godot/modules/assimp/editor_scene_importer_assimp.cpp
2019-04-13 15:19:47 -03:00

1767 lines
63 KiB
C++

/*************************************************************************/
/* editor_scene_importer_assimp.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "assimp/DefaultLogger.hpp"
#include "assimp/Importer.hpp"
#include "assimp/LogStream.hpp"
#include "assimp/Logger.hpp"
#include "assimp/SceneCombiner.h"
#include "assimp/cexport.h"
#include "assimp/cimport.h"
#include "assimp/matrix4x4.h"
#include "assimp/pbrmaterial.h"
#include "assimp/postprocess.h"
#include "assimp/scene.h"
#include "core/bind/core_bind.h"
#include "core/io/image_loader.h"
#include "editor/editor_file_system.h"
#include "editor/import/resource_importer_scene.h"
#include "editor_scene_importer_assimp.h"
#include "editor_settings.h"
#include "scene/3d/camera.h"
#include "scene/3d/light.h"
#include "scene/3d/mesh_instance.h"
#include "scene/animation/animation_player.h"
#include "scene/main/node.h"
#include "scene/resources/material.h"
#include "scene/resources/surface_tool.h"
#include "zutil.h"
#include <string>
void EditorSceneImporterAssimp::get_extensions(List<String> *r_extensions) const {
const String import_setting_string = "filesystem/import/open_asset_import/";
Map<String, ImportFormat> import_format;
{
Vector<String> exts;
exts.push_back("fbx");
ImportFormat import = { exts, true };
import_format.insert("fbx", import);
}
{
Vector<String> exts;
exts.push_back("pmx");
ImportFormat import = { exts, true };
import_format.insert("mmd", import);
}
for (Map<String, ImportFormat>::Element *E = import_format.front(); E; E = E->next()) {
_register_project_setting_import(E->key(), import_setting_string, E->get().extensions, r_extensions, E->get().is_default);
}
}
void EditorSceneImporterAssimp::_register_project_setting_import(const String generic, const String import_setting_string, const Vector<String> &exts, List<String> *r_extensions, const bool p_enabled) const {
const String use_generic = "use_" + generic;
_GLOBAL_DEF(import_setting_string + use_generic, p_enabled, true);
if (ProjectSettings::get_singleton()->get(import_setting_string + use_generic)) {
for (int32_t i = 0; i < exts.size(); i++) {
r_extensions->push_back(exts[i]);
}
}
}
uint32_t EditorSceneImporterAssimp::get_import_flags() const {
return IMPORT_SCENE;
}
AssimpStream::AssimpStream() {
// empty
}
AssimpStream::~AssimpStream() {
// empty
}
void AssimpStream::write(const char *message) {
print_verbose(String("Open Asset Import: ") + String(message).strip_edges());
}
void EditorSceneImporterAssimp::_bind_methods() {
}
Node *EditorSceneImporterAssimp::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List<String> *r_missing_deps, Error *r_err) {
Assimp::Importer importer;
std::wstring w_path = ProjectSettings::get_singleton()->globalize_path(p_path).c_str();
std::string s_path(w_path.begin(), w_path.end());
importer.SetPropertyBool(AI_CONFIG_PP_FD_REMOVE, true);
// Cannot remove pivot points because the static mesh will be in the wrong place
importer.SetPropertyBool(AI_CONFIG_IMPORT_FBX_PRESERVE_PIVOTS, false);
int32_t max_bone_weights = 4;
//if (p_flags & IMPORT_ANIMATION_EIGHT_WEIGHTS) {
// const int eight_bones = 8;
// importer.SetPropertyBool(AI_CONFIG_PP_LBW_MAX_WEIGHTS, eight_bones);
// max_bone_weights = eight_bones;
//}
importer.SetPropertyInteger(AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_LINE | aiPrimitiveType_POINT);
//importer.SetPropertyFloat(AI_CONFIG_PP_DB_THRESHOLD, 1.0f);
int32_t post_process_Steps = aiProcess_CalcTangentSpace |
//aiProcess_FlipUVs |
//aiProcess_FlipWindingOrder |
aiProcess_DropNormals |
aiProcess_GenSmoothNormals |
aiProcess_JoinIdenticalVertices |
aiProcess_ImproveCacheLocality |
aiProcess_LimitBoneWeights |
//aiProcess_RemoveRedundantMaterials | // Causes a crash
aiProcess_SplitLargeMeshes |
aiProcess_Triangulate |
aiProcess_GenUVCoords |
//aiProcess_FindDegenerates |
aiProcess_SortByPType |
aiProcess_FindInvalidData |
aiProcess_TransformUVCoords |
aiProcess_FindInstances |
//aiProcess_FixInfacingNormals |
//aiProcess_ValidateDataStructure |
aiProcess_OptimizeMeshes |
//aiProcess_OptimizeGraph |
//aiProcess_Debone |
aiProcess_EmbedTextures |
aiProcess_SplitByBoneCount |
0;
const aiScene *scene = importer.ReadFile(s_path.c_str(),
post_process_Steps);
ERR_EXPLAIN(String("Open Asset Import failed to open: ") + String(importer.GetErrorString()));
ERR_FAIL_COND_V(scene == NULL, NULL);
return _generate_scene(p_path, scene, p_flags, p_bake_fps, max_bone_weights);
}
template <class T>
struct EditorSceneImporterAssetImportInterpolate {
T lerp(const T &a, const T &b, float c) const {
return a + (b - a) * c;
}
T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
float t2 = t * t;
float t3 = t2 * t;
return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
}
T bezier(T start, T control_1, T control_2, T end, float t) {
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - t);
real_t omt2 = omt * omt;
real_t omt3 = omt2 * omt;
real_t t2 = t * t;
real_t t3 = t2 * t;
return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
}
};
//thank you for existing, partial specialization
template <>
struct EditorSceneImporterAssetImportInterpolate<Quat> {
Quat lerp(const Quat &a, const Quat &b, float c) const {
ERR_FAIL_COND_V(!a.is_normalized(), Quat());
ERR_FAIL_COND_V(!b.is_normalized(), Quat());
return a.slerp(b, c).normalized();
}
Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) {
ERR_FAIL_COND_V(!p1.is_normalized(), Quat());
ERR_FAIL_COND_V(!p2.is_normalized(), Quat());
return p1.slerp(p2, c).normalized();
}
Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) {
ERR_FAIL_COND_V(!start.is_normalized(), Quat());
ERR_FAIL_COND_V(!end.is_normalized(), Quat());
return start.slerp(end, t).normalized();
}
};
template <class T>
T EditorSceneImporterAssimp::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, float p_time, AssetImportAnimation::Interpolation p_interp) {
//could use binary search, worth it?
