
dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE);
|
|
cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
|
|
lookahead_size--;
|
|
|
|
if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) {
|
|
int n;
|
|
d->m_lookahead_pos = lookahead_pos;
|
|
d->m_lookahead_size = lookahead_size;
|
|
d->m_dict_size = dict_size;
|
|
d->m_total_lz_bytes = total_lz_bytes;
|
|
d->m_pLZ_code_buf = pLZ_code_buf;
|
|
d->m_pLZ_flags = pLZ_flags;
|
|
d->m_num_flags_left = num_flags_left;
|
|
if ((n = tdefl_flush_block(d, 0)) != 0)
|
|
return (n < 0) ? MZ_FALSE : MZ_TRUE;
|
|
total_lz_bytes = d->m_total_lz_bytes;
|
|
pLZ_code_buf = d->m_pLZ_code_buf;
|
|
pLZ_flags = d->m_pLZ_flags;
|
|
num_flags_left = d->m_num_flags_left;
|
|
}
|
|
}
|
|
}
|
|
|
|
d->m_lookahead_pos = lookahead_pos;
|
|
d->m_lookahead_size = lookahead_size;
|
|
d->m_dict_size = dict_size;
|
|
d->m_total_lz_bytes = total_lz_bytes;
|
|
d->m_pLZ_code_buf = pLZ_code_buf;
|
|
d->m_pLZ_flags = pLZ_flags;
|
|
d->m_num_flags_left = num_flags_left;
|
|
return MZ_TRUE;
|
|
}
|
|
#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
|
|
|
|
static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d,
|
|
mz_uint8 lit) {
|
|
d->m_total_lz_bytes++;
|
|
*d->m_pLZ_code_buf++ = lit;
|
|
*d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1);
|
|
if (--d->m_num_flags_left == 0) {
|
|
d->m_num_flags_left = 8;
|
|
d->m_pLZ_flags = d->m_pLZ_code_buf++;
|
|
}
|
|
d->m_huff_count[0][lit]++;
|
|
}
|
|
|
|
static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d,
|
|
mz_uint match_len,
|
|
mz_uint match_dist) {
|
|
mz_uint32 s0, s1;
|
|
|
|
MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) &&
|
|
(match_dist <= TDEFL_LZ_DICT_SIZE));
|
|
|
|
d->m_total_lz_bytes += match_len;
|
|
|
|
d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN);
|
|
|
|
match_dist -= 1;
|
|
d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF);
|
|
d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8);
|
|
d->m_pLZ_code_buf += 3;
|
|
|
|
*d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80);
|
|
if (--d->m_num_flags_left == 0) {
|
|
d->m_num_flags_left = 8;
|
|
d->m_pLZ_flags = d->m_pLZ_code_buf++;
|
|
}
|
|
|
|
s0 = s_tdefl_small_dist_sym[match_dist & 511];
|
|
s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127];
|
|
d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++;
|
|
|
|
if (match_len >= TDEFL_MIN_MATCH_LEN)
|
|
d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++;
|
|
}
|
|
|
|
static mz_bool tdefl_compress_normal(tdefl_compressor *d) {
|
|
const mz_uint8 *pSrc = d->m_pSrc;
|
|
size_t src_buf_left = d->m_src_buf_left;
|
|
tdefl_flush flush = d->m_flush;
|
|
|
|
while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) {
|
|
mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos;
|
|
// Update dictionary and hash chains. Keeps the lookahead size equal to
|
|
// TDEFL_MAX_MATCH_LEN.
|
|
if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) {
|
|
mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) &
|
|
TDEFL_LZ_DICT_SIZE_MASK,
|
|
ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2;
|
|
mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK]
|
|
<< TDEFL_LZ_HASH_SHIFT) ^
|
|
d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK];
|
|
mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(
|
|
src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size);
|
|
const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process;
|
|
src_buf_left -= num_bytes_to_process;
|
|
d->m_lookahead_size += num_bytes_to_process;
|
|
while (pSrc != pSrc_end) {
|
|
mz_uint8 c = *pSrc++;
|
|
d->m_dict[dst_pos] = c;
|
|
if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
|
|
d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
|
|
hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);
|
|
d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash];
|
|
d->m_hash[hash] = (mz_uint16)(ins_pos);
|
|
dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
|
|
ins_pos++;
|
|
}
|
|
} else {
|
|
while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) {
|
|
mz_uint8 c = *pSrc++;
|
|
mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) &
|
|
TDEFL_LZ_DICT_SIZE_MASK;
|
|
src_buf_left--;
|
|
d->m_dict[dst_pos] = c;
|
|
if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
|
|
d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
|
|
if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) {
|
|
mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2;
|
|
mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK]
|
|
<< (TDEFL_LZ_HASH_SHIFT * 2)) ^
|
|
(d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]
|
|
<< TDEFL_LZ_HASH_SHIFT) ^
|
|
c) &
|
|
(TDEFL_LZ_HASH_SIZE - 1);
|
|
d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash];
|
|
d->m_hash[hash] = (mz_uint16)(ins_pos);
|
|
}
|
|
}
|
|
}
|
|
d->m_dict_size =
|
|
MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size);
|
|
if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) break;
|
|
|
|
// Simple lazy/greedy parsing state machine.
|
|
len_to_move = 1;
|
|
cur_match_dist = 0;
|
|
cur_match_len =
|
|
d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1);
|
|
cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
|
|
if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) {
|
|
if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) {
|
|
mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK];
|
|
cur_match_len = 0;
|
|
while (cur_match_len < d->m_lookahead_size) {
|
|
if (d->m_dict[cur_pos + cur_match_len] != c) break;
|
|
cur_match_len++;
|
|
}
|
|
if (cur_match_len < TDEFL_MIN_MATCH_LEN)
|
|
cur_match_len = 0;
|
|
else
|
|
cur_match_dist = 1;
|
|
}
|
|
} else {
|
|
tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size,
|
|
d->m_lookahead_size, &cur_match_dist, &cur_match_len);
|
|
}
|
|
if (((cur_match_len == TDEFL_MIN_MATCH_LEN) &&
|
|
(cur_match_dist >= 8U * 1024U)) ||
|
|
(cur_pos == cur_match_dist) ||
|
|
((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) {
|
|
cur_match_dist = cur_match_len = 0;
|
|
}
|
|
if (d->m_saved_match_len) {
|
|
if (cur_match_len > d->m_saved_match_len) {
|
|
tdefl_record_literal(d, (mz_uint8)d->m_saved_lit);
|
|
if (cur_match_len >= 128) {
|
|
tdefl_record_match(d, cur_match_len, cur_match_dist);
|
|
d->m_saved_match_len = 0;
|
|
len_to_move = cur_match_len;
|
|
} else {
|
|
d->m_saved_lit = d->m_dict[cur_pos];
|
|
d->m_saved_match_dist = cur_match_dist;
|
|
d->m_saved_match_len = cur_match_len;
|
|
}
|
|
} else {
|
|
tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist);
|
|
len_to_move = d->m_saved_match_len - 1;
|
|
d->m_saved_match_len = 0;
|
|
}
|
|
} else if (!cur_match_dist)
|
|
tdefl_record_literal(d,
|
|
d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]);
|
|
else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) ||
|
|
(cur_match_len >= 128)) {
|
|
tdefl_record_match(d, cur_match_len, cur_match_dist);
|
|
len_to_move = cur_match_len;
|
|
} else {
|
|
d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)];
|
|
d->m_saved_match_dist = cur_match_dist;
|
|
d->m_saved_match_len = cur_match_len;
|
|
}
|
|
// Move the lookahead forward by len_to_move bytes.
|
|
d->m_lookahead_pos += len_to_move;
|
|
MZ_ASSERT(d->m_lookahead_size >= len_to_move);
|
|
d->m_lookahead_size -= len_to_move;
|
|
d->m_dict_size =
|
|
MZ_MIN(d->m_dict_size + len_to_move, (mz_uint)TDEFL_LZ_DICT_SIZE);
|
|
// Check if it's time to flush the current LZ codes to the internal output
|
|
// buffer.
|
|
if ((d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) ||
|
|
((d->m_total_lz_bytes > 31 * 1024) &&
|
|
(((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >=
|
|
d->m_total_lz_bytes) ||
|
|
(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))) {
|
|
int n;
|
|
d->m_pSrc = pSrc;
|
|
d->m_src_buf_left = src_buf_left;
|
|
if ((n = tdefl_flush_block(d, 0)) != 0)
|
|
return (n < 0) ? MZ_FALSE : MZ_TRUE;
|
|
}
|
|
}
|
|
|
|
d->m_pSrc = pSrc;
|
|
d->m_src_buf_left = src_buf_left;
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) {
|
|
if (d->m_pIn_buf_size) {
|
|
*d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
|
|
}
|
|
|
|
if (d->m_pOut_buf_size) {
|
|
size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs,
|
|
d->m_output_flush_remaining);
|
|
memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs,
|
|
d->m_output_buf + d->m_output_flush_ofs, n);
|
|
d->m_output_flush_ofs += (mz_uint)n;
|
|
d->m_output_flush_remaining -= (mz_uint)n;
|
|
d->m_out_buf_ofs += n;
|
|
|
|
*d->m_pOut_buf_size = d->m_out_buf_ofs;
|
|
}
|
|
|
|
return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE
|
|
: TDEFL_STATUS_OKAY;
|
|
}
|
|
|
|
tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf,
|
|
size_t *pIn_buf_size, void *pOut_buf,
|
|
size_t *pOut_buf_size, tdefl_flush flush) {
|
|
if (!d) {
|
|
if (pIn_buf_size) *pIn_buf_size = 0;
|
|
if (pOut_buf_size) *pOut_buf_size = 0;
|
|
return TDEFL_STATUS_BAD_PARAM;
|
|
}
|
|
|
|
d->m_pIn_buf = pIn_buf;
|
|
d->m_pIn_buf_size = pIn_buf_size;
|
|
d->m_pOut_buf = pOut_buf;
|
|
d->m_pOut_buf_size = pOut_buf_size;
|
|
d->m_pSrc = (const mz_uint8 *)(pIn_buf);
|
|
d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0;
|
|
d->m_out_buf_ofs = 0;
|
|
d->m_flush = flush;
|
|
|
|
if (((d->m_pPut_buf_func != NULL) ==
|
|
((pOut_buf != NULL) || (pOut_buf_size != NULL))) ||
|
|
(d->m_prev_return_status != TDEFL_STATUS_OKAY) ||
|
|
(d->m_wants_to_finish && (flush != TDEFL_FINISH)) ||
|
|
(pIn_buf_size && *pIn_buf_size && !pIn_buf) ||
|
|
(pOut_buf_size && *pOut_buf_size && !pOut_buf)) {
|
|
if (pIn_buf_size) *pIn_buf_size = 0;
|
|
if (pOut_buf_size) *pOut_buf_size = 0;
|
|
return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM);
|
|
}
|
|
d->m_wants_to_finish |= (flush == TDEFL_FINISH);
|
|
|
|
if ((d->m_output_flush_remaining) || (d->m_finished))
|
|
return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
|
|
|
|
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
|
|
if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) &&
|
|
((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) &&
|
|
((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS |
|
|
TDEFL_RLE_MATCHES)) == 0)) {
|
|
if (!tdefl_compress_fast(d)) return d->m_prev_return_status;
|
|
} else
|
|
#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
|
|
{
|
|
if (!tdefl_compress_normal(d)) return d->m_prev_return_status;
|
|
}
|
|
|
|
if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) &&
|
|
(pIn_buf))
|
|
d->m_adler32 =
|
|
(mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf,
|
|
d->m_pSrc - (const mz_uint8 *)pIn_buf);
|
|
|
|
if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) &&
|
|
(!d->m_output_flush_remaining)) {
|
|
if (tdefl_flush_block(d, flush) < 0) return d->m_prev_return_status;
|
|
d->m_finished = (flush == TDEFL_FINISH);
|
|
if (flush == TDEFL_FULL_FLUSH) {
|
|
MZ_CLEAR_OBJ(d->m_hash);
|
|
MZ_CLEAR_OBJ(d->m_next);
|
|
d->m_dict_size = 0;
|
|
}
|
|
}
|
|
|
|
return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
|
|
}
|
|
|
|
tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf,
|
|
size_t in_buf_size, tdefl_flush flush) {
|
|
MZ_ASSERT(d->m_pPut_buf_func);
|
|
return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush);
|
|
}
|
|
|
|
tdefl_status tdefl_init(tdefl_compressor *d,
|
|
tdefl_put_buf_func_ptr pPut_buf_func,
|
|
void *pPut_buf_user, int flags) {
|
|
d->m_pPut_buf_func = pPut_buf_func;
|
|
d->m_pPut_buf_user = pPut_buf_user;
|
|
d->m_flags = (mz_uint)(flags);
|
|
d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3;
|
|
d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0;
|
|
d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3;
|
|
if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash);
|
|
d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size =
|
|
d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0;
|
|
d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished =
|
|
d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0;
|
|
d->m_pLZ_code_buf = d->m_lz_code_buf + 1;
|
|
d->m_pLZ_flags = d->m_lz_code_buf;
|
|
d->m_num_flags_left = 8;
|
|
d->m_pOutput_buf = d->m_output_buf;
|
|
d->m_pOutput_buf_end = d->m_output_buf;
|
|
d->m_prev_return_status = TDEFL_STATUS_OKAY;
|
|
d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0;
|
|
d->m_adler32 = 1;
|
|
d->m_pIn_buf = NULL;
|
|
d->m_pOut_buf = NULL;
|
|
d->m_pIn_buf_size = NULL;
|
|
d->m_pOut_buf_size = NULL;
|
|
d->m_flush = TDEFL_NO_FLUSH;
|
|
d->m_pSrc = NULL;
|
|
d->m_src_buf_left = 0;
|
|
d->m_out_buf_ofs = 0;
|
|
memset(&d->m_huff_count[0][0], 0,
|
|
sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
|
|
memset(&d->m_huff_count[1][0], 0,
|
|
sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
|
|
return TDEFL_STATUS_OKAY;
|
|
}
|
|
|
|
tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d) {
|
|
return d->m_prev_return_status;
|
|
}
|
|
|
|
mz_uint32 tdefl_get_adler32(tdefl_compressor *d) { return d->m_adler32; }
|
|
|
|
mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len,
|
|
tdefl_put_buf_func_ptr pPut_buf_func,
|
|
void *pPut_buf_user, int flags) {
|
|
tdefl_compressor *pComp;
|
|
mz_bool succeeded;
|
|
if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE;
|
|
pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
|
|
if (!pComp) return MZ_FALSE;
|
|
succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) ==
|
|
TDEFL_STATUS_OKAY);
|
|
succeeded =
|
|
succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) ==
|
|
TDEFL_STATUS_DONE);
|
|
MZ_FREE(pComp);
|
|
return succeeded;
|
|
}
|
|
|
|
typedef struct {
|
|
size_t m_size, m_capacity;
|
|
mz_uint8 *m_pBuf;
|
|
mz_bool m_expandable;
|
|
} tdefl_output_buffer;
|
|
|
|
static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len,
|
|
void *pUser) {
|
|
tdefl_output_buffer *p = (tdefl_output_buffer *)pUser;
|
|
size_t new_size = p->m_size + len;
|
|
if (new_size > p->m_capacity) {
|
|
size_t new_capacity = p->m_capacity;
|
|
mz_uint8 *pNew_buf;
|
|
if (!p->m_expandable) return MZ_FALSE;
|
|
do {
|
|
new_capacity = MZ_MAX(128U, new_capacity << 1U);
|
|
} while (new_size > new_capacity);
|
|
pNew_buf = (mz_uint8 *)MZ_REALLOC(p->m_pBuf, new_capacity);
|
|
if (!pNew_buf) return MZ_FALSE;
|
|
p->m_pBuf = pNew_buf;
|
|
p->m_capacity = new_capacity;
|
|
}
|
|
memcpy((mz_uint8 *)p->m_pBuf + p->m_size, pBuf, len);
|
|
p->m_size = new_size;
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
|
|
size_t *pOut_len, int flags) {
|
|
tdefl_output_buffer out_buf;
|
|
MZ_CLEAR_OBJ(out_buf);
|
|
if (!pOut_len)
|
|
return MZ_FALSE;
|
|
else
|
|
*pOut_len = 0;
|
|
out_buf.m_expandable = MZ_TRUE;
|
|
if (!tdefl_compress_mem_to_output(
|
|
pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags))
|
|
return NULL;
|
|
*pOut_len = out_buf.m_size;
|
|
return out_buf.m_pBuf;
|
|
}
|
|
|
|
size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
|
|
const void *pSrc_buf, size_t src_buf_len,
|
|
int flags) {
|
|
tdefl_output_buffer out_buf;
|
|
MZ_CLEAR_OBJ(out_buf);
|
|
if (!pOut_buf) return 0;
|
|
out_buf.m_pBuf = (mz_uint8 *)pOut_buf;
|
|
out_buf.m_capacity = out_buf_len;
|
|
if (!tdefl_compress_mem_to_output(
|
|
pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags))
|
|
return 0;
|
|
return out_buf.m_size;
|
|
}
|
|
|
|
#ifndef MINIZ_NO_ZLIB_APIS
|
|
static const mz_uint s_tdefl_num_probes[11] = {0, 1, 6, 32, 16, 32,
|
|
128, 256, 512, 768, 1500};
|
|
|
|
// level may actually range from [0,10] (10 is a "hidden" max level, where we
|
|
// want a bit more compression and it's fine if throughput to fall off a cliff
|
|
// on some files).
|
|
mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits,
|
|
int strategy) {
|
|
mz_uint comp_flags =
|
|
s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] |
|
|
((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0);
|
|
if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER;
|
|
|
|
if (!level)
|
|
comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;
|
|
else if (strategy == MZ_FILTERED)
|
|
comp_flags |= TDEFL_FILTER_MATCHES;
|
|
else if (strategy == MZ_HUFFMAN_ONLY)
|
|
comp_flags &= ~TDEFL_MAX_PROBES_MASK;
|
|
else if (strategy == MZ_FIXED)
|
|
comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;
|
|
else if (strategy == MZ_RLE)
|
|
comp_flags |= TDEFL_RLE_MATCHES;
|
|
|
|
return comp_flags;
|
|
}
|
|
#endif // MINIZ_NO_ZLIB_APIS
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4204) // nonstandard extension used : non-constant
|
|
// aggregate initializer (also supported by GNU
|
|
// C and C99, so no big deal)
|
|
#pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to
|
|
// 'int', possible loss of data
|
|
#pragma warning(disable : 4267) // 'argument': conversion from '__int64' to
|
|
// 'int', possible loss of data
|
|
#pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is
|
|
// deprecated. Instead, use the ISO C and C++
|
|
// conformant name: _strdup.
|
|
#endif
|
|
|
|
// Simple PNG writer function by Alex Evans, 2011. Released into the public
|
|
// domain: https://gist.github.com/908299, more context at
|
|
// http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/.
|
|
// This is actually a modification of Alex's original code so PNG files
|
|
// generated by this function pass pngcheck.
|
|
void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w,
|
|
int h, int num_chans,
|
|
size_t *pLen_out,
|
|
mz_uint level, mz_bool flip) {
|
|
// Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was
|
|
// defined.
|
|
static const mz_uint s_tdefl_png_num_probes[11] = {
|
|
0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500};
|
|
tdefl_compressor *pComp =
|
|
(tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
|
|
tdefl_output_buffer out_buf;
|
|
int i, bpl = w * num_chans, y, z;
|
|
mz_uint32 c;
|
|
*pLen_out = 0;
|
|
if (!pComp) return NULL;
|
|
MZ_CLEAR_OBJ(out_buf);
|
|
out_buf.m_expandable = MZ_TRUE;
|
|
out_buf.m_capacity = 57 + MZ_MAX(64, (1 + bpl) * h);
|
|
if (NULL == (out_buf.m_pBuf = (mz_uint8 *)MZ_MALLOC(out_buf.m_capacity))) {
|
|
MZ_FREE(pComp);
|
|
return NULL;
|
|
}
|
|
// write dummy header
|
|
for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf);
|
|
// compress image data
|
|
tdefl_init(
|
|
pComp, tdefl_output_buffer_putter, &out_buf,
|
|
s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER);
|
|
for (y = 0; y < h; ++y) {
|
|
tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH);
|
|
tdefl_compress_buffer(pComp,
|
|
(mz_uint8 *)pImage + (flip ? (h - 1 - y) : y) * bpl,
|
|
bpl, TDEFL_NO_FLUSH);
|
|
}
|
|
if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) !=
|
|
TDEFL_STATUS_DONE) {
|
|
MZ_FREE(pComp);
|
|
MZ_FREE(out_buf.m_pBuf);
|
|
return NULL;
|
|
}
|
|
// write real header
|
|
*pLen_out = out_buf.m_size - 41;
|
|
{
|
|
static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06};
|
|
mz_uint8 pnghdr[41] = {0x89,
|
|
0x50,
|
|
0x4e,
|
|
0x47,
|
|
0x0d,
|
|
0x0a,
|
|
0x1a,
|
|
0x0a,
|
|
0x00,
|
|
0x00,
|
|
0x00,
|
|
0x0d,
|
|
0x49,
|
|
0x48,
|
|
0x44,
|
|
0x52,
|
|
0,
|
|
0,
|
|
(mz_uint8)(w >> 8),
|
|
(mz_uint8)w,
|
|
0,
|
|
0,
|
|
(mz_uint8)(h >> 8),
|
|
(mz_uint8)h,
|
|
8,
|
|
chans[num_chans],
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
(mz_uint8)(*pLen_out >> 24),
|
|
(mz_uint8)(*pLen_out >> 16),
|
|
(mz_uint8)(*pLen_out >> 8),
|
|
(mz_uint8)*pLen_out,
|
|
0x49,
|
|
0x44,
|
|
0x41,
|
|
0x54};
|
|
c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, pnghdr + 12, 17);
|
|
for (i = 0; i < 4; ++i, c <<= 8)
|
|
((mz_uint8 *)(pnghdr + 29))[i] = (mz_uint8)(c >> 24);
|
|
memcpy(out_buf.m_pBuf, pnghdr, 41);
|
|
}
|
|
// write footer (IDAT CRC-32, followed by IEND chunk)
|
|
if (!tdefl_output_buffer_putter(
|
|
"\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) {
|
|
*pLen_out = 0;
|
|
MZ_FREE(pComp);
|
|
MZ_FREE(out_buf.m_pBuf);
|
|
return NULL;
|
|
}
|
|
c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, out_buf.m_pBuf + 41 - 4,
|
|
*pLen_out + 4);
|
|
for (i = 0; i < 4; ++i, c <<= 8)
|
|
(out_buf.m_pBuf + out_buf.m_size - 16)[i] = (mz_uint8)(c >> 24);
|
|
// compute final size of file, grab compressed data buffer and return
|
|
*pLen_out += 57;
|
|
MZ_FREE(pComp);
|
|
return out_buf.m_pBuf;
|
|
}
|
|
void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h,
|
|
int num_chans, size_t *pLen_out) {
|
|
// Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we
|
|
// can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's
|
|
// where #defined out)
|
|
return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans,
|
|
pLen_out, 6, MZ_FALSE);
|
|
}
|
|
|
|
// ------------------- .ZIP archive reading
|
|
|
|
#ifndef MINIZ_NO_ARCHIVE_APIS
|
|
#error "No arvhive APIs"
|
|
|
|
#ifdef MINIZ_NO_STDIO
|
|
#define MZ_FILE void *
|
|
#else
|
|
#include <stdio.h>
|
|
#include <sys/stat.h>
|
|
|
|
#if defined(_MSC_VER) || defined(__MINGW64__)
|
|
static FILE *mz_fopen(const char *pFilename, const char *pMode) {
|
|
FILE *pFile = NULL;
|
|
fopen_s(&pFile, pFilename, pMode);
|
|
return pFile;
|
|
}
|
|
static FILE *mz_freopen(const char *pPath, const char *pMode, FILE *pStream) {
|
|
FILE *pFile = NULL;
|
|
if (freopen_s(&pFile, pPath, pMode, pStream)) return NULL;
|
|
return pFile;
|
|
}
|
|
#ifndef MINIZ_NO_TIME
|
|
#include <sys/utime.h>
|
|
#endif
|
|
#define MZ_FILE FILE
|
|
#define MZ_FOPEN mz_fopen
|
|
#define MZ_FCLOSE fclose
|
|
#define MZ_FREAD fread
|
|
#define MZ_FWRITE fwrite
|
|
#define MZ_FTELL64 _ftelli64
|
|
#define MZ_FSEEK64 _fseeki64
|
|
#define MZ_FILE_STAT_STRUCT _stat
|
|
#define MZ_FILE_STAT _stat
|
|
#define MZ_FFLUSH fflush
|
|
#define MZ_FREOPEN mz_freopen
|
|
#define MZ_DELETE_FILE remove
|
|
#elif defined(__MINGW32__)
|
|
#ifndef MINIZ_NO_TIME
|
|
#include <sys/utime.h>
|
|
#endif
|
|
#define MZ_FILE FILE
|
|
#define MZ_FOPEN(f, m) fopen(f, m)
|
|
#define MZ_FCLOSE fclose
|
|
#define MZ_FREAD fread
|
|
#define MZ_FWRITE fwrite
|
|
#define MZ_FTELL64 ftello64
|
|
#define MZ_FSEEK64 fseeko64
|
|
#define MZ_FILE_STAT_STRUCT _stat
|
|
#define MZ_FILE_STAT _stat
|
|
#define MZ_FFLUSH fflush
|
|
#define MZ_FREOPEN(f, m, s) freopen(f, m, s)
|
|
#define MZ_DELETE_FILE remove
|
|
#elif defined(__TINYC__)
|
|
#ifndef MINIZ_NO_TIME
|
|
#include <sys/utime.h>
|
|
#endif
|
|
#define MZ_FILE FILE
|
|
#define MZ_FOPEN(f, m) fopen(f, m)
|
|
#define MZ_FCLOSE fclose
|
|
#define MZ_FREAD fread
|
|
#define MZ_FWRITE fwrite
|
|
#define MZ_FTELL64 ftell
|
|
#define MZ_FSEEK64 fseek
|
|
#define MZ_FILE_STAT_STRUCT stat
|
|
#define MZ_FILE_STAT stat
|
|
#define MZ_FFLUSH fflush
|
|
#define MZ_FREOPEN(f, m, s) freopen(f, m, s)
|
|
#define MZ_DELETE_FILE remove
|
|
#elif defined(__GNUC__) && defined(_LARGEFILE64_SOURCE) && _LARGEFILE64_SOURCE
|
|
#ifndef MINIZ_NO_TIME
|
|
#include <utime.h>
|
|
#endif
|
|
#define MZ_FILE FILE
|
|
#define MZ_FOPEN(f, m) fopen64(f, m)
|
|
#define MZ_FCLOSE fclose
|
|
#define MZ_FREAD fread
|
|
#define MZ_FWRITE fwrite
|
|
#define MZ_FTELL64 ftello64
|
|
#define MZ_FSEEK64 fseeko64
|
|
#define MZ_FILE_STAT_STRUCT stat64
|
|
#define MZ_FILE_STAT stat64
|
|
#define MZ_FFLUSH fflush
|
|
#define MZ_FREOPEN(p, m, s) freopen64(p, m, s)
|
|
#define MZ_DELETE_FILE remove
|
|
#else
|
|
#ifndef MINIZ_NO_TIME
|
|
#include <utime.h>
|
|
#endif
|
|
#define MZ_FILE FILE
|
|
#define MZ_FOPEN(f, m) fopen(f, m)
|
|
#define MZ_FCLOSE fclose
|
|
#define MZ_FREAD fread
|
|
#define MZ_FWRITE fwrite
|
|
#define MZ_FTELL64 ftello
|
|
#define MZ_FSEEK64 fseeko
|
|
#define MZ_FILE_STAT_STRUCT stat
|
|
#define MZ_FILE_STAT stat
|
|
#define MZ_FFLUSH fflush
|
|
#define MZ_FREOPEN(f, m, s) freopen(f, m, s)
|
|
#define MZ_DELETE_FILE remove
|
|
#endif // #ifdef _MSC_VER
|
|
#endif // #ifdef MINIZ_NO_STDIO
|
|
|
|
#define MZ_TOLOWER(c) ((((c) >= 'A') && ((c) <= 'Z')) ? ((c) - 'A' + 'a') : (c))
|
|
|
|
// Various ZIP archive enums. To completely avoid cross platform compiler
|
|
// alignment and platform endian issues, miniz.c doesn't use structs for any of
|
|
// this stuff.
|
|
enum {
|
|
// ZIP archive identifiers and record sizes
|
|
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06054b50,
|
|
MZ_ZIP_CENTRAL_DIR_HEADER_SIG = 0x02014b50,
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIG = 0x04034b50,
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE = 30,
|
|
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE = 46,
|
|
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE = 22,
|
|
// Central directory header record offsets
|
|
MZ_ZIP_CDH_SIG_OFS = 0,
|
|
MZ_ZIP_CDH_VERSION_MADE_BY_OFS = 4,
|
|
MZ_ZIP_CDH_VERSION_NEEDED_OFS = 6,
|
|
MZ_ZIP_CDH_BIT_FLAG_OFS = 8,
|
|
MZ_ZIP_CDH_METHOD_OFS = 10,
|
|
MZ_ZIP_CDH_FILE_TIME_OFS = 12,
|
|
MZ_ZIP_CDH_FILE_DATE_OFS = 14,
|
|
MZ_ZIP_CDH_CRC32_OFS = 16,
|
|
MZ_ZIP_CDH_COMPRESSED_SIZE_OFS = 20,
|
|
MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS = 24,
|
|
MZ_ZIP_CDH_FILENAME_LEN_OFS = 28,
|
|
MZ_ZIP_CDH_EXTRA_LEN_OFS = 30,
|
|
MZ_ZIP_CDH_COMMENT_LEN_OFS = 32,
|
|
MZ_ZIP_CDH_DISK_START_OFS = 34,
|
|
MZ_ZIP_CDH_INTERNAL_ATTR_OFS = 36,
|
|
MZ_ZIP_CDH_EXTERNAL_ATTR_OFS = 38,
|
|
MZ_ZIP_CDH_LOCAL_HEADER_OFS = 42,
|
|
// Local directory header offsets
|
|
MZ_ZIP_LDH_SIG_OFS = 0,
|
|
MZ_ZIP_LDH_VERSION_NEEDED_OFS = 4,
|
|
MZ_ZIP_LDH_BIT_FLAG_OFS = 6,
|
|
MZ_ZIP_LDH_METHOD_OFS = 8,
|
|
MZ_ZIP_LDH_FILE_TIME_OFS = 10,
|
|
MZ_ZIP_LDH_FILE_DATE_OFS = 12,
|
|
MZ_ZIP_LDH_CRC32_OFS = 14,
|
|
MZ_ZIP_LDH_COMPRESSED_SIZE_OFS = 18,
|
|
MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS = 22,
|
|
MZ_ZIP_LDH_FILENAME_LEN_OFS = 26,
|
|
MZ_ZIP_LDH_EXTRA_LEN_OFS = 28,
|
|
// End of central directory offsets
|
|
MZ_ZIP_ECDH_SIG_OFS = 0,
|
|
MZ_ZIP_ECDH_NUM_THIS_DISK_OFS = 4,
|
|
MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS = 6,
|
|
MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 8,
|
|
MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS = 10,
|
|
MZ_ZIP_ECDH_CDIR_SIZE_OFS = 12,
|
|
MZ_ZIP_ECDH_CDIR_OFS_OFS = 16,
|
|
MZ_ZIP_ECDH_COMMENT_SIZE_OFS = 20,
|
|
};
|
|
|
|
typedef struct {
|
|
void *m_p;
|
|
size_t m_size, m_capacity;
|
|
mz_uint m_element_size;
|
|
} mz_zip_array;
|
|
|
|
struct mz_zip_internal_state_tag {
|
|
mz_zip_array m_central_dir;
|
|
mz_zip_array m_central_dir_offsets;
|
|
mz_zip_array m_sorted_central_dir_offsets;
|
|
MZ_FILE *m_pFile;
|
|
void *m_pMem;
|
|
size_t m_mem_size;
|
|
size_t m_mem_capacity;
|
|
};
|
|
|
|
#define MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(array_ptr, element_size) \
|
|
(array_ptr)->m_element_size = element_size
|
|
#define MZ_ZIP_ARRAY_ELEMENT(array_ptr, element_type, index) \
|
|
((element_type *)((array_ptr)->m_p))[index]
|
|
|
|
static MZ_FORCEINLINE void mz_zip_array_clear(mz_zip_archive *pZip,
|
|
mz_zip_array *pArray) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pArray->m_p);
|
|
memset(pArray, 0, sizeof(mz_zip_array));
|
|
}
|
|
|
|
static mz_bool mz_zip_array_ensure_capacity(mz_zip_archive *pZip,
|
|
mz_zip_array *pArray,
|
|
size_t min_new_capacity,
|
|
mz_uint growing) {
|
|
void *pNew_p;
|
|
size_t new_capacity = min_new_capacity;
|
|
MZ_ASSERT(pArray->m_element_size);
|
|
if (pArray->m_capacity >= min_new_capacity) return MZ_TRUE;
|
|
if (growing) {
|
|
new_capacity = MZ_MAX(1, pArray->m_capacity);
|
|
while (new_capacity < min_new_capacity) new_capacity *= 2;
|
|
}
|
|
if (NULL == (pNew_p = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pArray->m_p,
|
|
pArray->m_element_size, new_capacity)))
|
|
return MZ_FALSE;
|
|
pArray->m_p = pNew_p;
|
|
pArray->m_capacity = new_capacity;
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static MZ_FORCEINLINE mz_bool mz_zip_array_reserve(mz_zip_archive *pZip,
|
|
mz_zip_array *pArray,
|
|
size_t new_capacity,
|
|
mz_uint growing) {
|
|
if (new_capacity > pArray->m_capacity) {
|
|
if (!mz_zip_array_ensure_capacity(pZip, pArray, new_capacity, growing))
|
|
return MZ_FALSE;
|
|
}
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static MZ_FORCEINLINE mz_bool mz_zip_array_resize(mz_zip_archive *pZip,
|
|
mz_zip_array *pArray,
|
|
size_t new_size,
|
|
mz_uint growing) {
|
|
if (new_size > pArray->m_capacity) {
|
|
if (!mz_zip_array_ensure_capacity(pZip, pArray, new_size, growing))
|
|
return MZ_FALSE;
|
|
}
|
|
pArray->m_size = new_size;
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static MZ_FORCEINLINE mz_bool mz_zip_array_ensure_room(mz_zip_archive *pZip,
|
|
mz_zip_array *pArray,
|
|
size_t n) {
|
|
return mz_zip_array_reserve(pZip, pArray, pArray->m_size + n, MZ_TRUE);
|
|
}
|
|
|
|
static MZ_FORCEINLINE mz_bool mz_zip_array_push_back(mz_zip_archive *pZip,
|
|
mz_zip_array *pArray,
|
|
const void *pElements,
|
|
size_t n) {
|
|
size_t orig_size = pArray->m_size;
|
|
if (!mz_zip_array_resize(pZip, pArray, orig_size + n, MZ_TRUE))
|
|
return MZ_FALSE;
|
|
memcpy((mz_uint8 *)pArray->m_p + orig_size * pArray->m_element_size,
|
|
pElements, n * pArray->m_element_size);
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
#ifndef MINIZ_NO_TIME
|
|
static time_t mz_zip_dos_to_time_t(int dos_time, int dos_date) {
|
|
struct tm tm;
|
|
memset(&tm, 0, sizeof(tm));
|
|
tm.tm_isdst = -1;
|
|
tm.tm_year = ((dos_date >> 9) & 127) + 1980 - 1900;
|
|
tm.tm_mon = ((dos_date >> 5) & 15) - 1;
|
|
tm.tm_mday = dos_date & 31;
|
|
tm.tm_hour = (dos_time >> 11) & 31;
|
|
tm.tm_min = (dos_time >> 5) & 63;
|
|
tm.tm_sec = (dos_time << 1) & 62;
|
|
return mktime(&tm);
|
|
}
|
|
|
|
static void mz_zip_time_to_dos_time(time_t time, mz_uint16 *pDOS_time,
|
|
mz_uint16 *pDOS_date) {
|
|
#ifdef _MSC_VER
|
|
struct tm tm_struct;
|
|
struct tm *tm = &tm_struct;
|
|
errno_t err = localtime_s(tm, &time);
|
|
if (err) {
|
|
*pDOS_date = 0;
|
|
*pDOS_time = 0;
|
|
return;
|
|
}
|
|
#else
|
|
struct tm *tm = localtime(&time);
|
|
#endif
|
|
*pDOS_time = (mz_uint16)(((tm->tm_hour) << 11) + ((tm->tm_min) << 5) +
|
|
((tm->tm_sec) >> 1));
|
|
*pDOS_date = (mz_uint16)(((tm->tm_year + 1900 - 1980) << 9) +
|
|
((tm->tm_mon + 1) << 5) + tm->tm_mday);
|
|
}
|
|
#endif
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
static mz_bool mz_zip_get_file_modified_time(const char *pFilename,
|
|
mz_uint16 *pDOS_time,
|
|
mz_uint16 *pDOS_date) {
|
|
#ifdef MINIZ_NO_TIME
|
|
(void)pFilename;
|
|
*pDOS_date = *pDOS_time = 0;
|
|
#else
|
|
struct MZ_FILE_STAT_STRUCT file_stat;
|
|
// On Linux with x86 glibc, this call will fail on large files (>= 0x80000000
|
|
// bytes) unless you compiled with _LARGEFILE64_SOURCE. Argh.
|
|
if (MZ_FILE_STAT(pFilename, &file_stat) != 0) return MZ_FALSE;
|
|
mz_zip_time_to_dos_time(file_stat.st_mtime, pDOS_time, pDOS_date);
|
|
#endif // #ifdef MINIZ_NO_TIME
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
#ifndef MINIZ_NO_TIME
|
|
static mz_bool mz_zip_set_file_times(const char *pFilename, time_t access_time,
|
|
time_t modified_time) {
|
|
struct utimbuf t;
|
|
t.actime = access_time;
|
|
t.modtime = modified_time;
|
|
return !utime(pFilename, &t);
|
|
}
|
|
#endif // #ifndef MINIZ_NO_TIME
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
static mz_bool mz_zip_reader_init_internal(mz_zip_archive *pZip,
|
|
mz_uint32 flags) {
|
|
(void)flags;
|
|
if ((!pZip) || (pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
|
|
return MZ_FALSE;
|
|
|
|
if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func;
|
|
if (!pZip->m_pFree) pZip->m_pFree = def_free_func;
|
|
if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func;
|
|
|
|
pZip->m_zip_mode = MZ_ZIP_MODE_READING;
|
|
pZip->m_archive_size = 0;
|
|
pZip->m_central_directory_file_ofs = 0;
|
|
pZip->m_total_files = 0;
|
|
|
|
if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(
|
|
pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
|
|
return MZ_FALSE;
|
|
memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
|
|
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir,
|
|
sizeof(mz_uint8));
|
|
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets,
|
|
sizeof(mz_uint32));
|
|
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets,
|
|
sizeof(mz_uint32));
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static MZ_FORCEINLINE mz_bool
|
|
mz_zip_reader_filename_less(const mz_zip_array *pCentral_dir_array,
|
|
const mz_zip_array *pCentral_dir_offsets,
|
|
mz_uint l_index, mz_uint r_index) {
|
|
const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(
|
|
pCentral_dir_array, mz_uint8,
|
|
MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32,
|
|
l_index)),
|
|
*pE;
|
|
const mz_uint8 *pR = &MZ_ZIP_ARRAY_ELEMENT(
|
|
pCentral_dir_array, mz_uint8,
|
|
MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, r_index));
|
|
mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS),
|
|
r_len = MZ_READ_LE16(pR + MZ_ZIP_CDH_FILENAME_LEN_OFS);
|
|
mz_uint8 l = 0, r = 0;
|
|
pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
|
|
pR += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
|
|
pE = pL + MZ_MIN(l_len, r_len);
|
|
while (pL < pE) {
|
|
if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break;
|
|
pL++;
|
|
pR++;
|
|
}
|
|
return (pL == pE) ? (l_len < r_len) : (l < r);
|
|
}
|
|
|
|
#define MZ_SWAP_UINT32(a, b) \
|
|
do { \
|
|
mz_uint32 t = a; \
|
|
a = b; \
|
|
b = t; \
|
|
} \
|
|
MZ_MACRO_END
|
|
|
|
// Heap sort of lowercased filenames, used to help accelerate plain central
|
|
// directory searches by mz_zip_reader_locate_file(). (Could also use qsort(),
|
|
// but it could allocate memory.)
|
|
static void mz_zip_reader_sort_central_dir_offsets_by_filename(
|
|
mz_zip_archive *pZip) {
|
|
mz_zip_internal_state *pState = pZip->m_pState;
|
|
const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
|
|
const mz_zip_array *pCentral_dir = &pState->m_central_dir;
|
|
mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(
|
|
&pState->m_sorted_central_dir_offsets, mz_uint32, 0);
|
|
const int size = pZip->m_total_files;
|
|
int start = (size - 2) >> 1, end;
|
|
while (start >= 0) {
|
|
int child, root = start;
|
|
for (;;) {
|
|
if ((child = (root << 1) + 1) >= size) break;
|
|
child +=
|
|
(((child + 1) < size) &&
|
|
(mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
|
|
pIndices[child], pIndices[child + 1])));
|
|
if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
|
|
pIndices[root], pIndices[child]))
|
|
break;
|
|
MZ_SWAP_UINT32(pIndices[root], pIndices[child]);
|
|
root = child;
|
|
}
|
|
start--;
|
|
}
|
|
|
|
end = size - 1;
|
|
while (end > 0) {
|
|
int child, root = 0;
|
|
MZ_SWAP_UINT32(pIndices[end], pIndices[0]);
|
|
for (;;) {
|
|
if ((child = (root << 1) + 1) >= end) break;
|
|
child +=
|
|
(((child + 1) < end) &&
|
|
mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
|
|
pIndices[child], pIndices[child + 1]));
|
|
if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
|
|
pIndices[root], pIndices[child]))
|
|
break;
|
|
MZ_SWAP_UINT32(pIndices[root], pIndices[child]);
|
|
root = child;
|
|
}
|
|
end--;
|
|
}
|
|
}
|
|
|
|
static mz_bool mz_zip_reader_read_central_dir(mz_zip_archive *pZip,
|
|
mz_uint32 flags) {
|
|
mz_uint cdir_size, num_this_disk, cdir_disk_index;
|
|
mz_uint64 cdir_ofs;
|
|
mz_int64 cur_file_ofs;
|
|
const mz_uint8 *p;
|
|
mz_uint32 buf_u32[4096 / sizeof(mz_uint32)];
|
|
mz_uint8 *pBuf = (mz_uint8 *)buf_u32;
|
|
mz_bool sort_central_dir =
|
|
((flags & MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY) == 0);
|
|
// Basic sanity checks - reject files which are too small, and check the first
|
|
// 4 bytes of the file to make sure a local header is there.
|
|
if (pZip->m_archive_size < MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
|
|
return MZ_FALSE;
|
|
// Find the end of central directory record by scanning the file from the end
|
|
// towards the beginning.
|
|
cur_file_ofs =
|
|
MZ_MAX((mz_int64)pZip->m_archive_size - (mz_int64)sizeof(buf_u32), 0);
|
|
for (;;) {
|
|
int i,
|
|
n = (int)MZ_MIN(sizeof(buf_u32), pZip->m_archive_size - cur_file_ofs);
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, n) != (mz_uint)n)
|
|
return MZ_FALSE;
|
|
for (i = n - 4; i >= 0; --i)
|
|
if (MZ_READ_LE32(pBuf + i) == MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) break;
|
|
if (i >= 0) {
|
|
cur_file_ofs += i;
|
|
break;
|
|
}
|
|
if ((!cur_file_ofs) || ((pZip->m_archive_size - cur_file_ofs) >=
|
|
(0xFFFF + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)))
|
|
return MZ_FALSE;
|
|
cur_file_ofs = MZ_MAX(cur_file_ofs - (sizeof(buf_u32) - 3), 0);
|
|
}
|
|
// Read and verify the end of central directory record.