int idx = -1;
for (int i = 0; i < p_times.size(); i++) {
if (p_times[i] > p_time)
break;
idx++;
}
EditorSceneImporterAssetImportInterpolate<T> interp;
switch (p_interp) {
case AssetImportAnimation::INTERP_LINEAR: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.lerp(p_values[idx], p_values[idx + 1], c);
} break;
case AssetImportAnimation::INTERP_STEP: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
return p_values[idx];
} break;
case AssetImportAnimation::INTERP_CATMULLROMSPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[1 + p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
} break;
case AssetImportAnimation::INTERP_CUBIC_SPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[(p_times.size() - 1) * 3 + 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
T from = p_values[idx * 3 + 1];
T c1 = from + p_values[idx * 3 + 2];
T to = p_values[idx * 3 + 4];
T c2 = to + p_values[idx * 3 + 3];
return interp.bezier(from, c1, c2, to, c);
} break;
}
ERR_FAIL_V(p_values[0]);
}
void EditorSceneImporterAssimp::_generate_bone_groups(ImportState &state, const aiNode *p_assimp_node, Map<String, int> &ownership, Map<String, Transform> &bind_xforms) {
Transform mesh_offset = _get_global_assimp_node_transform(p_assimp_node);
//mesh_offset.basis = Basis();
for (uint32_t i = 0; i < p_assimp_node->mNumMeshes; i++) {
const aiMesh *mesh = state.assimp_scene->mMeshes[i];
int owned_by = -1;
for (uint32_t j = 0; j < mesh->mNumBones; j++) {
const aiBone *bone = mesh->mBones[j];
String name = _assimp_get_string(bone->mName);
if (ownership.has(name)) {
owned_by = ownership[name];
break;
}
}
if (owned_by == -1) { //no owned, create new unique id
owned_by = 1;
for (Map<String, int>::Element *E = ownership.front(); E; E = E->next()) {
owned_by = MAX(E->get() + 1, owned_by);
}
}
for (uint32_t j = 0; j < mesh->mNumBones; j++) {
const aiBone *bone = mesh->mBones[j];
String name = _assimp_get_string(bone->mName);
ownership[name] = owned_by;
//store the actuall full path for the bone transform
//when skeleton finds it's place in the tree, it will be restored
bind_xforms[name] = mesh_offset * _assimp_matrix_transform(bone->mOffsetMatrix);
}
}
for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) {
_generate_bone_groups(state, p_assimp_node->mChildren[i], ownership, bind_xforms);
}
}
void EditorSceneImporterAssimp::_fill_node_relationships(ImportState &state, const aiNode *p_assimp_node, Map<String, int> &ownership, Map<int, int> &skeleton_map, int p_skeleton_id, Skeleton *p_skeleton, const String &p_parent_name, int &holecount, const Vector<SkeletonHole> &p_holes, const Map<String, Transform> &bind_xforms) {
String name = _assimp_get_string(p_assimp_node->mName);
if (name == String()) {
name = "AuxiliaryBone" + itos(holecount++);
}
Transform pose = _assimp_matrix_transform(p_assimp_node->mTransformation);
if (!ownership.has(name)) {
//not a bone, it's a hole
Vector<SkeletonHole> holes = p_holes;
SkeletonHole hole; //add a new one
hole.name = name;
hole.pose = pose;
hole.node = p_assimp_node;
hole.parent = p_parent_name;
holes.push_back(hole);
for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) {
_fill_node_relationships(state, p_assimp_node->mChildren[i], ownership, skeleton_map, p_skeleton_id, p_skeleton, name, holecount, holes, bind_xforms);
}
return;
} else if (ownership[name] != p_skeleton_id) {
//oh, it's from another skeleton? fine.. reparent all bones to this skeleton.
int prev_owner = ownership[name];
ERR_EXPLAIN("A previous skeleton exists for bone '" + name + "', this type of skeleton layout is unsupported.");
ERR_FAIL_COND(skeleton_map.has(prev_owner));
for (Map<String, int>::Element *E = ownership.front(); E; E = E->next()) {
if (E->get() == prev_owner) {
E->get() = p_skeleton_id;
}
}
}
//valid bone, first fill holes if needed
for (int i = 0; i < p_holes.size(); i++) {
int bone_idx = p_skeleton->get_bone_count();
p_skeleton->add_bone(p_holes[i].name);
int parent_idx = p_skeleton->find_bone(p_holes[i].parent);
if (parent_idx >= 0) {
p_skeleton->set_bone_parent(bone_idx, parent_idx);
}
Transform pose_transform = _get_global_assimp_node_transform(p_holes[i].node);
p_skeleton->set_bone_rest(bone_idx, pose_transform);
state.bone_owners[p_holes[i].name] = skeleton_map[p_skeleton_id];
}
//finally fill bone
int bone_idx = p_skeleton->get_bone_count();
p_skeleton->add_bone(name);
int parent_idx = p_skeleton->find_bone(p_parent_name);
if (parent_idx >= 0) {
p_skeleton->set_bone_parent(bone_idx, parent_idx);
}
//p_skeleton->set_bone_pose(bone_idx, pose);
if (bind_xforms.has(name)) {
//for now this is the full path to the bone in rest pose
//when skeleton finds it's place in the tree, it will get fixed
p_skeleton->set_bone_rest(bone_idx, bind_xforms[name]);
}
state.bone_owners[name] = skeleton_map[p_skeleton_id];
//go to children
for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) {
_fill_node_relationships(state, p_assimp_node->mChildren[i], ownership, skeleton_map, p_skeleton_id, p_skeleton, name, holecount, Vector<SkeletonHole>(), bind_xforms);
}
}
void EditorSceneImporterAssimp::_generate_skeletons(ImportState &state, const aiNode *p_assimp_node, Map<String, int> &ownership, Map<int, int> &skeleton_map, const Map<String, Transform> &bind_xforms) {
//find skeletons at this level, there may be multiple root nodes for each
Map<int, List<aiNode *> > skeletons_found;
for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) {
String name = _assimp_get_string(p_assimp_node->mChildren[i]->mName);
if (ownership.has(name)) {
int skeleton = ownership[name];
if (!skeletons_found.has(skeleton)) {
skeletons_found[skeleton] = List<aiNode *>();
}
skeletons_found[skeleton].push_back(p_assimp_node->mChildren[i]);
}
}
//go via the potential skeletons found and generate the actual skeleton
for (Map<int, List<aiNode *> >::Element *E = skeletons_found.front(); E; E = E->next()) {
ERR_CONTINUE(skeleton_map.has(E->key())); //skeleton already exists? this can't be.. skip
Skeleton *skeleton = memnew(Skeleton);
//this the only way to reliably use multiple meshes with one skeleton, at the cost of less precision
skeleton->set_use_bones_in_world_transform(true);
skeleton_map[E->key()] = state.skeletons.size();
state.skeletons.push_back(skeleton);
int holecount = 1;
//fill the bones and their relationships
for (List<aiNode *>::Element *F = E->get().front(); F; F = F->next()) {
_fill_node_relationships(state, F->get(), ownership, skeleton_map, E->key(), skeleton, "", holecount, Vector<SkeletonHole>(), bind_xforms);
}
}
//go to the children
for (uint32_t i = 0; i < p_assimp_node->mNumChildren; i++) {
String name = _assimp_get_string(p_assimp_node->mChildren[i]->mName);
if (ownership.has(name)) {
continue; //a bone, so don't bother with this
}
_generate_skeletons(state, p_assimp_node->mChildren[i], ownership, skeleton_map, bind_xforms);
}
}
Spatial *EditorSceneImporterAssimp::_generate_scene(const String &p_path, const aiScene *scene, const uint32_t p_flags, int p_bake_fps, const int32_t p_max_bone_weights) {
ERR_FAIL_COND_V(scene == NULL, NULL);
ImportState state;
state.path = p_path;
state.assimp_scene = scene;
state.max_bone_weights = p_max_bone_weights;
state.root = memnew(Spatial);
state.fbx = false;
state.animation_player = NULL;
real_t scale_factor = 1.0f;
{
//handle scale
String ext = p_path.get_file().get_extension().to_lower();
if (ext == "fbx") {
if (scene->mMetaData != NULL) {
float factor = 1.0;
scene->mMetaData->Get("UnitScaleFactor", factor);
scale_factor = factor * 0.01f;
}
state.fbx = true;
}
}
state.root->set_scale(Vector3(scale_factor, scale_factor, scale_factor));
//fill light map cache
for (size_t l = 0; l < scene->mNumLights; l++) {
aiLight *ai_light = scene->mLights[l];
ERR_CONTINUE(ai_light == NULL);
state.light_cache[_assimp_get_string(ai_light->mName)] = l;
}
//fill camera cache
for (size_t c = 0; c < scene->mNumCameras; c++) {
aiCamera *ai_camera = scene->mCameras[c];
ERR_CONTINUE(ai_camera == NULL);
state.camera_cache[_assimp_get_string(ai_camera->mName)] = c;
}
if (scene->mRootNode) {
Map<String, Transform> bind_xforms; //temporary map to store bind transforms
//guess the skeletons, since assimp does not really support them directly
Map<String, int> ownership; //bone names to groups
//fill this map with bone names and which group where they detected to, going mesh by mesh
_generate_bone_groups(state, state.assimp_scene->mRootNode, ownership, bind_xforms);
Map<int, int> skeleton_map; //maps previously created groups to actual skeletons
//generates the skeletons when bones are found in the hierarchy, and follows them (including gaps/holes).