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf,
|
|
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) !=
|
|
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
|
|
return MZ_FALSE;
|
|
if ((MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_SIG_OFS) !=
|
|
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) ||
|
|
((pZip->m_total_files =
|
|
MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS)) !=
|
|
MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS)))
|
|
return MZ_FALSE;
|
|
|
|
num_this_disk = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS);
|
|
cdir_disk_index = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS);
|
|
if (((num_this_disk | cdir_disk_index) != 0) &&
|
|
((num_this_disk != 1) || (cdir_disk_index != 1)))
|
|
return MZ_FALSE;
|
|
|
|
if ((cdir_size = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_SIZE_OFS)) <
|
|
pZip->m_total_files * MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)
|
|
return MZ_FALSE;
|
|
|
|
cdir_ofs = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_OFS_OFS);
|
|
if ((cdir_ofs + (mz_uint64)cdir_size) > pZip->m_archive_size) return MZ_FALSE;
|
|
|
|
pZip->m_central_directory_file_ofs = cdir_ofs;
|
|
|
|
if (pZip->m_total_files) {
|
|
mz_uint i, n;
|
|
|
|
// Read the entire central directory into a heap block, and allocate another
|
|
// heap block to hold the unsorted central dir file record offsets, and
|
|
// another to hold the sorted indices.
|
|
if ((!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir, cdir_size,
|
|
MZ_FALSE)) ||
|
|
(!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir_offsets,
|
|
pZip->m_total_files, MZ_FALSE)))
|
|
return MZ_FALSE;
|
|
|
|
if (sort_central_dir) {
|
|
if (!mz_zip_array_resize(pZip,
|
|
&pZip->m_pState->m_sorted_central_dir_offsets,
|
|
pZip->m_total_files, MZ_FALSE))
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cdir_ofs,
|
|
pZip->m_pState->m_central_dir.m_p,
|
|
cdir_size) != cdir_size)
|
|
return MZ_FALSE;
|
|
|
|
// Now create an index into the central directory file records, do some
|
|
// basic sanity checking on each record, and check for zip64 entries (which
|
|
// are not yet supported).
|
|
p = (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p;
|
|
for (n = cdir_size, i = 0; i < pZip->m_total_files; ++i) {
|
|
mz_uint total_header_size, comp_size, decomp_size, disk_index;
|
|
if ((n < MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) ||
|
|
(MZ_READ_LE32(p) != MZ_ZIP_CENTRAL_DIR_HEADER_SIG))
|
|
return MZ_FALSE;
|
|
MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
|
|
i) =
|
|
(mz_uint32)(p - (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p);
|
|
if (sort_central_dir)
|
|
MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_sorted_central_dir_offsets,
|
|
mz_uint32, i) = i;
|
|
comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
|
|
decomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
|
|
if (((!MZ_READ_LE32(p + MZ_ZIP_CDH_METHOD_OFS)) &&
|
|
(decomp_size != comp_size)) ||
|
|
(decomp_size && !comp_size) || (decomp_size == 0xFFFFFFFF) ||
|
|
(comp_size == 0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
disk_index = MZ_READ_LE16(p + MZ_ZIP_CDH_DISK_START_OFS);
|
|
if ((disk_index != num_this_disk) && (disk_index != 1)) return MZ_FALSE;
|
|
if (((mz_uint64)MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS) +
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE + comp_size) > pZip->m_archive_size)
|
|
return MZ_FALSE;
|
|
if ((total_header_size = MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
|
|
MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
|
|
MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS) +
|
|
MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS)) >
|
|
n)
|
|
return MZ_FALSE;
|
|
n -= total_header_size;
|
|
p += total_header_size;
|
|
}
|
|
}
|
|
|
|
if (sort_central_dir)
|
|
mz_zip_reader_sort_central_dir_offsets_by_filename(pZip);
|
|
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size,
|
|
mz_uint32 flags) {
|
|
if ((!pZip) || (!pZip->m_pRead)) return MZ_FALSE;
|
|
if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE;
|
|
pZip->m_archive_size = size;
|
|
if (!mz_zip_reader_read_central_dir(pZip, flags)) {
|
|
mz_zip_reader_end(pZip);
|
|
return MZ_FALSE;
|
|
}
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static size_t mz_zip_mem_read_func(void *pOpaque, mz_uint64 file_ofs,
|
|
void *pBuf, size_t n) {
|
|
mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
|
|
size_t s = (file_ofs >= pZip->m_archive_size)
|
|
? 0
|
|
: (size_t)MZ_MIN(pZip->m_archive_size - file_ofs, n);
|
|
memcpy(pBuf, (const mz_uint8 *)pZip->m_pState->m_pMem + file_ofs, s);
|
|
return s;
|
|
}
|
|
|
|
mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem,
|
|
size_t size, mz_uint32 flags) {
|
|
if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE;
|
|
pZip->m_archive_size = size;
|
|
pZip->m_pRead = mz_zip_mem_read_func;
|
|
pZip->m_pIO_opaque = pZip;
|
|
#ifdef __cplusplus
|
|
pZip->m_pState->m_pMem = const_cast<void *>(pMem);
|
|
#else
|
|
pZip->m_pState->m_pMem = (void *)pMem;
|
|
#endif
|
|
pZip->m_pState->m_mem_size = size;
|
|
if (!mz_zip_reader_read_central_dir(pZip, flags)) {
|
|
mz_zip_reader_end(pZip);
|
|
return MZ_FALSE;
|
|
}
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
static size_t mz_zip_file_read_func(void *pOpaque, mz_uint64 file_ofs,
|
|
void *pBuf, size_t n) {
|
|
mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
|
|
mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
|
|
if (((mz_int64)file_ofs < 0) ||
|
|
(((cur_ofs != (mz_int64)file_ofs)) &&
|
|
(MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
|
|
return 0;
|
|
return MZ_FREAD(pBuf, 1, n, pZip->m_pState->m_pFile);
|
|
}
|
|
|
|
mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename,
|
|
mz_uint32 flags) {
|
|
mz_uint64 file_size;
|
|
MZ_FILE *pFile = MZ_FOPEN(pFilename, "rb");
|
|
if (!pFile) return MZ_FALSE;
|
|
if (MZ_FSEEK64(pFile, 0, SEEK_END)) {
|
|
MZ_FCLOSE(pFile);
|
|
return MZ_FALSE;
|
|
}
|
|
file_size = MZ_FTELL64(pFile);
|
|
if (!mz_zip_reader_init_internal(pZip, flags)) {
|
|
MZ_FCLOSE(pFile);
|
|
return MZ_FALSE;
|
|
}
|
|
pZip->m_pRead = mz_zip_file_read_func;
|
|
pZip->m_pIO_opaque = pZip;
|
|
pZip->m_pState->m_pFile = pFile;
|
|
pZip->m_archive_size = file_size;
|
|
if (!mz_zip_reader_read_central_dir(pZip, flags)) {
|
|
mz_zip_reader_end(pZip);
|
|
return MZ_FALSE;
|
|
}
|
|
return MZ_TRUE;
|
|
}
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip) {
|
|
return pZip ? pZip->m_total_files : 0;
|
|
}
|
|
|
|
static MZ_FORCEINLINE const mz_uint8 *mz_zip_reader_get_cdh(
|
|
mz_zip_archive *pZip, mz_uint file_index) {
|
|
if ((!pZip) || (!pZip->m_pState) || (file_index >= pZip->m_total_files) ||
|
|
(pZip->m_zip_mode != MZ_ZIP_MODE_READING))
|
|
return NULL;
|
|
return &MZ_ZIP_ARRAY_ELEMENT(
|
|
&pZip->m_pState->m_central_dir, mz_uint8,
|
|
MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
|
|
file_index));
|
|
}
|
|
|
|
mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip,
|
|
mz_uint file_index) {
|
|
mz_uint m_bit_flag;
|
|
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
|
|
if (!p) return MZ_FALSE;
|
|
m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
|
|
return (m_bit_flag & 1);
|
|
}
|
|
|
|
mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip,
|
|
mz_uint file_index) {
|
|
mz_uint filename_len, external_attr;
|
|
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
|
|
if (!p) return MZ_FALSE;
|
|
|
|
// First see if the filename ends with a '/' character.
|
|
filename_len = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
|
|
if (filename_len) {
|
|
if (*(p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_len - 1) == '/')
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
// Bugfix: This code was also checking if the internal attribute was non-zero,
|
|
// which wasn't correct.
|
|
// Most/all zip writers (hopefully) set DOS file/directory attributes in the
|
|
// low 16-bits, so check for the DOS directory flag and ignore the source OS
|
|
// ID in the created by field.
|
|
// FIXME: Remove this check? Is it necessary - we already check the filename.
|
|
external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
|
|
if ((external_attr & 0x10) != 0) return MZ_TRUE;
|
|
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
|
|
mz_zip_archive_file_stat *pStat) {
|
|
mz_uint n;
|
|
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
|
|
if ((!p) || (!pStat)) return MZ_FALSE;
|
|
|
|
// Unpack the central directory record.
|
|
pStat->m_file_index = file_index;
|
|
pStat->m_central_dir_ofs = MZ_ZIP_ARRAY_ELEMENT(
|
|
&pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index);
|
|
pStat->m_version_made_by = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_MADE_BY_OFS);
|
|
pStat->m_version_needed = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_NEEDED_OFS);
|
|
pStat->m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
|
|
pStat->m_method = MZ_READ_LE16(p + MZ_ZIP_CDH_METHOD_OFS);
|
|
#ifndef MINIZ_NO_TIME
|
|
pStat->m_time =
|
|
mz_zip_dos_to_time_t(MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_TIME_OFS),
|
|
MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_DATE_OFS));
|
|
#endif
|
|
pStat->m_crc32 = MZ_READ_LE32(p + MZ_ZIP_CDH_CRC32_OFS);
|
|
pStat->m_comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
|
|
pStat->m_uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
|
|
pStat->m_internal_attr = MZ_READ_LE16(p + MZ_ZIP_CDH_INTERNAL_ATTR_OFS);
|
|
pStat->m_external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
|
|
pStat->m_local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
|
|
|
|
// Copy as much of the filename and comment as possible.
|
|
n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
|
|
n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE - 1);
|
|
memcpy(pStat->m_filename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
|
|
pStat->m_filename[n] = '\0';
|
|
|
|
n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS);
|
|
n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1);
|
|
pStat->m_comment_size = n;
|
|
memcpy(pStat->m_comment,
|
|
p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
|
|
MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
|
|
MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS),
|
|
n);
|
|
pStat->m_comment[n] = '\0';
|
|
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index,
|
|
char *pFilename, mz_uint filename_buf_size) {
|
|
mz_uint n;
|
|
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
|
|
if (!p) {
|
|
if (filename_buf_size) pFilename[0] = '\0';
|
|
return 0;
|
|
}
|
|
n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
|
|
if (filename_buf_size) {
|
|
n = MZ_MIN(n, filename_buf_size - 1);
|
|
memcpy(pFilename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
|
|
pFilename[n] = '\0';
|
|
}
|
|
return n + 1;
|
|
}
|
|
|
|
static MZ_FORCEINLINE mz_bool mz_zip_reader_string_equal(const char *pA,
|
|
const char *pB,
|
|
mz_uint len,
|
|
mz_uint flags) {
|
|
mz_uint i;
|
|
if (flags & MZ_ZIP_FLAG_CASE_SENSITIVE) return 0 == memcmp(pA, pB, len);
|
|
for (i = 0; i < len; ++i)
|
|
if (MZ_TOLOWER(pA[i]) != MZ_TOLOWER(pB[i])) return MZ_FALSE;
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static MZ_FORCEINLINE int mz_zip_reader_filename_compare(
|
|
const mz_zip_array *pCentral_dir_array,
|
|
const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, const char *pR,
|
|
mz_uint r_len) {
|
|
const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(
|
|
pCentral_dir_array, mz_uint8,
|
|
MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32,
|
|
l_index)),
|
|
*pE;
|
|
mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS);
|
|
mz_uint8 l = 0, r = 0;
|
|
pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
|
|
pE = pL + MZ_MIN(l_len, r_len);
|
|
while (pL < pE) {
|
|
if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break;
|
|
pL++;
|
|
pR++;
|
|
}
|
|
return (pL == pE) ? (int)(l_len - r_len) : (l - r);
|
|
}
|
|
|
|
static int mz_zip_reader_locate_file_binary_search(mz_zip_archive *pZip,
|
|
const char *pFilename) {
|
|
mz_zip_internal_state *pState = pZip->m_pState;
|
|
const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
|
|
const mz_zip_array *pCentral_dir = &pState->m_central_dir;
|
|
mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(
|
|
&pState->m_sorted_central_dir_offsets, mz_uint32, 0);
|
|
const int size = pZip->m_total_files;
|
|
const mz_uint filename_len = (mz_uint)strlen(pFilename);
|
|
int l = 0, h = size - 1;
|
|
while (l <= h) {
|
|
int m = (l + h) >> 1, file_index = pIndices[m],
|
|
comp =
|
|
mz_zip_reader_filename_compare(pCentral_dir, pCentral_dir_offsets,
|
|
file_index, pFilename, filename_len);
|
|
if (!comp)
|
|
return file_index;
|
|
else if (comp < 0)
|
|
l = m + 1;
|
|
else
|
|
h = m - 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
|
|
const char *pComment, mz_uint flags) {
|
|
mz_uint file_index;
|
|
size_t name_len, comment_len;
|
|
if ((!pZip) || (!pZip->m_pState) || (!pName) ||
|
|
(pZip->m_zip_mode != MZ_ZIP_MODE_READING))
|
|
return -1;
|
|
if (((flags & (MZ_ZIP_FLAG_IGNORE_PATH | MZ_ZIP_FLAG_CASE_SENSITIVE)) == 0) &&
|
|
(!pComment) && (pZip->m_pState->m_sorted_central_dir_offsets.m_size))
|
|
return mz_zip_reader_locate_file_binary_search(pZip, pName);
|
|
name_len = strlen(pName);
|
|
if (name_len > 0xFFFF) return -1;
|
|
comment_len = pComment ? strlen(pComment) : 0;
|
|
if (comment_len > 0xFFFF) return -1;
|
|
for (file_index = 0; file_index < pZip->m_total_files; file_index++) {
|
|
const mz_uint8 *pHeader = &MZ_ZIP_ARRAY_ELEMENT(
|
|
&pZip->m_pState->m_central_dir, mz_uint8,
|
|
MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
|
|
file_index));
|
|
mz_uint filename_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_FILENAME_LEN_OFS);
|
|
const char *pFilename =
|
|
(const char *)pHeader + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
|
|
if (filename_len < name_len) continue;
|
|
if (comment_len) {
|
|
mz_uint file_extra_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_EXTRA_LEN_OFS),
|
|
file_comment_len =
|
|
MZ_READ_LE16(pHeader + MZ_ZIP_CDH_COMMENT_LEN_OFS);
|
|
const char *pFile_comment = pFilename + filename_len + file_extra_len;
|
|
if ((file_comment_len != comment_len) ||
|
|
(!mz_zip_reader_string_equal(pComment, pFile_comment,
|
|
file_comment_len, flags)))
|
|
continue;
|
|
}
|
|
if ((flags & MZ_ZIP_FLAG_IGNORE_PATH) && (filename_len)) {
|
|
int ofs = filename_len - 1;
|
|
do {
|
|
if ((pFilename[ofs] == '/') || (pFilename[ofs] == '\\') ||
|
|
(pFilename[ofs] == ':'))
|
|
break;
|
|
} while (--ofs >= 0);
|
|
ofs++;
|
|
pFilename += ofs;
|
|
filename_len -= ofs;
|
|
}
|
|
if ((filename_len == name_len) &&
|
|
(mz_zip_reader_string_equal(pName, pFilename, filename_len, flags)))
|
|
return file_index;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip,
|
|
mz_uint file_index, void *pBuf,
|
|
size_t buf_size, mz_uint flags,
|
|
void *pUser_read_buf,
|
|
size_t user_read_buf_size) {
|
|
int status = TINFL_STATUS_DONE;
|
|
mz_uint64 needed_size, cur_file_ofs, comp_remaining,
|
|
out_buf_ofs = 0, read_buf_size, read_buf_ofs = 0, read_buf_avail;
|
|
mz_zip_archive_file_stat file_stat;
|
|
void *pRead_buf;
|
|
mz_uint32
|
|
local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
|
|
sizeof(mz_uint32)];
|
|
mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
|
|
tinfl_decompressor inflator;
|
|
|
|
if ((buf_size) && (!pBuf)) return MZ_FALSE;
|
|
|
|
if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
|
|
|
|
// Empty file, or a directory (but not always a directory - I've seen odd zips
|
|
// with directories that have compressed data which inflates to 0 bytes)
|
|
if (!file_stat.m_comp_size) return MZ_TRUE;
|
|
|
|
// Entry is a subdirectory (I've seen old zips with dir entries which have
|
|
// compressed deflate data which inflates to 0 bytes, but these entries claim
|
|
// to uncompress to 512 bytes in the headers).
|
|
// I'm torn how to handle this case - should it fail instead?
|
|
if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE;
|
|
|
|
// Encryption and patch files are not supported.
|
|
if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE;
|
|
|
|
// This function only supports stored and deflate.
|
|
if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) &&
|
|
(file_stat.m_method != MZ_DEFLATED))
|
|
return MZ_FALSE;
|
|
|
|
// Ensure supplied output buffer is large enough.
|
|
needed_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? file_stat.m_comp_size
|
|
: file_stat.m_uncomp_size;
|
|
if (buf_size < needed_size) return MZ_FALSE;
|
|
|
|
// Read and parse the local directory entry.
|
|
cur_file_ofs = file_stat.m_local_header_ofs;
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header,
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
|
|
return MZ_FALSE;
|
|
if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
|
|
return MZ_FALSE;
|
|
|
|
cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE +
|
|
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
|
|
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
|
|
if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
|
|
return MZ_FALSE;
|
|
|
|
if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) {
|
|
// The file is stored or the caller has requested the compressed data.
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf,
|
|
(size_t)needed_size) != needed_size)
|
|
return MZ_FALSE;
|
|
return ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) != 0) ||
|
|
(mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf,
|
|
(size_t)file_stat.m_uncomp_size) == file_stat.m_crc32);
|
|
}
|
|
|
|
// Decompress the file either directly from memory or from a file input
|
|
// buffer.
|
|
tinfl_init(&inflator);
|
|
|
|
if (pZip->m_pState->m_pMem) {
|
|
// Read directly from the archive in memory.
|
|
pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
|
|
read_buf_size = read_buf_avail = file_stat.m_comp_size;
|
|
comp_remaining = 0;
|
|
} else if (pUser_read_buf) {
|
|
// Use a user provided read buffer.
|
|
if (!user_read_buf_size) return MZ_FALSE;
|
|
pRead_buf = (mz_uint8 *)pUser_read_buf;
|
|
read_buf_size = user_read_buf_size;
|
|
read_buf_avail = 0;
|
|
comp_remaining = file_stat.m_comp_size;
|
|
} else {
|
|
// Temporarily allocate a read buffer.
|
|
read_buf_size =
|
|
MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
|
|
#ifdef _MSC_VER
|
|
if (((0, sizeof(size_t) == sizeof(mz_uint32))) &&
|
|
(read_buf_size > 0x7FFFFFFF))
|
|
#else
|
|
if (((sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF))
|
|
#endif
|
|
return MZ_FALSE;
|
|
if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
|
|
(size_t)read_buf_size)))
|
|
return MZ_FALSE;
|
|
read_buf_avail = 0;
|
|
comp_remaining = file_stat.m_comp_size;
|
|
}
|
|
|
|
do {
|
|
size_t in_buf_size,
|
|
out_buf_size = (size_t)(file_stat.m_uncomp_size - out_buf_ofs);
|
|
if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) {
|
|
read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
|
|
(size_t)read_buf_avail) != read_buf_avail) {
|
|
status = TINFL_STATUS_FAILED;
|
|
break;
|
|
}
|
|
cur_file_ofs += read_buf_avail;
|
|
comp_remaining -= read_buf_avail;
|
|
read_buf_ofs = 0;
|
|
}
|
|
in_buf_size = (size_t)read_buf_avail;
|
|
status = tinfl_decompress(
|
|
&inflator, (mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size,
|
|
(mz_uint8 *)pBuf, (mz_uint8 *)pBuf + out_buf_ofs, &out_buf_size,
|
|
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF |
|
|
(comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0));
|
|
read_buf_avail -= in_buf_size;
|
|
read_buf_ofs += in_buf_size;
|
|
out_buf_ofs += out_buf_size;
|
|
} while (status == TINFL_STATUS_NEEDS_MORE_INPUT);
|
|
|
|
if (status == TINFL_STATUS_DONE) {
|
|
// Make sure the entire file was decompressed, and check its CRC.
|
|
if ((out_buf_ofs != file_stat.m_uncomp_size) ||
|
|
(mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf,
|
|
(size_t)file_stat.m_uncomp_size) != file_stat.m_crc32))
|
|
status = TINFL_STATUS_FAILED;
|
|
}
|
|
|
|
if ((!pZip->m_pState->m_pMem) && (!pUser_read_buf))
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
|
|
|
|
return status == TINFL_STATUS_DONE;
|
|
}
|
|
|
|
mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(
|
|
mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size,
|
|
mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size) {
|
|
int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
|
|
if (file_index < 0) return MZ_FALSE;
|
|
return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size,
|
|
flags, pUser_read_buf,
|
|
user_read_buf_size);
|
|
}
|
|
|
|
mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index,
|
|
void *pBuf, size_t buf_size,
|
|
mz_uint flags) {
|
|
return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size,
|
|
flags, NULL, 0);
|
|
}
|
|
|
|
mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip,
|
|
const char *pFilename, void *pBuf,
|
|
size_t buf_size, mz_uint flags) {
|
|
return mz_zip_reader_extract_file_to_mem_no_alloc(pZip, pFilename, pBuf,
|
|
buf_size, flags, NULL, 0);
|
|
}
|
|
|
|
void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index,
|
|
size_t *pSize, mz_uint flags) {
|
|
mz_uint64 comp_size, uncomp_size, alloc_size;
|
|
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
|
|
void *pBuf;
|
|
|
|
if (pSize) *pSize = 0;
|
|
if (!p) return NULL;
|
|
|
|
comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
|
|
uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
|
|
|
|
alloc_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? comp_size : uncomp_size;
|
|
#ifdef _MSC_VER
|
|
if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
|
|
#else
|
|
if (((sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
|
|
#endif
|
|
return NULL;
|
|
if (NULL ==
|
|
(pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)alloc_size)))
|
|
return NULL;
|
|
|
|
if (!mz_zip_reader_extract_to_mem(pZip, file_index, pBuf, (size_t)alloc_size,
|
|
flags)) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
|
|
return NULL;
|
|
}
|
|
|
|
if (pSize) *pSize = (size_t)alloc_size;
|
|
return pBuf;
|
|
}
|
|
|
|
void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip,
|
|
const char *pFilename, size_t *pSize,
|
|
mz_uint flags) {
|
|
int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
|
|
if (file_index < 0) {
|
|
if (pSize) *pSize = 0;
|
|
return MZ_FALSE;
|
|
}
|
|
return mz_zip_reader_extract_to_heap(pZip, file_index, pSize, flags);
|
|
}
|
|
|
|
mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip,
|
|
mz_uint file_index,
|
|
mz_file_write_func pCallback,
|
|
void *pOpaque, mz_uint flags) {
|
|
int status = TINFL_STATUS_DONE;
|
|
mz_uint file_crc32 = MZ_CRC32_INIT;
|
|
mz_uint64 read_buf_size, read_buf_ofs = 0, read_buf_avail, comp_remaining,
|
|
out_buf_ofs = 0, cur_file_ofs;
|
|
mz_zip_archive_file_stat file_stat;
|
|
void *pRead_buf = NULL;
|
|
void *pWrite_buf = NULL;
|
|
mz_uint32
|
|
local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
|
|
sizeof(mz_uint32)];
|
|
mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
|
|
|
|
if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
|
|
|
|
// Empty file, or a directory (but not always a directory - I've seen odd zips
|
|
// with directories that have compressed data which inflates to 0 bytes)
|
|
if (!file_stat.m_comp_size) return MZ_TRUE;
|
|
|
|
// Entry is a subdirectory (I've seen old zips with dir entries which have
|
|
// compressed deflate data which inflates to 0 bytes, but these entries claim
|
|
// to uncompress to 512 bytes in the headers).
|
|
// I'm torn how to handle this case - should it fail instead?
|
|
if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE;
|
|
|
|
// Encryption and patch files are not supported.
|
|
if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE;
|
|
|
|
// This function only supports stored and deflate.
|
|
if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) &&
|
|
(file_stat.m_method != MZ_DEFLATED))
|
|
return MZ_FALSE;
|
|
|
|
// Read and parse the local directory entry.
|
|
cur_file_ofs = file_stat.m_local_header_ofs;
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header,
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
|
|
return MZ_FALSE;
|
|
if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
|
|
return MZ_FALSE;
|
|
|
|
cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE +
|
|
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
|
|
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
|
|
if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
|
|
return MZ_FALSE;
|
|
|
|
// Decompress the file either directly from memory or from a file input
|
|
// buffer.
|
|
if (pZip->m_pState->m_pMem) {
|
|
pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
|
|
read_buf_size = read_buf_avail = file_stat.m_comp_size;
|
|
comp_remaining = 0;
|
|
} else {
|
|
read_buf_size =
|
|
MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
|
|
if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
|
|
(size_t)read_buf_size)))
|
|
return MZ_FALSE;
|
|
read_buf_avail = 0;
|
|
comp_remaining = file_stat.m_comp_size;
|
|
}
|
|
|
|
if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) {
|
|
// The file is stored or the caller has requested the compressed data.
|
|
if (pZip->m_pState->m_pMem) {
|
|
#ifdef _MSC_VER
|
|
if (((0, sizeof(size_t) == sizeof(mz_uint32))) &&
|
|
(file_stat.m_comp_size > 0xFFFFFFFF))
|
|
#else
|
|
if (((sizeof(size_t) == sizeof(mz_uint32))) &&
|
|
(file_stat.m_comp_size > 0xFFFFFFFF))
|
|
#endif
|
|
return MZ_FALSE;
|
|
if (pCallback(pOpaque, out_buf_ofs, pRead_buf,
|
|
(size_t)file_stat.m_comp_size) != file_stat.m_comp_size)
|
|
status = TINFL_STATUS_FAILED;
|
|
else if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
|
|
file_crc32 =
|
|
(mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf,
|
|
(size_t)file_stat.m_comp_size);
|
|
cur_file_ofs += file_stat.m_comp_size;
|
|
out_buf_ofs += file_stat.m_comp_size;
|
|
comp_remaining = 0;
|
|
} else {
|
|
while (comp_remaining) {
|
|
read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
|
|
(size_t)read_buf_avail) != read_buf_avail) {
|
|
status = TINFL_STATUS_FAILED;
|
|
break;
|
|
}
|
|
|
|
if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
|
|
file_crc32 = (mz_uint32)mz_crc32(
|
|
file_crc32, (const mz_uint8 *)pRead_buf, (size_t)read_buf_avail);
|
|
|
|
if (pCallback(pOpaque, out_buf_ofs, pRead_buf,
|
|
(size_t)read_buf_avail) != read_buf_avail) {
|
|
status = TINFL_STATUS_FAILED;
|
|
break;
|
|
}
|
|
cur_file_ofs += read_buf_avail;
|
|
out_buf_ofs += read_buf_avail;
|
|
comp_remaining -= read_buf_avail;
|
|
}
|
|
}
|
|
} else {
|
|
tinfl_decompressor inflator;
|
|
tinfl_init(&inflator);
|
|
|
|
if (NULL == (pWrite_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
|
|
TINFL_LZ_DICT_SIZE)))
|
|
status = TINFL_STATUS_FAILED;
|
|
else {
|
|
do {
|
|
mz_uint8 *pWrite_buf_cur =
|
|
(mz_uint8 *)pWrite_buf + (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
|
|
size_t in_buf_size,
|
|
out_buf_size =
|
|
TINFL_LZ_DICT_SIZE - (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
|
|
if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) {
|
|
read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
|
|
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
|
|
(size_t)read_buf_avail) != read_buf_avail) {
|
|
status = TINFL_STATUS_FAILED;
|
|
break;
|
|
}
|
|
cur_file_ofs += read_buf_avail;
|
|
comp_remaining -= read_buf_avail;
|
|
read_buf_ofs = 0;
|
|
}
|
|
|
|
in_buf_size = (size_t)read_buf_avail;
|
|
status = tinfl_decompress(
|
|
&inflator, (const mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size,
|
|
(mz_uint8 *)pWrite_buf, pWrite_buf_cur, &out_buf_size,
|
|
comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0);
|
|
read_buf_avail -= in_buf_size;
|
|
read_buf_ofs += in_buf_size;
|
|
|
|
if (out_buf_size) {
|
|
if (pCallback(pOpaque, out_buf_ofs, pWrite_buf_cur, out_buf_size) !=
|
|
out_buf_size) {
|
|
status = TINFL_STATUS_FAILED;
|
|
break;
|
|
}
|
|
file_crc32 =
|
|
(mz_uint32)mz_crc32(file_crc32, pWrite_buf_cur, out_buf_size);
|
|
if ((out_buf_ofs += out_buf_size) > file_stat.m_uncomp_size) {
|
|
status = TINFL_STATUS_FAILED;
|
|
break;
|
|
}
|
|
}
|
|
} while ((status == TINFL_STATUS_NEEDS_MORE_INPUT) ||
|
|
(status == TINFL_STATUS_HAS_MORE_OUTPUT));
|
|
}
|
|
}
|
|
|
|
if ((status == TINFL_STATUS_DONE) &&
|
|
(!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))) {
|
|
// Make sure the entire file was decompressed, and check its CRC.
|
|
if ((out_buf_ofs != file_stat.m_uncomp_size) ||
|
|
(file_crc32 != file_stat.m_crc32))
|
|
status = TINFL_STATUS_FAILED;
|
|
}
|
|
|
|
if (!pZip->m_pState->m_pMem) pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
|
|
if (pWrite_buf) pZip->m_pFree(pZip->m_pAlloc_opaque, pWrite_buf);
|
|
|
|
return status == TINFL_STATUS_DONE;
|
|
}
|
|
|
|
mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip,
|
|
const char *pFilename,
|
|
mz_file_write_func pCallback,
|
|
void *pOpaque, mz_uint flags) {
|
|
int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
|
|
if (file_index < 0) return MZ_FALSE;
|
|
return mz_zip_reader_extract_to_callback(pZip, file_index, pCallback, pOpaque,
|
|
flags);
|
|
}
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
static size_t mz_zip_file_write_callback(void *pOpaque, mz_uint64 ofs,
|
|
const void *pBuf, size_t n) {
|
|
(void)ofs;
|
|
return MZ_FWRITE(pBuf, 1, n, (MZ_FILE *)pOpaque);
|
|
}
|
|
|
|
mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index,
|
|
const char *pDst_filename,
|
|
mz_uint flags) {
|
|
mz_bool status;
|
|
mz_zip_archive_file_stat file_stat;
|
|
MZ_FILE *pFile;
|
|
if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
|
|
pFile = MZ_FOPEN(pDst_filename, "wb");
|
|
if (!pFile) return MZ_FALSE;
|
|
status = mz_zip_reader_extract_to_callback(
|
|
pZip, file_index, mz_zip_file_write_callback, pFile, flags);
|
|
if (MZ_FCLOSE(pFile) == EOF) return MZ_FALSE;
|
|
#ifndef MINIZ_NO_TIME
|
|
if (status)
|
|
mz_zip_set_file_times(pDst_filename, file_stat.m_time, file_stat.m_time);
|
|
#endif
|
|
return status;
|
|
}
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
mz_bool mz_zip_reader_end(mz_zip_archive *pZip) {
|
|
if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) ||
|
|
(pZip->m_zip_mode != MZ_ZIP_MODE_READING))
|
|
return MZ_FALSE;
|
|
|
|
if (pZip->m_pState) {
|
|
mz_zip_internal_state *pState = pZip->m_pState;
|
|
pZip->m_pState = NULL;
|
|
mz_zip_array_clear(pZip, &pState->m_central_dir);
|
|
mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
|
|
mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
if (pState->m_pFile) {
|
|
MZ_FCLOSE(pState->m_pFile);
|
|
pState->m_pFile = NULL;
|
|
}
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
|
|
}
|
|
pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
|
|
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip,
|
|
const char *pArchive_filename,
|
|
const char *pDst_filename,
|
|
mz_uint flags) {
|
|
int file_index =
|
|
mz_zip_reader_locate_file(pZip, pArchive_filename, NULL, flags);
|
|
if (file_index < 0) return MZ_FALSE;
|
|
return mz_zip_reader_extract_to_file(pZip, file_index, pDst_filename, flags);
|
|
}
|
|
#endif
|
|
|
|
// ------------------- .ZIP archive writing
|
|
|
|
#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
|
|
|
|
static void mz_write_le16(mz_uint8 *p, mz_uint16 v) {
|
|
p[0] = (mz_uint8)v;
|
|
p[1] = (mz_uint8)(v >> 8);
|
|
}
|
|
static void mz_write_le32(mz_uint8 *p, mz_uint32 v) {
|
|
p[0] = (mz_uint8)v;
|
|
p[1] = (mz_uint8)(v >> 8);
|
|
p[2] = (mz_uint8)(v >> 16);
|
|
p[3] = (mz_uint8)(v >> 24);
|
|
}
|
|
#define MZ_WRITE_LE16(p, v) mz_write_le16((mz_uint8 *)(p), (mz_uint16)(v))
|
|
#define MZ_WRITE_LE32(p, v) mz_write_le32((mz_uint8 *)(p), (mz_uint32)(v))
|
|
|
|
mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size) {
|
|
if ((!pZip) || (pZip->m_pState) || (!pZip->m_pWrite) ||
|
|
(pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
|
|
return MZ_FALSE;
|
|
|
|
if (pZip->m_file_offset_alignment) {
|
|
// Ensure user specified file offset alignment is a power of 2.