_generate_skeletons(state, state.assimp_scene->mRootNode, ownership, skeleton_map, bind_xforms);
//generate nodes
for (uint32_t i = 0; i < scene->mRootNode->mNumChildren; i++) {
_generate_node(state, scene->mRootNode->mChildren[i], state.root);
}
//assign skeletons to nodes
for (Map<MeshInstance *, Skeleton *>::Element *E = state.mesh_skeletons.front(); E; E = E->next()) {
MeshInstance *mesh = E->key();
Skeleton *skeleton = E->get();
NodePath skeleton_path = mesh->get_path_to(skeleton);
mesh->set_skeleton_path(skeleton_path);
}
}
if (p_flags & IMPORT_ANIMATION && scene->mNumAnimations) {
state.animation_player = memnew(AnimationPlayer);
state.root->add_child(state.animation_player);
state.animation_player->set_owner(state.root);
for (uint32_t i = 0; i < scene->mNumAnimations; i++) {
_import_animation(state, i, p_bake_fps);
}
}
return state.root;
}
void EditorSceneImporterAssimp::_insert_animation_track(ImportState &scene, const aiAnimation *assimp_anim, int p_track, int p_bake_fps, Ref<Animation> animation, float ticks_per_second, Skeleton *p_skeleton, const NodePath &p_path, const String &p_name) {
const aiNodeAnim *assimp_track = assimp_anim->mChannels[p_track];
//make transform track
int track_idx = animation->get_track_count();
animation->add_track(Animation::TYPE_TRANSFORM);
animation->track_set_path(track_idx, p_path);
//first determine animation length
float increment = 1.0 / float(p_bake_fps);
float time = 0.0;
bool last = false;
int skeleton_bone = -1;
if (p_skeleton) {
skeleton_bone = p_skeleton->find_bone(p_name);
}
Vector<Vector3> pos_values;
Vector<float> pos_times;
Vector<Vector3> scale_values;
Vector<float> scale_times;
Vector<Quat> rot_values;
Vector<float> rot_times;
for (size_t p = 0; p < assimp_track->mNumPositionKeys; p++) {
aiVector3D pos = assimp_track->mPositionKeys[p].mValue;
pos_values.push_back(Vector3(pos.x, pos.y, pos.z));
pos_times.push_back(assimp_track->mPositionKeys[p].mTime / ticks_per_second);
}
for (size_t r = 0; r < assimp_track->mNumRotationKeys; r++) {
aiQuaternion quat = assimp_track->mRotationKeys[r].mValue;
rot_values.push_back(Quat(quat.x, quat.y, quat.z, quat.w).normalized());
rot_times.push_back(assimp_track->mRotationKeys[r].mTime / ticks_per_second);
}
for (size_t sc = 0; sc < assimp_track->mNumScalingKeys; sc++) {
aiVector3D scale = assimp_track->mScalingKeys[sc].mValue;
scale_values.push_back(Vector3(scale.x, scale.y, scale.z));
scale_times.push_back(assimp_track->mScalingKeys[sc].mTime / ticks_per_second);
}
while (true) {
Vector3 pos;
Quat rot;
Vector3 scale(1, 1, 1);
if (pos_values.size()) {
pos = _interpolate_track<Vector3>(pos_times, pos_values, time, AssetImportAnimation::INTERP_LINEAR);
}
if (rot_values.size()) {
rot = _interpolate_track<Quat>(rot_times, rot_values, time, AssetImportAnimation::INTERP_LINEAR).normalized();
}
if (scale_values.size()) {
scale = _interpolate_track<Vector3>(scale_times, scale_values, time, AssetImportAnimation::INTERP_LINEAR);
}
if (skeleton_bone >= 0) {
Transform xform;
xform.basis.set_quat_scale(rot, scale);
xform.origin = pos;
Transform rest_xform = p_skeleton->get_bone_rest(skeleton_bone);
xform = rest_xform.affine_inverse() * xform;
rot = xform.basis.get_rotation_quat();
scale = xform.basis.get_scale();
pos = xform.origin;
}
rot.normalize();
animation->track_set_interpolation_type(track_idx, Animation::INTERPOLATION_LINEAR);
animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
if (last) { //done this way so a key is always inserted past the end (for proper interpolation)
break;
}
time += increment;
if (time >= animation->get_length()) {
last = true;
}
}
}
void EditorSceneImporterAssimp::_import_animation(ImportState &state, int p_animation_index, int p_bake_fps) {
ERR_FAIL_INDEX(p_animation_index, (int)state.assimp_scene->mNumAnimations);
const aiAnimation *anim = state.assimp_scene->mAnimations[p_animation_index];
String name = _assimp_anim_string_to_string(anim->mName);
if (name == String()) {
name = "Animation " + itos(p_animation_index + 1);
}
float ticks_per_second = anim->mTicksPerSecond;
if (state.assimp_scene->mMetaData != NULL && Math::is_equal_approx(ticks_per_second, 0.0f)) {
int32_t time_mode = 0;
state.assimp_scene->mMetaData->Get("TimeMode", time_mode);
ticks_per_second = _get_fbx_fps(time_mode, state.assimp_scene);
}
//?