|
|
if (pZip->m_file_offset_alignment & (pZip->m_file_offset_alignment - 1))
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func;
|
|
if (!pZip->m_pFree) pZip->m_pFree = def_free_func;
|
|
if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func;
|
|
|
|
pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
|
|
pZip->m_archive_size = existing_size;
|
|
pZip->m_central_directory_file_ofs = 0;
|
|
pZip->m_total_files = 0;
|
|
|
|
if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(
|
|
pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
|
|
return MZ_FALSE;
|
|
memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
|
|
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir,
|
|
sizeof(mz_uint8));
|
|
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets,
|
|
sizeof(mz_uint32));
|
|
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets,
|
|
sizeof(mz_uint32));
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static size_t mz_zip_heap_write_func(void *pOpaque, mz_uint64 file_ofs,
|
|
const void *pBuf, size_t n) {
|
|
mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
|
|
mz_zip_internal_state *pState = pZip->m_pState;
|
|
mz_uint64 new_size = MZ_MAX(file_ofs + n, pState->m_mem_size);
|
|
#ifdef _MSC_VER
|
|
if ((!n) ||
|
|
((0, sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
|
|
#else
|
|
if ((!n) ||
|
|
((sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
|
|
#endif
|
|
return 0;
|
|
if (new_size > pState->m_mem_capacity) {
|
|
void *pNew_block;
|
|
size_t new_capacity = MZ_MAX(64, pState->m_mem_capacity);
|
|
while (new_capacity < new_size) new_capacity *= 2;
|
|
if (NULL == (pNew_block = pZip->m_pRealloc(
|
|
pZip->m_pAlloc_opaque, pState->m_pMem, 1, new_capacity)))
|
|
return 0;
|
|
pState->m_pMem = pNew_block;
|
|
pState->m_mem_capacity = new_capacity;
|
|
}
|
|
memcpy((mz_uint8 *)pState->m_pMem + file_ofs, pBuf, n);
|
|
pState->m_mem_size = (size_t)new_size;
|
|
return n;
|
|
}
|
|
|
|
mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip,
|
|
size_t size_to_reserve_at_beginning,
|
|
size_t initial_allocation_size) {
|
|
pZip->m_pWrite = mz_zip_heap_write_func;
|
|
pZip->m_pIO_opaque = pZip;
|
|
if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE;
|
|
if (0 != (initial_allocation_size = MZ_MAX(initial_allocation_size,
|
|
size_to_reserve_at_beginning))) {
|
|
if (NULL == (pZip->m_pState->m_pMem = pZip->m_pAlloc(
|
|
pZip->m_pAlloc_opaque, 1, initial_allocation_size))) {
|
|
mz_zip_writer_end(pZip);
|
|
return MZ_FALSE;
|
|
}
|
|
pZip->m_pState->m_mem_capacity = initial_allocation_size;
|
|
}
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
static size_t mz_zip_file_write_func(void *pOpaque, mz_uint64 file_ofs,
|
|
const void *pBuf, size_t n) {
|
|
mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
|
|
mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
|
|
if (((mz_int64)file_ofs < 0) ||
|
|
(((cur_ofs != (mz_int64)file_ofs)) &&
|
|
(MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
|
|
return 0;
|
|
return MZ_FWRITE(pBuf, 1, n, pZip->m_pState->m_pFile);
|
|
}
|
|
|
|
mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename,
|
|
mz_uint64 size_to_reserve_at_beginning) {
|
|
MZ_FILE *pFile;
|
|
pZip->m_pWrite = mz_zip_file_write_func;
|
|
pZip->m_pIO_opaque = pZip;
|
|
if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE;
|
|
if (NULL == (pFile = MZ_FOPEN(pFilename, "wb"))) {
|
|
mz_zip_writer_end(pZip);
|
|
return MZ_FALSE;
|
|
}
|
|
pZip->m_pState->m_pFile = pFile;
|
|
if (size_to_reserve_at_beginning) {
|
|
mz_uint64 cur_ofs = 0;
|
|
char buf[4096];
|
|
MZ_CLEAR_OBJ(buf);
|
|
do {
|
|
size_t n = (size_t)MZ_MIN(sizeof(buf), size_to_reserve_at_beginning);
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_ofs, buf, n) != n) {
|
|
mz_zip_writer_end(pZip);
|
|
return MZ_FALSE;
|
|
}
|
|
cur_ofs += n;
|
|
size_to_reserve_at_beginning -= n;
|
|
} while (size_to_reserve_at_beginning);
|
|
}
|
|
return MZ_TRUE;
|
|
}
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip,
|
|
const char *pFilename) {
|
|
mz_zip_internal_state *pState;
|
|
if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
|
|
return MZ_FALSE;
|
|
// No sense in trying to write to an archive that's already at the support max
|
|
// size
|
|
if ((pZip->m_total_files == 0xFFFF) ||
|
|
((pZip->m_archive_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
|
|
pState = pZip->m_pState;
|
|
|
|
if (pState->m_pFile) {
|
|
#ifdef MINIZ_NO_STDIO
|
|
pFilename;
|
|
return MZ_FALSE;
|
|
#else
|
|
// Archive is being read from stdio - try to reopen as writable.
|
|
if (pZip->m_pIO_opaque != pZip) return MZ_FALSE;
|
|
if (!pFilename) return MZ_FALSE;
|
|
pZip->m_pWrite = mz_zip_file_write_func;
|
|
if (NULL ==
|
|
(pState->m_pFile = MZ_FREOPEN(pFilename, "r+b", pState->m_pFile))) {
|
|
// The mz_zip_archive is now in a bogus state because pState->m_pFile is
|
|
// NULL, so just close it.
|
|
mz_zip_reader_end(pZip);
|
|
return MZ_FALSE;
|
|
}
|
|
#endif // #ifdef MINIZ_NO_STDIO
|
|
} else if (pState->m_pMem) {
|
|
// Archive lives in a memory block. Assume it's from the heap that we can
|
|
// resize using the realloc callback.
|
|
if (pZip->m_pIO_opaque != pZip) return MZ_FALSE;
|
|
pState->m_mem_capacity = pState->m_mem_size;
|
|
pZip->m_pWrite = mz_zip_heap_write_func;
|
|
}
|
|
// Archive is being read via a user provided read function - make sure the
|
|
// user has specified a write function too.
|
|
else if (!pZip->m_pWrite)
|
|
return MZ_FALSE;
|
|
|
|
// Start writing new files at the archive's current central directory
|
|
// location.
|
|
pZip->m_archive_size = pZip->m_central_directory_file_ofs;
|
|
pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
|
|
pZip->m_central_directory_file_ofs = 0;
|
|
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name,
|
|
const void *pBuf, size_t buf_size,
|
|
mz_uint level_and_flags) {
|
|
return mz_zip_writer_add_mem_ex(pZip, pArchive_name, pBuf, buf_size, NULL, 0,
|
|
level_and_flags, 0, 0);
|
|
}
|
|
|
|
typedef struct {
|
|
mz_zip_archive *m_pZip;
|
|
mz_uint64 m_cur_archive_file_ofs;
|
|
mz_uint64 m_comp_size;
|
|
} mz_zip_writer_add_state;
|
|
|
|
static mz_bool mz_zip_writer_add_put_buf_callback(const void *pBuf, int len,
|
|
void *pUser) {
|
|
mz_zip_writer_add_state *pState = (mz_zip_writer_add_state *)pUser;
|
|
if ((int)pState->m_pZip->m_pWrite(pState->m_pZip->m_pIO_opaque,
|
|
pState->m_cur_archive_file_ofs, pBuf,
|
|
len) != len)
|
|
return MZ_FALSE;
|
|
pState->m_cur_archive_file_ofs += len;
|
|
pState->m_comp_size += len;
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static mz_bool mz_zip_writer_create_local_dir_header(
|
|
mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size,
|
|
mz_uint16 extra_size, mz_uint64 uncomp_size, mz_uint64 comp_size,
|
|
mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags,
|
|
mz_uint16 dos_time, mz_uint16 dos_date) {
|
|
(void)pZip;
|
|
memset(pDst, 0, MZ_ZIP_LOCAL_DIR_HEADER_SIZE);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_SIG_OFS, MZ_ZIP_LOCAL_DIR_HEADER_SIG);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_VERSION_NEEDED_OFS, method ? 20 : 0);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_BIT_FLAG_OFS, bit_flags);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_METHOD_OFS, method);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_TIME_OFS, dos_time);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_DATE_OFS, dos_date);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_CRC32_OFS, uncomp_crc32);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS, comp_size);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILENAME_LEN_OFS, filename_size);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_EXTRA_LEN_OFS, extra_size);
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static mz_bool mz_zip_writer_create_central_dir_header(
|
|
mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size,
|
|
mz_uint16 extra_size, mz_uint16 comment_size, mz_uint64 uncomp_size,
|
|
mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method,
|
|
mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date,
|
|
mz_uint64 local_header_ofs, mz_uint32 ext_attributes) {
|
|
(void)pZip;
|
|
memset(pDst, 0, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_SIG_OFS, MZ_ZIP_CENTRAL_DIR_HEADER_SIG);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_NEEDED_OFS, method ? 20 : 0);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_BIT_FLAG_OFS, bit_flags);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_METHOD_OFS, method);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_TIME_OFS, dos_time);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_DATE_OFS, dos_date);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_CRC32_OFS, uncomp_crc32);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS, comp_size);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILENAME_LEN_OFS, filename_size);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_EXTRA_LEN_OFS, extra_size);
|
|
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_COMMENT_LEN_OFS, comment_size);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS, ext_attributes);
|
|
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_header_ofs);
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static mz_bool mz_zip_writer_add_to_central_dir(
|
|
mz_zip_archive *pZip, const char *pFilename, mz_uint16 filename_size,
|
|
const void *pExtra, mz_uint16 extra_size, const void *pComment,
|
|
mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size,
|
|
mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags,
|
|
mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs,
|
|
mz_uint32 ext_attributes) {
|
|
mz_zip_internal_state *pState = pZip->m_pState;
|
|
mz_uint32 central_dir_ofs = (mz_uint32)pState->m_central_dir.m_size;
|
|
size_t orig_central_dir_size = pState->m_central_dir.m_size;
|
|
mz_uint8 central_dir_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
|
|
|
|
// No zip64 support yet
|
|
if ((local_header_ofs > 0xFFFFFFFF) ||
|
|
(((mz_uint64)pState->m_central_dir.m_size +
|
|
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + extra_size +
|
|
comment_size) > 0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
|
|
if (!mz_zip_writer_create_central_dir_header(
|
|
pZip, central_dir_header, filename_size, extra_size, comment_size,
|
|
uncomp_size, comp_size, uncomp_crc32, method, bit_flags, dos_time,
|
|
dos_date, local_header_ofs, ext_attributes))
|
|
return MZ_FALSE;
|
|
|
|
if ((!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_dir_header,
|
|
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) ||
|
|
(!mz_zip_array_push_back(pZip, &pState->m_central_dir, pFilename,
|
|
filename_size)) ||
|
|
(!mz_zip_array_push_back(pZip, &pState->m_central_dir, pExtra,
|
|
extra_size)) ||
|
|
(!mz_zip_array_push_back(pZip, &pState->m_central_dir, pComment,
|
|
comment_size)) ||
|
|
(!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets,
|
|
¢ral_dir_ofs, 1))) {
|
|
// Try to push the central directory array back into its original state.
|
|
mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
|
|
MZ_FALSE);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static mz_bool mz_zip_writer_validate_archive_name(const char *pArchive_name) {
|
|
// Basic ZIP archive filename validity checks: Valid filenames cannot start
|
|
// with a forward slash, cannot contain a drive letter, and cannot use
|
|
// DOS-style backward slashes.
|
|
if (*pArchive_name == '/') return MZ_FALSE;
|
|
while (*pArchive_name) {
|
|
if ((*pArchive_name == '\\') || (*pArchive_name == ':')) return MZ_FALSE;
|
|
pArchive_name++;
|
|
}
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
static mz_uint mz_zip_writer_compute_padding_needed_for_file_alignment(
|
|
mz_zip_archive *pZip) {
|
|
mz_uint32 n;
|
|
if (!pZip->m_file_offset_alignment) return 0;
|
|
n = (mz_uint32)(pZip->m_archive_size & (pZip->m_file_offset_alignment - 1));
|
|
return (pZip->m_file_offset_alignment - n) &
|
|
(pZip->m_file_offset_alignment - 1);
|
|
}
|
|
|
|
static mz_bool mz_zip_writer_write_zeros(mz_zip_archive *pZip,
|
|
mz_uint64 cur_file_ofs, mz_uint32 n) {
|
|
char buf[4096];
|
|
memset(buf, 0, MZ_MIN(sizeof(buf), n));
|
|
while (n) {
|
|
mz_uint32 s = MZ_MIN(sizeof(buf), n);
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_file_ofs, buf, s) != s)
|
|
return MZ_FALSE;
|
|
cur_file_ofs += s;
|
|
n -= s;
|
|
}
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip,
|
|
const char *pArchive_name, const void *pBuf,
|
|
size_t buf_size, const void *pComment,
|
|
mz_uint16 comment_size,
|
|
mz_uint level_and_flags, mz_uint64 uncomp_size,
|
|
mz_uint32 uncomp_crc32) {
|
|
mz_uint16 method = 0, dos_time = 0, dos_date = 0;
|
|
mz_uint level, ext_attributes = 0, num_alignment_padding_bytes;
|
|
mz_uint64 local_dir_header_ofs = pZip->m_archive_size,
|
|
cur_archive_file_ofs = pZip->m_archive_size, comp_size = 0;
|
|
size_t archive_name_size;
|
|
mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
|
|
tdefl_compressor *pComp = NULL;
|
|
mz_bool store_data_uncompressed;
|
|
mz_zip_internal_state *pState;
|
|
|
|
if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
|
|
level = level_and_flags & 0xF;
|
|
store_data_uncompressed =
|
|
((!level) || (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA));
|
|
|
|
if ((!pZip) || (!pZip->m_pState) ||
|
|
(pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || ((buf_size) && (!pBuf)) ||
|
|
(!pArchive_name) || ((comment_size) && (!pComment)) ||
|
|
(pZip->m_total_files == 0xFFFF) || (level > MZ_UBER_COMPRESSION))
|
|
return MZ_FALSE;
|
|
|
|
pState = pZip->m_pState;
|
|
|
|
if ((!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (uncomp_size))
|
|
return MZ_FALSE;
|
|
// No zip64 support yet
|
|
if ((buf_size > 0xFFFFFFFF) || (uncomp_size > 0xFFFFFFFF)) return MZ_FALSE;
|
|
if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
|
|
|
|
#ifndef MINIZ_NO_TIME
|
|
{
|
|
time_t cur_time;
|
|
time(&cur_time);
|
|
mz_zip_time_to_dos_time(cur_time, &dos_time, &dos_date);
|
|
}
|
|
#endif // #ifndef MINIZ_NO_TIME
|
|
|
|
archive_name_size = strlen(pArchive_name);
|
|
if (archive_name_size > 0xFFFF) return MZ_FALSE;
|
|
|
|
num_alignment_padding_bytes =
|
|
mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
|
|
|
|
// no zip64 support yet
|
|
if ((pZip->m_total_files == 0xFFFF) ||
|
|
((pZip->m_archive_size + num_alignment_padding_bytes +
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
|
|
comment_size + archive_name_size) > 0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
|
|
if ((archive_name_size) && (pArchive_name[archive_name_size - 1] == '/')) {
|
|
// Set DOS Subdirectory attribute bit.
|
|
ext_attributes |= 0x10;
|
|
// Subdirectories cannot contain data.
|
|
if ((buf_size) || (uncomp_size)) return MZ_FALSE;
|
|
}
|
|
|
|
// Try to do any allocations before writing to the archive, so if an
|
|
// allocation fails the file remains unmodified. (A good idea if we're doing
|
|
// an in-place modification.)
|
|
if ((!mz_zip_array_ensure_room(
|
|
pZip, &pState->m_central_dir,
|
|
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + archive_name_size + comment_size)) ||
|
|
(!mz_zip_array_ensure_room(pZip, &pState->m_central_dir_offsets, 1)))
|
|
return MZ_FALSE;
|
|
|
|
if ((!store_data_uncompressed) && (buf_size)) {
|
|
if (NULL == (pComp = (tdefl_compressor *)pZip->m_pAlloc(
|
|
pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor))))
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
if (!mz_zip_writer_write_zeros(
|
|
pZip, cur_archive_file_ofs,
|
|
num_alignment_padding_bytes + sizeof(local_dir_header))) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
|
|
return MZ_FALSE;
|
|
}
|
|
local_dir_header_ofs += num_alignment_padding_bytes;
|
|
if (pZip->m_file_offset_alignment) {
|
|
MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
|
|
0);
|
|
}
|
|
cur_archive_file_ofs +=
|
|
num_alignment_padding_bytes + sizeof(local_dir_header);
|
|
|
|
MZ_CLEAR_OBJ(local_dir_header);
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name,
|
|
archive_name_size) != archive_name_size) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
|
|
return MZ_FALSE;
|
|
}
|
|
cur_archive_file_ofs += archive_name_size;
|
|
|
|
if (!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) {
|
|
uncomp_crc32 =
|
|
(mz_uint32)mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, buf_size);
|
|
uncomp_size = buf_size;
|
|
if (uncomp_size <= 3) {
|
|
level = 0;
|
|
store_data_uncompressed = MZ_TRUE;
|
|
}
|
|
}
|
|
|
|
if (store_data_uncompressed) {
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pBuf,
|
|
buf_size) != buf_size) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
cur_archive_file_ofs += buf_size;
|
|
comp_size = buf_size;
|
|
|
|
if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) method = MZ_DEFLATED;
|
|
} else if (buf_size) {
|
|
mz_zip_writer_add_state state;
|
|
|
|
state.m_pZip = pZip;
|
|
state.m_cur_archive_file_ofs = cur_archive_file_ofs;
|
|
state.m_comp_size = 0;
|
|
|
|
if ((tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state,
|
|
tdefl_create_comp_flags_from_zip_params(
|
|
level, -15, MZ_DEFAULT_STRATEGY)) !=
|
|
TDEFL_STATUS_OKAY) ||
|
|
(tdefl_compress_buffer(pComp, pBuf, buf_size, TDEFL_FINISH) !=
|
|
TDEFL_STATUS_DONE)) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
comp_size = state.m_comp_size;
|
|
cur_archive_file_ofs = state.m_cur_archive_file_ofs;
|
|
|
|
method = MZ_DEFLATED;
|
|
}
|
|
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
|
|
pComp = NULL;
|
|
|
|
// no zip64 support yet
|
|
if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
|
|
if (!mz_zip_writer_create_local_dir_header(
|
|
pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size,
|
|
comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
|
|
return MZ_FALSE;
|
|
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header,
|
|
sizeof(local_dir_header)) != sizeof(local_dir_header))
|
|
return MZ_FALSE;
|
|
|
|
if (!mz_zip_writer_add_to_central_dir(
|
|
pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment,
|
|
comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0,
|
|
dos_time, dos_date, local_dir_header_ofs, ext_attributes))
|
|
return MZ_FALSE;
|
|
|
|
pZip->m_total_files++;
|
|
pZip->m_archive_size = cur_archive_file_ofs;
|
|
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name,
|
|
const char *pSrc_filename, const void *pComment,
|
|
mz_uint16 comment_size,
|
|
mz_uint level_and_flags) {
|
|
mz_uint uncomp_crc32 = MZ_CRC32_INIT, level, num_alignment_padding_bytes;
|
|
mz_uint16 method = 0, dos_time = 0, dos_date = 0, ext_attributes = 0;
|
|
mz_uint64 local_dir_header_ofs = pZip->m_archive_size,
|
|
cur_archive_file_ofs = pZip->m_archive_size, uncomp_size = 0,
|
|
comp_size = 0;
|
|
size_t archive_name_size;
|
|
mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
|
|
MZ_FILE *pSrc_file = NULL;
|
|
|
|
if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
|
|
level = level_and_flags & 0xF;
|
|
|
|
if ((!pZip) || (!pZip->m_pState) ||
|
|
(pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || (!pArchive_name) ||
|
|
((comment_size) && (!pComment)) || (level > MZ_UBER_COMPRESSION))
|
|
return MZ_FALSE;
|
|
if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) return MZ_FALSE;
|
|
if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
|
|
|
|
archive_name_size = strlen(pArchive_name);
|
|
if (archive_name_size > 0xFFFF) return MZ_FALSE;
|
|
|
|
num_alignment_padding_bytes =
|
|
mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
|
|
|
|
// no zip64 support yet
|
|
if ((pZip->m_total_files == 0xFFFF) ||
|
|
((pZip->m_archive_size + num_alignment_padding_bytes +
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
|
|
comment_size + archive_name_size) > 0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
|
|
if (!mz_zip_get_file_modified_time(pSrc_filename, &dos_time, &dos_date))
|
|
return MZ_FALSE;
|
|
|
|
pSrc_file = MZ_FOPEN(pSrc_filename, "rb");
|
|
if (!pSrc_file) return MZ_FALSE;
|
|
MZ_FSEEK64(pSrc_file, 0, SEEK_END);
|
|
uncomp_size = MZ_FTELL64(pSrc_file);
|
|
MZ_FSEEK64(pSrc_file, 0, SEEK_SET);
|
|
|
|
if (uncomp_size > 0xFFFFFFFF) {
|
|
// No zip64 support yet
|
|
MZ_FCLOSE(pSrc_file);
|
|
return MZ_FALSE;
|
|
}
|
|
if (uncomp_size <= 3) level = 0;
|
|
|
|
if (!mz_zip_writer_write_zeros(
|
|
pZip, cur_archive_file_ofs,
|
|
num_alignment_padding_bytes + sizeof(local_dir_header))) {
|
|
MZ_FCLOSE(pSrc_file);
|
|
return MZ_FALSE;
|
|
}
|
|
local_dir_header_ofs += num_alignment_padding_bytes;
|
|
if (pZip->m_file_offset_alignment) {
|
|
MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
|
|
0);
|
|
}
|
|
cur_archive_file_ofs +=
|
|
num_alignment_padding_bytes + sizeof(local_dir_header);
|
|
|
|
MZ_CLEAR_OBJ(local_dir_header);
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name,
|
|
archive_name_size) != archive_name_size) {
|
|
MZ_FCLOSE(pSrc_file);
|
|
return MZ_FALSE;
|
|
}
|
|
cur_archive_file_ofs += archive_name_size;
|
|
|
|
if (uncomp_size) {
|
|
mz_uint64 uncomp_remaining = uncomp_size;
|
|
void *pRead_buf =
|
|
pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, MZ_ZIP_MAX_IO_BUF_SIZE);
|
|
if (!pRead_buf) {
|
|
MZ_FCLOSE(pSrc_file);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
if (!level) {
|
|
while (uncomp_remaining) {
|
|
mz_uint n =
|
|
(mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, uncomp_remaining);
|
|
if ((MZ_FREAD(pRead_buf, 1, n, pSrc_file) != n) ||
|
|
(pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pRead_buf,
|
|
n) != n)) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
|
|
MZ_FCLOSE(pSrc_file);
|
|
return MZ_FALSE;
|
|
}
|
|
uncomp_crc32 =
|
|
(mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, n);
|
|
uncomp_remaining -= n;
|
|
cur_archive_file_ofs += n;
|
|
}
|
|
comp_size = uncomp_size;
|
|
} else {
|
|
mz_bool result = MZ_FALSE;
|
|
mz_zip_writer_add_state state;
|
|
tdefl_compressor *pComp = (tdefl_compressor *)pZip->m_pAlloc(
|
|
pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor));
|
|
if (!pComp) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
|
|
MZ_FCLOSE(pSrc_file);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
state.m_pZip = pZip;
|
|
state.m_cur_archive_file_ofs = cur_archive_file_ofs;
|
|
state.m_comp_size = 0;
|
|
|
|
if (tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state,
|
|
tdefl_create_comp_flags_from_zip_params(
|
|
level, -15, MZ_DEFAULT_STRATEGY)) !=
|
|
TDEFL_STATUS_OKAY) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
|
|
MZ_FCLOSE(pSrc_file);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
for (;;) {
|
|
size_t in_buf_size = (mz_uint32)MZ_MIN(uncomp_remaining,
|
|
(mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
|
|
tdefl_status status;
|
|
|
|
if (MZ_FREAD(pRead_buf, 1, in_buf_size, pSrc_file) != in_buf_size)
|
|
break;
|
|
|
|
uncomp_crc32 = (mz_uint32)mz_crc32(
|
|
uncomp_crc32, (const mz_uint8 *)pRead_buf, in_buf_size);
|
|
uncomp_remaining -= in_buf_size;
|
|
|
|
status = tdefl_compress_buffer(
|
|
pComp, pRead_buf, in_buf_size,
|
|
uncomp_remaining ? TDEFL_NO_FLUSH : TDEFL_FINISH);
|
|
if (status == TDEFL_STATUS_DONE) {
|
|
result = MZ_TRUE;
|
|
break;
|
|
} else if (status != TDEFL_STATUS_OKAY)
|
|
break;
|
|
}
|
|
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
|
|
|
|
if (!result) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
|
|
MZ_FCLOSE(pSrc_file);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
comp_size = state.m_comp_size;
|
|
cur_archive_file_ofs = state.m_cur_archive_file_ofs;
|
|
|
|
method = MZ_DEFLATED;
|
|
}
|
|
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
|
|
}
|
|
|
|
MZ_FCLOSE(pSrc_file);
|
|
pSrc_file = NULL;
|
|
|
|
// no zip64 support yet
|
|
if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
|
|
if (!mz_zip_writer_create_local_dir_header(
|
|
pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size,
|
|
comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
|
|
return MZ_FALSE;
|
|
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header,
|
|
sizeof(local_dir_header)) != sizeof(local_dir_header))
|
|
return MZ_FALSE;
|
|
|
|
if (!mz_zip_writer_add_to_central_dir(
|
|
pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment,
|
|
comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0,
|
|
dos_time, dos_date, local_dir_header_ofs, ext_attributes))
|
|
return MZ_FALSE;
|
|
|
|
pZip->m_total_files++;
|
|
pZip->m_archive_size = cur_archive_file_ofs;
|
|
|
|
return MZ_TRUE;
|
|
}
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip,
|
|
mz_zip_archive *pSource_zip,
|
|
mz_uint file_index) {
|
|
mz_uint n, bit_flags, num_alignment_padding_bytes;
|
|
mz_uint64 comp_bytes_remaining, local_dir_header_ofs;
|
|
mz_uint64 cur_src_file_ofs, cur_dst_file_ofs;
|
|
mz_uint32
|
|
local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
|
|
sizeof(mz_uint32)];
|
|
mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
|
|
mz_uint8 central_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
|
|
size_t orig_central_dir_size;
|
|
mz_zip_internal_state *pState;
|
|
void *pBuf;
|
|
const mz_uint8 *pSrc_central_header;
|
|
|
|
if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
|
|
return MZ_FALSE;
|
|
if (NULL ==
|
|
(pSrc_central_header = mz_zip_reader_get_cdh(pSource_zip, file_index)))
|
|
return MZ_FALSE;
|
|
pState = pZip->m_pState;
|
|
|
|
num_alignment_padding_bytes =
|
|
mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
|
|
|
|
// no zip64 support yet
|
|
if ((pZip->m_total_files == 0xFFFF) ||
|
|
((pZip->m_archive_size + num_alignment_padding_bytes +
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) >
|
|
0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
|
|
cur_src_file_ofs =
|
|
MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
|
|
cur_dst_file_ofs = pZip->m_archive_size;
|
|
|
|
if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs,
|
|
pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
|
|
return MZ_FALSE;
|
|
if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
|
|
return MZ_FALSE;
|
|
cur_src_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;
|
|
|
|
if (!mz_zip_writer_write_zeros(pZip, cur_dst_file_ofs,
|
|
num_alignment_padding_bytes))
|
|
return MZ_FALSE;
|
|
cur_dst_file_ofs += num_alignment_padding_bytes;
|
|
local_dir_header_ofs = cur_dst_file_ofs;
|
|
if (pZip->m_file_offset_alignment) {
|
|
MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
|
|
0);
|
|
}
|
|
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pLocal_header,
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
|
|
MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
|
|
return MZ_FALSE;
|
|
cur_dst_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;
|
|
|
|
n = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
|
|
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
|
|
comp_bytes_remaining =
|
|
n + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
|
|
|
|
if (NULL == (pBuf = pZip->m_pAlloc(
|
|
pZip->m_pAlloc_opaque, 1,
|
|
(size_t)MZ_MAX(sizeof(mz_uint32) * 4,
|
|
MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE,
|
|
comp_bytes_remaining)))))
|
|
return MZ_FALSE;
|
|
|
|
while (comp_bytes_remaining) {
|
|
n = (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining);
|
|
if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf,
|
|
n) != n) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
|
|
return MZ_FALSE;
|
|
}
|
|
cur_src_file_ofs += n;
|
|
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
|
|
return MZ_FALSE;
|
|
}
|
|
cur_dst_file_ofs += n;
|
|
|
|
comp_bytes_remaining -= n;
|
|
}
|
|
|
|
bit_flags = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_BIT_FLAG_OFS);
|
|
if (bit_flags & 8) {
|
|
// Copy data descriptor
|
|
if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf,
|
|
sizeof(mz_uint32) * 4) != sizeof(mz_uint32) * 4) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
n = sizeof(mz_uint32) * ((MZ_READ_LE32(pBuf) == 0x08074b50) ? 4 : 3);
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
cur_src_file_ofs += n;
|
|
cur_dst_file_ofs += n;
|
|
}
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
|
|
|
|
// no zip64 support yet
|
|
if (cur_dst_file_ofs > 0xFFFFFFFF) return MZ_FALSE;
|
|
|
|
orig_central_dir_size = pState->m_central_dir.m_size;
|
|
|
|
memcpy(central_header, pSrc_central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
|
|
MZ_WRITE_LE32(central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS,
|
|
local_dir_header_ofs);
|
|
if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_header,
|
|
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE))
|
|
return MZ_FALSE;
|
|
|
|
n = MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
|
|
MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_EXTRA_LEN_OFS) +
|
|
MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_COMMENT_LEN_OFS);
|
|
if (!mz_zip_array_push_back(
|
|
pZip, &pState->m_central_dir,
|
|
pSrc_central_header + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n)) {
|
|
mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
|
|
MZ_FALSE);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
if (pState->m_central_dir.m_size > 0xFFFFFFFF) return MZ_FALSE;
|
|
n = (mz_uint32)orig_central_dir_size;
|
|
if (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &n, 1)) {
|
|
mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
|
|
MZ_FALSE);
|
|
return MZ_FALSE;
|
|
}
|
|
|
|
pZip->m_total_files++;
|
|
pZip->m_archive_size = cur_dst_file_ofs;
|
|
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip) {
|
|
mz_zip_internal_state *pState;
|
|
mz_uint64 central_dir_ofs, central_dir_size;
|
|
mz_uint8 hdr[MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE];
|
|
|
|
if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
|
|
return MZ_FALSE;
|
|
|
|
pState = pZip->m_pState;
|
|
|
|
// no zip64 support yet
|
|
if ((pZip->m_total_files > 0xFFFF) ||
|
|
((pZip->m_archive_size + pState->m_central_dir.m_size +
|
|
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
|
|
return MZ_FALSE;
|
|
|
|
central_dir_ofs = 0;
|
|
central_dir_size = 0;
|
|
if (pZip->m_total_files) {
|
|
// Write central directory
|
|
central_dir_ofs = pZip->m_archive_size;
|
|
central_dir_size = pState->m_central_dir.m_size;
|
|
pZip->m_central_directory_file_ofs = central_dir_ofs;
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, central_dir_ofs,
|
|
pState->m_central_dir.m_p,
|
|
(size_t)central_dir_size) != central_dir_size)
|
|
return MZ_FALSE;
|
|
pZip->m_archive_size += central_dir_size;
|
|
}
|
|
|
|
// Write end of central directory record
|
|
MZ_CLEAR_OBJ(hdr);
|
|
MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_SIG_OFS,
|
|
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG);
|
|
MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS,
|
|
pZip->m_total_files);
|
|
MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS, pZip->m_total_files);
|
|
MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_SIZE_OFS, central_dir_size);
|
|
MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_OFS_OFS, central_dir_ofs);
|
|
|
|
if (pZip->m_pWrite(pZip->m_pIO_opaque, pZip->m_archive_size, hdr,
|
|
sizeof(hdr)) != sizeof(hdr))
|
|
return MZ_FALSE;
|
|
#ifndef MINIZ_NO_STDIO
|
|
if ((pState->m_pFile) && (MZ_FFLUSH(pState->m_pFile) == EOF)) return MZ_FALSE;
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
pZip->m_archive_size += sizeof(hdr);
|
|
|
|
pZip->m_zip_mode = MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED;
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf,
|
|
size_t *pSize) {
|
|
if ((!pZip) || (!pZip->m_pState) || (!pBuf) || (!pSize)) return MZ_FALSE;
|
|
if (pZip->m_pWrite != mz_zip_heap_write_func) return MZ_FALSE;
|
|
if (!mz_zip_writer_finalize_archive(pZip)) return MZ_FALSE;
|
|
|
|
*pBuf = pZip->m_pState->m_pMem;
|
|
*pSize = pZip->m_pState->m_mem_size;
|
|
pZip->m_pState->m_pMem = NULL;
|
|
pZip->m_pState->m_mem_size = pZip->m_pState->m_mem_capacity = 0;
|
|
return MZ_TRUE;
|
|
}
|
|
|
|
mz_bool mz_zip_writer_end(mz_zip_archive *pZip) {
|
|
mz_zip_internal_state *pState;
|
|
mz_bool status = MZ_TRUE;
|
|
if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) ||
|
|
((pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) &&
|
|
(pZip->m_zip_mode != MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED)))
|
|
return MZ_FALSE;
|
|
|
|
pState = pZip->m_pState;
|
|
pZip->m_pState = NULL;
|
|
mz_zip_array_clear(pZip, &pState->m_central_dir);
|
|
mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
|
|
mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
if (pState->m_pFile) {
|
|
MZ_FCLOSE(pState->m_pFile);
|
|
pState->m_pFile = NULL;
|
|
}
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
if ((pZip->m_pWrite == mz_zip_heap_write_func) && (pState->m_pMem)) {
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pState->m_pMem);
|
|
pState->m_pMem = NULL;
|
|
}
|
|
|
|
pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
|
|
pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
|
|
return status;
|
|
}
|
|
|
|
#ifndef MINIZ_NO_STDIO
|
|
mz_bool mz_zip_add_mem_to_archive_file_in_place(
|
|
const char *pZip_filename, const char *pArchive_name, const void *pBuf,
|
|
size_t buf_size, const void *pComment, mz_uint16 comment_size,
|
|
mz_uint level_and_flags) {
|
|
mz_bool status, created_new_archive = MZ_FALSE;
|
|
mz_zip_archive zip_archive;
|
|
struct MZ_FILE_STAT_STRUCT file_stat;
|
|
MZ_CLEAR_OBJ(zip_archive);
|
|
if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
|
|
if ((!pZip_filename) || (!pArchive_name) || ((buf_size) && (!pBuf)) ||
|
|
((comment_size) && (!pComment)) ||
|
|
((level_and_flags & 0xF) > MZ_UBER_COMPRESSION))
|
|
return MZ_FALSE;
|
|
if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
|
|
if (MZ_FILE_STAT(pZip_filename, &file_stat) != 0) {
|
|
// Create a new archive.
|
|
if (!mz_zip_writer_init_file(&zip_archive, pZip_filename, 0))
|
|
return MZ_FALSE;
|
|
created_new_archive = MZ_TRUE;
|
|
} else {
|
|
// Append to an existing archive.
|
|
if (!mz_zip_reader_init_file(
|
|
&zip_archive, pZip_filename,
|
|
level_and_flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
|
|
return MZ_FALSE;
|
|
if (!mz_zip_writer_init_from_reader(&zip_archive, pZip_filename)) {
|
|
mz_zip_reader_end(&zip_archive);
|
|
return MZ_FALSE;
|
|
}
|
|
}
|
|
status =
|
|
mz_zip_writer_add_mem_ex(&zip_archive, pArchive_name, pBuf, buf_size,
|
|
pComment, comment_size, level_and_flags, 0, 0);
|
|
// Always finalize, even if adding failed for some reason, so we have a valid
|
|
// central directory. (This may not always succeed, but we can try.)
|
|
if (!mz_zip_writer_finalize_archive(&zip_archive)) status = MZ_FALSE;
|
|
if (!mz_zip_writer_end(&zip_archive)) status = MZ_FALSE;
|
|
if ((!status) && (created_new_archive)) {
|
|
// It's a new archive and something went wrong, so just delete it.
|
|
int ignoredStatus = MZ_DELETE_FILE(pZip_filename);
|
|
(void)ignoredStatus;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
|
|
const char *pArchive_name,
|
|
size_t *pSize, mz_uint flags) {
|
|
int file_index;
|
|
mz_zip_archive zip_archive;
|
|
void *p = NULL;
|
|
|
|
if (pSize) *pSize = 0;
|
|
|
|
if ((!pZip_filename) || (!pArchive_name)) return NULL;
|
|
|
|
MZ_CLEAR_OBJ(zip_archive);
|
|
if (!mz_zip_reader_init_file(
|
|
&zip_archive, pZip_filename,
|
|
flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
|
|
return NULL;
|
|
|
|
if ((file_index = mz_zip_reader_locate_file(&zip_archive, pArchive_name, NULL,
|
|
flags)) >= 0)
|
|
p = mz_zip_reader_extract_to_heap(&zip_archive, file_index, pSize, flags);
|
|
|
|
mz_zip_reader_end(&zip_archive);
|
|
return p;
|
|
}
|
|
|
|
#endif // #ifndef MINIZ_NO_STDIO
|
|
|
|
#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
|
|
|
|
#endif // #ifndef MINIZ_NO_ARCHIVE_APIS
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // MINIZ_HEADER_FILE_ONLY
|
|
|
|
/*
|
|
This is free and unencumbered software released into the public domain.
|
|
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or
|
|
distribute this software, either in source code form or as a compiled
|
|
binary, for any purpose, commercial or non-commercial, and by any
|
|
means.