//if ((p_path.get_file().get_extension().to_lower() == "glb" || p_path.get_file().get_extension().to_lower() == "gltf") && Math::is_equal_approx(ticks_per_second, 0.0f)) {
// ticks_per_second = 1000.0f;
//}
if (Math::is_equal_approx(ticks_per_second, 0.0f)) {
ticks_per_second = 25.0f;
}
Ref<Animation> animation;
animation.instance();
animation->set_name(name);
animation->set_length(anim->mDuration / ticks_per_second);
//regular tracks
for (size_t i = 0; i < anim->mNumChannels; i++) {
const aiNodeAnim *track = anim->mChannels[i];
String node_name = _assimp_get_string(track->mNodeName);
/*
if (node_name.find(ASSIMP_FBX_KEY) != -1) {
String p_track_type = node_name.get_slice(ASSIMP_FBX_KEY, 1);
if (p_track_type == "_Translation" || p_track_type == "_Rotation" || p_track_type == "_Scaling") {
continue;
}
}
*/
if (track->mNumRotationKeys == 0 && track->mNumPositionKeys == 0 && track->mNumScalingKeys == 0) {
continue; //do not bother
}
bool is_bone = state.bone_owners.has(node_name);
NodePath node_path;
Skeleton *skeleton = NULL;
if (is_bone) {
skeleton = state.skeletons[state.bone_owners[node_name]];
String path = state.root->get_path_to(skeleton);
path += ":" + node_name;
node_path = path;
} else {
ERR_CONTINUE(!state.node_map.has(node_name));
Node *node = state.node_map[node_name];
node_path = state.root->get_path_to(node);
}
_insert_animation_track(state, anim, i, p_bake_fps, animation, ticks_per_second, skeleton, node_path, node_name);
}
//blend shape tracks
for (size_t i = 0; i < anim->mNumMorphMeshChannels; i++) {
const aiMeshMorphAnim *anim_mesh = anim->mMorphMeshChannels[i];
const String prop_name = _assimp_get_string(anim_mesh->mName);
const String mesh_name = prop_name.split("*")[0];
ERR_CONTINUE(prop_name.split("*").size() != 2);
ERR_CONTINUE(!state.node_map.has(mesh_name));
const MeshInstance *mesh_instance = Object::cast_to<MeshInstance>(state.node_map[mesh_name]);
ERR_CONTINUE(mesh_instance == NULL);
String base_path = state.root->get_path_to(mesh_instance);
Ref<Mesh> mesh = mesh_instance->get_mesh();
ERR_CONTINUE(mesh.is_null());
//add the tracks for this mesh
int base_track = animation->get_track_count();
for (int j = 0; j < mesh->get_blend_shape_count(); j++) {
animation->add_track(Animation::TYPE_VALUE);
animation->track_set_path(base_track + j, base_path + ":blend_shapes/" + mesh->get_blend_shape_name(j));
}
for (size_t k = 0; k < anim_mesh->mNumKeys; k++) {
for (size_t j = 0; j < anim_mesh->mKeys[k].mNumValuesAndWeights; j++) {
float t = anim_mesh->mKeys[k].mTime / ticks_per_second;
float w = anim_mesh->mKeys[k].mWeights[j];
animation->track_insert_key(base_track + j, t, w);
}
}
}
if (animation->get_track_count()) {
state.animation_player->add_animation(name, animation);
}
}
float EditorSceneImporterAssimp::_get_fbx_fps(int32_t time_mode, const aiScene *p_scene) {
switch (time_mode) {
case AssetImportFbx::TIME_MODE_DEFAULT: return 24; //hack
case AssetImportFbx::TIME_MODE_120: return 120;
case AssetImportFbx::TIME_MODE_100: return 100;
case AssetImportFbx::TIME_MODE_60: return 60;
case AssetImportFbx::TIME_MODE_50: return 50;
case AssetImportFbx::TIME_MODE_48: return 48;
case AssetImportFbx::TIME_MODE_30: return 30;
case AssetImportFbx::TIME_MODE_30_DROP: return 30;
case AssetImportFbx::TIME_MODE_NTSC_DROP_FRAME: return 29.9700262f;
case AssetImportFbx::TIME_MODE_NTSC_FULL_FRAME: return 29.9700262f;
case AssetImportFbx::TIME_MODE_PAL: return 25;
case AssetImportFbx::TIME_MODE_CINEMA: return 24;
case AssetImportFbx::TIME_MODE_1000: return 1000;
case AssetImportFbx::TIME_MODE_CINEMA_ND: return 23.976f;
case AssetImportFbx::TIME_MODE_CUSTOM:
int32_t frame_rate;
p_scene->mMetaData->Get("FrameRate", frame_rate);
return frame_rate;
}
return 0;
}
Transform EditorSceneImporterAssimp::_get_global_assimp_node_transform(const aiNode *p_current_node) {
aiNode const *current_node = p_current_node;
Transform xform;
while (current_node != NULL) {
xform = _assimp_matrix_transform(current_node->mTransformation) * xform;
current_node = current_node->mParent;
}
return xform;
}
Ref<Texture> EditorSceneImporterAssimp::_load_texture(ImportState &state, String p_path) {
Vector<String> split_path = p_path.get_basename().split("*");
if (split_path.size() == 2) {
size_t texture_idx = split_path[1].to_int();
ERR_FAIL_COND_V(texture_idx >= state.assimp_scene->mNumTextures, Ref<Texture>());
aiTexture *tex = state.assimp_scene->mTextures[texture_idx];
String filename = _assimp_raw_string_to_string(tex->mFilename);
filename = filename.get_file();
print_verbose("Open Asset Import: Loading embedded texture " + filename);
if (tex->mHeight == 0) {
if (tex->CheckFormat("png")) {
Ref<Image> img = Image::_png_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth);
ERR_FAIL_COND_V(img.is_null(), Ref<Texture>());
Ref<ImageTexture> t;
t.instance();
t->create_from_image(img);
t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
return t;
} else if (tex->CheckFormat("jpg")) {
Ref<Image> img = Image::_jpg_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth);
ERR_FAIL_COND_V(img.is_null(), Ref<Texture>());
Ref<ImageTexture> t;
t.instance();
t->create_from_image(img);
t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
return t;
} else if (tex->CheckFormat("dds")) {
ERR_EXPLAIN("Open Asset Import: Embedded dds not implemented");
ERR_FAIL_COND_V(true, Ref<Texture>());
//Ref<Image> img = Image::_dds_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth);
//ERR_FAIL_COND_V(img.is_null(), Ref<Texture>());
//Ref<ImageTexture> t;
//t.instance();
//t->create_from_image(img);
//t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
//return t;
}
} else {
Ref<Image> img;
img.instance();
PoolByteArray arr;
uint32_t size = tex->mWidth * tex->mHeight;
arr.resize(size);
memcpy(arr.write().ptr(), tex->pcData, size);
ERR_FAIL_COND_V(arr.size() % 4 != 0, Ref<Texture>());
//ARGB8888 to RGBA8888
for (int32_t i = 0; i < arr.size() / 4; i++) {
arr.write().ptr()[(4 * i) + 3] = arr[(4 * i) + 0];
arr.write().ptr()[(4 * i) + 0] = arr[(4 * i) + 1];
arr.write().ptr()[(4 * i) + 1] = arr[(4 * i) + 2];
arr.write().ptr()[(4 * i) + 2] = arr[(4 * i) + 3];
}
img->create(tex->mWidth, tex->mHeight, true, Image::FORMAT_RGBA8, arr);
ERR_FAIL_COND_V(img.is_null(), Ref<Texture>());
Ref<ImageTexture> t;
t.instance();
t->create_from_image(img);
t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
return t;
}
return Ref<Texture>();
}
Ref<Texture> p_texture = ResourceLoader::load(p_path, "Texture");
return p_texture;
}
Ref<Material> EditorSceneImporterAssimp::_generate_material_from_index(ImportState &state, int p_index, bool p_double_sided) {
ERR_FAIL_INDEX_V(p_index, (int)state.assimp_scene->mNumMaterials, Ref<Material>());
aiMaterial *ai_material = state.assimp_scene->mMaterials[p_index];
Ref<SpatialMaterial> mat;
mat.instance();
int32_t mat_two_sided = 0;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_TWOSIDED, mat_two_sided)) {
if (mat_two_sided > 0) {
mat->set_cull_mode(SpatialMaterial::CULL_DISABLED);
}
}
//const String mesh_name = _assimp_get_string(ai_mesh->mName);
aiString mat_name;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_NAME, mat_name)) {
mat->set_name(_assimp_get_string(mat_name));
}
aiTextureType tex_normal = aiTextureType_NORMALS;
{
aiString ai_filename = aiString();
String filename = "";
aiTextureMapMode map_mode[2];
if (AI_SUCCESS == ai_material->GetTexture(tex_normal, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) {
filename = _assimp_raw_string_to_string(ai_filename);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
if (map_mode != NULL) {
_set_texture_mapping_mode(map_mode, texture);
}
mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture);
}
}
}
}
{
aiString ai_filename = aiString();
String filename = "";
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_NORMAL_TEXTURE, ai_filename)) {
filename = _assimp_raw_string_to_string(ai_filename);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture);
}
}
}
}
aiTextureType tex_emissive = aiTextureType_EMISSIVE;
if (ai_material->GetTextureCount(tex_emissive) > 0) {
aiString ai_filename = aiString();
String filename = "";
aiTextureMapMode map_mode[2];
if (AI_SUCCESS == ai_material->GetTexture(tex_emissive, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) {
filename = _assimp_raw_string_to_string(ai_filename);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
_set_texture_mapping_mode(map_mode, texture);
mat->set_feature(SpatialMaterial::FEATURE_EMISSION, true);
mat->set_texture(SpatialMaterial::TEXTURE_EMISSION, texture);
}
}
}
}
aiTextureType tex_albedo = aiTextureType_DIFFUSE;
if (ai_material->GetTextureCount(tex_albedo) > 0) {
aiString ai_filename = aiString();
String filename = "";
aiTextureMapMode map_mode[2];
if (AI_SUCCESS == ai_material->GetTexture(tex_albedo, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) {
filename = _assimp_raw_string_to_string(ai_filename);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() != Image::ALPHA_NONE) {
_set_texture_mapping_mode(map_mode, texture);
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
}
} else {
aiColor4D clr_diffuse;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_COLOR_DIFFUSE, clr_diffuse)) {
if (Math::is_equal_approx(clr_diffuse.a, 1.0f) == false) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_albedo(Color(clr_diffuse.r, clr_diffuse.g, clr_diffuse.b, clr_diffuse.a));
}
}
aiString tex_gltf_base_color_path = aiString();
aiTextureMapMode map_mode[2];
if (AI_SUCCESS == ai_material->GetTexture(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE, &tex_gltf_base_color_path, NULL, NULL, NULL, NULL, map_mode)) {
String filename = _assimp_raw_string_to_string(tex_gltf_base_color_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
_find_texture_path(state.path, path, found);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) {
_set_texture_mapping_mode(map_mode, texture);
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
} else {
aiColor4D pbr_base_color;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR, pbr_base_color)) {
if (Math::is_equal_approx(pbr_base_color.a, 1.0f) == false) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a));
}
}
{
aiString tex_fbx_pbs_base_color_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_TEXTURE, tex_fbx_pbs_base_color_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_pbs_base_color_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
_find_texture_path(state.path, path, found);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
} else {
aiColor4D pbr_base_color;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_FACTOR, pbr_base_color)) {
mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a));
}
}
aiUVTransform pbr_base_color_uv_xform;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_UV_XFORM, pbr_base_color_uv_xform)) {
mat->set_uv1_offset(Vector3(pbr_base_color_uv_xform.mTranslation.x, pbr_base_color_uv_xform.mTranslation.y, 0.0f));
mat->set_uv1_scale(Vector3(pbr_base_color_uv_xform.mScaling.x, pbr_base_color_uv_xform.mScaling.y, 1.0f));
}
}
{
aiString tex_fbx_pbs_normal_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_NORMAL_TEXTURE, tex_fbx_pbs_normal_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_pbs_normal_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
_find_texture_path(state.path, path, found);
if (texture != NULL) {
mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture);
}