|
|
|
|
In jurisdictions that recognize copyright laws, the author or authors
|
|
of this software dedicate any and all copyright interest in the
|
|
software to the public domain. We make this dedication for the benefit
|
|
of the public at large and to the detriment of our heirs and
|
|
successors. We intend this dedication to be an overt act of
|
|
relinquishment in perpetuity of all present and future rights to this
|
|
software under copyright law.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
For more information, please refer to <http://unlicense.org/>
|
|
*/
|
|
|
|
// ---------------------- end of miniz ----------------------------------------
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
} // namespace miniz
|
|
#else
|
|
|
|
// Reuse MINIZ_LITTE_ENDIAN macro
|
|
|
|
#if defined(__sparcv9)
|
|
// Big endian
|
|
#else
|
|
#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
|
|
// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
|
|
#define MINIZ_LITTLE_ENDIAN 1
|
|
#endif
|
|
#endif
|
|
|
|
#endif // TINYEXR_USE_MINIZ
|
|
|
|
// static bool IsBigEndian(void) {
|
|
// union {
|
|
// unsigned int i;
|
|
// char c[4];
|
|
// } bint = {0x01020304};
|
|
//
|
|
// return bint.c[0] == 1;
|
|
//}
|
|
|
|
static void SetErrorMessage(const std::string &msg, const char **err) {
|
|
if (err) {
|
|
#ifdef _WIN32
|
|
(*err) = _strdup(msg.c_str());
|
|
#else
|
|
(*err) = strdup(msg.c_str());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static const int kEXRVersionSize = 8;
|
|
|
|
static void cpy2(unsigned short *dst_val, const unsigned short *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
}
|
|
|
|
static void swap2(unsigned short *val) {
|
|
#ifdef MINIZ_LITTLE_ENDIAN
|
|
(void)val;
|
|
#else
|
|
unsigned short tmp = *val;
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(val);
|
|
unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
|
|
|
|
dst[0] = src[1];
|
|
dst[1] = src[0];
|
|
#endif
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wunused-function"
|
|
#endif
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-function"
|
|
#endif
|
|
static void cpy4(int *dst_val, const int *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
}
|
|
|
|
static void cpy4(unsigned int *dst_val, const unsigned int *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
}
|
|
|
|
static void cpy4(float *dst_val, const float *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
}
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
static void swap4(unsigned int *val) {
|
|
#ifdef MINIZ_LITTLE_ENDIAN
|
|
(void)val;
|
|
#else
|
|
unsigned int tmp = *val;
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(val);
|
|
unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
|
|
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
#endif
|
|
}
|
|
|
|
#if 0
|
|
static void cpy8(tinyexr::tinyexr_uint64 *dst_val, const tinyexr::tinyexr_uint64 *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
dst[5] = src[5];
|
|
dst[6] = src[6];
|
|
dst[7] = src[7];
|
|
}
|
|
#endif
|
|
|
|
static void swap8(tinyexr::tinyexr_uint64 *val) {
|
|
#ifdef MINIZ_LITTLE_ENDIAN
|
|
(void)val;
|
|
#else
|
|
tinyexr::tinyexr_uint64 tmp = (*val);
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(val);
|
|
unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
|
|
|
|
dst[0] = src[7];
|
|
dst[1] = src[6];
|
|
dst[2] = src[5];
|
|
dst[3] = src[4];
|
|
dst[4] = src[3];
|
|
dst[5] = src[2];
|
|
dst[6] = src[1];
|
|
dst[7] = src[0];
|
|
#endif
|
|
}
|
|
|
|
// https://gist.github.com/rygorous/2156668
|
|
// Reuse MINIZ_LITTLE_ENDIAN flag from miniz.
|
|
union FP32 {
|
|
unsigned int u;
|
|
float f;
|
|
struct {
|
|
#if MINIZ_LITTLE_ENDIAN
|
|
unsigned int Mantissa : 23;
|
|
unsigned int Exponent : 8;
|
|
unsigned int Sign : 1;
|
|
#else
|
|
unsigned int Sign : 1;
|
|
unsigned int Exponent : 8;
|
|
unsigned int Mantissa : 23;
|
|
#endif
|
|
} s;
|
|
};
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wpadded"
|
|
#endif
|
|
|
|
union FP16 {
|
|
unsigned short u;
|
|
struct {
|
|
#if MINIZ_LITTLE_ENDIAN
|
|
unsigned int Mantissa : 10;
|
|
unsigned int Exponent : 5;
|
|
unsigned int Sign : 1;
|
|
#else
|
|
unsigned int Sign : 1;
|
|
unsigned int Exponent : 5;
|
|
unsigned int Mantissa : 10;
|
|
#endif
|
|
} s;
|
|
};
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
static FP32 half_to_float(FP16 h) {
|
|
static const FP32 magic = {113 << 23};
|
|
static const unsigned int shifted_exp = 0x7c00
|
|
<< 13; // exponent mask after shift
|
|
FP32 o;
|
|
|
|
o.u = (h.u & 0x7fffU) << 13U; // exponent/mantissa bits
|
|
unsigned int exp_ = shifted_exp & o.u; // just the exponent
|
|
o.u += (127 - 15) << 23; // exponent adjust
|
|
|
|
// handle exponent special cases
|
|
if (exp_ == shifted_exp) // Inf/NaN?
|
|
o.u += (128 - 16) << 23; // extra exp adjust
|
|
else if (exp_ == 0) // Zero/Denormal?
|
|
{
|
|
o.u += 1 << 23; // extra exp adjust
|
|
o.f -= magic.f; // renormalize
|
|
}
|
|
|
|
o.u |= (h.u & 0x8000U) << 16U; // sign bit
|
|
return o;
|
|
}
|
|
|
|
static FP16 float_to_half_full(FP32 f) {
|
|
FP16 o = {0};
|
|
|
|
// Based on ISPC reference code (with minor modifications)
|
|
if (f.s.Exponent == 0) // Signed zero/denormal (which will underflow)
|
|
o.s.Exponent = 0;
|
|
else if (f.s.Exponent == 255) // Inf or NaN (all exponent bits set)
|
|
{
|
|
o.s.Exponent = 31;
|
|
o.s.Mantissa = f.s.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf
|
|
} else // Normalized number
|
|
{
|
|
// Exponent unbias the single, then bias the halfp
|
|
int newexp = f.s.Exponent - 127 + 15;
|
|
if (newexp >= 31) // Overflow, return signed infinity
|
|
o.s.Exponent = 31;
|
|
else if (newexp <= 0) // Underflow
|
|
{
|
|
if ((14 - newexp) <= 24) // Mantissa might be non-zero
|
|
{
|
|
unsigned int mant = f.s.Mantissa | 0x800000; // Hidden 1 bit
|
|
o.s.Mantissa = mant >> (14 - newexp);
|
|
if ((mant >> (13 - newexp)) & 1) // Check for rounding
|
|
o.u++; // Round, might overflow into exp bit, but this is OK
|
|
}
|
|
} else {
|
|
o.s.Exponent = static_cast<unsigned int>(newexp);
|
|
o.s.Mantissa = f.s.Mantissa >> 13;
|
|
if (f.s.Mantissa & 0x1000) // Check for rounding
|
|
o.u++; // Round, might overflow to inf, this is OK
|
|
}
|
|
}
|
|
|
|
o.s.Sign = f.s.Sign;
|
|
return o;
|
|
}
|
|
|
|
// NOTE: From OpenEXR code
|
|
// #define IMF_INCREASING_Y 0
|
|
// #define IMF_DECREASING_Y 1
|
|
// #define IMF_RAMDOM_Y 2
|
|
//
|
|
// #define IMF_NO_COMPRESSION 0
|
|
// #define IMF_RLE_COMPRESSION 1
|
|
// #define IMF_ZIPS_COMPRESSION 2
|
|
// #define IMF_ZIP_COMPRESSION 3
|
|
// #define IMF_PIZ_COMPRESSION 4
|
|
// #define IMF_PXR24_COMPRESSION 5
|
|
// #define IMF_B44_COMPRESSION 6
|
|
// #define IMF_B44A_COMPRESSION 7
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
|
|
#if __has_warning("-Wzero-as-null-pointer-constant")
|
|
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
|
|
#endif
|
|
|
|
#endif
|
|
|
|
static const char *ReadString(std::string *s, const char *ptr, size_t len) {
|
|
// Read untile NULL(\0).
|
|
const char *p = ptr;
|
|
const char *q = ptr;
|
|
while ((size_t(q - ptr) < len) && (*q) != 0) {
|
|
q++;
|
|
}
|
|
|
|
if (size_t(q - ptr) >= len) {
|
|
(*s) = std::string();
|
|
return NULL;
|
|
}
|
|
|
|
(*s) = std::string(p, q);
|
|
|
|
return q + 1; // skip '\0'
|
|
}
|
|
|
|
static bool ReadAttribute(std::string *name, std::string *type,
|
|
std::vector<unsigned char> *data, size_t *marker_size,
|
|
const char *marker, size_t size) {
|
|
size_t name_len = strnlen(marker, size);
|
|
if (name_len == size) {
|
|
// String does not have a terminating character.
|
|
return false;
|
|
}
|
|
*name = std::string(marker, name_len);
|
|
|
|
marker += name_len + 1;
|
|
size -= name_len + 1;
|
|
|
|
size_t type_len = strnlen(marker, size);
|
|
if (type_len == size) {
|
|
return false;
|
|
}
|
|
*type = std::string(marker, type_len);
|
|
|
|
marker += type_len + 1;
|
|
size -= type_len + 1;
|
|
|
|
if (size < sizeof(uint32_t)) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t data_len;
|
|
memcpy(&data_len, marker, sizeof(uint32_t));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
|
|
|
|
if (data_len == 0) {
|
|
if ((*type).compare("string") == 0) {
|
|
// Accept empty string attribute.
|
|
|
|
marker += sizeof(uint32_t);
|
|
size -= sizeof(uint32_t);
|
|
|
|
*marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t);
|
|
|
|
data->resize(1);
|
|
(*data)[0] = '\0';
|
|
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
marker += sizeof(uint32_t);
|
|
size -= sizeof(uint32_t);
|
|
|
|
if (size < data_len) {
|
|
return false;
|
|
}
|
|
|
|
data->resize(static_cast<size_t>(data_len));
|
|
memcpy(&data->at(0), marker, static_cast<size_t>(data_len));
|
|
|
|
*marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t) + data_len;
|
|
return true;
|
|
}
|
|
|
|
static void WriteAttributeToMemory(std::vector<unsigned char> *out,
|
|
const char *name, const char *type,
|
|
const unsigned char *data, int len) {
|
|
out->insert(out->end(), name, name + strlen(name) + 1);
|
|
out->insert(out->end(), type, type + strlen(type) + 1);
|
|
|
|
int outLen = len;
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&outLen));
|
|
out->insert(out->end(), reinterpret_cast<unsigned char *>(&outLen),
|
|
reinterpret_cast<unsigned char *>(&outLen) + sizeof(int));
|
|
out->insert(out->end(), data, data + len);
|
|
}
|
|
|
|
typedef struct {
|
|
std::string name; // less than 255 bytes long
|
|
int pixel_type;
|
|
int x_sampling;
|
|
int y_sampling;
|
|
unsigned char p_linear;
|
|
unsigned char pad[3];
|
|
} ChannelInfo;
|
|
|
|
typedef struct {
|
|
std::vector<tinyexr::ChannelInfo> channels;
|
|
std::vector<EXRAttribute> attributes;
|
|
|
|
int data_window[4];
|
|
int line_order;
|
|
int display_window[4];
|
|
float screen_window_center[2];
|
|
float screen_window_width;
|
|
float pixel_aspect_ratio;
|
|
|
|
int chunk_count;
|
|
|
|
// Tiled format
|
|
int tile_size_x;
|
|
int tile_size_y;
|
|
int tile_level_mode;
|
|
int tile_rounding_mode;
|
|
|
|
unsigned int header_len;
|
|
|
|
int compression_type;
|
|
|
|
void clear() {
|
|
channels.clear();
|
|
attributes.clear();
|
|
|
|
data_window[0] = 0;
|
|
data_window[1] = 0;
|
|
data_window[2] = 0;
|
|
data_window[3] = 0;
|
|
line_order = 0;
|
|
display_window[0] = 0;
|
|
display_window[1] = 0;
|
|
display_window[2] = 0;
|
|
display_window[3] = 0;
|
|
screen_window_center[0] = 0.0f;
|
|
screen_window_center[1] = 0.0f;
|
|
screen_window_width = 0.0f;
|
|
pixel_aspect_ratio = 0.0f;
|
|
|
|
chunk_count = 0;
|
|
|
|
// Tiled format
|
|
tile_size_x = 0;
|
|
tile_size_y = 0;
|
|
tile_level_mode = 0;
|
|
tile_rounding_mode = 0;
|
|
|
|
header_len = 0;
|
|
compression_type = 0;
|
|
}
|
|
} HeaderInfo;
|
|
|
|
static bool ReadChannelInfo(std::vector<ChannelInfo> &channels,
|
|
const std::vector<unsigned char> &data) {
|
|
const char *p = reinterpret_cast<const char *>(&data.at(0));
|
|
|
|
for (;;) {
|
|
if ((*p) == 0) {
|
|
break;
|
|
}
|
|
ChannelInfo info;
|
|
|
|
tinyexr_int64 data_len = static_cast<tinyexr_int64>(data.size()) -
|
|
(p - reinterpret_cast<const char *>(data.data()));
|
|
if (data_len < 0) {
|
|
return false;
|
|
}
|
|
|
|
p = ReadString(&info.name, p, size_t(data_len));
|
|
if ((p == NULL) && (info.name.empty())) {
|
|
// Buffer overrun. Issue #51.
|
|
return false;
|
|
}
|
|
|
|
const unsigned char *data_end =
|
|
reinterpret_cast<const unsigned char *>(p) + 16;
|
|
if (data_end >= (data.data() + data.size())) {
|
|
return false;
|
|
}
|
|
|
|
memcpy(&info.pixel_type, p, sizeof(int));
|
|
p += 4;
|
|
info.p_linear = static_cast<unsigned char>(p[0]); // uchar
|
|
p += 1 + 3; // reserved: uchar[3]
|
|
memcpy(&info.x_sampling, p, sizeof(int)); // int
|
|
p += 4;
|
|
memcpy(&info.y_sampling, p, sizeof(int)); // int
|
|
p += 4;
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.pixel_type));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.x_sampling));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.y_sampling));
|
|
|
|
channels.push_back(info);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void WriteChannelInfo(std::vector<unsigned char> &data,
|
|
const std::vector<ChannelInfo> &channels) {
|
|
size_t sz = 0;
|
|
|
|
// Calculate total size.
|
|
for (size_t c = 0; c < channels.size(); c++) {
|
|
sz += strlen(channels[c].name.c_str()) + 1; // +1 for \0
|
|
sz += 16; // 4 * int
|
|
}
|
|
data.resize(sz + 1);
|
|
|
|
unsigned char *p = &data.at(0);
|
|
|
|
for (size_t c = 0; c < channels.size(); c++) {
|
|
memcpy(p, channels[c].name.c_str(), strlen(channels[c].name.c_str()));
|
|
p += strlen(channels[c].name.c_str());
|
|
(*p) = '\0';
|
|
p++;
|
|
|
|
int pixel_type = channels[c].pixel_type;
|
|
int x_sampling = channels[c].x_sampling;
|
|
int y_sampling = channels[c].y_sampling;
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&pixel_type));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&x_sampling));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&y_sampling));
|
|
|
|
memcpy(p, &pixel_type, sizeof(int));
|
|
p += sizeof(int);
|
|
|
|
(*p) = channels[c].p_linear;
|
|
p += 4;
|
|
|
|
memcpy(p, &x_sampling, sizeof(int));
|
|
p += sizeof(int);
|
|
|
|
memcpy(p, &y_sampling, sizeof(int));
|
|
p += sizeof(int);
|
|
}
|
|
|
|
(*p) = '\0';
|
|
}
|
|
|
|
static void CompressZip(unsigned char *dst,
|
|
tinyexr::tinyexr_uint64 &compressedSize,
|
|
const unsigned char *src, unsigned long src_size) {
|
|
std::vector<unsigned char> tmpBuf(src_size);
|
|
|
|
//
|
|
// Apply EXR-specific? postprocess. Grabbed from OpenEXR's
|
|
// ImfZipCompressor.cpp
|
|
//
|
|
|
|
//
|
|
// Reorder the pixel data.
|
|
//
|
|
|
|
const char *srcPtr = reinterpret_cast<const char *>(src);
|
|
|
|
{
|
|
char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0));
|
|
char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2;
|
|
const char *stop = srcPtr + src_size;
|
|
|
|
for (;;) {
|
|
if (srcPtr < stop)
|
|
*(t1++) = *(srcPtr++);
|
|
else
|
|
break;
|
|
|
|
if (srcPtr < stop)
|
|
*(t2++) = *(srcPtr++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Predictor.
|
|
//
|
|
|
|
{
|
|
unsigned char *t = &tmpBuf.at(0) + 1;
|
|
unsigned char *stop = &tmpBuf.at(0) + src_size;
|
|
int p = t[-1];
|
|
|
|
while (t < stop) {
|
|
int d = int(t[0]) - p + (128 + 256);
|
|
p = t[0];
|
|
t[0] = static_cast<unsigned char>(d);
|
|
++t;
|
|
}
|
|
}
|
|
|
|
#if TINYEXR_USE_MINIZ
|
|
//
|
|
// Compress the data using miniz
|
|
//
|
|
|
|
miniz::mz_ulong outSize = miniz::mz_compressBound(src_size);
|
|
int ret = miniz::mz_compress(
|
|
dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)),
|
|
src_size);
|
|
assert(ret == miniz::MZ_OK);
|
|
(void)ret;
|
|
|
|
compressedSize = outSize;
|
|
#else
|
|
uLong outSize = compressBound(static_cast<uLong>(src_size));
|
|
int ret = compress(dst, &outSize, static_cast<const Bytef *>(&tmpBuf.at(0)),
|
|
src_size);
|
|
assert(ret == Z_OK);
|
|
|
|
compressedSize = outSize;
|
|
#endif
|
|
|
|
// Use uncompressed data when compressed data is larger than uncompressed.
|
|
// (Issue 40)
|
|
if (compressedSize >= src_size) {
|
|
compressedSize = src_size;
|
|
memcpy(dst, src, src_size);
|
|
}
|
|
}
|
|
|
|
static bool DecompressZip(unsigned char *dst,
|
|
unsigned long *uncompressed_size /* inout */,
|
|
const unsigned char *src, unsigned long src_size) {
|
|
if ((*uncompressed_size) == src_size) {
|
|
// Data is not compressed(Issue 40).
|
|
memcpy(dst, src, src_size);
|
|
return true;
|
|
}
|
|
std::vector<unsigned char> tmpBuf(*uncompressed_size);
|
|
|
|
#if TINYEXR_USE_MINIZ
|
|
int ret =
|
|
miniz::mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
|
|
if (miniz::MZ_OK != ret) {
|
|
return false;
|
|
}
|
|
#else
|
|
int ret = uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
|
|
if (Z_OK != ret) {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Apply EXR-specific? postprocess. Grabbed from OpenEXR's
|
|
// ImfZipCompressor.cpp
|
|
//
|
|
|
|
// Predictor.
|
|
{
|
|
unsigned char *t = &tmpBuf.at(0) + 1;
|
|
unsigned char *stop = &tmpBuf.at(0) + (*uncompressed_size);
|
|
|
|
while (t < stop) {
|
|
int d = int(t[-1]) + int(t[0]) - 128;
|
|
t[0] = static_cast<unsigned char>(d);
|
|
++t;
|
|
}
|
|
}
|
|
|
|
// Reorder the pixel data.
|
|
{
|
|
const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0));
|
|
const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) +
|
|
(*uncompressed_size + 1) / 2;
|
|
char *s = reinterpret_cast<char *>(dst);
|
|
char *stop = s + (*uncompressed_size);
|
|
|
|
for (;;) {
|
|
if (s < stop)
|
|
*(s++) = *(t1++);
|
|
else
|
|
break;
|
|
|
|
if (s < stop)
|
|
*(s++) = *(t2++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// RLE code from OpenEXR --------------------------------------
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wsign-conversion"
|
|
#if __has_warning("-Wextra-semi-stmt")
|
|
#pragma clang diagnostic ignored "-Wextra-semi-stmt"
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4204) // nonstandard extension used : non-constant
|
|
// aggregate initializer (also supported by GNU
|
|
// C and C99, so no big deal)
|
|
#pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to
|
|
// 'int', possible loss of data
|
|
#pragma warning(disable : 4267) // 'argument': conversion from '__int64' to
|
|
// 'int', possible loss of data
|
|
#pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is
|
|
// deprecated. Instead, use the ISO C and C++
|
|
// conformant name: _strdup.
|
|
#endif
|
|
|
|
const int MIN_RUN_LENGTH = 3;
|
|
const int MAX_RUN_LENGTH = 127;
|
|
|
|
//
|
|
// Compress an array of bytes, using run-length encoding,
|
|
// and return the length of the compressed data.
|
|
//
|
|
|
|
static int rleCompress(int inLength, const char in[], signed char out[]) {
|
|
const char *inEnd = in + inLength;
|
|
const char *runStart = in;
|
|
const char *runEnd = in + 1;
|
|
signed char *outWrite = out;
|
|
|
|
while (runStart < inEnd) {
|
|
while (runEnd < inEnd && *runStart == *runEnd &&
|
|
runEnd - runStart - 1 < MAX_RUN_LENGTH) {
|
|
++runEnd;
|
|
}
|
|
|
|
if (runEnd - runStart >= MIN_RUN_LENGTH) {
|
|
//
|
|
// Compressable run
|
|
//
|
|
|
|
*outWrite++ = static_cast<char>(runEnd - runStart) - 1;
|
|
*outWrite++ = *(reinterpret_cast<const signed char *>(runStart));
|
|
runStart = runEnd;
|
|
} else {
|
|
//
|
|
// Uncompressable run
|
|
//
|
|
|
|
while (runEnd < inEnd &&
|
|
((runEnd + 1 >= inEnd || *runEnd != *(runEnd + 1)) ||
|
|
(runEnd + 2 >= inEnd || *(runEnd + 1) != *(runEnd + 2))) &&
|
|
runEnd - runStart < MAX_RUN_LENGTH) {
|
|
++runEnd;
|
|
}
|
|
|
|
*outWrite++ = static_cast<char>(runStart - runEnd);
|
|
|
|
while (runStart < runEnd) {
|
|
*outWrite++ = *(reinterpret_cast<const signed char *>(runStart++));
|
|
}
|
|
}
|
|
|
|
++runEnd;
|
|
}
|
|
|
|
return static_cast<int>(outWrite - out);
|
|
}
|
|
|
|
//
|
|
// Uncompress an array of bytes compressed with rleCompress().
|
|
// Returns the length of the oncompressed data, or 0 if the
|
|
// length of the uncompressed data would be more than maxLength.
|
|
//
|
|
|
|
static int rleUncompress(int inLength, int maxLength, const signed char in[],
|
|
char out[]) {
|
|
char *outStart = out;
|
|
|
|
while (inLength > 0) {
|
|
if (*in < 0) {
|
|
int count = -(static_cast<int>(*in++));
|
|
inLength -= count + 1;
|
|
|
|
// Fixes #116: Add bounds check to in buffer.
|
|
if ((0 > (maxLength -= count)) || (inLength < 0)) return 0;
|
|
|
|
memcpy(out, in, count);
|
|
out += count;
|
|
in += count;
|
|
} else {
|
|
int count = *in++;
|
|
inLength -= 2;
|
|
|
|
if (0 > (maxLength -= count + 1)) return 0;
|
|
|
|
memset(out, *reinterpret_cast<const char *>(in), count + 1);
|
|
out += count + 1;
|
|
|
|
in++;
|
|
}
|
|
}
|
|
|
|
return static_cast<int>(out - outStart);
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
// End of RLE code from OpenEXR -----------------------------------
|
|
|
|
static void CompressRle(unsigned char *dst,
|
|
tinyexr::tinyexr_uint64 &compressedSize,
|
|
const unsigned char *src, unsigned long src_size) {
|
|
std::vector<unsigned char> tmpBuf(src_size);
|
|
|
|
//
|
|
// Apply EXR-specific? postprocess. Grabbed from OpenEXR's
|
|
// ImfRleCompressor.cpp
|
|
//
|
|
|
|
//
|
|
// Reorder the pixel data.
|
|
//
|
|
|
|
const char *srcPtr = reinterpret_cast<const char *>(src);
|
|
|
|
{
|
|
char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0));
|
|
char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2;
|
|
const char *stop = srcPtr + src_size;
|
|
|
|
for (;;) {
|
|
if (srcPtr < stop)
|
|
*(t1++) = *(srcPtr++);
|
|
else
|
|
break;
|
|
|
|
if (srcPtr < stop)
|
|
*(t2++) = *(srcPtr++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Predictor.
|
|
//
|
|
|
|
{
|
|
unsigned char *t = &tmpBuf.at(0) + 1;
|
|
unsigned char *stop = &tmpBuf.at(0) + src_size;
|
|
int p = t[-1];
|
|
|
|
while (t < stop) {
|
|
int d = int(t[0]) - p + (128 + 256);
|
|
p = t[0];
|
|
t[0] = static_cast<unsigned char>(d);
|
|
++t;
|
|
}
|
|
}
|
|
|
|
// outSize will be (srcSiz * 3) / 2 at max.
|
|
int outSize = rleCompress(static_cast<int>(src_size),
|
|
reinterpret_cast<const char *>(&tmpBuf.at(0)),
|
|
reinterpret_cast<signed char *>(dst));
|
|
assert(outSize > 0);
|
|
|
|
compressedSize = static_cast<tinyexr::tinyexr_uint64>(outSize);
|
|
|
|
// Use uncompressed data when compressed data is larger than uncompressed.
|
|
// (Issue 40)
|
|
if (compressedSize >= src_size) {
|
|
compressedSize = src_size;
|
|
memcpy(dst, src, src_size);
|
|
}
|
|
}
|
|
|
|
static bool DecompressRle(unsigned char *dst,
|
|
const unsigned long uncompressed_size,
|
|
const unsigned char *src, unsigned long src_size) {
|
|
if (uncompressed_size == src_size) {
|
|
// Data is not compressed(Issue 40).
|
|
memcpy(dst, src, src_size);
|
|
return true;
|
|
}
|
|
|
|
// Workaround for issue #112.
|
|
// TODO(syoyo): Add more robust out-of-bounds check in `rleUncompress`.
|
|
if (src_size <= 2) {
|
|
return false;
|
|
}
|
|
|
|
std::vector<unsigned char> tmpBuf(uncompressed_size);
|
|
|
|
int ret = rleUncompress(static_cast<int>(src_size),
|
|
static_cast<int>(uncompressed_size),
|
|
reinterpret_cast<const signed char *>(src),
|
|
reinterpret_cast<char *>(&tmpBuf.at(0)));
|
|
if (ret != static_cast<int>(uncompressed_size)) {
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Apply EXR-specific? postprocess. Grabbed from OpenEXR's
|
|
// ImfRleCompressor.cpp
|
|
//
|
|
|
|
// Predictor.
|
|
{
|
|
unsigned char *t = &tmpBuf.at(0) + 1;
|
|
unsigned char *stop = &tmpBuf.at(0) + uncompressed_size;
|
|
|
|
while (t < stop) {
|
|
int d = int(t[-1]) + int(t[0]) - 128;
|
|
t[0] = static_cast<unsigned char>(d);
|
|
++t;
|
|
}
|
|
}
|
|
|
|
// Reorder the pixel data.
|
|
{
|
|
const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0));
|
|
const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) +
|
|
(uncompressed_size + 1) / 2;
|
|
char *s = reinterpret_cast<char *>(dst);
|
|
char *stop = s + uncompressed_size;
|
|
|
|
for (;;) {
|
|
if (s < stop)
|
|
*(s++) = *(t1++);
|
|
else
|
|
break;
|
|
|
|
if (s < stop)
|
|
*(s++) = *(t2++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#if TINYEXR_USE_PIZ
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wc++11-long-long"
|
|
#pragma clang diagnostic ignored "-Wold-style-cast"
|
|
#pragma clang diagnostic ignored "-Wpadded"
|
|
#pragma clang diagnostic ignored "-Wsign-conversion"
|
|
#pragma clang diagnostic ignored "-Wc++11-extensions"
|
|
#pragma clang diagnostic ignored "-Wconversion"
|
|
#pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
|
|
|
|
#if __has_warning("-Wcast-qual")
|
|
#pragma clang diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
#if __has_warning("-Wextra-semi-stmt")
|
|
#pragma clang diagnostic ignored "-Wextra-semi-stmt"
|
|
#endif
|
|
|
|
#endif
|
|
|
|
//
|
|
// PIZ compress/uncompress, based on OpenEXR's ImfPizCompressor.cpp
|
|
//
|
|
// -----------------------------------------------------------------
|
|
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC)
|
|
// (3 clause BSD license)
|
|
//
|
|
|
|
struct PIZChannelData {
|
|
unsigned short *start;
|
|
unsigned short *end;
|
|
int nx;
|
|
int ny;
|
|
int ys;
|
|
int size;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// 16-bit Haar Wavelet encoding and decoding
|
|
//
|
|
// The source code in this file is derived from the encoding
|
|
// and decoding routines written by Christian Rouet for his
|
|
// PIZ image file format.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
// Wavelet basis functions without modulo arithmetic; they produce
|
|
// the best compression ratios when the wavelet-transformed data are
|
|
// Huffman-encoded, but the wavelet transform works only for 14-bit
|
|
// data (untransformed data values must be less than (1 << 14)).
|
|
//
|
|
|
|
inline void wenc14(unsigned short a, unsigned short b, unsigned short &l,
|
|
unsigned short &h) {
|
|
short as = static_cast<short>(a);
|
|
short bs = static_cast<short>(b);
|
|
|
|
short ms = (as + bs) >> 1;
|
|
short ds = as - bs;
|
|
|
|
l = static_cast<unsigned short>(ms);
|
|
h = static_cast<unsigned short>(ds);
|
|
}
|
|
|
|
inline void wdec14(unsigned short l, unsigned short h, unsigned short &a,
|
|
unsigned short &b) {
|
|
short ls = static_cast<short>(l);
|
|
short hs = static_cast<short>(h);
|
|
|
|
int hi = hs;
|
|
int ai = ls + (hi & 1) + (hi >> 1);
|
|
|
|
short as = static_cast<short>(ai);
|
|
short bs = static_cast<short>(ai - hi);
|
|
|
|
a = static_cast<unsigned short>(as);
|
|
b = static_cast<unsigned short>(bs);
|
|
}
|
|
|
|
//
|
|
// Wavelet basis functions with modulo arithmetic; they work with full
|
|
// 16-bit data, but Huffman-encoding the wavelet-transformed data doesn't
|
|
// compress the data quite as well.
|
|
//
|
|
|
|
const int NBITS = 16;
|
|
const int A_OFFSET = 1 << (NBITS - 1);
|
|
const int M_OFFSET = 1 << (NBITS - 1);
|
|
const int MOD_MASK = (1 << NBITS) - 1;
|
|
|
|
inline void wenc16(unsigned short a, unsigned short b, unsigned short &l,
|
|
unsigned short &h) {
|
|
int ao = (a + A_OFFSET) & MOD_MASK;
|
|
int m = ((ao + b) >> 1);
|
|
int d = ao - b;
|
|
|
|
if (d < 0) m = (m + M_OFFSET) & MOD_MASK;
|
|
|
|
d &= MOD_MASK;
|
|
|
|
l = static_cast<unsigned short>(m);
|
|
h = static_cast<unsigned short>(d);
|
|
}
|
|
|
|
inline void wdec16(unsigned short l, unsigned short h, unsigned short &a,
|
|
unsigned short &b) {
|
|
int m = l;
|
|
int d = h;
|
|
int bb = (m - (d >> 1)) & MOD_MASK;
|
|
int aa = (d + bb - A_OFFSET) & MOD_MASK;
|
|
b = static_cast<unsigned short>(bb);
|
|
a = static_cast<unsigned short>(aa);
|
|
}
|
|
|
|
//
|
|
// 2D Wavelet encoding:
|
|
//
|
|
|
|
static void wav2Encode(
|
|
unsigned short *in, // io: values are transformed in place
|
|
int nx, // i : x size
|
|
int ox, // i : x offset
|
|
int ny, // i : y size
|
|
int oy, // i : y offset
|
|
unsigned short mx) // i : maximum in[x][y] value
|
|
{
|
|
bool w14 = (mx < (1 << 14));
|
|
int n = (nx > ny) ? ny : nx;
|
|
int p = 1; // == 1 << level
|
|
int p2 = 2; // == 1 << (level+1)
|
|
|
|
//
|
|
// Hierachical loop on smaller dimension n
|
|
//
|
|
|
|
while (p2 <= n) {
|
|
unsigned short *py = in;
|
|
unsigned short *ey = in + oy * (ny - p2);
|
|
int oy1 = oy * p;
|
|
int oy2 = oy * p2;
|
|
int ox1 = ox * p;
|
|
int ox2 = ox * p2;
|
|
unsigned short i00, i01, i10, i11;
|
|
|
|
//
|
|
// Y loop
|
|
//
|
|
|
|
for (; py <= ey; py += oy2) {
|
|
unsigned short *px = py;
|
|
unsigned short *ex = py + ox * (nx - p2);
|
|
|
|
//
|
|
// X loop
|
|
//
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
unsigned short *p01 = px + ox1;
|
|
unsigned short *p10 = px + oy1;
|
|
unsigned short *p11 = p10 + ox1;
|
|
|
|
//
|
|
// 2D wavelet encoding
|
|
//
|
|
|
|
if (w14) {
|
|
wenc14(*px, *p01, i00, i01);
|
|
wenc14(*p10, *p11, i10, i11);
|
|
wenc14(i00, i10, *px, *p10);
|
|
wenc14(i01, i11, *p01, *p11);
|
|
} else {
|
|
wenc16(*px, *p01, i00, i01);
|
|
wenc16(*p10, *p11, i10, i11);
|
|
wenc16(i00, i10, *px, *p10);
|
|
wenc16(i01, i11, *p01, *p11);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Encode (1D) odd column (still in Y loop)
|
|
//
|
|
|
|
if (nx & p) {
|
|
unsigned short *p10 = px + oy1;
|
|
|
|
if (w14)
|
|
wenc14(*px, *p10, i00, *p10);
|
|
else
|
|
wenc16(*px, *p10, i00, *p10);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Encode (1D) odd line (must loop in X)
|
|
//
|
|
|
|
if (ny & p) {
|
|
unsigned short *px = py;
|
|
unsigned short *ex = py + ox * (nx - p2);
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
unsigned short *p01 = px + ox1;
|
|
|
|
if (w14)
|
|
wenc14(*px, *p01, i00, *p01);
|
|
else
|
|
wenc16(*px, *p01, i00, *p01);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Next level
|
|
//
|
|
|
|
p = p2;
|
|
p2 <<= 1;
|
|
}
|
|
}
|
|
|
|
//
|
|
// 2D Wavelet decoding:
|
|
//
|
|
|
|
static void wav2Decode(
|
|
unsigned short *in, // io: values are transformed in place
|
|
int nx, // i : x size
|
|
int ox, // i : x offset
|
|
int ny, // i : y size
|
|
int oy, // i : y offset
|
|
unsigned short mx) // i : maximum in[x][y] value
|
|
{
|
|
bool w14 = (mx < (1 << 14));
|
|
int n = (nx > ny) ? ny : nx;
|
|
int p = 1;
|
|
int p2;
|
|
|
|
//
|
|
// Search max level
|
|
//
|
|
|
|
while (p <= n) p <<= 1;
|
|
|
|
p >>= 1;
|
|
p2 = p;
|
|
p >>= 1;
|
|
|
|
//
|
|
// Hierarchical loop on smaller dimension n
|
|
//
|
|
|
|
while (p >= 1) {
|
|
unsigned short *py = in;
|
|
unsigned short *ey = in + oy * (ny - p2);
|
|
int oy1 = oy * p;
|
|
int oy2 = oy * p2;
|
|
int ox1 = ox * p;
|
|
int ox2 = ox * p2;
|
|
unsigned short i00, i01, i10, i11;
|
|
|
|
//
|
|
// Y loop
|
|
//
|
|
|
|
for (; py <= ey; py += oy2) {
|
|
unsigned short *px = py;
|
|
unsigned short *ex = py + ox * (nx - p2);
|
|
|
|
//
|
|
// X loop
|
|
//
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
unsigned short *p01 = px + ox1;
|
|
unsigned short *p10 = px + oy1;
|
|
unsigned short *p11 = p10 + ox1;
|
|
|
|
//
|
|
// 2D wavelet decoding
|
|
//
|
|
|
|
if (w14) {
|
|
wdec14(*px, *p10, i00, i10);
|
|
wdec14(*p01, *p11, i01, i11);
|
|
wdec14(i00, i01, *px, *p01);
|
|
wdec14(i10, i11, *p10, *p11);
|
|
} else {
|
|
wdec16(*px, *p10, i00, i10);
|
|
wdec16(*p01, *p11, i01, i11);
|
|
wdec16(i00, i01, *px, *p01);
|
|
wdec16(i10, i11, *p10, *p11);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Decode (1D) odd column (still in Y loop)
|
|
//
|
|
|
|
if (nx & p) {
|
|
unsigned short *p10 = px + oy1;
|
|
|
|
if (w14)
|
|
wdec14(*px, *p10, i00, *p10);
|
|
else
|
|
wdec16(*px, *p10, i00, *p10);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Decode (1D) odd line (must loop in X)
|
|
//
|
|
|
|
if (ny & p) {
|
|
unsigned short *px = py;
|
|
unsigned short *ex = py + ox * (nx - p2);
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
unsigned short *p01 = px + ox1;
|
|
|
|
if (w14)
|
|
wdec14(*px, *p01, i00, *p01);
|
|
else
|
|
wdec16(*px, *p01, i00, *p01);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Next level
|
|
//
|
|
|
|
p2 = p;
|
|
p >>= 1;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// 16-bit Huffman compression and decompression.
|
|
//
|
|
// The source code in this file is derived from the 8-bit
|
|
// Huffman compression and decompression routines written
|
|
// by Christian Rouet for his PIZ image file format.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Adds some modification for tinyexr.
|
|
|
|
const int HUF_ENCBITS = 16; // literal (value) bit length
|
|
const int HUF_DECBITS = 14; // decoding bit size (>= 8)
|
|
|
|
const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
|
|
const int HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
|
|
const int HUF_DECMASK = HUF_DECSIZE - 1;
|
|
|
|
struct HufDec { // short code long code
|
|
//-------------------------------
|
|
int len : 8; // code length 0
|
|
int lit : 24; // lit p size
|
|
int *p; // 0 lits
|
|
};
|
|
|
|
inline long long hufLength(long long code) { return code & 63; }
|
|
|
|
inline long long hufCode(long long code) { return code >> 6; }
|
|
|
|
inline void outputBits(int nBits, long long bits, long long &c, int &lc,
|
|
char *&out) {
|
|
c <<= nBits;
|
|
lc += nBits;
|
|
|
|
c |= bits;
|
|
|
|
while (lc >= 8) *out++ = static_cast<char>((c >> (lc -= 8)));
|
|
}
|
|
|
|
inline long long getBits(int nBits, long long &c, int &lc, const char *&in) {
|
|
while (lc < nBits) {
|
|
c = (c << 8) | *(reinterpret_cast<const unsigned char *>(in++));
|
|
lc += 8;
|
|
}
|
|
|
|
lc -= nBits;
|
|
return (c >> lc) & ((1 << nBits) - 1);
|
|
}
|
|
|
|
//
|
|
// ENCODING TABLE BUILDING & (UN)PACKING
|
|
//
|
|
|
|
//
|
|
// Build a "canonical" Huffman code table:
|
|
// - for each (uncompressed) symbol, hcode contains the length
|
|
// of the corresponding code (in the compressed data)
|
|
// - canonical codes are computed and stored in hcode
|
|
// - the rules for constructing canonical codes are as follows:
|
|
// * shorter codes (if filled with zeroes to the right)
|
|
// have a numerically higher value than longer codes
|
|
// * for codes with the same length, numerical values
|
|
// increase with numerical symbol values
|
|
// - because the canonical code table can be constructed from
|
|
// symbol lengths alone, the code table can be transmitted
|
|
// without sending the actual code values
|
|
// - see http://www.compressconsult.com/huffman/
|
|
//
|
|
|
|
static void hufCanonicalCodeTable(long long hcode[HUF_ENCSIZE]) {
|
|
long long n[59];
|
|
|
|
//
|
|
// For each i from 0 through 58, count the
|
|
// number of different codes of length i, and
|
|
// store the count in n[i].
|
|
//
|
|
|
|
for (int i = 0; i <= 58; ++i) n[i] = 0;
|
|
|
|
for (int i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1;
|
|
|
|
//
|
|
// For each i from 58 through 1, compute the
|
|
// numerically lowest code with length i, and
|
|
// store that code in n[i].
|
|
//
|
|
|
|
long long c = 0;
|
|
|
|
for (int i = 58; i > 0; --i) {
|
|
long long nc = ((c + n[i]) >> 1);
|
|
n[i] = c;
|
|
c = nc;
|
|
}
|
|
|
|
//
|
|
// hcode[i] contains the length, l, of the
|
|
// code for symbol i. Assign the next available
|
|
// code of length l to the symbol and store both
|
|
// l and the code in hcode[i].
|
|
//
|
|
|
|
for (int i = 0; i < HUF_ENCSIZE; ++i) {
|
|
int l = static_cast<int>(hcode[i]);
|
|
|
|
if (l > 0) hcode[i] = l | (n[l]++ << 6);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Compute Huffman codes (based on frq input) and store them in frq:
|
|
// - code structure is : [63:lsb - 6:msb] | [5-0: bit length];
|
|
// - max code length is 58 bits;
|
|
// - codes outside the range [im-iM] have a null length (unused values);
|
|
// - original frequencies are destroyed;
|
|
// - encoding tables are used by hufEncode() and hufBuildDecTable();
|
|
//
|
|
|
|
struct FHeapCompare {
|
|
bool operator()(long long *a, long long *b) { return *a > *b; }
|
|
};
|
|
|
|
static void hufBuildEncTable(
|
|
long long *frq, // io: input frequencies [HUF_ENCSIZE], output table
|
|
int *im, // o: min frq index
|
|
int *iM) // o: max frq index
|
|
{
|
|
//
|
|
// This function assumes that when it is called, array frq
|
|
// indicates the frequency of all possible symbols in the data
|
|
// that are to be Huffman-encoded. (frq[i] contains the number
|
|
// of occurrences of symbol i in the data.)
|
|
//
|
|
// The loop below does three things:
|
|
//
|
|
// 1) Finds the minimum and maximum indices that point
|
|
// to non-zero entries in frq:
|
|
//
|
|
// frq[im] != 0, and frq[i] == 0 for all i < im
|
|
// frq[iM] != 0, and frq[i] == 0 for all i > iM
|
|
//
|
|
// 2) Fills array fHeap with pointers to all non-zero
|
|
// entries in frq.
|
|
//
|
|
// 3) Initializes array hlink such that hlink[i] == i
|
|
// for all array entries.
|
|
//
|
|
|
|
std::vector<int> hlink(HUF_ENCSIZE);
|
|
std::vector<long long *> fHeap(HUF_ENCSIZE);
|
|
|
|
*im = 0;
|
|
|
|
while (!frq[*im]) (*im)++;
|
|
|
|
int nf = 0;
|
|
|
|
for (int i = *im; i < HUF_ENCSIZE; i++) {
|
|
hlink[i] = i;
|
|
|
|
if (frq[i]) {
|
|
fHeap[nf] = &frq[i];
|
|
nf++;
|
|
*iM = i;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Add a pseudo-symbol, with a frequency count of 1, to frq;
|
|
// adjust the fHeap and hlink array accordingly. Function
|
|
// hufEncode() uses the pseudo-symbol for run-length encoding.
|
|
//
|
|
|
|
(*iM)++;
|
|
frq[*iM] = 1;
|
|
fHeap[nf] = &frq[*iM];
|
|
nf++;
|
|
|
|
//
|
|
// Build an array, scode, such that scode[i] contains the number
|
|
// of bits assigned to symbol i. Conceptually this is done by
|
|
// constructing a tree whose leaves are the symbols with non-zero
|
|
// frequency:
|
|
//
|
|
// Make a heap that contains all symbols with a non-zero frequency,
|
|
// with the least frequent symbol on top.
|
|
//
|
|
// Repeat until only one symbol is left on the heap:
|
|
//
|
|
// Take the two least frequent symbols off the top of the heap.
|
|
// Create a new node that has first two nodes as children, and
|
|
// whose frequency is the sum of the frequencies of the first
|
|
// two nodes. Put the new node back into the heap.
|
|
//
|
|
// The last node left on the heap is the root of the tree. For each
|
|
// leaf node, the distance between the root and the leaf is the length
|
|
// of the code for the corresponding symbol.
|
|
//
|
|
// The loop below doesn't actually build the tree; instead we compute
|
|
// the distances of the leaves from the root on the fly. When a new
|
|
// node is added to the heap, then that node's descendants are linked
|
|
// into a single linear list that starts at the new node, and the code
|
|
// lengths of the descendants (that is, their distance from the root
|
|
// of the tree) are incremented by one.
|
|
//
|
|
|
|
std::make_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
|
|
|
|
std::vector<long long> scode(HUF_ENCSIZE);
|
|
memset(scode.data(), 0, sizeof(long long) * HUF_ENCSIZE);
|
|
|
|
while (nf > 1) {
|
|
//
|
|
// Find the indices, mm and m, of the two smallest non-zero frq
|
|
// values in fHeap, add the smallest frq to the second-smallest
|
|
// frq, and remove the smallest frq value from fHeap.
|
|
//
|
|
|
|
int mm = fHeap[0] - frq;
|
|
std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
|
|
--nf;
|
|
|
|
int m = fHeap[0] - frq;
|
|
std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
|
|
|
|
frq[m] += frq[mm];
|
|
std::push_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
|
|
|
|
//
|
|
// The entries in scode are linked into lists with the
|
|
// entries in hlink serving as "next" pointers and with
|
|
// the end of a list marked by hlink[j] == j.
|
|
//
|
|
// Traverse the lists that start at scode[m] and scode[mm].
|
|
// For each element visited, increment the length of the
|
|
// corresponding code by one bit. (If we visit scode[j]
|
|
// during the traversal, then the code for symbol j becomes
|
|
// one bit longer.)
|
|
//
|
|
// Merge the lists that start at scode[m] and scode[mm]
|
|
// into a single list that starts at scode[m].
|
|
//
|
|
|
|
//
|
|
// Add a bit to all codes in the first list.
|
|
//
|
|
|
|
for (int j = m;; j = hlink[j]) {
|
|
scode[j]++;
|
|
|
|
assert(scode[j] <= 58);
|
|
|
|
if (hlink[j] == j) {
|
|
//
|
|
// Merge the two lists.
|
|
//
|
|
|
|
hlink[j] = mm;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Add a bit to all codes in the second list
|
|
//
|
|
|
|
for (int j = mm;; j = hlink[j]) {
|
|
scode[j]++;
|
|
|
|
assert(scode[j] <= 58);
|
|
|
|
if (hlink[j] == j) break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Build a canonical Huffman code table, replacing the code
|
|
// lengths in scode with (code, code length) pairs. Copy the
|
|
// code table from scode into frq.
|
|
//
|
|
|
|
hufCanonicalCodeTable(scode.data());
|
|
memcpy(frq, scode.data(), sizeof(long long) * HUF_ENCSIZE);
|
|
}
|
|
|
|
//
|
|
// Pack an encoding table:
|
|
// - only code lengths, not actual codes, are stored
|
|
// - runs of zeroes are compressed as follows:
|
|
//
|
|
// unpacked packed
|
|
// --------------------------------
|
|
// 1 zero 0 (6 bits)
|
|
// 2 zeroes 59
|
|
// 3 zeroes 60
|
|
// 4 zeroes 61
|
|
// 5 zeroes 62
|
|
// n zeroes (6 or more) 63 n-6 (6 + 8 bits)
|
|
//
|
|
|
|
const int SHORT_ZEROCODE_RUN = 59;
|
|
const int LONG_ZEROCODE_RUN = 63;
|
|
const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
|
|
const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
|
|
|
|
static void hufPackEncTable(
|
|
const long long *hcode, // i : encoding table [HUF_ENCSIZE]
|
|
int im, // i : min hcode index
|
|
int iM, // i : max hcode index
|
|
char **pcode) // o: ptr to packed table (updated)
|
|
{
|
|
char *p = *pcode;
|
|
long long c = 0;
|
|
int lc = 0;
|
|
|
|
for (; im <= iM; im++) {
|
|
int l = hufLength(hcode[im]);
|
|
|
|
if (l == 0) {
|
|
int zerun = 1;
|
|
|
|
while ((im < iM) && (zerun < LONGEST_LONG_RUN)) {
|
|
if (hufLength(hcode[im + 1]) > 0) break;
|
|
im++;
|
|
zerun++;
|
|
}
|
|
|
|
if (zerun >= 2) {
|
|
if (zerun >= SHORTEST_LONG_RUN) {
|
|
outputBits(6, LONG_ZEROCODE_RUN, c, lc, p);
|
|
outputBits(8, zerun - SHORTEST_LONG_RUN, c, lc, p);
|
|
} else {
|
|
outputBits(6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
outputBits(6, l, c, lc, p);
|
|
}
|
|
|
|
if (lc > 0) *p++ = (unsigned char)(c << (8 - lc));
|
|
|
|
*pcode = p;
|
|
}
|
|
|
|
//
|
|
// Unpack an encoding table packed by hufPackEncTable():
|
|
//
|
|
|
|
static bool hufUnpackEncTable(
|
|
const char **pcode, // io: ptr to packed table (updated)
|
|
int ni, // i : input size (in bytes)
|
|
int im, // i : min hcode index
|
|
int iM, // i : max hcode index
|
|
long long *hcode) // o: encoding table [HUF_ENCSIZE]
|
|
{
|
|
memset(hcode, 0, sizeof(long long) * HUF_ENCSIZE);
|
|
|
|
const char *p = *pcode;
|
|
long long c = 0;
|
|
int lc = 0;
|
|
|
|
for (; im <= iM; im++) {
|
|
if (p - *pcode >= ni) {
|
|
return false;
|
|
}
|
|
|
|
long long l = hcode[im] = getBits(6, c, lc, p); // code length
|
|
|
|
if (l == (long long)LONG_ZEROCODE_RUN) {
|
|
if (p - *pcode > ni) {
|
|
return false;
|
|
}
|
|
|
|
int zerun = getBits(8, c, lc, p) + SHORTEST_LONG_RUN;
|
|
|
|
if (im + zerun > iM + 1) {
|
|
return false;
|
|
}
|
|
|
|
while (zerun--) hcode[im++] = 0;
|
|
|
|
im--;
|
|
} else if (l >= (long long)SHORT_ZEROCODE_RUN) {
|
|
int zerun = l - SHORT_ZEROCODE_RUN + 2;
|
|
|
|
if (im + zerun > iM + 1) {
|
|
return false;
|
|
}
|
|
|
|
while (zerun--) hcode[im++] = 0;
|
|
|
|
im--;
|
|
}
|
|
}
|
|
|
|
*pcode = const_cast<char *>(p);
|
|
|
|
hufCanonicalCodeTable(hcode);
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// DECODING TABLE BUILDING
|
|
//
|
|
|
|
//
|
|
// Clear a newly allocated decoding table so that it contains only zeroes.
|
|
//
|
|
|
|
static void hufClearDecTable(HufDec *hdecod) // io: (allocated by caller)
|
|
// decoding table [HUF_DECSIZE]
|
|
{
|
|
for (int i = 0; i < HUF_DECSIZE; i++) {
|
|
hdecod[i].len = 0;
|
|
hdecod[i].lit = 0;
|
|
hdecod[i].p = NULL;
|
|
}
|
|
// memset(hdecod, 0, sizeof(HufDec) * HUF_DECSIZE);
|
|
}
|
|
|
|
//
|
|
// Build a decoding hash table based on the encoding table hcode:
|
|
// - short codes (<= HUF_DECBITS) are resolved with a single table access;
|
|
// - long code entry allocations are not optimized, because long codes are
|
|
// unfrequent;
|
|
// - decoding tables are used by hufDecode();
|
|
//
|
|
|
|
static bool hufBuildDecTable(const long long *hcode, // i : encoding table
|
|
int im, // i : min index in hcode
|
|
int iM, // i : max index in hcode
|
|
HufDec *hdecod) // o: (allocated by caller)
|
|
// decoding table [HUF_DECSIZE]
|
|
{
|
|
//
|
|
// Init hashtable & loop on all codes.
|
|
// Assumes that hufClearDecTable(hdecod) has already been called.
|
|
//
|
|
|
|
for (; im <= iM; im++) {
|
|
long long c = hufCode(hcode[im]);
|
|
int l = hufLength(hcode[im]);
|
|
|
|
if (c >> l) {
|
|
//
|
|
// Error: c is supposed to be an l-bit code,
|
|
// but c contains a value that is greater
|
|
// than the largest l-bit number.
|
|
//
|
|
|
|
// invalidTableEntry();
|
|
return false;
|
|
}
|
|
|
|
if (l > HUF_DECBITS) {
|
|
//
|
|
// Long code: add a secondary entry
|
|
//
|
|
|
|
HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
|
|
|
|
if (pl->len) {
|
|
//
|
|
// Error: a short code has already
|
|
// been stored in table entry *pl.
|
|
//
|
|
|
|
// invalidTableEntry();
|
|
return false;
|
|
}
|
|
|
|
pl->lit++;
|
|
|
|
if (pl->p) {
|
|
int *p = pl->p;
|
|
pl->p = new int[pl->lit];
|
|
|
|
for (int i = 0; i < pl->lit - 1; ++i) pl->p[i] = p[i];
|
|
|
|
delete[] p;
|
|
} else {
|
|
pl->p = new int[1];
|
|
}
|
|
|
|
pl->p[pl->lit - 1] = im;
|
|
} else if (l) {
|
|
//
|
|
// Short code: init all primary entries
|
|
//
|
|
|
|
HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
|
|
|
|
for (long long i = 1ULL << (HUF_DECBITS - l); i > 0; i--, pl++) {
|
|
if (pl->len || pl->p) {
|
|
//
|
|
// Error: a short code or a long code has
|
|
// already been stored in table entry *pl.
|
|
//
|
|
|
|
// invalidTableEntry();
|
|
return false;
|
|
}
|
|
|
|
pl->len = l;
|
|
pl->lit = im;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Free the long code entries of a decoding table built by hufBuildDecTable()
|
|
//
|
|
|
|
static void hufFreeDecTable(HufDec *hdecod) // io: Decoding table
|
|
{
|
|
for (int i = 0; i < HUF_DECSIZE; i++) {
|
|
if (hdecod[i].p) {
|
|
delete[] hdecod[i].p;
|
|
hdecod[i].p = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// ENCODING
|
|
//
|
|
|
|
inline void outputCode(long long code, long long &c, int &lc, char *&out) {
|
|
outputBits(hufLength(code), hufCode(code), c, lc, out);
|
|
}
|
|
|
|
inline void sendCode(long long sCode, int runCount, long long runCode,
|
|
long long &c, int &lc, char *&out) {
|
|
//
|
|
// Output a run of runCount instances of the symbol sCount.
|
|
// Output the symbols explicitly, or if that is shorter, output
|
|
// the sCode symbol once followed by a runCode symbol and runCount
|
|
// expressed as an 8-bit number.
|
|
//
|
|
|
|
if (hufLength(sCode) + hufLength(runCode) + 8 < hufLength(sCode) * runCount) {
|
|
outputCode(sCode, c, lc, out);
|
|
outputCode(runCode, c, lc, out);
|
|
outputBits(8, runCount, c, lc, out);
|
|
} else {
|
|
while (runCount-- >= 0) outputCode(sCode, c, lc, out);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Encode (compress) ni values based on the Huffman encoding table hcode:
|
|
//
|
|
|
|
static int hufEncode // return: output size (in bits)
|
|
(const long long *hcode, // i : encoding table
|
|
const unsigned short *in, // i : uncompressed input buffer
|
|
const int ni, // i : input buffer size (in bytes)
|
|
int rlc, // i : rl code
|
|
char *out) // o: compressed output buffer
|
|
{
|
|
char *outStart = out;
|
|
long long c = 0; // bits not yet written to out
|
|
int lc = 0; // number of valid bits in c (LSB)
|
|
int s = in[0];
|
|
int cs = 0;
|
|
|
|
//
|
|
// Loop on input values
|
|
//
|
|
|
|
for (int i = 1; i < ni; i++) {
|
|
//
|
|
// Count same values or send code
|
|
//
|
|
|
|
if (s == in[i] && cs < 255) {
|
|
cs++;
|
|
} else {
|
|
sendCode(hcode[s], cs, hcode[rlc], c, lc, out);
|
|
cs = 0;
|
|
}
|
|
|
|
s = in[i];
|
|
}
|
|
|
|
//
|
|
// Send remaining code
|
|
//
|
|
|
|
sendCode(hcode[s], cs, hcode[rlc], c, lc, out);
|
|
|
|
if (lc) *out = (c << (8 - lc)) & 0xff;
|
|
|
|
return (out - outStart) * 8 + lc;
|
|
}
|
|
|
|
//
|
|
// DECODING
|
|
//
|
|
|
|
//
|
|
// In order to force the compiler to inline them,
|
|
// getChar() and getCode() are implemented as macros
|
|
// instead of "inline" functions.
|
|
//
|
|
|
|
#define getChar(c, lc, in) \
|
|
{ \
|
|
c = (c << 8) | *(unsigned char *)(in++); \
|
|
lc += 8; \
|
|
}
|
|
|
|
#if 0
|
|
#define getCode(po, rlc, c, lc, in, out, ob, oe) \
|
|
{ \
|
|
if (po == rlc) { \
|
|
if (lc < 8) getChar(c, lc, in); \
|
|
\
|
|
lc -= 8; \
|
|
\
|
|
unsigned char cs = (c >> lc); \
|
|
\
|
|
if (out + cs > oe) return false; \
|
|
\
|
|
/* TinyEXR issue 78 */ \
|
|
unsigned short s = out[-1]; \
|
|
\
|
|
while (cs-- > 0) *out++ = s; \
|
|
} else if (out < oe) { \
|
|
*out++ = po; \
|
|
} else { \
|
|
return false; \
|
|
} \
|
|
}
|
|
#else
|
|
static bool getCode(int po, int rlc, long long &c, int &lc, const char *&in,
|
|
const char *in_end, unsigned short *&out,
|
|
const unsigned short *ob, const unsigned short *oe) {
|
|
(void)ob;
|
|
if (po == rlc) {
|
|
if (lc < 8) {
|
|
/* TinyEXR issue 78 */
|
|
if ((in + 1) >= in_end) {
|
|
return false;
|
|
}
|
|
|
|
getChar(c, lc, in);
|
|
}
|
|
|
|
lc -= 8;
|
|
|
|
unsigned char cs = (c >> lc);
|
|
|
|
if (out + cs > oe) return false;
|
|
|
|
// Bounds check for safety
|
|
// Issue 100.
|
|
if ((out - 1) < ob) return false;
|
|
unsigned short s = out[-1];
|
|
|
|
while (cs-- > 0) *out++ = s;
|
|
} else if (out < oe) {
|
|
*out++ = po;
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Decode (uncompress) ni bits based on encoding & decoding tables:
|
|
//
|
|
|
|
static bool hufDecode(const long long *hcode, // i : encoding table
|
|
const HufDec *hdecod, // i : decoding table
|
|
const char *in, // i : compressed input buffer
|
|
int ni, // i : input size (in bits)
|
|
int rlc, // i : run-length code
|
|
int no, // i : expected output size (in bytes)
|
|
unsigned short *out) // o: uncompressed output buffer
|
|
{
|
|
long long c = 0;
|
|
int lc = 0;
|
|
unsigned short *outb = out; // begin
|
|
unsigned short *oe = out + no; // end
|
|
const char *ie = in + (ni + 7) / 8; // input byte size
|
|
|
|
//
|
|
// Loop on input bytes
|
|
//
|
|
|
|
while (in < ie) {
|
|
getChar(c, lc, in);
|
|
|
|
//
|
|
// Access decoding table
|
|
//
|
|
|
|
while (lc >= HUF_DECBITS) {
|
|
const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
|
|
|
|
if (pl.len) {
|
|
//
|
|
// Get short code
|
|
//
|
|
|
|
lc -= pl.len;
|
|
// std::cout << "lit = " << pl.lit << std::endl;
|
|
// std::cout << "rlc = " << rlc << std::endl;
|
|
// std::cout << "c = " << c << std::endl;
|
|
// std::cout << "lc = " << lc << std::endl;
|
|
// std::cout << "in = " << in << std::endl;
|
|
// std::cout << "out = " << out << std::endl;
|
|
// std::cout << "oe = " << oe << std::endl;
|
|
if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!pl.p) {
|
|
return false;
|
|
}
|
|
// invalidCode(); // wrong code
|
|
|
|
//
|
|
// Search long code
|
|
//
|
|
|
|
int j;
|
|
|
|
for (j = 0; j < pl.lit; j++) {
|
|
int l = hufLength(hcode[pl.p[j]]);
|
|
|
|
while (lc < l && in < ie) // get more bits
|
|
getChar(c, lc, in);
|
|
|
|
if (lc >= l) {
|
|
if (hufCode(hcode[pl.p[j]]) ==
|
|
((c >> (lc - l)) & (((long long)(1) << l) - 1))) {
|
|
//
|
|
// Found : get long code
|
|
//
|
|
|
|
lc -= l;
|
|
if (!getCode(pl.p[j], rlc, c, lc, in, ie, out, outb, oe)) {
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (j == pl.lit) {
|
|
return false;
|
|
// invalidCode(); // Not found
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Get remaining (short) codes
|
|
//
|
|
|
|
int i = (8 - ni) & 7;
|
|
c >>= i;
|
|
lc -= i;
|
|
|
|
while (lc > 0) {
|
|
const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
|
|
|
|
if (pl.len) {
|
|
lc -= pl.len;
|
|
if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
// invalidCode(); // wrong (long) code
|
|
}
|
|
}
|
|
|
|
if (out - outb != no) {
|
|
return false;
|
|
}
|
|
// notEnoughData ();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void countFrequencies(std::vector<long long> &freq,
|
|
const unsigned short data[/*n*/], int n) {
|
|
for (int i = 0; i < HUF_ENCSIZE; ++i) freq[i] = 0;
|
|
|
|
for (int i = 0; i < n; ++i) ++freq[data[i]];
|
|
}
|
|
|
|
static void writeUInt(char buf[4], unsigned int i) {
|
|
unsigned char *b = (unsigned char *)buf;
|
|
|
|
b[0] = i;
|
|
b[1] = i >> 8;
|
|
b[2] = i >> 16;
|
|
b[3] = i >> 24;
|
|
}
|
|
|
|
static unsigned int readUInt(const char buf[4]) {
|
|
const unsigned char *b = (const unsigned char *)buf;
|
|
|
|
return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) |
|
|
((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000);
|
|
}
|
|
|
|
//
|
|
// EXTERNAL INTERFACE
|
|
//
|
|
|
|
static int hufCompress(const unsigned short raw[], int nRaw,
|
|
char compressed[]) {
|
|
if (nRaw == 0) return 0;
|
|
|
|
std::vector<long long> freq(HUF_ENCSIZE);
|
|
|
|
countFrequencies(freq, raw, nRaw);
|
|
|
|
int im = 0;
|
|
int iM = 0;
|
|
hufBuildEncTable(freq.data(), &im, &iM);
|
|
|
|
char *tableStart = compressed + 20;
|
|
char *tableEnd = tableStart;
|
|
hufPackEncTable(freq.data(), im, iM, &tableEnd);
|
|
int tableLength = tableEnd - tableStart;
|
|
|
|
char *dataStart = tableEnd;
|
|
int nBits = hufEncode(freq.data(), raw, nRaw, iM, dataStart);
|
|
int data_length = (nBits + 7) / 8;
|
|
|
|
writeUInt(compressed, im);
|
|
writeUInt(compressed + 4, iM);
|
|
writeUInt(compressed + 8, tableLength);
|
|
writeUInt(compressed + 12, nBits);
|
|
writeUInt(compressed + 16, 0); // room for future extensions
|
|
|
|
return dataStart + data_length - compressed;
|
|
}
|
|
|
|
static bool hufUncompress(const char compressed[], int nCompressed,
|
|
std::vector<unsigned short> *raw) {
|
|
if (nCompressed == 0) {
|
|
if (raw->size() != 0) return false;
|
|
|
|
return false;
|
|
}
|
|
|
|
int im = readUInt(compressed);
|
|
int iM = readUInt(compressed + 4);
|
|
// int tableLength = readUInt (compressed + 8);
|
|
int nBits = readUInt(compressed + 12);
|
|
|
|
if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return false;
|
|
|
|
const char *ptr = compressed + 20;
|
|
|
|
//
|
|
// Fast decoder needs at least 2x64-bits of compressed data, and
|
|
// needs to be run-able on this platform. Otherwise, fall back
|
|
// to the original decoder
|
|
//
|
|
|
|
// if (FastHufDecoder::enabled() && nBits > 128)
|
|
//{
|
|
// FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM);
|
|
// fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw);
|
|
//}
|
|
// else
|
|
{
|
|
std::vector<long long> freq(HUF_ENCSIZE);
|
|
std::vector<HufDec> hdec(HUF_DECSIZE);
|
|
|
|
hufClearDecTable(&hdec.at(0));
|
|
|
|
hufUnpackEncTable(&ptr, nCompressed - (ptr - compressed), im, iM,
|
|
&freq.at(0));
|
|
|
|
{
|
|
if (nBits > 8 * (nCompressed - (ptr - compressed))) {
|
|
return false;
|
|
}
|
|
|
|
hufBuildDecTable(&freq.at(0), im, iM, &hdec.at(0));
|
|
hufDecode(&freq.at(0), &hdec.at(0), ptr, nBits, iM, raw->size(),
|
|
raw->data());
|
|
}
|
|
// catch (...)
|
|
//{
|
|
// hufFreeDecTable (hdec);
|
|
// throw;
|
|
//}
|
|
|
|
hufFreeDecTable(&hdec.at(0));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Functions to compress the range of values in the pixel data
|
|
//
|
|
|
|
const int USHORT_RANGE = (1 << 16);
|
|
const int BITMAP_SIZE = (USHORT_RANGE >> 3);
|
|
|
|
static void bitmapFromData(const unsigned short data[/*nData*/], int nData,
|
|
unsigned char bitmap[BITMAP_SIZE],
|
|
unsigned short &minNonZero,
|
|
unsigned short &maxNonZero) {
|
|
for (int i = 0; i < BITMAP_SIZE; ++i) bitmap[i] = 0;
|
|
|
|
for (int i = 0; i < nData; ++i) bitmap[data[i] >> 3] |= (1 << (data[i] & 7));
|
|
|
|
bitmap[0] &= ~1; // zero is not explicitly stored in
|
|
// the bitmap; we assume that the
|
|
// data always contain zeroes
|
|
minNonZero = BITMAP_SIZE - 1;
|
|
maxNonZero = 0;
|
|
|
|
for (int i = 0; i < BITMAP_SIZE; ++i) {
|
|
if (bitmap[i]) {
|
|
if (minNonZero > i) minNonZero = i;
|
|
if (maxNonZero < i) maxNonZero = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned short forwardLutFromBitmap(
|
|
const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) {
|
|
int k = 0;
|
|
|
|
for (int i = 0; i < USHORT_RANGE; ++i) {
|
|
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
|
|
lut[i] = k++;
|
|
else
|
|
lut[i] = 0;
|
|
}
|
|
|
|
return k - 1; // maximum value stored in lut[],
|
|
} // i.e. number of ones in bitmap minus 1
|
|
|
|
static unsigned short reverseLutFromBitmap(
|
|
const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) {
|
|
int k = 0;
|
|
|
|
for (int i = 0; i < USHORT_RANGE; ++i) {
|
|
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i;
|
|
}
|
|
|
|
int n = k - 1;
|
|
|
|
while (k < USHORT_RANGE) lut[k++] = 0;
|
|
|
|
return n; // maximum k where lut[k] is non-zero,
|
|
} // i.e. number of ones in bitmap minus 1
|
|
|
|
static void applyLut(const unsigned short lut[USHORT_RANGE],
|
|
unsigned short data[/*nData*/], int nData) {
|
|
for (int i = 0; i < nData; ++i) data[i] = lut[data[i]];
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif // __clang__
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize,
|
|
const unsigned char *inPtr, size_t inSize,
|
|
const std::vector<ChannelInfo> &channelInfo,
|
|
int data_width, int num_lines) {
|
|
std::vector<unsigned char> bitmap(BITMAP_SIZE);
|
|
unsigned short minNonZero;
|
|
unsigned short maxNonZero;
|
|
|
|
#if !MINIZ_LITTLE_ENDIAN
|
|
// @todo { PIZ compression on BigEndian architecture. }
|
|
assert(0);
|
|
return false;
|
|
#endif
|
|
|
|
// Assume `inSize` is multiple of 2 or 4.
|
|
std::vector<unsigned short> tmpBuffer(inSize / sizeof(unsigned short));
|
|
|
|
std::vector<PIZChannelData> channelData(channelInfo.size());
|
|
unsigned short *tmpBufferEnd = &tmpBuffer.at(0);
|
|
|
|
for (size_t c = 0; c < channelData.size(); c++) {
|
|
PIZChannelData &cd = channelData[c];
|
|
|
|
cd.start = tmpBufferEnd;
|
|
cd.end = cd.start;
|
|
|
|
cd.nx = data_width;
|
|
cd.ny = num_lines;
|
|
// cd.ys = c.channel().ySampling;
|
|
|
|
size_t pixelSize = sizeof(int); // UINT and FLOAT
|
|
if (channelInfo[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
pixelSize = sizeof(short);
|
|
}
|
|
|
|
cd.size = static_cast<int>(pixelSize / sizeof(short));
|
|
|
|
tmpBufferEnd += cd.nx * cd.ny * cd.size;
|
|
}
|
|
|
|
const unsigned char *ptr = inPtr;
|
|
for (int y = 0; y < num_lines; ++y) {
|
|
for (size_t i = 0; i < channelData.size(); ++i) {
|
|
PIZChannelData &cd = channelData[i];
|
|
|
|
// if (modp (y, cd.ys) != 0)
|
|
// continue;
|
|
|
|
size_t n = static_cast<size_t>(cd.nx * cd.size);
|
|
memcpy(cd.end, ptr, n * sizeof(unsigned short));
|
|
ptr += n * sizeof(unsigned short);
|
|
cd.end += n;
|
|
}
|
|
}
|
|
|
|
bitmapFromData(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()),
|
|
bitmap.data(), minNonZero, maxNonZero);
|
|
|
|
std::vector<unsigned short> lut(USHORT_RANGE);
|
|
unsigned short maxValue = forwardLutFromBitmap(bitmap.data(), lut.data());
|
|
applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()));
|
|
|
|
//
|
|
// Store range compression info in _outBuffer
|
|
//
|
|
|
|
char *buf = reinterpret_cast<char *>(outPtr);
|
|
|
|
memcpy(buf, &minNonZero, sizeof(unsigned short));
|
|
buf += sizeof(unsigned short);
|
|
memcpy(buf, &maxNonZero, sizeof(unsigned short));
|
|
buf += sizeof(unsigned short);
|
|
|
|
if (minNonZero <= maxNonZero) {
|
|
memcpy(buf, reinterpret_cast<char *>(&bitmap[0] + minNonZero),
|
|
maxNonZero - minNonZero + 1);
|
|
buf += maxNonZero - minNonZero + 1;
|
|
}
|
|
|
|
//
|
|
// Apply wavelet encoding
|
|
//
|
|
|
|
for (size_t i = 0; i < channelData.size(); ++i) {
|
|
PIZChannelData &cd = channelData[i];
|
|
|
|
for (int j = 0; j < cd.size; ++j) {
|
|
wav2Encode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size,
|
|
maxValue);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Apply Huffman encoding; append the result to _outBuffer
|
|
//
|
|
|
|
// length header(4byte), then huff data. Initialize length header with zero,
|
|
// then later fill it by `length`.
|
|
char *lengthPtr = buf;
|
|
int zero = 0;
|
|
memcpy(buf, &zero, sizeof(int));
|
|
buf += sizeof(int);
|
|
|
|
int length =
|
|
hufCompress(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), buf);
|
|
memcpy(lengthPtr, &length, sizeof(int));
|
|
|
|
(*outSize) = static_cast<unsigned int>(
|
|
(reinterpret_cast<unsigned char *>(buf) - outPtr) +
|
|
static_cast<unsigned int>(length));
|
|
|
|
// Use uncompressed data when compressed data is larger than uncompressed.
|
|
// (Issue 40)
|
|
if ((*outSize) >= inSize) {
|
|
(*outSize) = static_cast<unsigned int>(inSize);
|
|
memcpy(outPtr, inPtr, inSize);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr,
|
|
size_t tmpBufSize, size_t inLen, int num_channels,
|
|
const EXRChannelInfo *channels, int data_width,
|
|
int num_lines) {
|
|
if (inLen == tmpBufSize) {
|
|
// Data is not compressed(Issue 40).
|
|
memcpy(outPtr, inPtr, inLen);
|
|
return true;
|
|
}
|
|
|
|
std::vector<unsigned char> bitmap(BITMAP_SIZE);
|
|
unsigned short minNonZero;
|
|
unsigned short maxNonZero;
|
|
|
|
#if !MINIZ_LITTLE_ENDIAN
|
|
// @todo { PIZ compression on BigEndian architecture. }
|
|
assert(0);
|
|
return false;
|
|
#endif
|
|
|
|
memset(bitmap.data(), 0, BITMAP_SIZE);
|
|
|
|
const unsigned char *ptr = inPtr;
|
|
// minNonZero = *(reinterpret_cast<const unsigned short *>(ptr));
|
|
tinyexr::cpy2(&minNonZero, reinterpret_cast<const unsigned short *>(ptr));
|
|
// maxNonZero = *(reinterpret_cast<const unsigned short *>(ptr + 2));
|
|
tinyexr::cpy2(&maxNonZero, reinterpret_cast<const unsigned short *>(ptr + 2));
|
|
ptr += 4;
|
|
|
|
if (maxNonZero >= BITMAP_SIZE) {
|
|
return false;
|
|
}
|
|
|
|
if (minNonZero <= maxNonZero) {
|
|
memcpy(reinterpret_cast<char *>(&bitmap[0] + minNonZero), ptr,
|
|
maxNonZero - minNonZero + 1);
|
|
ptr += maxNonZero - minNonZero + 1;
|
|
}
|
|
|
|
std::vector<unsigned short> lut(USHORT_RANGE);
|
|
memset(lut.data(), 0, sizeof(unsigned short) * USHORT_RANGE);
|
|
unsigned short maxValue = reverseLutFromBitmap(bitmap.data(), lut.data());
|
|
|
|
//
|
|
// Huffman decoding
|
|
//
|
|
|
|
int length;
|
|
|
|
// length = *(reinterpret_cast<const int *>(ptr));
|
|
tinyexr::cpy4(&length, reinterpret_cast<const int *>(ptr));
|
|
ptr += sizeof(int);
|
|
|
|
if (size_t((ptr - inPtr) + length) > inLen) {
|
|
return false;
|
|
}
|
|
|
|
std::vector<unsigned short> tmpBuffer(tmpBufSize);
|
|
hufUncompress(reinterpret_cast<const char *>(ptr), length, &tmpBuffer);
|
|
|
|
//
|
|
// Wavelet decoding
|
|
//
|
|
|
|
std::vector<PIZChannelData> channelData(static_cast<size_t>(num_channels));
|
|
|
|
unsigned short *tmpBufferEnd = &tmpBuffer.at(0);
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(num_channels); ++i) {
|
|
const EXRChannelInfo &chan = channels[i];
|
|
|
|
size_t pixelSize = sizeof(int); // UINT and FLOAT
|
|
if (chan.pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
pixelSize = sizeof(short);
|
|
}
|
|
|
|
channelData[i].start = tmpBufferEnd;
|
|
channelData[i].end = channelData[i].start;
|
|
channelData[i].nx = data_width;
|
|
channelData[i].ny = num_lines;
|
|
// channelData[i].ys = 1;
|
|
channelData[i].size = static_cast<int>(pixelSize / sizeof(short));
|
|
|
|
tmpBufferEnd += channelData[i].nx * channelData[i].ny * channelData[i].size;
|
|
}
|
|
|
|
for (size_t i = 0; i < channelData.size(); ++i) {
|
|
PIZChannelData &cd = channelData[i];
|
|
|
|
for (int j = 0; j < cd.size; ++j) {
|
|
wav2Decode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size,
|
|
maxValue);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Expand the pixel data to their original range
|
|
//
|
|
|
|
applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBufSize));
|
|
|
|
for (int y = 0; y < num_lines; y++) {
|
|
for (size_t i = 0; i < channelData.size(); ++i) {
|
|
PIZChannelData &cd = channelData[i];
|
|
|
|
// if (modp (y, cd.ys) != 0)
|
|
// continue;
|
|
|
|
size_t n = static_cast<size_t>(cd.nx * cd.size);
|
|
memcpy(outPtr, cd.end, static_cast<size_t>(n * sizeof(unsigned short)));
|
|
outPtr += n * sizeof(unsigned short);
|
|
cd.end += n;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif // TINYEXR_USE_PIZ
|
|
|
|
#if TINYEXR_USE_ZFP
|
|
struct ZFPCompressionParam {
|
|
double rate;
|
|
int precision;
|
|
double tolerance;
|
|
int type; // TINYEXR_ZFP_COMPRESSIONTYPE_*
|
|
|
|
ZFPCompressionParam() {
|
|
type = TINYEXR_ZFP_COMPRESSIONTYPE_RATE;
|
|
rate = 2.0;
|
|
precision = 0;
|
|
tolerance = 0.0f;
|
|
}
|
|
};
|
|
|
|
bool FindZFPCompressionParam(ZFPCompressionParam *param,
|
|
const EXRAttribute *attributes,
|
|
int num_attributes) {
|
|
bool foundType = false;
|
|
|
|
for (int i = 0; i < num_attributes; i++) {
|
|
if ((strcmp(attributes[i].name, "zfpCompressionType") == 0) &&
|
|
(attributes[i].size == 1)) {
|
|
param->type = static_cast<int>(attributes[i].value[0]);
|
|
|
|
foundType = true;
|
|
}
|
|
}
|
|
|
|
if (!foundType) {
|
|
return false;
|
|
}
|
|
|
|
if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
|
|
for (int i = 0; i < num_attributes; i++) {
|
|
if ((strcmp(attributes[i].name, "zfpCompressionRate") == 0) &&
|
|
(attributes[i].size == 8)) {
|
|
param->rate = *(reinterpret_cast<double *>(attributes[i].value));
|
|
return true;
|
|
}
|
|
}
|
|
} else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
|
|
for (int i = 0; i < num_attributes; i++) {
|
|
if ((strcmp(attributes[i].name, "zfpCompressionPrecision") == 0) &&
|
|
(attributes[i].size == 4)) {
|
|
param->rate = *(reinterpret_cast<int *>(attributes[i].value));
|
|
return true;
|
|
}
|
|
}
|
|
} else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
|
|
for (int i = 0; i < num_attributes; i++) {
|
|
if ((strcmp(attributes[i].name, "zfpCompressionTolerance") == 0) &&
|
|
(attributes[i].size == 8)) {
|
|
param->tolerance = *(reinterpret_cast<double *>(attributes[i].value));
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
assert(0);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Assume pixel format is FLOAT for all channels.