}
}
}
if (p_double_sided) {
mat->set_cull_mode(SpatialMaterial::CULL_DISABLED);
}
{
aiString tex_fbx_stingray_normal_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_NORMAL_TEXTURE, tex_fbx_stingray_normal_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_stingray_normal_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
_find_texture_path(state.path, path, found);
if (texture != NULL) {
mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture);
}
}
}
}
{
aiString tex_fbx_pbs_base_color_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_COLOR_TEXTURE, tex_fbx_pbs_base_color_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_pbs_base_color_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
_find_texture_path(state.path, path, found);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
} else {
aiColor4D pbr_base_color;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_BASE_COLOR_FACTOR, pbr_base_color)) {
mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a));
}
}
aiUVTransform pbr_base_color_uv_xform;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_COLOR_UV_XFORM, pbr_base_color_uv_xform)) {
mat->set_uv1_offset(Vector3(pbr_base_color_uv_xform.mTranslation.x, pbr_base_color_uv_xform.mTranslation.y, 0.0f));
mat->set_uv1_scale(Vector3(pbr_base_color_uv_xform.mScaling.x, pbr_base_color_uv_xform.mScaling.y, 1.0f));
}
}
{
aiString tex_fbx_pbs_emissive_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_TEXTURE, tex_fbx_pbs_emissive_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_pbs_emissive_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
_find_texture_path(state.path, path, found);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
} else {
aiColor4D pbr_emmissive_color;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_FACTOR, pbr_emmissive_color)) {
mat->set_emission(Color(pbr_emmissive_color.r, pbr_emmissive_color.g, pbr_emmissive_color.b, pbr_emmissive_color.a));
}
}
real_t pbr_emission_intensity;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_INTENSITY_FACTOR, pbr_emission_intensity)) {
mat->set_emission_energy(pbr_emission_intensity);
}
}
aiString tex_gltf_pbr_metallicroughness_path;
if (AI_SUCCESS == ai_material->GetTexture(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE, &tex_gltf_pbr_metallicroughness_path)) {
String filename = _assimp_raw_string_to_string(tex_gltf_pbr_metallicroughness_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture);
mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE);
mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture);
mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN);
}
}
} else {
float pbr_roughness = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR, pbr_roughness)) {
mat->set_roughness(pbr_roughness);
}
float pbr_metallic = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR, pbr_metallic)) {
mat->set_metallic(pbr_metallic);
}
}
{
aiString tex_fbx_pbs_metallic_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_METALLIC_TEXTURE, tex_fbx_pbs_metallic_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_pbs_metallic_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture);
mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE);
}
}
} else {
float pbr_metallic = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_METALLIC_FACTOR, pbr_metallic)) {
mat->set_metallic(pbr_metallic);
}
}
aiString tex_fbx_pbs_rough_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_ROUGHNESS_TEXTURE, tex_fbx_pbs_rough_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_pbs_rough_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture);
mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE);
}
}
} else {
float pbr_roughness = 0.04f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_ROUGHNESS_FACTOR, pbr_roughness)) {
mat->set_roughness(pbr_roughness);
}
}
}
{
aiString tex_fbx_pbs_metallic_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_METALNESS_TEXTURE, tex_fbx_pbs_metallic_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_pbs_metallic_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture);
mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE);
}
}
} else {
float pbr_metallic = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_METALNESS_FACTOR, pbr_metallic)) {
mat->set_metallic(pbr_metallic);
}
}
aiString tex_fbx_pbs_rough_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_DIFFUSE_ROUGHNESS_TEXTURE, tex_fbx_pbs_rough_path)) {
String filename = _assimp_raw_string_to_string(tex_fbx_pbs_rough_path);
String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(state.path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(state, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture);
mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE);
}
}
} else {
float pbr_roughness = 0.04f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_DIFFUSE_ROUGHNESS_FACTOR, pbr_roughness)) {
mat->set_roughness(pbr_roughness);
}
}
}
return mat;
}
Ref<Mesh> EditorSceneImporterAssimp::_generate_mesh_from_surface_indices(ImportState &state, const Vector<int> &p_surface_indices, Skeleton *p_skeleton, bool p_double_sided_material) {
Ref<ArrayMesh> mesh;
mesh.instance();
bool has_uvs = false;
for (int i = 0; i < p_surface_indices.size(); i++) {
const unsigned int mesh_idx = p_surface_indices[i];
const aiMesh *ai_mesh = state.assimp_scene->mMeshes[mesh_idx];
Map<uint32_t, Vector<BoneInfo> > vertex_weights;
if (p_skeleton) {
for (size_t b = 0; b < ai_mesh->mNumBones; b++) {
aiBone *bone = ai_mesh->mBones[b];
String bone_name = _assimp_get_string(bone->mName);
int bone_index = p_skeleton->find_bone(bone_name);
ERR_CONTINUE(bone_index == -1); //bone refers to an unexisting index, wtf.