|
|
static bool DecompressZfp(float *dst, int dst_width, int dst_num_lines,
|
|
int num_channels, const unsigned char *src,
|
|
unsigned long src_size,
|
|
const ZFPCompressionParam ¶m) {
|
|
size_t uncompressed_size = dst_width * dst_num_lines * num_channels;
|
|
|
|
if (uncompressed_size == src_size) {
|
|
// Data is not compressed(Issue 40).
|
|
memcpy(dst, src, src_size);
|
|
}
|
|
|
|
zfp_stream *zfp = NULL;
|
|
zfp_field *field = NULL;
|
|
|
|
assert((dst_width % 4) == 0);
|
|
assert((dst_num_lines % 4) == 0);
|
|
|
|
if ((dst_width & 3U) || (dst_num_lines & 3U)) {
|
|
return false;
|
|
}
|
|
|
|
field =
|
|
zfp_field_2d(reinterpret_cast<void *>(const_cast<unsigned char *>(src)),
|
|
zfp_type_float, dst_width, dst_num_lines * num_channels);
|
|
zfp = zfp_stream_open(NULL);
|
|
|
|
if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
|
|
zfp_stream_set_rate(zfp, param.rate, zfp_type_float, /* dimention */ 2,
|
|
/* write random access */ 0);
|
|
} else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
|
|
zfp_stream_set_precision(zfp, param.precision, zfp_type_float);
|
|
} else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
|
|
zfp_stream_set_accuracy(zfp, param.tolerance, zfp_type_float);
|
|
} else {
|
|
assert(0);
|
|
}
|
|
|
|
size_t buf_size = zfp_stream_maximum_size(zfp, field);
|
|
std::vector<unsigned char> buf(buf_size);
|
|
memcpy(&buf.at(0), src, src_size);
|
|
|
|
bitstream *stream = stream_open(&buf.at(0), buf_size);
|
|
zfp_stream_set_bit_stream(zfp, stream);
|
|
zfp_stream_rewind(zfp);
|
|
|
|
size_t image_size = dst_width * dst_num_lines;
|
|
|
|
for (int c = 0; c < num_channels; c++) {
|
|
// decompress 4x4 pixel block.
|
|
for (int y = 0; y < dst_num_lines; y += 4) {
|
|
for (int x = 0; x < dst_width; x += 4) {
|
|
float fblock[16];
|
|
zfp_decode_block_float_2(zfp, fblock);
|
|
for (int j = 0; j < 4; j++) {
|
|
for (int i = 0; i < 4; i++) {
|
|
dst[c * image_size + ((y + j) * dst_width + (x + i))] =
|
|
fblock[j * 4 + i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
zfp_field_free(field);
|
|
zfp_stream_close(zfp);
|
|
stream_close(stream);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Assume pixel format is FLOAT for all channels.
|
|
bool CompressZfp(std::vector<unsigned char> *outBuf, unsigned int *outSize,
|
|
const float *inPtr, int width, int num_lines, int num_channels,
|
|
const ZFPCompressionParam ¶m) {
|
|
zfp_stream *zfp = NULL;
|
|
zfp_field *field = NULL;
|
|
|
|
assert((width % 4) == 0);
|
|
assert((num_lines % 4) == 0);
|
|
|
|
if ((width & 3U) || (num_lines & 3U)) {
|
|
return false;
|
|
}
|
|
|
|
// create input array.
|
|
field = zfp_field_2d(reinterpret_cast<void *>(const_cast<float *>(inPtr)),
|
|
zfp_type_float, width, num_lines * num_channels);
|
|
|
|
zfp = zfp_stream_open(NULL);
|
|
|
|
if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
|
|
zfp_stream_set_rate(zfp, param.rate, zfp_type_float, 2, 0);
|
|
} else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
|
|
zfp_stream_set_precision(zfp, param.precision, zfp_type_float);
|
|
} else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
|
|
zfp_stream_set_accuracy(zfp, param.tolerance, zfp_type_float);
|
|
} else {
|
|
assert(0);
|
|
}
|
|
|
|
size_t buf_size = zfp_stream_maximum_size(zfp, field);
|
|
|
|
outBuf->resize(buf_size);
|
|
|
|
bitstream *stream = stream_open(&outBuf->at(0), buf_size);
|
|
zfp_stream_set_bit_stream(zfp, stream);
|
|
zfp_field_free(field);
|
|
|
|
size_t image_size = width * num_lines;
|
|
|
|
for (int c = 0; c < num_channels; c++) {
|
|
// compress 4x4 pixel block.
|
|
for (int y = 0; y < num_lines; y += 4) {
|
|
for (int x = 0; x < width; x += 4) {
|
|
float fblock[16];
|
|
for (int j = 0; j < 4; j++) {
|
|
for (int i = 0; i < 4; i++) {
|
|
fblock[j * 4 + i] =
|
|
inPtr[c * image_size + ((y + j) * width + (x + i))];
|
|
}
|
|
}
|
|
zfp_encode_block_float_2(zfp, fblock);
|
|
}
|
|
}
|
|
}
|
|
|
|
zfp_stream_flush(zfp);
|
|
(*outSize) = zfp_stream_compressed_size(zfp);
|
|
|
|
zfp_stream_close(zfp);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// -----------------------------------------------------------------
|
|
//
|
|
|
|
// TODO(syoyo): Refactor function arguments.
|
|
static bool DecodePixelData(/* out */ unsigned char **out_images,
|
|
const int *requested_pixel_types,
|
|
const unsigned char *data_ptr, size_t data_len,
|
|
int compression_type, int line_order, int width,
|
|
int height, int x_stride, int y, int line_no,
|
|
int num_lines, size_t pixel_data_size,
|
|
size_t num_attributes,
|
|
const EXRAttribute *attributes, size_t num_channels,
|
|
const EXRChannelInfo *channels,
|
|
const std::vector<size_t> &channel_offset_list) {
|
|
if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { // PIZ
|
|
#if TINYEXR_USE_PIZ
|
|
if ((width == 0) || (num_lines == 0) || (pixel_data_size == 0)) {
|
|
// Invalid input #90
|
|
return false;
|
|
}
|
|
|
|
// Allocate original data size.
|
|
std::vector<unsigned char> outBuf(static_cast<size_t>(
|
|
static_cast<size_t>(width * num_lines) * pixel_data_size));
|
|
size_t tmpBufLen = outBuf.size();
|
|
|
|
bool ret = tinyexr::DecompressPiz(
|
|
reinterpret_cast<unsigned char *>(&outBuf.at(0)), data_ptr, tmpBufLen,
|
|
data_len, static_cast<int>(num_channels), channels, width, num_lines);
|
|
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
|
|
// For PIZ_COMPRESSION:
|
|
// pixel sample data for channel 0 for scanline 0
|
|
// pixel sample data for channel 1 for scanline 0
|
|
// pixel sample data for channel ... for scanline 0
|
|
// pixel sample data for channel n for scanline 0
|
|
// pixel sample data for channel 0 for scanline 1
|
|
// pixel sample data for channel 1 for scanline 1
|
|
// pixel sample data for channel ... for scanline 1
|
|
// pixel sample data for channel n for scanline 1
|
|
// ...
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
FP16 hf;
|
|
|
|
// hf.u = line_ptr[u];
|
|
// use `cpy` to avoid unaligned memory access when compiler's
|
|
// optimization is on.
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
unsigned short *image =
|
|
reinterpret_cast<unsigned short **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += static_cast<size_t>(
|
|
(height - 1 - (line_no + static_cast<int>(v)))) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = hf.u;
|
|
} else { // HALF -> FLOAT
|
|
FP32 f32 = half_to_float(hf);
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
size_t offset = 0;
|
|
if (line_order == 0) {
|
|
offset = (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
offset = static_cast<size_t>(
|
|
(height - 1 - (line_no + static_cast<int>(v)))) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
image += offset;
|
|
*image = f32.f;
|
|
}
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
|
|
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
unsigned int val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
unsigned int *image =
|
|
reinterpret_cast<unsigned int **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += static_cast<size_t>(
|
|
(height - 1 - (line_no + static_cast<int>(v)))) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const float *line_ptr = reinterpret_cast<float *>(&outBuf.at(
|
|
v * pixel_data_size * static_cast<size_t>(x_stride) +
|
|
channel_offset_list[c] * static_cast<size_t>(x_stride)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
float val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += static_cast<size_t>(
|
|
(height - 1 - (line_no + static_cast<int>(v)))) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else {
|
|
assert(0);
|
|
}
|
|
}
|
|
#else
|
|
assert(0 && "PIZ is enabled in this build");
|
|
return false;
|
|
#endif
|
|
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS ||
|
|
compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
// Allocate original data size.
|
|
std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
|
|
static_cast<size_t>(num_lines) *
|
|
pixel_data_size);
|
|
|
|
unsigned long dstLen = static_cast<unsigned long>(outBuf.size());
|
|
assert(dstLen > 0);
|
|
if (!tinyexr::DecompressZip(
|
|
reinterpret_cast<unsigned char *>(&outBuf.at(0)), &dstLen, data_ptr,
|
|
static_cast<unsigned long>(data_len))) {
|
|
return false;
|
|
}
|
|
|
|
// For ZIP_COMPRESSION:
|
|
// pixel sample data for channel 0 for scanline 0
|
|
// pixel sample data for channel 1 for scanline 0
|
|
// pixel sample data for channel ... for scanline 0
|
|
// pixel sample data for channel n for scanline 0
|
|
// pixel sample data for channel 0 for scanline 1
|
|
// pixel sample data for channel 1 for scanline 1
|
|
// pixel sample data for channel ... for scanline 1
|
|
// pixel sample data for channel n for scanline 1
|
|
// ...
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&outBuf.at(v * static_cast<size_t>(pixel_data_size) *
|
|
static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
tinyexr::FP16 hf;
|
|
|
|
// hf.u = line_ptr[u];
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
unsigned short *image =
|
|
reinterpret_cast<unsigned short **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = hf.u;
|
|
} else { // HALF -> FLOAT
|
|
tinyexr::FP32 f32 = half_to_float(hf);
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
size_t offset = 0;
|
|
if (line_order == 0) {
|
|
offset = (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
offset = (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
image += offset;
|
|
|
|
*image = f32.f;
|
|
}
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
|
|
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
unsigned int val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
unsigned int *image =
|
|
reinterpret_cast<unsigned int **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const float *line_ptr = reinterpret_cast<float *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
float val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else {
|
|
assert(0);
|
|
return false;
|
|
}
|
|
}
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
|
|
// Allocate original data size.
|
|
std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
|
|
static_cast<size_t>(num_lines) *
|
|
pixel_data_size);
|
|
|
|
unsigned long dstLen = static_cast<unsigned long>(outBuf.size());
|
|
if (dstLen == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (!tinyexr::DecompressRle(reinterpret_cast<unsigned char *>(&outBuf.at(0)),
|
|
dstLen, data_ptr,
|
|
static_cast<unsigned long>(data_len))) {
|
|
return false;
|
|
}
|
|
|
|
// For RLE_COMPRESSION:
|
|
// pixel sample data for channel 0 for scanline 0
|
|
// pixel sample data for channel 1 for scanline 0
|
|
// pixel sample data for channel ... for scanline 0
|
|
// pixel sample data for channel n for scanline 0
|
|
// pixel sample data for channel 0 for scanline 1
|
|
// pixel sample data for channel 1 for scanline 1
|
|
// pixel sample data for channel ... for scanline 1
|
|
// pixel sample data for channel n for scanline 1
|
|
// ...
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&outBuf.at(v * static_cast<size_t>(pixel_data_size) *
|
|
static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
tinyexr::FP16 hf;
|
|
|
|
// hf.u = line_ptr[u];
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
unsigned short *image =
|
|
reinterpret_cast<unsigned short **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = hf.u;
|
|
} else { // HALF -> FLOAT
|
|
tinyexr::FP32 f32 = half_to_float(hf);
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = f32.f;
|
|
}
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
|
|
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
unsigned int val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
unsigned int *image =
|
|
reinterpret_cast<unsigned int **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const float *line_ptr = reinterpret_cast<float *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
float val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else {
|
|
assert(0);
|
|
return false;
|
|
}
|
|
}
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
#if TINYEXR_USE_ZFP
|
|
tinyexr::ZFPCompressionParam zfp_compression_param;
|
|
if (!FindZFPCompressionParam(&zfp_compression_param, attributes,
|
|
num_attributes)) {
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
// Allocate original data size.
|
|
std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
|
|
static_cast<size_t>(num_lines) *
|
|
pixel_data_size);
|
|
|
|
unsigned long dstLen = outBuf.size();
|
|
assert(dstLen > 0);
|
|
tinyexr::DecompressZfp(reinterpret_cast<float *>(&outBuf.at(0)), width,
|
|
num_lines, num_channels, data_ptr,
|
|
static_cast<unsigned long>(data_len),
|
|
zfp_compression_param);
|
|
|
|
// For ZFP_COMPRESSION:
|
|
// pixel sample data for channel 0 for scanline 0
|
|
// pixel sample data for channel 1 for scanline 0
|
|
// pixel sample data for channel ... for scanline 0
|
|
// pixel sample data for channel n for scanline 0
|
|
// pixel sample data for channel 0 for scanline 1
|
|
// pixel sample data for channel 1 for scanline 1
|
|
// pixel sample data for channel ... for scanline 1
|
|
// pixel sample data for channel n for scanline 1
|
|
// ...
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
assert(channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT);
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const float *line_ptr = reinterpret_cast<float *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
float val;
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else {
|
|
assert(0);
|
|
return false;
|
|
}
|
|
}
|
|
#else
|
|
(void)attributes;
|
|
(void)num_attributes;
|
|
(void)num_channels;
|
|
assert(0);
|
|
return false;
|
|
#endif
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
|
|
for (size_t c = 0; c < num_channels; c++) {
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
const unsigned short *line_ptr =
|
|
reinterpret_cast<const unsigned short *>(
|
|
data_ptr + v * pixel_data_size * size_t(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width));
|
|
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
unsigned short *outLine =
|
|
reinterpret_cast<unsigned short *>(out_images[c]);
|
|
if (line_order == 0) {
|
|
outLine += (size_t(y) + v) * size_t(x_stride);
|
|
} else {
|
|
outLine +=
|
|
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
|
|
}
|
|
|
|
for (int u = 0; u < width; u++) {
|
|
tinyexr::FP16 hf;
|
|
|
|
// hf.u = line_ptr[u];
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
outLine[u] = hf.u;
|
|
}
|
|
} else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
|
|
float *outLine = reinterpret_cast<float *>(out_images[c]);
|
|
if (line_order == 0) {
|
|
outLine += (size_t(y) + v) * size_t(x_stride);
|
|
} else {
|
|
outLine +=
|
|
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
|
|
}
|
|
|
|
if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
|
|
(data_ptr + data_len)) {
|
|
// Insufficient data size
|
|
return false;
|
|
}
|
|
|
|
for (int u = 0; u < width; u++) {
|
|
tinyexr::FP16 hf;
|
|
|
|
// address may not be aliged. use byte-wise copy for safety.#76
|
|
// hf.u = line_ptr[u];
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
tinyexr::FP32 f32 = half_to_float(hf);
|
|
|
|
outLine[u] = f32.f;
|
|
}
|
|
} else {
|
|
assert(0);
|
|
return false;
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
const float *line_ptr = reinterpret_cast<const float *>(
|
|
data_ptr + v * pixel_data_size * size_t(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width));
|
|
|
|
float *outLine = reinterpret_cast<float *>(out_images[c]);
|
|
if (line_order == 0) {
|
|
outLine += (size_t(y) + v) * size_t(x_stride);
|
|
} else {
|
|
outLine +=
|
|
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
|
|
}
|
|
|
|
if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
|
|
(data_ptr + data_len)) {
|
|
// Insufficient data size
|
|
return false;
|
|
}
|
|
|
|
for (int u = 0; u < width; u++) {
|
|
float val;
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
outLine[u] = val;
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
const unsigned int *line_ptr = reinterpret_cast<const unsigned int *>(
|
|
data_ptr + v * pixel_data_size * size_t(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width));
|
|
|
|
unsigned int *outLine =
|
|
reinterpret_cast<unsigned int *>(out_images[c]);
|
|
if (line_order == 0) {
|
|
outLine += (size_t(y) + v) * size_t(x_stride);
|
|
} else {
|
|
outLine +=
|
|
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
|
|
}
|
|
|
|
for (int u = 0; u < width; u++) {
|
|
if (reinterpret_cast<const unsigned char *>(line_ptr + u) >=
|
|
(data_ptr + data_len)) {
|
|
// Corrupsed data?
|
|
return false;
|
|
}
|
|
|
|
unsigned int val;
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
outLine[u] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void DecodeTiledPixelData(
|
|
unsigned char **out_images, int *width, int *height,
|
|
const int *requested_pixel_types, const unsigned char *data_ptr,
|
|
size_t data_len, int compression_type, int line_order, int data_width,
|
|
int data_height, int tile_offset_x, int tile_offset_y, int tile_size_x,
|
|
int tile_size_y, size_t pixel_data_size, size_t num_attributes,
|
|
const EXRAttribute *attributes, size_t num_channels,
|
|
const EXRChannelInfo *channels,
|
|
const std::vector<size_t> &channel_offset_list) {
|
|
assert(tile_offset_x * tile_size_x < data_width);
|
|
assert(tile_offset_y * tile_size_y < data_height);
|
|
|
|
// Compute actual image size in a tile.
|
|
if ((tile_offset_x + 1) * tile_size_x >= data_width) {
|
|
(*width) = data_width - (tile_offset_x * tile_size_x);
|
|
} else {
|
|
(*width) = tile_size_x;
|
|
}
|
|
|
|
if ((tile_offset_y + 1) * tile_size_y >= data_height) {
|
|
(*height) = data_height - (tile_offset_y * tile_size_y);
|
|
} else {
|
|
(*height) = tile_size_y;
|
|
}
|
|
|
|
// Image size = tile size.
|
|
DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len,
|
|
compression_type, line_order, (*width), tile_size_y,
|
|
/* stride */ tile_size_x, /* y */ 0, /* line_no */ 0,
|
|
(*height), pixel_data_size, num_attributes, attributes,
|
|
num_channels, channels, channel_offset_list);
|
|
}
|
|
|
|
static bool ComputeChannelLayout(std::vector<size_t> *channel_offset_list,
|
|
int *pixel_data_size, size_t *channel_offset,
|
|
int num_channels,
|
|
const EXRChannelInfo *channels) {
|
|
channel_offset_list->resize(static_cast<size_t>(num_channels));
|
|
|
|
(*pixel_data_size) = 0;
|
|
(*channel_offset) = 0;
|
|
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
(*channel_offset_list)[c] = (*channel_offset);
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
(*pixel_data_size) += sizeof(unsigned short);
|
|
(*channel_offset) += sizeof(unsigned short);
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
(*pixel_data_size) += sizeof(float);
|
|
(*channel_offset) += sizeof(float);
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
(*pixel_data_size) += sizeof(unsigned int);
|
|
(*channel_offset) += sizeof(unsigned int);
|
|
} else {
|
|
// ???
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static unsigned char **AllocateImage(int num_channels,
|
|
const EXRChannelInfo *channels,
|
|
const int *requested_pixel_types,
|
|
int data_width, int data_height) {
|
|
unsigned char **images =
|
|
reinterpret_cast<unsigned char **>(static_cast<float **>(
|
|
malloc(sizeof(float *) * static_cast<size_t>(num_channels))));
|
|
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
size_t data_len =
|
|
static_cast<size_t>(data_width) * static_cast<size_t>(data_height);
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
// pixel_data_size += sizeof(unsigned short);
|
|
// channel_offset += sizeof(unsigned short);
|
|
// Alloc internal image for half type.
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
images[c] =
|
|
reinterpret_cast<unsigned char *>(static_cast<unsigned short *>(
|
|
malloc(sizeof(unsigned short) * data_len)));
|
|
} else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
|
|
images[c] = reinterpret_cast<unsigned char *>(
|
|
static_cast<float *>(malloc(sizeof(float) * data_len)));
|
|
} else {
|
|
assert(0);
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
// pixel_data_size += sizeof(float);
|
|
// channel_offset += sizeof(float);
|
|
images[c] = reinterpret_cast<unsigned char *>(
|
|
static_cast<float *>(malloc(sizeof(float) * data_len)));
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
// pixel_data_size += sizeof(unsigned int);
|
|
// channel_offset += sizeof(unsigned int);
|
|
images[c] = reinterpret_cast<unsigned char *>(
|
|
static_cast<unsigned int *>(malloc(sizeof(unsigned int) * data_len)));
|
|
} else {
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
return images;
|
|
}
|
|
|
|
static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
|
|
const EXRVersion *version, std::string *err,
|
|
const unsigned char *buf, size_t size) {
|
|
const char *marker = reinterpret_cast<const char *>(&buf[0]);
|
|
|
|
if (empty_header) {
|
|
(*empty_header) = false;
|
|
}
|
|
|
|
if (version->multipart) {
|
|
if (size > 0 && marker[0] == '\0') {
|
|
// End of header list.
|
|
if (empty_header) {
|
|
(*empty_header) = true;
|
|
}
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
// According to the spec, the header of every OpenEXR file must contain at
|
|
// least the following attributes:
|
|
//
|
|
// channels chlist
|
|
// compression compression
|
|
// dataWindow box2i
|
|
// displayWindow box2i
|
|
// lineOrder lineOrder
|
|
// pixelAspectRatio float
|
|
// screenWindowCenter v2f
|
|
// screenWindowWidth float
|
|
bool has_channels = false;
|
|
bool has_compression = false;
|
|
bool has_data_window = false;
|
|
bool has_display_window = false;
|
|
bool has_line_order = false;
|
|
bool has_pixel_aspect_ratio = false;
|
|
bool has_screen_window_center = false;
|
|
bool has_screen_window_width = false;
|
|
|
|
info->data_window[0] = 0;
|
|
info->data_window[1] = 0;
|
|
info->data_window[2] = 0;
|
|
info->data_window[3] = 0;
|
|
info->line_order = 0; // @fixme
|
|
info->display_window[0] = 0;
|
|
info->display_window[1] = 0;
|
|
info->display_window[2] = 0;
|
|
info->display_window[3] = 0;
|
|
info->screen_window_center[0] = 0.0f;
|
|
info->screen_window_center[1] = 0.0f;
|
|
info->screen_window_width = -1.0f;
|
|
info->pixel_aspect_ratio = -1.0f;
|
|
|
|
info->tile_size_x = -1;
|
|
info->tile_size_y = -1;
|
|
info->tile_level_mode = -1;
|
|
info->tile_rounding_mode = -1;
|
|
|
|
info->attributes.clear();
|
|
|
|
// Read attributes
|
|
size_t orig_size = size;
|
|
for (size_t nattr = 0; nattr < TINYEXR_MAX_HEADER_ATTRIBUTES; nattr++) {
|
|
if (0 == size) {
|
|
if (err) {
|
|
(*err) += "Insufficient data size for attributes.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
} else if (marker[0] == '\0') {
|
|
size--;
|
|
break;
|
|
}
|
|
|
|
std::string attr_name;
|
|
std::string attr_type;
|
|
std::vector<unsigned char> data;
|
|
size_t marker_size;
|
|
if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size,
|
|
marker, size)) {
|
|
if (err) {
|
|
(*err) += "Failed to read attribute.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
marker += marker_size;
|
|
size -= marker_size;
|
|
|
|
if (version->tiled && attr_name.compare("tiles") == 0) {
|
|
unsigned int x_size, y_size;
|
|
unsigned char tile_mode;
|
|
assert(data.size() == 9);
|
|
memcpy(&x_size, &data.at(0), sizeof(int));
|
|
memcpy(&y_size, &data.at(4), sizeof(int));
|
|
tile_mode = data[8];
|
|
tinyexr::swap4(&x_size);
|
|
tinyexr::swap4(&y_size);
|
|
|
|
info->tile_size_x = static_cast<int>(x_size);
|
|
info->tile_size_y = static_cast<int>(y_size);
|
|
|
|
// mode = levelMode + roundingMode * 16
|
|
info->tile_level_mode = tile_mode & 0x3;
|
|
info->tile_rounding_mode = (tile_mode >> 4) & 0x1;
|
|
|
|
} else if (attr_name.compare("compression") == 0) {
|
|
bool ok = false;
|
|
if (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
ok = true;
|
|
}
|
|
|
|
if (data[0] == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
#if TINYEXR_USE_PIZ
|
|
ok = true;
|
|
#else
|
|
if (err) {
|
|
(*err) = "PIZ compression is not supported.";
|
|
}
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
#endif
|
|
}
|
|
|
|
if (data[0] == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
#if TINYEXR_USE_ZFP
|
|
ok = true;
|
|
#else
|
|
if (err) {
|
|
(*err) = "ZFP compression is not supported.";
|
|
}
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
#endif
|
|
}
|
|
|
|
if (!ok) {
|
|
if (err) {
|
|
(*err) = "Unknown compression type.";
|
|
}
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
info->compression_type = static_cast<int>(data[0]);
|
|
has_compression = true;
|
|
|
|
} else if (attr_name.compare("channels") == 0) {
|
|
// name: zero-terminated string, from 1 to 255 bytes long
|
|
// pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2
|
|
// pLinear: unsigned char, possible values are 0 and 1
|
|
// reserved: three chars, should be zero
|
|
// xSampling: int
|
|
// ySampling: int
|
|
|
|
if (!ReadChannelInfo(info->channels, data)) {
|
|
if (err) {
|
|
(*err) += "Failed to parse channel info.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (info->channels.size() < 1) {
|
|
if (err) {
|
|
(*err) += "# of channels is zero.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
has_channels = true;
|
|
|
|
} else if (attr_name.compare("dataWindow") == 0) {
|
|
if (data.size() >= 16) {
|
|
memcpy(&info->data_window[0], &data.at(0), sizeof(int));
|
|
memcpy(&info->data_window[1], &data.at(4), sizeof(int));
|
|
memcpy(&info->data_window[2], &data.at(8), sizeof(int));
|
|
memcpy(&info->data_window[3], &data.at(12), sizeof(int));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[0]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[1]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[2]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[3]));
|
|
has_data_window = true;
|
|
}
|
|
} else if (attr_name.compare("displayWindow") == 0) {
|
|
if (data.size() >= 16) {
|
|
memcpy(&info->display_window[0], &data.at(0), sizeof(int));
|
|
memcpy(&info->display_window[1], &data.at(4), sizeof(int));
|
|
memcpy(&info->display_window[2], &data.at(8), sizeof(int));
|
|
memcpy(&info->display_window[3], &data.at(12), sizeof(int));
|
|
tinyexr::swap4(
|
|
reinterpret_cast<unsigned int *>(&info->display_window[0]));
|
|
tinyexr::swap4(
|
|
reinterpret_cast<unsigned int *>(&info->display_window[1]));
|
|
tinyexr::swap4(
|
|
reinterpret_cast<unsigned int *>(&info->display_window[2]));
|
|
tinyexr::swap4(
|
|
reinterpret_cast<unsigned int *>(&info->display_window[3]));
|
|
|
|
has_display_window = true;
|
|
}
|
|
} else if (attr_name.compare("lineOrder") == 0) {
|
|
if (data.size() >= 1) {
|
|
info->line_order = static_cast<int>(data[0]);
|
|
has_line_order = true;
|
|
}
|
|
} else if (attr_name.compare("pixelAspectRatio") == 0) {
|
|
if (data.size() >= sizeof(float)) {
|
|
memcpy(&info->pixel_aspect_ratio, &data.at(0), sizeof(float));
|
|
tinyexr::swap4(
|
|
reinterpret_cast<unsigned int *>(&info->pixel_aspect_ratio));
|
|
has_pixel_aspect_ratio = true;
|
|
}
|
|
} else if (attr_name.compare("screenWindowCenter") == 0) {
|
|
if (data.size() >= 8) {
|
|
memcpy(&info->screen_window_center[0], &data.at(0), sizeof(float));
|
|
memcpy(&info->screen_window_center[1], &data.at(4), sizeof(float));
|
|
tinyexr::swap4(
|
|
reinterpret_cast<unsigned int *>(&info->screen_window_center[0]));
|
|
tinyexr::swap4(
|
|
reinterpret_cast<unsigned int *>(&info->screen_window_center[1]));
|
|
has_screen_window_center = true;
|
|
}
|
|
} else if (attr_name.compare("screenWindowWidth") == 0) {
|
|
if (data.size() >= sizeof(float)) {
|
|
memcpy(&info->screen_window_width, &data.at(0), sizeof(float));
|
|
tinyexr::swap4(
|
|
reinterpret_cast<unsigned int *>(&info->screen_window_width));
|
|
|
|
has_screen_window_width = true;
|
|
}
|
|
} else if (attr_name.compare("chunkCount") == 0) {
|
|
if (data.size() >= sizeof(int)) {
|
|
memcpy(&info->chunk_count, &data.at(0), sizeof(int));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->chunk_count));
|
|
}
|
|
} else {
|
|
// Custom attribute(up to TINYEXR_MAX_CUSTOM_ATTRIBUTES)
|
|
if (info->attributes.size() < TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
|
|
EXRAttribute attrib;
|
|
#ifdef _MSC_VER
|
|
strncpy_s(attrib.name, attr_name.c_str(), 255);
|
|
strncpy_s(attrib.type, attr_type.c_str(), 255);
|
|
#else
|
|
strncpy(attrib.name, attr_name.c_str(), 255);
|
|
strncpy(attrib.type, attr_type.c_str(), 255);
|
|
#endif
|
|
attrib.name[255] = '\0';
|
|
attrib.type[255] = '\0';
|
|
attrib.size = static_cast<int>(data.size());
|
|
attrib.value = static_cast<unsigned char *>(malloc(data.size()));
|
|
memcpy(reinterpret_cast<char *>(attrib.value), &data.at(0),
|
|
data.size());
|
|
info->attributes.push_back(attrib);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if required attributes exist
|
|
{
|
|
std::stringstream ss_err;
|
|
|
|
if (!has_compression) {
|
|
ss_err << "\"compression\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_channels) {
|
|
ss_err << "\"channels\" attribute not found in the header." << std::endl;
|
|
}
|
|
|
|
if (!has_line_order) {
|
|
ss_err << "\"lineOrder\" attribute not found in the header." << std::endl;
|
|
}
|
|
|
|
if (!has_display_window) {
|
|
ss_err << "\"displayWindow\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_data_window) {
|
|
ss_err << "\"dataWindow\" attribute not found in the header or invalid."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_pixel_aspect_ratio) {
|
|
ss_err << "\"pixelAspectRatio\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_screen_window_width) {
|
|
ss_err << "\"screenWindowWidth\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_screen_window_center) {
|
|
ss_err << "\"screenWindowCenter\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!(ss_err.str().empty())) {
|
|
if (err) {
|
|
(*err) += ss_err.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
}
|
|
|
|
info->header_len = static_cast<unsigned int>(orig_size - size);
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
// C++ HeaderInfo to C EXRHeader conversion.
|
|
static void ConvertHeader(EXRHeader *exr_header, const HeaderInfo &info) {
|
|
exr_header->pixel_aspect_ratio = info.pixel_aspect_ratio;
|
|
exr_header->screen_window_center[0] = info.screen_window_center[0];
|
|
exr_header->screen_window_center[1] = info.screen_window_center[1];
|
|
exr_header->screen_window_width = info.screen_window_width;
|
|
exr_header->chunk_count = info.chunk_count;
|
|
exr_header->display_window[0] = info.display_window[0];
|
|
exr_header->display_window[1] = info.display_window[1];
|
|
exr_header->display_window[2] = info.display_window[2];
|
|
exr_header->display_window[3] = info.display_window[3];
|
|
exr_header->data_window[0] = info.data_window[0];
|
|
exr_header->data_window[1] = info.data_window[1];
|
|
exr_header->data_window[2] = info.data_window[2];
|
|
exr_header->data_window[3] = info.data_window[3];
|
|
exr_header->line_order = info.line_order;
|
|
exr_header->compression_type = info.compression_type;
|
|
|
|
exr_header->tile_size_x = info.tile_size_x;
|
|
exr_header->tile_size_y = info.tile_size_y;
|
|
exr_header->tile_level_mode = info.tile_level_mode;
|
|
exr_header->tile_rounding_mode = info.tile_rounding_mode;
|
|
|
|
exr_header->num_channels = static_cast<int>(info.channels.size());
|
|
|
|
exr_header->channels = static_cast<EXRChannelInfo *>(malloc(
|
|
sizeof(EXRChannelInfo) * static_cast<size_t>(exr_header->num_channels)));
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(exr_header->channels[c].name, info.channels[c].name.c_str(), 255);
|
|
#else
|
|
strncpy(exr_header->channels[c].name, info.channels[c].name.c_str(), 255);
|
|
#endif
|
|
// manually add '\0' for safety.
|
|
exr_header->channels[c].name[255] = '\0';
|
|
|
|
exr_header->channels[c].pixel_type = info.channels[c].pixel_type;
|
|
exr_header->channels[c].p_linear = info.channels[c].p_linear;
|
|
exr_header->channels[c].x_sampling = info.channels[c].x_sampling;
|
|
exr_header->channels[c].y_sampling = info.channels[c].y_sampling;
|
|
}
|
|
|
|
exr_header->pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels)));
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
exr_header->pixel_types[c] = info.channels[c].pixel_type;
|
|
}
|
|
|
|
// Initially fill with values of `pixel_types`
|
|
exr_header->requested_pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels)));
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
exr_header->requested_pixel_types[c] = info.channels[c].pixel_type;
|
|
}
|
|
|
|
exr_header->num_custom_attributes = static_cast<int>(info.attributes.size());
|
|
|
|
if (exr_header->num_custom_attributes > 0) {
|
|
// TODO(syoyo): Report warning when # of attributes exceeds
|
|
// `TINYEXR_MAX_CUSTOM_ATTRIBUTES`
|
|
if (exr_header->num_custom_attributes > TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
|
|
exr_header->num_custom_attributes = TINYEXR_MAX_CUSTOM_ATTRIBUTES;
|
|
}
|
|
|
|
exr_header->custom_attributes = static_cast<EXRAttribute *>(malloc(
|
|
sizeof(EXRAttribute) * size_t(exr_header->num_custom_attributes)));
|
|
|
|
for (size_t i = 0; i < info.attributes.size(); i++) {
|
|
memcpy(exr_header->custom_attributes[i].name, info.attributes[i].name,
|
|
256);
|
|
memcpy(exr_header->custom_attributes[i].type, info.attributes[i].type,
|
|
256);
|
|
exr_header->custom_attributes[i].size = info.attributes[i].size;
|
|
// Just copy poiner
|
|
exr_header->custom_attributes[i].value = info.attributes[i].value;
|
|
}
|
|
|
|
} else {
|
|
exr_header->custom_attributes = NULL;
|
|
}
|
|
|
|
exr_header->header_len = info.header_len;
|
|
}
|
|
|
|
static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const std::vector<tinyexr::tinyexr_uint64> &offsets,
|
|
const unsigned char *head, const size_t size,
|
|
std::string *err) {
|
|
int num_channels = exr_header->num_channels;
|
|
|
|
int num_scanline_blocks = 1;
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
num_scanline_blocks = 16;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
num_scanline_blocks = 32;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
num_scanline_blocks = 16;
|
|
}
|
|
|
|
int data_width = exr_header->data_window[2] - exr_header->data_window[0] + 1;
|
|
int data_height = exr_header->data_window[3] - exr_header->data_window[1] + 1;
|
|
|
|
if ((data_width < 0) || (data_height < 0)) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "Invalid data width or data height: " << data_width << ", "
|
|
<< data_height << std::endl;
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
// Do not allow too large data_width and data_height. header invalid?
|
|
{
|
|
const int threshold = 1024 * 8192; // heuristics
|
|
if ((data_width > threshold) || (data_height > threshold)) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "data_with or data_height too large. data_width: " << data_width
|
|
<< ", "
|
|
<< "data_height = " << data_height << std::endl;
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
|
|
size_t num_blocks = offsets.size();
|
|
|
|
std::vector<size_t> channel_offset_list;
|
|
int pixel_data_size = 0;
|
|
size_t channel_offset = 0;
|
|
if (!tinyexr::ComputeChannelLayout(&channel_offset_list, &pixel_data_size,
|
|
&channel_offset, num_channels,
|
|
exr_header->channels)) {
|
|
if (err) {
|
|
(*err) += "Failed to compute channel layout.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
bool invalid_data = false; // TODO(LTE): Use atomic lock for MT safety.
|
|
|
|
if (exr_header->tiled) {
|
|
// value check
|
|
if (exr_header->tile_size_x < 0) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "Invalid tile size x : " << exr_header->tile_size_x << "\n";
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
|
|
if (exr_header->tile_size_y < 0) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "Invalid tile size y : " << exr_header->tile_size_y << "\n";
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
|
|
size_t num_tiles = offsets.size(); // = # of blocks
|
|
|
|
exr_image->tiles = static_cast<EXRTile *>(
|
|
calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles)));
|
|
|
|
for (size_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
|
|
// Allocate memory for each tile.
|
|
exr_image->tiles[tile_idx].images = tinyexr::AllocateImage(
|
|
num_channels, exr_header->channels, exr_header->requested_pixel_types,
|
|
exr_header->tile_size_x, exr_header->tile_size_y);
|
|
|
|
// 16 byte: tile coordinates
|
|
// 4 byte : data size
|
|
// ~ : data(uncompressed or compressed)
|
|
if (offsets[tile_idx] + sizeof(int) * 5 > size) {
|
|
if (err) {
|
|
(*err) += "Insufficient data size.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
size_t data_size = size_t(size - (offsets[tile_idx] + sizeof(int) * 5));
|
|
const unsigned char *data_ptr =
|
|
reinterpret_cast<const unsigned char *>(head + offsets[tile_idx]);
|
|
|
|
int tile_coordinates[4];
|
|
memcpy(tile_coordinates, data_ptr, sizeof(int) * 4);
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[0]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[1]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[2]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[3]));
|
|
|
|
// @todo{ LoD }
|
|
if (tile_coordinates[2] != 0) {
|
|
return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
|
|
}
|
|
if (tile_coordinates[3] != 0) {
|
|
return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
|
|
}
|
|
|
|
int data_len;
|
|
memcpy(&data_len, data_ptr + 16,
|
|
sizeof(int)); // 16 = sizeof(tile_coordinates)
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
|
|
|
|
if (data_len < 4 || size_t(data_len) > data_size) {
|
|
if (err) {
|
|
(*err) += "Insufficient data length.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
// Move to data addr: 20 = 16 + 4;
|
|
data_ptr += 20;
|
|
|
|
tinyexr::DecodeTiledPixelData(
|
|
exr_image->tiles[tile_idx].images,
|
|
&(exr_image->tiles[tile_idx].width),
|
|
&(exr_image->tiles[tile_idx].height),
|
|
exr_header->requested_pixel_types, data_ptr,
|
|
static_cast<size_t>(data_len), exr_header->compression_type,
|
|
exr_header->line_order, data_width, data_height, tile_coordinates[0],
|
|
tile_coordinates[1], exr_header->tile_size_x, exr_header->tile_size_y,
|
|
static_cast<size_t>(pixel_data_size),
|
|
static_cast<size_t>(exr_header->num_custom_attributes),
|
|
exr_header->custom_attributes,
|
|
static_cast<size_t>(exr_header->num_channels), exr_header->channels,
|
|
channel_offset_list);
|
|
|
|
exr_image->tiles[tile_idx].offset_x = tile_coordinates[0];
|
|
exr_image->tiles[tile_idx].offset_y = tile_coordinates[1];
|
|
exr_image->tiles[tile_idx].level_x = tile_coordinates[2];
|
|
exr_image->tiles[tile_idx].level_y = tile_coordinates[3];
|
|
|
|
exr_image->num_tiles = static_cast<int>(num_tiles);
|
|
}
|
|
} else { // scanline format
|
|
|
|
// Don't allow too large image(256GB * pixel_data_size or more). Workaround
|
|
// for #104.
|
|
size_t total_data_len =
|
|
size_t(data_width) * size_t(data_height) * size_t(num_channels);
|
|
const bool total_data_len_overflown = sizeof(void*) == 8 ? (total_data_len >= 0x4000000000) : false;
|
|
if ((total_data_len == 0) || total_data_len_overflown ) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "Image data size is zero or too large: width = " << data_width
|
|
<< ", height = " << data_height << ", channels = " << num_channels
|
|
<< std::endl;
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
exr_image->images = tinyexr::AllocateImage(
|
|
num_channels, exr_header->channels, exr_header->requested_pixel_types,
|
|
data_width, data_height);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int y = 0; y < static_cast<int>(num_blocks); y++) {
|
|
size_t y_idx = static_cast<size_t>(y);
|
|
|
|
if (offsets[y_idx] + sizeof(int) * 2 > size) {
|
|
invalid_data = true;
|
|
} else {
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(uncompressed or compressed)
|
|
size_t data_size = size_t(size - (offsets[y_idx] + sizeof(int) * 2));
|
|
const unsigned char *data_ptr =
|
|
reinterpret_cast<const unsigned char *>(head + offsets[y_idx]);
|
|
|
|
int line_no;
|
|
memcpy(&line_no, data_ptr, sizeof(int));
|
|
int data_len;
|
|
memcpy(&data_len, data_ptr + 4, sizeof(int));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&line_no));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
|
|
|
|
if (size_t(data_len) > data_size) {
|
|
invalid_data = true;
|
|
|
|
} else if ((line_no > (2 << 20)) || (line_no < -(2 << 20))) {
|
|
// Too large value. Assume this is invalid
|
|
// 2**20 = 1048576 = heuristic value.
|
|
invalid_data = true;
|
|
} else if (data_len == 0) {
|
|
// TODO(syoyo): May be ok to raise the threshold for example `data_len
|
|
// < 4`
|
|
invalid_data = true;
|
|
} else {
|
|
// line_no may be negative.
|
|
int end_line_no = (std::min)(line_no + num_scanline_blocks,
|
|
(exr_header->data_window[3] + 1));
|
|
|
|
int num_lines = end_line_no - line_no;
|
|
|
|
if (num_lines <= 0) {
|
|
invalid_data = true;
|
|
} else {
|
|
// Move to data addr: 8 = 4 + 4;
|
|
data_ptr += 8;
|
|
|
|
// Adjust line_no with data_window.bmin.y
|
|
|
|
// overflow check
|
|
tinyexr_int64 lno = static_cast<tinyexr_int64>(line_no) - static_cast<tinyexr_int64>(exr_header->data_window[1]);
|
|
if (lno > std::numeric_limits<int>::max()) {
|
|
line_no = -1; // invalid
|
|
} else if (lno < -std::numeric_limits<int>::max()) {
|
|
line_no = -1; // invalid
|
|
} else {
|
|
line_no -= exr_header->data_window[1];
|
|
}
|
|
|
|
if (line_no < 0) {
|
|
invalid_data = true;
|
|
} else {
|
|
if (!tinyexr::DecodePixelData(
|
|
exr_image->images, exr_header->requested_pixel_types,
|
|
data_ptr, static_cast<size_t>(data_len),
|
|
exr_header->compression_type, exr_header->line_order,
|
|
data_width, data_height, data_width, y, line_no,
|
|
num_lines, static_cast<size_t>(pixel_data_size),
|
|
static_cast<size_t>(exr_header->num_custom_attributes),
|
|
exr_header->custom_attributes,
|
|
static_cast<size_t>(exr_header->num_channels),
|
|
exr_header->channels, channel_offset_list)) {
|
|
invalid_data = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // omp parallel
|
|
}
|
|
|
|
if (invalid_data) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
(*err) += "Invalid data found when decoding pixels.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
// Overwrite `pixel_type` with `requested_pixel_type`.
|
|
{
|
|
for (int c = 0; c < exr_header->num_channels; c++) {
|
|
exr_header->pixel_types[c] = exr_header->requested_pixel_types[c];
|
|
}
|
|
}
|
|
|
|
{
|
|
exr_image->num_channels = num_channels;
|
|
|
|
exr_image->width = data_width;
|
|
exr_image->height = data_height;
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
static bool ReconstructLineOffsets(
|
|
std::vector<tinyexr::tinyexr_uint64> *offsets, size_t n,
|
|
const unsigned char *head, const unsigned char *marker, const size_t size) {
|
|
assert(head < marker);
|
|
assert(offsets->size() == n);
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
size_t offset = static_cast<size_t>(marker - head);
|
|
// Offset should not exceed whole EXR file/data size.
|
|
if ((offset + sizeof(tinyexr::tinyexr_uint64)) >= size) {
|
|
return false;
|
|
}
|
|
|
|
int y;
|
|
unsigned int data_len;
|
|
|
|
memcpy(&y, marker, sizeof(int));
|
|
memcpy(&data_len, marker + 4, sizeof(unsigned int));
|
|
|
|
if (data_len >= size) {
|
|
return false;
|
|
}
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&y));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
|
|
|
|
(*offsets)[i] = offset;
|
|
|
|
marker += data_len + 8; // 8 = 4 bytes(y) + 4 bytes(data_len)
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const unsigned char *head,
|
|
const unsigned char *marker, const size_t size,
|
|
const char **err) {
|
|
if (exr_image == NULL || exr_header == NULL || head == NULL ||
|
|
marker == NULL || (size <= tinyexr::kEXRVersionSize)) {
|
|
tinyexr::SetErrorMessage("Invalid argument for DecodeEXRImage().", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
int num_scanline_blocks = 1;
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
num_scanline_blocks = 16;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
num_scanline_blocks = 32;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
num_scanline_blocks = 16;
|
|
}
|
|
|
|
int data_width = exr_header->data_window[2] - exr_header->data_window[0];
|
|
if (data_width >= std::numeric_limits<int>::max()) {
|
|
// Issue 63
|
|
tinyexr::SetErrorMessage("Invalid data width value", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
data_width++;
|
|
|
|
int data_height = exr_header->data_window[3] - exr_header->data_window[1];
|
|
if (data_height >= std::numeric_limits<int>::max()) {
|
|
tinyexr::SetErrorMessage("Invalid data height value", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
data_height++;
|
|
|
|
if ((data_width < 0) || (data_height < 0)) {
|
|
tinyexr::SetErrorMessage("data width or data height is negative.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
// Do not allow too large data_width and data_height. header invalid?
|
|
{
|
|
const int threshold = 1024 * 8192; // heuristics
|
|
if (data_width > threshold) {
|
|
tinyexr::SetErrorMessage("data width too large.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
if (data_height > threshold) {
|
|
tinyexr::SetErrorMessage("data height too large.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
|
|
// Read offset tables.
|
|
size_t num_blocks = 0;
|
|
|
|
if (exr_header->chunk_count > 0) {
|
|
// Use `chunkCount` attribute.
|
|
num_blocks = static_cast<size_t>(exr_header->chunk_count);
|
|
} else if (exr_header->tiled) {
|
|
// @todo { LoD }
|
|
size_t num_x_tiles = static_cast<size_t>(data_width) /
|
|
static_cast<size_t>(exr_header->tile_size_x);
|
|
if (num_x_tiles * static_cast<size_t>(exr_header->tile_size_x) <
|
|
static_cast<size_t>(data_width)) {
|
|
num_x_tiles++;
|
|
}
|
|
size_t num_y_tiles = static_cast<size_t>(data_height) /
|
|
static_cast<size_t>(exr_header->tile_size_y);
|
|
if (num_y_tiles * static_cast<size_t>(exr_header->tile_size_y) <
|
|
static_cast<size_t>(data_height)) {
|
|
num_y_tiles++;
|
|
}
|
|
|
|
num_blocks = num_x_tiles * num_y_tiles;
|
|
} else {
|
|
num_blocks = static_cast<size_t>(data_height) /
|
|
static_cast<size_t>(num_scanline_blocks);
|
|
if (num_blocks * static_cast<size_t>(num_scanline_blocks) <
|
|
static_cast<size_t>(data_height)) {
|
|
num_blocks++;
|
|
}
|
|
}
|
|
|
|
std::vector<tinyexr::tinyexr_uint64> offsets(num_blocks);
|
|
|
|
for (size_t y = 0; y < num_blocks; y++) {
|
|
tinyexr::tinyexr_uint64 offset;
|
|
// Issue #81
|
|
if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
|
|
tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
|
|
tinyexr::swap8(&offset);
|
|
if (offset >= size) {
|
|
tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
marker += sizeof(tinyexr::tinyexr_uint64); // = 8
|
|
offsets[y] = offset;
|
|
}
|
|
|
|
// If line offsets are invalid, we try to reconstruct it.
|
|
// See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details.
|
|
for (size_t y = 0; y < num_blocks; y++) {
|
|
if (offsets[y] <= 0) {
|
|
// TODO(syoyo) Report as warning?
|
|
// if (err) {
|
|
// stringstream ss;
|
|
// ss << "Incomplete lineOffsets." << std::endl;
|
|
// (*err) += ss.str();
|
|
//}
|
|
bool ret =
|
|
ReconstructLineOffsets(&offsets, num_blocks, head, marker, size);
|
|
if (ret) {
|
|
// OK
|
|
break;
|
|
} else {
|
|
tinyexr::SetErrorMessage(
|
|
"Cannot reconstruct lineOffset table in DecodeEXRImage.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
std::string e;
|
|
int ret = DecodeChunk(exr_image, exr_header, offsets, head, size, &e);
|
|
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
if (!e.empty()) {
|
|
tinyexr::SetErrorMessage(e, err);
|
|
}
|
|
|
|
// release memory(if exists)
|
|
if ((exr_header->num_channels > 0) && exr_image && exr_image->images) {
|
|
for (size_t c = 0; c < size_t(exr_header->num_channels); c++) {
|
|
if (exr_image->images[c]) {
|
|
free(exr_image->images[c]);
|
|
exr_image->images[c] = NULL;
|
|
}
|
|
}
|
|
free(exr_image->images);
|
|
exr_image->images = NULL;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
} // namespace tinyexr
|
|
|
|
int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
|
|
const char **err) {
|
|
if (out_rgba == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadEXR()", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
EXRVersion exr_version;
|
|
EXRImage exr_image;
|
|
EXRHeader exr_header;
|
|
InitEXRHeader(&exr_header);
|
|
InitEXRImage(&exr_image);
|
|
|
|
{
|
|
int ret = ParseEXRVersionFromFile(&exr_version, filename);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
tinyexr::SetErrorMessage("Invalid EXR header.", err);
|
|
return ret;
|
|
}
|
|
|
|
if (exr_version.multipart || exr_version.non_image) {
|
|
tinyexr::SetErrorMessage(
|
|
"Loading multipart or DeepImage is not supported in LoadEXR() API",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA; // @fixme.
|
|
}
|
|
}
|
|
|
|
{
|
|
int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
FreeEXRHeader(&exr_header);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
// Read HALF channel as FLOAT.
|
|
for (int i = 0; i < exr_header.num_channels; i++) {
|
|
if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) {
|
|
exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
|
|
}
|
|
}
|
|
|
|
{
|
|
int ret = LoadEXRImageFromFile(&exr_image, &exr_header, filename, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
FreeEXRHeader(&exr_header);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
// RGBA
|
|
int idxR = -1;
|
|
int idxG = -1;
|
|
int idxB = -1;
|
|
int idxA = -1;
|
|
for (int c = 0; c < exr_header.num_channels; c++) {
|
|
if (strcmp(exr_header.channels[c].name, "R") == 0) {
|
|
idxR = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "G") == 0) {
|
|
idxG = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "B") == 0) {
|
|
idxB = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "A") == 0) {
|
|
idxA = c;
|
|
}
|
|
}
|
|
|
|
if (exr_header.num_channels == 1) {
|
|
// Grayscale channel only.
|
|
|
|
(*out_rgba) = reinterpret_cast<float *>(
|
|
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height)));
|
|
|
|
if (exr_header.tiled) {
|
|
for (int it = 0; it < exr_image.num_tiles; it++) {
|
|
for (int j = 0; j < exr_header.tile_size_y; j++) {
|
|
for (int i = 0; i < exr_header.tile_size_x; i++) {
|
|
const int ii =
|
|
exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
|
|
const int jj =
|
|
exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
|
|
const int idx = ii + jj * exr_image.width;
|
|
|
|
// out of region check.
|
|
if (ii >= exr_image.width) {
|
|
continue;
|
|
}
|
|
if (jj >= exr_image.height) {
|
|
continue;
|
|
}
|
|
const int srcIdx = i + j * exr_header.tile_size_x;
|
|
unsigned char **src = exr_image.tiles[it].images;
|
|
(*out_rgba)[4 * idx + 0] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 1] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 2] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 3] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < exr_image.width * exr_image.height; i++) {
|
|
const float val = reinterpret_cast<float **>(exr_image.images)[0][i];
|
|
(*out_rgba)[4 * i + 0] = val;
|
|
(*out_rgba)[4 * i + 1] = val;
|
|
(*out_rgba)[4 * i + 2] = val;
|
|
(*out_rgba)[4 * i + 3] = val;
|
|
}
|
|
}
|
|
} else {
|
|
// Assume RGB(A)
|
|
|
|
if (idxR == -1) {
|
|
tinyexr::SetErrorMessage("R channel not found", err);
|
|
|
|
// @todo { free exr_image }
|
|
FreeEXRHeader(&exr_header);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (idxG == -1) {
|
|
tinyexr::SetErrorMessage("G channel not found", err);
|
|
// @todo { free exr_image }
|
|
FreeEXRHeader(&exr_header);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (idxB == -1) {
|
|
tinyexr::SetErrorMessage("B channel not found", err);
|
|
// @todo { free exr_image }
|
|
FreeEXRHeader(&exr_header);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
(*out_rgba) = reinterpret_cast<float *>(
|
|
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height)));
|
|
if (exr_header.tiled) {
|
|
for (int it = 0; it < exr_image.num_tiles; it++) {
|
|
for (int j = 0; j < exr_header.tile_size_y; j++) {
|
|
for (int i = 0; i < exr_header.tile_size_x; i++) {
|
|
const int ii =
|
|
exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
|
|
const int jj =
|
|
exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
|
|
const int idx = ii + jj * exr_image.width;
|
|
|
|
// out of region check.
|
|
if (ii >= exr_image.width) {
|
|
continue;
|
|
}
|
|
if (jj >= exr_image.height) {
|
|
continue;
|
|
}
|
|
const int srcIdx = i + j * exr_header.tile_size_x;
|
|
unsigned char **src = exr_image.tiles[it].images;
|
|
(*out_rgba)[4 * idx + 0] =
|
|
reinterpret_cast<float **>(src)[idxR][srcIdx];
|
|
(*out_rgba)[4 * idx + 1] =
|
|
reinterpret_cast<float **>(src)[idxG][srcIdx];
|
|
(*out_rgba)[4 * idx + 2] =
|
|
reinterpret_cast<float **>(src)[idxB][srcIdx];
|
|
if (idxA != -1) {
|
|
(*out_rgba)[4 * idx + 3] =
|
|
reinterpret_cast<float **>(src)[idxA][srcIdx];
|
|
} else {
|
|
(*out_rgba)[4 * idx + 3] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < exr_image.width * exr_image.height; i++) {
|
|
(*out_rgba)[4 * i + 0] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxR][i];
|
|
(*out_rgba)[4 * i + 1] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxG][i];
|
|
(*out_rgba)[4 * i + 2] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxB][i];
|
|
if (idxA != -1) {
|
|
(*out_rgba)[4 * i + 3] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxA][i];
|
|
} else {
|
|
(*out_rgba)[4 * i + 3] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(*width) = exr_image.width;
|
|
(*height) = exr_image.height;
|
|
|
|
FreeEXRHeader(&exr_header);
|
|
FreeEXRImage(&exr_image);
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int IsEXR(const char *filename) {
|
|
EXRVersion exr_version;
|
|
|
|
int ret = ParseEXRVersionFromFile(&exr_version, filename);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int ParseEXRHeaderFromMemory(EXRHeader *exr_header, const EXRVersion *version,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err) {
|
|
if (memory == NULL || exr_header == NULL) {
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument. `memory` or `exr_header` argument is null in "
|
|
"ParseEXRHeaderFromMemory()",
|
|
err);
|
|
|
|
// Invalid argument
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (size < tinyexr::kEXRVersionSize) {
|
|
tinyexr::SetErrorMessage("Insufficient header/data size.\n", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
const unsigned char *marker = memory + tinyexr::kEXRVersionSize;
|
|
size_t marker_size = size - tinyexr::kEXRVersionSize;
|
|
|
|
tinyexr::HeaderInfo info;
|
|
info.clear();
|
|
|
|
std::string err_str;
|
|
int ret = ParseEXRHeader(&info, NULL, version, &err_str, marker, marker_size);
|
|
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
if (err && !err_str.empty()) {
|
|
tinyexr::SetErrorMessage(err_str, err);
|
|
}
|
|
}
|
|
|
|
ConvertHeader(exr_header, info);
|
|
|
|
// transfoer `tiled` from version.
|
|
exr_header->tiled = version->tiled;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err) {
|
|
if (out_rgba == NULL || memory == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadEXRFromMemory", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
EXRVersion exr_version;
|
|
EXRImage exr_image;
|
|
EXRHeader exr_header;
|
|
|
|
InitEXRHeader(&exr_header);
|
|
|
|
int ret = ParseEXRVersionFromMemory(&exr_version, memory, size);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
tinyexr::SetErrorMessage("Failed to parse EXR version", err);
|
|
return ret;
|
|
}
|
|
|
|
ret = ParseEXRHeaderFromMemory(&exr_header, &exr_version, memory, size, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
// Read HALF channel as FLOAT.
|
|
for (int i = 0; i < exr_header.num_channels; i++) {
|
|
if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) {
|
|
exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
|
|
}
|
|
}
|
|
|
|
InitEXRImage(&exr_image);
|
|
ret = LoadEXRImageFromMemory(&exr_image, &exr_header, memory, size, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
// RGBA
|
|
int idxR = -1;
|
|
int idxG = -1;
|
|
int idxB = -1;
|
|
int idxA = -1;
|
|
for (int c = 0; c < exr_header.num_channels; c++) {
|
|
if (strcmp(exr_header.channels[c].name, "R") == 0) {
|
|
idxR = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "G") == 0) {
|
|
idxG = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "B") == 0) {
|
|
idxB = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "A") == 0) {
|
|
idxA = c;
|
|
}
|
|
}
|
|
|
|
// TODO(syoyo): Refactor removing same code as used in LoadEXR().
|
|
if (exr_header.num_channels == 1) {
|
|
// Grayscale channel only.
|
|
|
|
(*out_rgba) = reinterpret_cast<float *>(
|
|
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height)));
|
|
|
|
if (exr_header.tiled) {
|
|
for (int it = 0; it < exr_image.num_tiles; it++) {
|
|
for (int j = 0; j < exr_header.tile_size_y; j++) {
|
|
for (int i = 0; i < exr_header.tile_size_x; i++) {
|
|
const int ii =
|
|
exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
|
|
const int jj =
|
|
exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
|
|
const int idx = ii + jj * exr_image.width;
|
|
|
|
// out of region check.
|
|
if (ii >= exr_image.width) {
|
|
continue;
|
|
}
|
|
if (jj >= exr_image.height) {
|
|
continue;
|
|
}
|
|
const int srcIdx = i + j * exr_header.tile_size_x;
|
|
unsigned char **src = exr_image.tiles[it].images;
|
|
(*out_rgba)[4 * idx + 0] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 1] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 2] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 3] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < exr_image.width * exr_image.height; i++) {
|
|
const float val = reinterpret_cast<float **>(exr_image.images)[0][i];
|
|
(*out_rgba)[4 * i + 0] = val;
|
|
(*out_rgba)[4 * i + 1] = val;
|
|
(*out_rgba)[4 * i + 2] = val;
|
|
(*out_rgba)[4 * i + 3] = val;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
// TODO(syoyo): Support non RGBA image.
|
|
|
|
if (idxR == -1) {
|
|
tinyexr::SetErrorMessage("R channel not found", err);
|
|
|
|
// @todo { free exr_image }
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (idxG == -1) {
|
|
tinyexr::SetErrorMessage("G channel not found", err);
|
|
// @todo { free exr_image }
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (idxB == -1) {
|
|
tinyexr::SetErrorMessage("B channel not found", err);
|
|
// @todo { free exr_image }
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
(*out_rgba) = reinterpret_cast<float *>(
|
|
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height)));
|
|
|
|
if (exr_header.tiled) {
|
|
for (int it = 0; it < exr_image.num_tiles; it++) {
|
|
for (int j = 0; j < exr_header.tile_size_y; j++)
|
|
for (int i = 0; i < exr_header.tile_size_x; i++) {
|
|
const int ii =
|
|
exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
|
|
const int jj =
|
|
exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
|
|
const int idx = ii + jj * exr_image.width;
|
|
|
|
// out of region check.
|
|
if (ii >= exr_image.width) {
|
|
continue;
|
|
}
|
|
if (jj >= exr_image.height) {
|
|
continue;
|
|
}
|
|
const int srcIdx = i + j * exr_header.tile_size_x;
|
|
unsigned char **src = exr_image.tiles[it].images;
|
|
(*out_rgba)[4 * idx + 0] =
|
|
reinterpret_cast<float **>(src)[idxR][srcIdx];
|
|
(*out_rgba)[4 * idx + 1] =
|
|
reinterpret_cast<float **>(src)[idxG][srcIdx];
|
|
(*out_rgba)[4 * idx + 2] =
|
|
reinterpret_cast<float **>(src)[idxB][srcIdx];
|
|
if (idxA != -1) {
|
|
(*out_rgba)[4 * idx + 3] =
|
|
reinterpret_cast<float **>(src)[idxA][srcIdx];
|
|
} else {
|
|
(*out_rgba)[4 * idx + 3] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < exr_image.width * exr_image.height; i++) {
|
|
(*out_rgba)[4 * i + 0] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxR][i];
|
|
(*out_rgba)[4 * i + 1] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxG][i];
|
|
(*out_rgba)[4 * i + 2] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxB][i];
|
|
if (idxA != -1) {
|
|
(*out_rgba)[4 * i + 3] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxA][i];
|
|
} else {
|
|
(*out_rgba)[4 * i + 3] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(*width) = exr_image.width;
|
|
(*height) = exr_image.height;
|
|
|
|
FreeEXRHeader(&exr_header);
|
|
FreeEXRImage(&exr_image);
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const char *filename, const char **err) {
|
|
if (exr_image == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromFile", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
FILE *fp = NULL;
|
|
fopen_s(&fp, filename, "rb");
|
|
#else
|
|
FILE *fp = fopen(filename, "rb");
|
|
#endif
|
|
if (!fp) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
size_t filesize;
|
|
// Compute size
|
|
fseek(fp, 0, SEEK_END);
|
|
filesize = static_cast<size_t>(ftell(fp));
|
|
fseek(fp, 0, SEEK_SET);
|
|
|
|
if (filesize < 16) {
|
|
tinyexr::SetErrorMessage("File size too short " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
|
|
std::vector<unsigned char> buf(filesize); // @todo { use mmap }
|
|
{
|
|
size_t ret;
|
|
ret = fread(&buf[0], 1, filesize, fp);
|
|
assert(ret == filesize);
|
|
fclose(fp);
|
|
(void)ret;
|
|
}
|
|
|
|
return LoadEXRImageFromMemory(exr_image, exr_header, &buf.at(0), filesize,
|
|
err);
|
|
}
|
|
|
|
int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const unsigned char *memory, const size_t size,
|
|
const char **err) {
|
|
if (exr_image == NULL || memory == NULL ||
|
|
(size < tinyexr::kEXRVersionSize)) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromMemory",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (exr_header->header_len == 0) {
|
|
tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
const unsigned char *head = memory;
|
|
const unsigned char *marker = reinterpret_cast<const unsigned char *>(
|
|
memory + exr_header->header_len +
|
|
8); // +8 for magic number + version header.
|
|
return tinyexr::DecodeEXRImage(exr_image, exr_header, head, marker, size,
|
|
err);
|
|
}
|
|
|
|
size_t SaveEXRImageToMemory(const EXRImage *exr_image,
|
|
const EXRHeader *exr_header,
|
|
unsigned char **memory_out, const char **err) {
|
|
if (exr_image == NULL || memory_out == NULL ||
|
|
exr_header->compression_type < 0) {
|
|
tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToMemory", err);
|
|
return 0;
|
|
}
|
|
|
|
#if !TINYEXR_USE_PIZ
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
tinyexr::SetErrorMessage("PIZ compression is not supported in this build",
|
|
err);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if !TINYEXR_USE_ZFP
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
tinyexr::SetErrorMessage("ZFP compression is not supported in this build",
|
|
err);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if TINYEXR_USE_ZFP
|
|
for (size_t i = 0; i < static_cast<size_t>(exr_header->num_channels); i++) {
|
|
if (exr_header->requested_pixel_types[i] != TINYEXR_PIXELTYPE_FLOAT) {
|
|
tinyexr::SetErrorMessage("Pixel type must be FLOAT for ZFP compression",
|
|
err);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
std::vector<unsigned char> memory;
|
|
|
|
// Header
|
|
{
|
|
const char header[] = {0x76, 0x2f, 0x31, 0x01};
|
|
memory.insert(memory.end(), header, header + 4);
|
|
}
|
|
|
|
// Version, scanline.
|
|
{
|
|
char marker[] = {2, 0, 0, 0};
|
|
/* @todo
|
|
if (exr_header->tiled) {
|
|
marker[1] |= 0x2;
|
|
}
|
|
if (exr_header->long_name) {
|
|
marker[1] |= 0x4;
|
|
}
|
|
if (exr_header->non_image) {
|
|
marker[1] |= 0x8;
|
|
}
|
|
if (exr_header->multipart) {
|
|
marker[1] |= 0x10;
|
|
}
|
|
*/
|
|
memory.insert(memory.end(), marker, marker + 4);
|
|
}
|
|
|
|
int num_scanlines = 1;
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
num_scanlines = 16;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
num_scanlines = 32;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
num_scanlines = 16;
|
|
}
|
|
|
|
// Write attributes.
|
|
std::vector<tinyexr::ChannelInfo> channels;
|
|
{
|
|
std::vector<unsigned char> data;
|
|
|
|
for (int c = 0; c < exr_header->num_channels; c++) {
|
|
tinyexr::ChannelInfo info;
|
|
info.p_linear = 0;
|
|
info.pixel_type = exr_header->requested_pixel_types[c];
|
|
info.x_sampling = 1;
|
|
info.y_sampling = 1;
|
|
info.name = std::string(exr_header->channels[c].name);
|
|
channels.push_back(info);
|
|
}
|
|
|
|
tinyexr::WriteChannelInfo(data, channels);
|
|
|
|
tinyexr::WriteAttributeToMemory(&memory, "channels", "chlist", &data.at(0),
|
|
static_cast<int>(data.size()));
|
|
}
|
|
|
|
{
|
|
int comp = exr_header->compression_type;
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&comp));
|
|
tinyexr::WriteAttributeToMemory(
|
|
&memory, "compression", "compression",
|
|
reinterpret_cast<const unsigned char *>(&comp), 1);
|
|
}
|
|
|
|
{
|
|
int data[4] = {0, 0, exr_image->width - 1, exr_image->height - 1};
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[0]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[1]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[2]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[3]));
|
|
tinyexr::WriteAttributeToMemory(
|
|
&memory, "dataWindow", "box2i",
|
|
reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4);
|
|
tinyexr::WriteAttributeToMemory(
|
|
&memory, "displayWindow", "box2i",
|
|
reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4);
|
|
}
|
|
|
|
{
|
|
unsigned char line_order = 0; // @fixme { read line_order from EXRHeader }
|
|
tinyexr::WriteAttributeToMemory(&memory, "lineOrder", "lineOrder",
|
|
&line_order, 1);
|
|
}
|
|
|
|
{
|
|
float aspectRatio = 1.0f;
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&aspectRatio));
|
|
tinyexr::WriteAttributeToMemory(
|
|
&memory, "pixelAspectRatio", "float",
|
|
reinterpret_cast<const unsigned char *>(&aspectRatio), sizeof(float));
|
|
}
|
|
|
|
{
|
|
float center[2] = {0.0f, 0.0f};
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(¢er[0]));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(¢er[1]));
|
|
tinyexr::WriteAttributeToMemory(
|
|
&memory, "screenWindowCenter", "v2f",
|
|
reinterpret_cast<const unsigned char *>(center), 2 * sizeof(float));
|
|
}
|
|
|
|
{
|
|
float w = static_cast<float>(exr_image->width);
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&w));
|
|
tinyexr::WriteAttributeToMemory(&memory, "screenWindowWidth", "float",
|
|
reinterpret_cast<const unsigned char *>(&w),
|
|
sizeof(float));
|
|
}
|
|
|
|
// Custom attributes
|
|
if (exr_header->num_custom_attributes > 0) {
|
|
for (int i = 0; i < exr_header->num_custom_attributes; i++) {
|
|
tinyexr::WriteAttributeToMemory(
|
|
&memory, exr_header->custom_attributes[i].name,
|
|
exr_header->custom_attributes[i].type,
|
|
reinterpret_cast<const unsigned char *>(
|
|
exr_header->custom_attributes[i].value),
|
|
exr_header->custom_attributes[i].size);
|
|
}
|
|
}
|
|
|
|
{ // end of header
|
|
unsigned char e = 0;
|
|
memory.push_back(e);
|
|
}
|
|
|
|
int num_blocks = exr_image->height / num_scanlines;
|
|
if (num_blocks * num_scanlines < exr_image->height) {
|
|
num_blocks++;
|
|
}
|
|
|
|
std::vector<tinyexr::tinyexr_uint64> offsets(static_cast<size_t>(num_blocks));
|
|
|
|
size_t headerSize = memory.size();
|
|
tinyexr::tinyexr_uint64 offset =
|
|
headerSize +
|
|
static_cast<size_t>(num_blocks) *
|
|
sizeof(
|
|
tinyexr::tinyexr_int64); // sizeof(header) + sizeof(offsetTable)
|
|
|
|
std::vector<std::vector<unsigned char> > data_list(
|
|
static_cast<size_t>(num_blocks));
|
|
std::vector<size_t> channel_offset_list(
|
|
static_cast<size_t>(exr_header->num_channels));
|
|
|
|
int pixel_data_size = 0;
|
|
size_t channel_offset = 0;
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
channel_offset_list[c] = channel_offset;
|
|
if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
pixel_data_size += sizeof(unsigned short);
|
|
channel_offset += sizeof(unsigned short);
|
|
} else if (exr_header->requested_pixel_types[c] ==
|
|
TINYEXR_PIXELTYPE_FLOAT) {
|
|
pixel_data_size += sizeof(float);
|
|
channel_offset += sizeof(float);
|
|
} else if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT) {
|
|
pixel_data_size += sizeof(unsigned int);
|
|
channel_offset += sizeof(unsigned int);
|
|
} else {
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
#if TINYEXR_USE_ZFP
|
|
tinyexr::ZFPCompressionParam zfp_compression_param;
|
|
|
|
// Use ZFP compression parameter from custom attributes(if such a parameter
|
|
// exists)
|
|
{
|
|
bool ret = tinyexr::FindZFPCompressionParam(
|
|
&zfp_compression_param, exr_header->custom_attributes,
|
|
exr_header->num_custom_attributes);
|
|
|
|
if (!ret) {
|
|
// Use predefined compression parameter.
|
|
zfp_compression_param.type = 0;
|
|
zfp_compression_param.rate = 2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Use signed int since some OpenMP compiler doesn't allow unsigned type for
|
|
// `parallel for`
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < num_blocks; i++) {
|
|
size_t ii = static_cast<size_t>(i);
|
|
int start_y = num_scanlines * i;
|
|
int endY = (std::min)(num_scanlines * (i + 1), exr_image->height);
|
|
int h = endY - start_y;
|
|
|
|
std::vector<unsigned char> buf(
|
|
static_cast<size_t>(exr_image->width * h * pixel_data_size));
|
|
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
|
|
for (int y = 0; y < h; y++) {
|
|
// Assume increasing Y
|
|
float *line_ptr = reinterpret_cast<float *>(&buf.at(
|
|
static_cast<size_t>(pixel_data_size * y * exr_image->width) +
|
|
channel_offset_list[c] *
|
|
static_cast<size_t>(exr_image->width)));
|
|
for (int x = 0; x < exr_image->width; x++) {
|
|
tinyexr::FP16 h16;
|
|
h16.u = reinterpret_cast<unsigned short **>(
|
|
exr_image->images)[c][(y + start_y) * exr_image->width + x];
|
|
|
|
tinyexr::FP32 f32 = half_to_float(h16);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&f32.f));
|
|
|
|
// line_ptr[x] = f32.f;
|
|
tinyexr::cpy4(line_ptr + x, &(f32.f));
|
|
}
|
|
}
|
|
} else if (exr_header->requested_pixel_types[c] ==
|
|
TINYEXR_PIXELTYPE_HALF) {
|
|
for (int y = 0; y < h; y++) {
|
|
// Assume increasing Y
|
|
unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&buf.at(static_cast<size_t>(pixel_data_size * y *
|
|
exr_image->width) +
|
|
channel_offset_list[c] *
|
|
static_cast<size_t>(exr_image->width)));
|
|
for (int x = 0; x < exr_image->width; x++) {
|
|
unsigned short val = reinterpret_cast<unsigned short **>(
|
|
exr_image->images)[c][(y + start_y) * exr_image->width + x];
|
|
|
|
tinyexr::swap2(&val);
|
|
|
|
// line_ptr[x] = val;
|
|
tinyexr::cpy2(line_ptr + x, &val);
|
|
}
|
|
}
|
|
} else {
|
|
assert(0);
|
|
}
|
|
|
|
} else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
|
|
if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
for (int y = 0; y < h; y++) {
|
|
// Assume increasing Y
|
|
unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&buf.at(static_cast<size_t>(pixel_data_size * y *
|
|
exr_image->width) +
|
|
channel_offset_list[c] *
|
|
static_cast<size_t>(exr_image->width)));
|
|
for (int x = 0; x < exr_image->width; x++) {
|
|
tinyexr::FP32 f32;
|
|
f32.f = reinterpret_cast<float **>(
|
|
exr_image->images)[c][(y + start_y) * exr_image->width + x];
|
|
|
|
tinyexr::FP16 h16;
|
|
h16 = float_to_half_full(f32);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u));
|
|
|
|
// line_ptr[x] = h16.u;
|
|
tinyexr::cpy2(line_ptr + x, &(h16.u));
|
|
}
|
|
}
|
|
} else if (exr_header->requested_pixel_types[c] ==
|
|
TINYEXR_PIXELTYPE_FLOAT) {
|
|
for (int y = 0; y < h; y++) {
|
|
// Assume increasing Y
|
|
float *line_ptr = reinterpret_cast<float *>(&buf.at(
|
|
static_cast<size_t>(pixel_data_size * y * exr_image->width) +
|
|
channel_offset_list[c] *
|
|
static_cast<size_t>(exr_image->width)));
|
|
for (int x = 0; x < exr_image->width; x++) {
|
|
float val = reinterpret_cast<float **>(
|
|
exr_image->images)[c][(y + start_y) * exr_image->width + x];
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
// line_ptr[x] = val;
|
|
tinyexr::cpy4(line_ptr + x, &val);
|
|
}
|
|
}
|
|
} else {
|
|
assert(0);
|
|
}
|
|
} else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_UINT) {
|
|
for (int y = 0; y < h; y++) {
|
|
// Assume increasing Y
|
|
unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at(
|
|
static_cast<size_t>(pixel_data_size * y * exr_image->width) +
|
|
channel_offset_list[c] * static_cast<size_t>(exr_image->width)));
|
|
for (int x = 0; x < exr_image->width; x++) {
|
|
unsigned int val = reinterpret_cast<unsigned int **>(
|
|
exr_image->images)[c][(y + start_y) * exr_image->width + x];
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
// line_ptr[x] = val;
|
|
tinyexr::cpy4(line_ptr + x, &val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(uncompressed)
|
|
std::vector<unsigned char> header(8);
|
|
unsigned int data_len = static_cast<unsigned int>(buf.size());
|
|
memcpy(&header.at(0), &start_y, sizeof(int));
|
|
memcpy(&header.at(4), &data_len, sizeof(unsigned int));
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
|
|
|
|
data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
|
|
data_list[ii].insert(data_list[ii].end(), buf.begin(),
|
|
buf.begin() + data_len);
|
|
|
|
} else if ((exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
|
|
(exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
|
|
#if TINYEXR_USE_MINIZ
|
|
std::vector<unsigned char> block(tinyexr::miniz::mz_compressBound(
|
|
static_cast<unsigned long>(buf.size())));
|
|
#else
|
|
std::vector<unsigned char> block(
|
|
compressBound(static_cast<uLong>(buf.size())));
|
|
#endif
|
|
tinyexr::tinyexr_uint64 outSize = block.size();
|
|
|
|
tinyexr::CompressZip(&block.at(0), outSize,
|
|
reinterpret_cast<const unsigned char *>(&buf.at(0)),
|
|
static_cast<unsigned long>(buf.size()));
|
|
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(compressed)
|
|
std::vector<unsigned char> header(8);
|
|
unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
|
|
memcpy(&header.at(0), &start_y, sizeof(int));
|
|
memcpy(&header.at(4), &data_len, sizeof(unsigned int));
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
|
|
|
|
data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
|
|
data_list[ii].insert(data_list[ii].end(), block.begin(),
|
|
block.begin() + data_len);
|
|
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
|
|
// (buf.size() * 3) / 2 would be enough.
|
|
std::vector<unsigned char> block((buf.size() * 3) / 2);
|
|
|
|
tinyexr::tinyexr_uint64 outSize = block.size();
|
|
|
|
tinyexr::CompressRle(&block.at(0), outSize,
|
|
reinterpret_cast<const unsigned char *>(&buf.at(0)),
|
|
static_cast<unsigned long>(buf.size()));
|
|
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(compressed)
|
|
std::vector<unsigned char> header(8);
|
|
unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
|
|
memcpy(&header.at(0), &start_y, sizeof(int));
|
|
memcpy(&header.at(4), &data_len, sizeof(unsigned int));
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
|
|
|
|
data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
|
|
data_list[ii].insert(data_list[ii].end(), block.begin(),
|
|
block.begin() + data_len);
|
|
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
#if TINYEXR_USE_PIZ
|
|
unsigned int bufLen =
|
|
8192 + static_cast<unsigned int>(
|
|
2 * static_cast<unsigned int>(
|
|
buf.size())); // @fixme { compute good bound. }
|
|
std::vector<unsigned char> block(bufLen);
|
|
unsigned int outSize = static_cast<unsigned int>(block.size());
|
|
|
|
CompressPiz(&block.at(0), &outSize,
|
|
reinterpret_cast<const unsigned char *>(&buf.at(0)),
|
|
buf.size(), channels, exr_image->width, h);
|
|
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(compressed)
|
|
std::vector<unsigned char> header(8);
|
|
unsigned int data_len = outSize;
|
|
memcpy(&header.at(0), &start_y, sizeof(int));
|
|
memcpy(&header.at(4), &data_len, sizeof(unsigned int));
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
|
|
|
|
data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
|
|
data_list[ii].insert(data_list[ii].end(), block.begin(),
|
|
block.begin() + data_len);
|
|
|
|
#else
|
|
assert(0);
|
|
#endif
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
#if TINYEXR_USE_ZFP
|
|
std::vector<unsigned char> block;
|
|
unsigned int outSize;
|
|
|
|
tinyexr::CompressZfp(
|
|
&block, &outSize, reinterpret_cast<const float *>(&buf.at(0)),
|
|
exr_image->width, h, exr_header->num_channels, zfp_compression_param);
|
|
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(compressed)
|
|
std::vector<unsigned char> header(8);
|
|
unsigned int data_len = outSize;
|
|
memcpy(&header.at(0), &start_y, sizeof(int));
|
|
memcpy(&header.at(4), &data_len, sizeof(unsigned int));
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
|
|
|
|
data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
|
|
data_list[ii].insert(data_list[ii].end(), block.begin(),
|
|
block.begin() + data_len);
|
|
|
|
#else
|
|
assert(0);
|
|
#endif
|
|
} else {
|
|
assert(0);
|
|
}
|
|
} // omp parallel
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
|
|
offsets[i] = offset;
|
|
tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i]));
|
|
offset += data_list[i].size();
|
|
}
|
|
|
|
size_t totalSize = static_cast<size_t>(offset);
|
|
{
|
|
memory.insert(
|
|
memory.end(), reinterpret_cast<unsigned char *>(&offsets.at(0)),
|
|
reinterpret_cast<unsigned char *>(&offsets.at(0)) +
|
|
sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(num_blocks));
|
|
}
|
|
|
|
if (memory.size() == 0) {
|
|
tinyexr::SetErrorMessage("Output memory size is zero", err);
|
|
return 0;
|
|
}
|
|
|
|
(*memory_out) = static_cast<unsigned char *>(malloc(totalSize));
|
|
memcpy((*memory_out), &memory.at(0), memory.size());
|
|
unsigned char *memory_ptr = *memory_out + memory.size();
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
|
|
memcpy(memory_ptr, &data_list[i].at(0), data_list[i].size());
|
|
memory_ptr += data_list[i].size();
|
|
}
|
|
|
|
return totalSize; // OK
|
|
}
|
|
|
|
int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const char *filename, const char **err) {
|
|
if (exr_image == NULL || filename == NULL ||
|
|
exr_header->compression_type < 0) {
|
|
tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToFile", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#if !TINYEXR_USE_PIZ
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
tinyexr::SetErrorMessage("PIZ compression is not supported in this build",
|
|
err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
|
|
}
|
|
#endif
|
|
|
|
#if !TINYEXR_USE_ZFP
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
tinyexr::SetErrorMessage("ZFP compression is not supported in this build",
|
|
err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
|
|
}
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
FILE *fp = NULL;
|
|
fopen_s(&fp, filename, "wb");
|
|
#else
|
|
FILE *fp = fopen(filename, "wb");
|
|
#endif
|
|
if (!fp) {
|
|
tinyexr::SetErrorMessage("Cannot write a file", err);
|
|
return TINYEXR_ERROR_CANT_WRITE_FILE;
|
|
}
|
|
|
|
unsigned char *mem = NULL;
|
|
size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err);
|
|
if (mem_size == 0) {
|
|
return TINYEXR_ERROR_SERIALZATION_FAILED;
|
|
}
|
|
|
|
size_t written_size = 0;
|
|
if ((mem_size > 0) && mem) {
|
|
written_size = fwrite(mem, 1, mem_size, fp);
|
|
}
|
|
free(mem);
|
|
|
|
fclose(fp);
|
|
|
|
if (written_size != mem_size) {
|
|
tinyexr::SetErrorMessage("Cannot write a file", err);
|
|
return TINYEXR_ERROR_CANT_WRITE_FILE;
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) {
|
|
if (deep_image == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadDeepEXR", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
FILE *fp = NULL;
|
|
errno_t errcode = fopen_s(&fp, filename, "rb");
|
|
if ((0 != errcode) || (!fp)) {
|
|
tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
#else
|
|
FILE *fp = fopen(filename, "rb");
|
|
if (!fp) {
|
|
tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
#endif
|
|
|
|
size_t filesize;
|
|
// Compute size
|
|
fseek(fp, 0, SEEK_END);
|
|
filesize = static_cast<size_t>(ftell(fp));
|
|
fseek(fp, 0, SEEK_SET);
|
|
|
|
if (filesize == 0) {
|
|
fclose(fp);
|
|
tinyexr::SetErrorMessage("File size is zero : " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
|
|
std::vector<char> buf(filesize); // @todo { use mmap }
|
|
{
|
|
size_t ret;
|
|
ret = fread(&buf[0], 1, filesize, fp);
|
|
assert(ret == filesize);
|
|
(void)ret;
|
|
}
|
|
fclose(fp);
|
|
|
|
const char *head = &buf[0];
|
|
const char *marker = &buf[0];
|
|
|
|
// Header check.
|
|
{
|
|
const char header[] = {0x76, 0x2f, 0x31, 0x01};
|
|
|
|
if (memcmp(marker, header, 4) != 0) {
|
|
tinyexr::SetErrorMessage("Invalid magic number", err);
|
|
return TINYEXR_ERROR_INVALID_MAGIC_NUMBER;
|
|
}
|
|
marker += 4;
|
|
}
|
|
|
|
// Version, scanline.
|
|
{
|
|
// ver 2.0, scanline, deep bit on(0x800)
|
|
// must be [2, 0, 0, 0]
|
|
if (marker[0] != 2 || marker[1] != 8 || marker[2] != 0 || marker[3] != 0) {
|
|
tinyexr::SetErrorMessage("Unsupported version or scanline", err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
marker += 4;
|
|
}
|
|
|
|
int dx = -1;
|
|
int dy = -1;
|
|
int dw = -1;
|
|
int dh = -1;
|
|
int num_scanline_blocks = 1; // 16 for ZIP compression.
|
|
int compression_type = -1;
|
|
int num_channels = -1;
|
|
std::vector<tinyexr::ChannelInfo> channels;
|
|
|
|
// Read attributes
|
|
size_t size = filesize - tinyexr::kEXRVersionSize;
|
|
for (;;) {
|
|
if (0 == size) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
} else if (marker[0] == '\0') {
|
|
marker++;
|
|
size--;
|
|
break;
|
|
}
|
|
|
|
std::string attr_name;
|
|
std::string attr_type;
|
|
std::vector<unsigned char> data;
|
|
size_t marker_size;
|
|
if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size,
|
|
marker, size)) {
|
|
std::stringstream ss;
|
|
ss << "Failed to parse attribute\n";
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
marker += marker_size;
|
|
size -= marker_size;
|
|
|
|
if (attr_name.compare("compression") == 0) {
|
|
compression_type = data[0];
|
|
if (compression_type > TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
std::stringstream ss;
|
|
ss << "Unsupported compression type : " << compression_type;
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
num_scanline_blocks = 16;
|
|
}
|
|
|
|
} else if (attr_name.compare("channels") == 0) {
|
|
// name: zero-terminated string, from 1 to 255 bytes long
|
|
// pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2
|
|
// pLinear: unsigned char, possible values are 0 and 1
|
|
// reserved: three chars, should be zero
|
|
// xSampling: int
|
|
// ySampling: int
|
|
|
|
if (!tinyexr::ReadChannelInfo(channels, data)) {
|
|
tinyexr::SetErrorMessage("Failed to parse channel info", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
num_channels = static_cast<int>(channels.size());
|
|
|
|
if (num_channels < 1) {
|
|
tinyexr::SetErrorMessage("Invalid channels format", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
} else if (attr_name.compare("dataWindow") == 0) {
|
|
memcpy(&dx, &data.at(0), sizeof(int));
|
|
memcpy(&dy, &data.at(4), sizeof(int));
|
|
memcpy(&dw, &data.at(8), sizeof(int));
|
|
memcpy(&dh, &data.at(12), sizeof(int));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&dx));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&dy));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&dw));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&dh));
|
|
|
|
} else if (attr_name.compare("displayWindow") == 0) {
|
|
int x;
|
|
int y;
|
|
int w;
|
|
int h;
|
|
memcpy(&x, &data.at(0), sizeof(int));
|
|
memcpy(&y, &data.at(4), sizeof(int));
|
|
memcpy(&w, &data.at(8), sizeof(int));
|
|
memcpy(&h, &data.at(12), sizeof(int));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&x));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&y));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&w));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&h));
|
|
}
|
|
}
|
|
|
|
assert(dx >= 0);
|
|
assert(dy >= 0);
|
|
assert(dw >= 0);
|
|
assert(dh >= 0);
|
|
assert(num_channels >= 1);
|
|
|
|
int data_width = dw - dx + 1;
|
|
int data_height = dh - dy + 1;
|
|
|
|
std::vector<float> image(
|
|
static_cast<size_t>(data_width * data_height * 4)); // 4 = RGBA
|
|
|
|
// Read offset tables.
|
|
int num_blocks = data_height / num_scanline_blocks;
|
|
if (num_blocks * num_scanline_blocks < data_height) {
|
|
num_blocks++;
|
|
}
|
|
|
|
std::vector<tinyexr::tinyexr_int64> offsets(static_cast<size_t>(num_blocks));
|
|
|
|
for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) {
|
|
tinyexr::tinyexr_int64 offset;
|
|
memcpy(&offset, marker, sizeof(tinyexr::tinyexr_int64));
|
|
tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offset));
|
|
marker += sizeof(tinyexr::tinyexr_int64); // = 8
|
|
offsets[y] = offset;
|
|
}
|
|
|
|
#if TINYEXR_USE_PIZ
|
|
if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_RLE) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_PIZ)) {
|
|
#else
|
|
if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_RLE) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
|
|
#endif
|
|
// OK
|
|
} else {
|
|
tinyexr::SetErrorMessage("Unsupported compression format", err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
deep_image->image = static_cast<float ***>(
|
|
malloc(sizeof(float **) * static_cast<size_t>(num_channels)));
|
|
for (int c = 0; c < num_channels; c++) {
|
|
deep_image->image[c] = static_cast<float **>(
|
|
malloc(sizeof(float *) * static_cast<size_t>(data_height)));
|
|
for (int y = 0; y < data_height; y++) {
|
|
}
|
|
}
|
|
|
|
deep_image->offset_table = static_cast<int **>(
|
|
malloc(sizeof(int *) * static_cast<size_t>(data_height)));
|
|
for (int y = 0; y < data_height; y++) {
|
|
deep_image->offset_table[y] = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(data_width)));
|
|
}
|
|
|
|
for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) {
|
|
const unsigned char *data_ptr =
|
|
reinterpret_cast<const unsigned char *>(head + offsets[y]);
|
|
|
|
// int: y coordinate
|
|
// int64: packed size of pixel offset table
|
|
// int64: packed size of sample data
|
|
// int64: unpacked size of sample data
|
|
// compressed pixel offset table
|
|
// compressed sample data
|
|
int line_no;
|
|
tinyexr::tinyexr_int64 packedOffsetTableSize;
|
|
tinyexr::tinyexr_int64 packedSampleDataSize;
|
|
tinyexr::tinyexr_int64 unpackedSampleDataSize;
|
|
memcpy(&line_no, data_ptr, sizeof(int));
|
|
memcpy(&packedOffsetTableSize, data_ptr + 4,
|
|
sizeof(tinyexr::tinyexr_int64));
|
|
memcpy(&packedSampleDataSize, data_ptr + 12,
|
|
sizeof(tinyexr::tinyexr_int64));
|
|
memcpy(&unpackedSampleDataSize, data_ptr + 20,
|
|
sizeof(tinyexr::tinyexr_int64));
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&line_no));
|
|
tinyexr::swap8(
|
|
reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedOffsetTableSize));
|
|
tinyexr::swap8(
|
|
reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedSampleDataSize));
|
|
tinyexr::swap8(
|
|
reinterpret_cast<tinyexr::tinyexr_uint64 *>(&unpackedSampleDataSize));
|
|
|
|
std::vector<int> pixelOffsetTable(static_cast<size_t>(data_width));
|
|
|
|
// decode pixel offset table.
|
|
{
|
|
unsigned long dstLen =
|
|
static_cast<unsigned long>(pixelOffsetTable.size() * sizeof(int));
|
|
if (!tinyexr::DecompressZip(
|
|
reinterpret_cast<unsigned char *>(&pixelOffsetTable.at(0)),
|
|
&dstLen, data_ptr + 28,
|
|
static_cast<unsigned long>(packedOffsetTableSize))) {
|
|
return false;
|
|
}
|
|
|
|
assert(dstLen == pixelOffsetTable.size() * sizeof(int));
|
|
for (size_t i = 0; i < static_cast<size_t>(data_width); i++) {
|
|
deep_image->offset_table[y][i] = pixelOffsetTable[i];
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned char> sample_data(
|
|
static_cast<size_t>(unpackedSampleDataSize));
|
|
|
|
// decode sample data.
|
|
{
|
|
unsigned long dstLen = static_cast<unsigned long>(unpackedSampleDataSize);
|
|
if (dstLen) {
|
|
if (!tinyexr::DecompressZip(
|
|
reinterpret_cast<unsigned char *>(&sample_data.at(0)), &dstLen,
|
|
data_ptr + 28 + packedOffsetTableSize,
|
|
static_cast<unsigned long>(packedSampleDataSize))) {
|
|
return false;
|
|
}
|
|
assert(dstLen == static_cast<unsigned long>(unpackedSampleDataSize));
|
|
}
|
|
}
|
|
|
|
// decode sample
|
|
int sampleSize = -1;
|
|
std::vector<int> channel_offset_list(static_cast<size_t>(num_channels));
|
|
{
|
|
int channel_offset = 0;
|
|
for (size_t i = 0; i < static_cast<size_t>(num_channels); i++) {
|
|
channel_offset_list[i] = channel_offset;
|
|
if (channels[i].pixel_type == TINYEXR_PIXELTYPE_UINT) { // UINT
|
|
channel_offset += 4;
|
|
} else if (channels[i].pixel_type == TINYEXR_PIXELTYPE_HALF) { // half
|
|
channel_offset += 2;
|
|
} else if (channels[i].pixel_type ==
|
|
TINYEXR_PIXELTYPE_FLOAT) { // float
|
|
channel_offset += 4;
|
|
} else {
|
|
assert(0);
|
|
}
|
|
}
|
|
sampleSize = channel_offset;
|
|
}
|
|
assert(sampleSize >= 2);
|
|
|
|
assert(static_cast<size_t>(
|
|
pixelOffsetTable[static_cast<size_t>(data_width - 1)] *
|
|
sampleSize) == sample_data.size());
|
|
int samples_per_line = static_cast<int>(sample_data.size()) / sampleSize;
|
|
|
|
//
|
|
// Alloc memory
|
|
//
|
|
|
|
//
|
|
// pixel data is stored as image[channels][pixel_samples]
|
|
//
|
|
{
|
|
tinyexr::tinyexr_uint64 data_offset = 0;
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
deep_image->image[c][y] = static_cast<float *>(
|
|
malloc(sizeof(float) * static_cast<size_t>(samples_per_line)));
|
|
|
|
if (channels[c].pixel_type == 0) { // UINT
|
|
for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
|
|
unsigned int ui;
|
|
unsigned int *src_ptr = reinterpret_cast<unsigned int *>(
|
|
&sample_data.at(size_t(data_offset) + x * sizeof(int)));
|
|
tinyexr::cpy4(&ui, src_ptr);
|
|
deep_image->image[c][y][x] = static_cast<float>(ui); // @fixme
|
|
}
|
|
data_offset +=
|
|
sizeof(unsigned int) * static_cast<size_t>(samples_per_line);
|
|
} else if (channels[c].pixel_type == 1) { // half
|
|
for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
|
|
tinyexr::FP16 f16;
|
|
const unsigned short *src_ptr = reinterpret_cast<unsigned short *>(
|
|
&sample_data.at(size_t(data_offset) + x * sizeof(short)));
|
|
tinyexr::cpy2(&(f16.u), src_ptr);
|
|
tinyexr::FP32 f32 = half_to_float(f16);
|
|
deep_image->image[c][y][x] = f32.f;
|
|
}
|
|
data_offset += sizeof(short) * static_cast<size_t>(samples_per_line);
|
|
} else { // float
|
|
for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
|
|
float f;
|
|
const float *src_ptr = reinterpret_cast<float *>(
|
|
&sample_data.at(size_t(data_offset) + x * sizeof(float)));
|
|
tinyexr::cpy4(&f, src_ptr);
|
|
deep_image->image[c][y][x] = f;
|
|
}
|
|
data_offset += sizeof(float) * static_cast<size_t>(samples_per_line);
|
|
}
|
|
}
|
|
}
|
|
} // y
|
|
|
|
deep_image->width = data_width;
|
|
deep_image->height = data_height;
|
|
|
|
deep_image->channel_names = static_cast<const char **>(
|
|
malloc(sizeof(const char *) * static_cast<size_t>(num_channels)));
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
#ifdef _WIN32
|
|
deep_image->channel_names[c] = _strdup(channels[c].name.c_str());
|
|
#else
|
|
deep_image->channel_names[c] = strdup(channels[c].name.c_str());
|
|
#endif
|
|
}
|
|
deep_image->num_channels = num_channels;
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
void InitEXRImage(EXRImage *exr_image) {
|
|
if (exr_image == NULL) {
|
|
return;
|
|
}
|
|
|
|
exr_image->width = 0;
|
|
exr_image->height = 0;
|
|
exr_image->num_channels = 0;
|
|
|
|
exr_image->images = NULL;
|
|
exr_image->tiles = NULL;
|
|
|
|
exr_image->num_tiles = 0;
|
|
}
|
|
|
|
void FreeEXRErrorMessage(const char *msg) {
|
|
if (msg) {
|
|
free(reinterpret_cast<void *>(const_cast<char *>(msg)));
|
|
}
|
|
return;
|
|
}
|
|
|
|
void InitEXRHeader(EXRHeader *exr_header) {
|
|
if (exr_header == NULL) {
|
|
return;
|
|
}
|
|
|
|
memset(exr_header, 0, sizeof(EXRHeader));
|
|
}
|
|
|
|
int FreeEXRHeader(EXRHeader *exr_header) {
|
|
if (exr_header == NULL) {
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (exr_header->channels) {
|
|
free(exr_header->channels);
|
|
}
|
|
|
|
if (exr_header->pixel_types) {
|
|
free(exr_header->pixel_types);
|
|
}
|
|
|
|
if (exr_header->requested_pixel_types) {
|
|
free(exr_header->requested_pixel_types);
|
|
}
|
|
|
|
for (int i = 0; i < exr_header->num_custom_attributes; i++) {
|
|
if (exr_header->custom_attributes[i].value) {
|
|
free(exr_header->custom_attributes[i].value);
|
|
}
|
|
}
|
|
|
|
if (exr_header->custom_attributes) {
|
|
free(exr_header->custom_attributes);
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int FreeEXRImage(EXRImage *exr_image) {
|
|
if (exr_image == NULL) {
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
for (int i = 0; i < exr_image->num_channels; i++) {
|
|
if (exr_image->images && exr_image->images[i]) {
|
|
free(exr_image->images[i]);
|
|
}
|
|
}
|
|
|
|
if (exr_image->images) {
|
|
free(exr_image->images);
|
|
}
|
|
|
|
if (exr_image->tiles) {
|
|
for (int tid = 0; tid < exr_image->num_tiles; tid++) {
|
|
for (int i = 0; i < exr_image->num_channels; i++) {
|
|
if (exr_image->tiles[tid].images && exr_image->tiles[tid].images[i]) {
|
|
free(exr_image->tiles[tid].images[i]);
|
|
}
|
|
}
|
|
if (exr_image->tiles[tid].images) {
|
|
free(exr_image->tiles[tid].images);
|
|
}
|
|
}
|
|
free(exr_image->tiles);
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int ParseEXRHeaderFromFile(EXRHeader *exr_header, const EXRVersion *exr_version,
|
|
const char *filename, const char **err) {
|
|
if (exr_header == NULL || exr_version == NULL || filename == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for ParseEXRHeaderFromFile",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
FILE *fp = NULL;
|
|
fopen_s(&fp, filename, "rb");
|
|
#else
|
|
FILE *fp = fopen(filename, "rb");
|
|
#endif
|
|
if (!fp) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
size_t filesize;
|
|
// Compute size
|
|
fseek(fp, 0, SEEK_END);
|
|
filesize = static_cast<size_t>(ftell(fp));
|
|
fseek(fp, 0, SEEK_SET);
|
|
|
|
std::vector<unsigned char> buf(filesize); // @todo { use mmap }
|
|
{
|
|
size_t ret;
|
|
ret = fread(&buf[0], 1, filesize, fp);
|
|
assert(ret == filesize);
|
|
fclose(fp);
|
|
|
|
if (ret != filesize) {
|
|
tinyexr::SetErrorMessage("fread() error on " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
}
|
|
|
|
return ParseEXRHeaderFromMemory(exr_header, exr_version, &buf.at(0), filesize,
|
|
err);
|
|
}
|
|
|
|
int ParseEXRMultipartHeaderFromMemory(EXRHeader ***exr_headers,
|
|
int *num_headers,
|
|
const EXRVersion *exr_version,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err) {
|
|
if (memory == NULL || exr_headers == NULL || num_headers == NULL ||
|
|
exr_version == NULL) {
|
|
// Invalid argument
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument for ParseEXRMultipartHeaderFromMemory", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (size < tinyexr::kEXRVersionSize) {
|
|
tinyexr::SetErrorMessage("Data size too short", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
const unsigned char *marker = memory + tinyexr::kEXRVersionSize;
|
|
size_t marker_size = size - tinyexr::kEXRVersionSize;
|
|
|
|
std::vector<tinyexr::HeaderInfo> infos;
|
|
|
|
for (;;) {
|
|
tinyexr::HeaderInfo info;
|
|
info.clear();
|
|
|
|
std::string err_str;
|
|
bool empty_header = false;
|
|
int ret = ParseEXRHeader(&info, &empty_header, exr_version, &err_str,
|
|
marker, marker_size);
|
|
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
tinyexr::SetErrorMessage(err_str, err);
|
|
return ret;
|
|
}
|
|
|
|
if (empty_header) {
|
|
marker += 1; // skip '\0'
|
|
break;
|
|
}
|
|
|
|
// `chunkCount` must exist in the header.
|
|
if (info.chunk_count == 0) {
|
|
tinyexr::SetErrorMessage(
|
|
"`chunkCount' attribute is not found in the header.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
infos.push_back(info);
|
|
|
|
// move to next header.
|
|
marker += info.header_len;
|
|
size -= info.header_len;
|
|
}
|
|
|
|
// allocate memory for EXRHeader and create array of EXRHeader pointers.
|
|
(*exr_headers) =
|
|
static_cast<EXRHeader **>(malloc(sizeof(EXRHeader *) * infos.size()));
|
|
for (size_t i = 0; i < infos.size(); i++) {
|
|
EXRHeader *exr_header = static_cast<EXRHeader *>(malloc(sizeof(EXRHeader)));
|
|
|
|
ConvertHeader(exr_header, infos[i]);
|
|
|
|
// transfoer `tiled` from version.
|
|
exr_header->tiled = exr_version->tiled;
|
|
|
|
(*exr_headers)[i] = exr_header;
|
|
}
|
|
|
|
(*num_headers) = static_cast<int>(infos.size());
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int ParseEXRMultipartHeaderFromFile(EXRHeader ***exr_headers, int *num_headers,
|
|
const EXRVersion *exr_version,
|
|
const char *filename, const char **err) {
|
|
if (exr_headers == NULL || num_headers == NULL || exr_version == NULL ||
|
|
filename == NULL) {
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument for ParseEXRMultipartHeaderFromFile()", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
FILE *fp = NULL;
|
|
fopen_s(&fp, filename, "rb");
|
|
#else
|
|
FILE *fp = fopen(filename, "rb");
|
|
#endif
|
|
if (!fp) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
size_t filesize;
|
|
// Compute size
|
|
fseek(fp, 0, SEEK_END);
|
|
filesize = static_cast<size_t>(ftell(fp));
|
|
fseek(fp, 0, SEEK_SET);
|
|
|
|
std::vector<unsigned char> buf(filesize); // @todo { use mmap }
|
|
{
|
|
size_t ret;
|
|
ret = fread(&buf[0], 1, filesize, fp);
|
|
assert(ret == filesize);
|
|
fclose(fp);
|
|
|
|
if (ret != filesize) {
|
|
tinyexr::SetErrorMessage("`fread' error. file may be corrupted.", err);
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
}
|
|
|
|
return ParseEXRMultipartHeaderFromMemory(
|
|
exr_headers, num_headers, exr_version, &buf.at(0), filesize, err);
|
|
}
|
|
|
|
int ParseEXRVersionFromMemory(EXRVersion *version, const unsigned char *memory,
|
|
size_t size) {
|
|
if (version == NULL || memory == NULL) {
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (size < tinyexr::kEXRVersionSize) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
const unsigned char *marker = memory;
|
|
|
|
// Header check.
|
|
{
|
|
const char header[] = {0x76, 0x2f, 0x31, 0x01};
|
|
|
|
if (memcmp(marker, header, 4) != 0) {
|
|
return TINYEXR_ERROR_INVALID_MAGIC_NUMBER;
|
|
}
|
|
marker += 4;
|
|
}
|
|
|
|
version->tiled = false;
|
|
version->long_name = false;
|
|
version->non_image = false;
|
|
version->multipart = false;
|
|
|
|
// Parse version header.
|
|
{
|
|
// must be 2
|
|
if (marker[0] != 2) {
|
|
return TINYEXR_ERROR_INVALID_EXR_VERSION;
|
|
}
|
|
|
|
if (version == NULL) {
|
|
return TINYEXR_SUCCESS; // May OK
|
|
}
|
|
|
|
version->version = 2;
|
|
|
|
if (marker[1] & 0x2) { // 9th bit
|
|
version->tiled = true;
|
|
}
|
|
if (marker[1] & 0x4) { // 10th bit
|
|
version->long_name = true;
|
|
}
|
|
if (marker[1] & 0x8) { // 11th bit
|
|
version->non_image = true; // (deep image)
|
|
}
|
|
if (marker[1] & 0x10) { // 12th bit
|
|
version->multipart = true;
|
|
}
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) {
|
|
if (filename == NULL) {
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
FILE *fp = NULL;
|
|
fopen_s(&fp, filename, "rb");
|
|
#else
|
|
FILE *fp = fopen(filename, "rb");
|
|
#endif
|
|
if (!fp) {
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
size_t file_size;
|
|
// Compute size
|
|
fseek(fp, 0, SEEK_END);
|
|
file_size = static_cast<size_t>(ftell(fp));
|
|
fseek(fp, 0, SEEK_SET);
|
|
|
|
if (file_size < tinyexr::kEXRVersionSize) {
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
|
|
unsigned char buf[tinyexr::kEXRVersionSize];
|
|
size_t ret = fread(&buf[0], 1, tinyexr::kEXRVersionSize, fp);
|
|
fclose(fp);
|
|
|
|
if (ret != tinyexr::kEXRVersionSize) {
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
|
|
return ParseEXRVersionFromMemory(version, buf, tinyexr::kEXRVersionSize);
|
|
}
|
|
|
|
int LoadEXRMultipartImageFromMemory(EXRImage *exr_images,
|
|
const EXRHeader **exr_headers,
|
|
unsigned int num_parts,
|
|
const unsigned char *memory,
|
|
const size_t size, const char **err) {
|
|
if (exr_images == NULL || exr_headers == NULL || num_parts == 0 ||
|
|
memory == NULL || (size <= tinyexr::kEXRVersionSize)) {
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument for LoadEXRMultipartImageFromMemory()", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
// compute total header size.
|
|
size_t total_header_size = 0;
|
|
for (unsigned int i = 0; i < num_parts; i++) {
|
|
if (exr_headers[i]->header_len == 0) {
|
|
tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
total_header_size += exr_headers[i]->header_len;
|
|
}
|
|
|
|
const char *marker = reinterpret_cast<const char *>(
|
|
memory + total_header_size + 4 +
|
|
4); // +8 for magic number and version header.
|
|
|
|
marker += 1; // Skip empty header.
|
|
|
|
// NOTE 1:
|
|
// In multipart image, There is 'part number' before chunk data.
|
|
// 4 byte : part number
|
|
// 4+ : chunk
|
|
//
|
|
// NOTE 2:
|
|
// EXR spec says 'part number' is 'unsigned long' but actually this is
|
|
// 'unsigned int(4 bytes)' in OpenEXR implementation...
|
|
// http://www.openexr.com/openexrfilelayout.pdf
|
|
|
|
// Load chunk offset table.
|
|
std::vector<std::vector<tinyexr::tinyexr_uint64> > chunk_offset_table_list;
|
|
for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
|
|
std::vector<tinyexr::tinyexr_uint64> offset_table(
|
|
static_cast<size_t>(exr_headers[i]->chunk_count));
|
|
|
|
for (size_t c = 0; c < offset_table.size(); c++) {
|
|
tinyexr::tinyexr_uint64 offset;
|
|
memcpy(&offset, marker, 8);
|
|
tinyexr::swap8(&offset);
|
|
|
|
if (offset >= size) {
|
|
tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
offset_table[c] = offset + 4; // +4 to skip 'part number'
|
|
marker += 8;
|
|
}
|
|
|
|
chunk_offset_table_list.push_back(offset_table);
|
|
}
|
|
|
|
// Decode image.
|
|
for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
|
|
std::vector<tinyexr::tinyexr_uint64> &offset_table =
|
|
chunk_offset_table_list[i];
|
|
|
|
// First check 'part number' is identitical to 'i'
|
|
for (size_t c = 0; c < offset_table.size(); c++) {
|
|
const unsigned char *part_number_addr =
|
|
memory + offset_table[c] - 4; // -4 to move to 'part number' field.
|
|
unsigned int part_no;
|
|
memcpy(&part_no, part_number_addr, sizeof(unsigned int)); // 4
|
|
tinyexr::swap4(&part_no);
|
|
|
|
if (part_no != i) {
|
|
tinyexr::SetErrorMessage("Invalid `part number' in EXR header chunks.",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
|
|
std::string e;
|
|
int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_table,
|
|
memory, size, &e);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
if (!e.empty()) {
|
|
tinyexr::SetErrorMessage(e, err);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int LoadEXRMultipartImageFromFile(EXRImage *exr_images,
|
|
const EXRHeader **exr_headers,
|
|
unsigned int num_parts, const char *filename,
|
|
const char **err) {
|
|
if (exr_images == NULL || exr_headers == NULL || num_parts == 0) {
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument for LoadEXRMultipartImageFromFile", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
FILE *fp = NULL;
|
|
fopen_s(&fp, filename, "rb");
|
|
#else
|
|
FILE *fp = fopen(filename, "rb");
|
|
#endif
|
|
if (!fp) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
size_t filesize;
|
|
// Compute size
|
|
fseek(fp, 0, SEEK_END);
|
|
filesize = static_cast<size_t>(ftell(fp));
|
|
fseek(fp, 0, SEEK_SET);
|
|
|
|
std::vector<unsigned char> buf(filesize); // @todo { use mmap }
|
|
{
|
|
size_t ret;
|
|
ret = fread(&buf[0], 1, filesize, fp);
|
|
assert(ret == filesize);
|
|
fclose(fp);
|
|
(void)ret;
|
|
}
|
|
|
|
return LoadEXRMultipartImageFromMemory(exr_images, exr_headers, num_parts,
|
|
&buf.at(0), filesize, err);
|
|
}
|
|
|
|
int SaveEXR(const float *data, int width, int height, int components,
|
|
const int save_as_fp16, const char *outfilename, const char **err) {
|
|
if ((components == 1) || components == 3 || components == 4) {
|
|
// OK
|
|
} else {
|
|
std::stringstream ss;
|
|
ss << "Unsupported component value : " << components << std::endl;
|
|
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
EXRHeader header;
|
|
InitEXRHeader(&header);
|
|
|
|
if ((width < 16) && (height < 16)) {
|
|
// No compression for small image.
|
|
header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE;
|
|
} else {
|
|
header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP;
|
|
}
|
|
|
|
EXRImage image;
|
|
InitEXRImage(&image);
|
|
|
|
image.num_channels = components;
|
|
|
|
std::vector<float> images[4];
|
|
|
|
if (components == 1) {
|
|
images[0].resize(static_cast<size_t>(width * height));
|
|
memcpy(images[0].data(), data, sizeof(float) * size_t(width * height));
|
|
} else {
|
|
images[0].resize(static_cast<size_t>(width * height));
|
|
images[1].resize(static_cast<size_t>(width * height));
|
|
images[2].resize(static_cast<size_t>(width * height));
|
|
images[3].resize(static_cast<size_t>(width * height));
|
|
|
|
// Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers
|
|
for (size_t i = 0; i < static_cast<size_t>(width * height); i++) {
|
|
images[0][i] = data[static_cast<size_t>(components) * i + 0];
|
|
images[1][i] = data[static_cast<size_t>(components) * i + 1];
|
|
images[2][i] = data[static_cast<size_t>(components) * i + 2];
|
|
if (components == 4) {
|
|
images[3][i] = data[static_cast<size_t>(components) * i + 3];
|
|
}
|
|
}
|
|
}
|
|
|
|
float *image_ptr[4] = {0, 0, 0, 0};
|
|
if (components == 4) {
|
|
image_ptr[0] = &(images[3].at(0)); // A
|
|
image_ptr[1] = &(images[2].at(0)); // B
|
|
image_ptr[2] = &(images[1].at(0)); // G
|
|
image_ptr[3] = &(images[0].at(0)); // R
|
|
} else if (components == 3) {
|
|
image_ptr[0] = &(images[2].at(0)); // B
|
|
image_ptr[1] = &(images[1].at(0)); // G
|
|
image_ptr[2] = &(images[0].at(0)); // R
|
|
} else if (components == 1) {
|
|
image_ptr[0] = &(images[0].at(0)); // A
|
|
}
|
|
|
|
image.images = reinterpret_cast<unsigned char **>(image_ptr);
|
|
image.width = width;
|
|
image.height = height;
|
|
|
|
header.num_channels = components;
|
|
header.channels = static_cast<EXRChannelInfo *>(malloc(
|
|
sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels)));
|
|
// Must be (A)BGR order, since most of EXR viewers expect this channel order.
|
|
if (components == 4) {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "A", 255);
|
|
strncpy_s(header.channels[1].name, "B", 255);
|
|
strncpy_s(header.channels[2].name, "G", 255);
|
|
strncpy_s(header.channels[3].name, "R", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "A", 255);
|
|
strncpy(header.channels[1].name, "B", 255);
|
|
strncpy(header.channels[2].name, "G", 255);
|
|
strncpy(header.channels[3].name, "R", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("A")] = '\0';
|
|
header.channels[1].name[strlen("B")] = '\0';
|
|
header.channels[2].name[strlen("G")] = '\0';
|
|
header.channels[3].name[strlen("R")] = '\0';
|
|
} else if (components == 3) {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "B", 255);
|
|
strncpy_s(header.channels[1].name, "G", 255);
|
|
strncpy_s(header.channels[2].name, "R", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "B", 255);
|
|
strncpy(header.channels[1].name, "G", 255);
|
|
strncpy(header.channels[2].name, "R", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("B")] = '\0';
|
|
header.channels[1].name[strlen("G")] = '\0';
|
|
header.channels[2].name[strlen("R")] = '\0';
|
|
} else {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "A", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "A", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("A")] = '\0';
|
|
}
|
|
|
|
header.pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
|
|
header.requested_pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
|
|
for (int i = 0; i < header.num_channels; i++) {
|
|
header.pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image
|
|
|
|
if (save_as_fp16 > 0) {
|
|
header.requested_pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format
|
|
} else {
|
|
header.requested_pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e.
|
|
// no precision reduction)
|
|
}
|
|
}
|
|
|
|
int ret = SaveEXRImageToFile(&image, &header, outfilename, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
free(header.channels);
|
|
free(header.pixel_types);
|
|
free(header.requested_pixel_types);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef __clang__
|
|
// zero-as-null-ppinter-constant
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
#endif // TINYEXR_IMPLEMENTATION_DEIFNED
|
|
#endif // TINYEXR_IMPLEMENTATION
|