for (size_t w = 0; w < bone->mNumWeights; w++) {
aiVertexWeight ai_weights = bone->mWeights[w];
BoneInfo bi;
uint32_t vertex_index = ai_weights.mVertexId;
bi.bone = bone_index;
bi.weight = ai_weights.mWeight;
;
if (!vertex_weights.has(vertex_index)) {
vertex_weights[vertex_index] = Vector<BoneInfo>();
}
vertex_weights[vertex_index].push_back(bi);
}
}
}
Ref<SurfaceTool> st;
st.instance();
st->begin(Mesh::PRIMITIVE_TRIANGLES);
for (size_t j = 0; j < ai_mesh->mNumVertices; j++) {
if (ai_mesh->HasTextureCoords(0)) {
has_uvs = true;
st->add_uv(Vector2(ai_mesh->mTextureCoords[0][j].x, 1.0f - ai_mesh->mTextureCoords[0][j].y));
}
if (ai_mesh->HasTextureCoords(1)) {
has_uvs = true;
st->add_uv2(Vector2(ai_mesh->mTextureCoords[1][j].x, 1.0f - ai_mesh->mTextureCoords[1][j].y));
}
if (ai_mesh->HasVertexColors(0)) {
Color color = Color(ai_mesh->mColors[0]->r, ai_mesh->mColors[0]->g, ai_mesh->mColors[0]->b, ai_mesh->mColors[0]->a);
st->add_color(color);
}
if (ai_mesh->mNormals != NULL) {
const aiVector3D normals = ai_mesh->mNormals[j];
const Vector3 godot_normal = Vector3(normals.x, normals.y, normals.z);
st->add_normal(godot_normal);
if (ai_mesh->HasTangentsAndBitangents()) {
const aiVector3D tangents = ai_mesh->mTangents[j];
const Vector3 godot_tangent = Vector3(tangents.x, tangents.y, tangents.z);
const aiVector3D bitangent = ai_mesh->mBitangents[j];
const Vector3 godot_bitangent = Vector3(bitangent.x, bitangent.y, bitangent.z);
float d = godot_normal.cross(godot_tangent).dot(godot_bitangent) > 0.0f ? 1.0f : -1.0f;
st->add_tangent(Plane(tangents.x, tangents.y, tangents.z, d));
}
}
if (vertex_weights.has(j)) {
Vector<BoneInfo> bone_info = vertex_weights[j];
Vector<int> bones;
bones.resize(bone_info.size());
Vector<float> weights;
weights.resize(bone_info.size());
for (int k = 0; k < bone_info.size(); k++) {
bones.write[k] = bone_info[k].bone;
weights.write[k] = bone_info[k].weight;
}
st->add_bones(bones);
st->add_weights(weights);
}
const aiVector3D pos = ai_mesh->mVertices[j];
Vector3 godot_pos = Vector3(pos.x, pos.y, pos.z);
st->add_vertex(godot_pos);
}
for (size_t j = 0; j < ai_mesh->mNumFaces; j++) {
const aiFace face = ai_mesh->mFaces[j];
ERR_CONTINUE(face.mNumIndices != 3);
Vector<size_t> order;
order.push_back(2);
order.push_back(1);
order.push_back(0);
for (int32_t k = 0; k < order.size(); k++) {
st->add_index(face.mIndices[order[k]]);
}
}
if (ai_mesh->HasTangentsAndBitangents() == false && has_uvs) {
st->generate_tangents();
}
Ref<Material> material;
if (!state.material_cache.has(ai_mesh->mMaterialIndex)) {
material = _generate_material_from_index(state, ai_mesh->mMaterialIndex, p_double_sided_material);
}
Array array_mesh = st->commit_to_arrays();
Array morphs;
morphs.resize(ai_mesh->mNumAnimMeshes);
Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
Map<uint32_t, String> morph_mesh_idx_names;
for (size_t j = 0; j < ai_mesh->mNumAnimMeshes; j++) {
if (i == 0) {
//only do this the first time
String ai_anim_mesh_name = _assimp_get_string(ai_mesh->mAnimMeshes[j]->mName);
mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
if (ai_anim_mesh_name.empty()) {
ai_anim_mesh_name = String("morph_") + itos(j);
}
mesh->add_blend_shape(ai_anim_mesh_name);
}
Array array_copy;
array_copy.resize(VisualServer::ARRAY_MAX);
for (int l = 0; l < VisualServer::ARRAY_MAX; l++) {
array_copy[l] = array_mesh[l].duplicate(true);
}
const size_t num_vertices = ai_mesh->mAnimMeshes[j]->mNumVertices;
array_copy[Mesh::ARRAY_INDEX] = Variant();
if (ai_mesh->mAnimMeshes[j]->HasPositions()) {
PoolVector3Array vertices;
vertices.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiVector3D ai_pos = ai_mesh->mAnimMeshes[j]->mVertices[l];
Vector3 position = Vector3(ai_pos.x, ai_pos.y, ai_pos.z);
vertices.write()[l] = position;
}
PoolVector3Array new_vertices = array_copy[VisualServer::ARRAY_VERTEX].duplicate(true);
for (int32_t l = 0; l < vertices.size(); l++) {
PoolVector3Array::Write w = new_vertices.write();
w[l] = vertices[l];
}
ERR_CONTINUE(vertices.size() != new_vertices.size());
array_copy[VisualServer::ARRAY_VERTEX] = new_vertices;
}
int32_t color_set = 0;
if (ai_mesh->mAnimMeshes[j]->HasVertexColors(color_set)) {
PoolColorArray colors;
colors.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiColor4D ai_color = ai_mesh->mAnimMeshes[j]->mColors[color_set][l];
Color color = Color(ai_color.r, ai_color.g, ai_color.b, ai_color.a);
colors.write()[l] = color;
}
PoolColorArray new_colors = array_copy[VisualServer::ARRAY_COLOR].duplicate(true);
for (int32_t l = 0; l < colors.size(); l++) {
PoolColorArray::Write w = new_colors.write();
w[l] = colors[l];
}
array_copy[VisualServer::ARRAY_COLOR] = new_colors;
}
if (ai_mesh->mAnimMeshes[j]->HasNormals()) {
PoolVector3Array normals;
normals.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiVector3D ai_normal = ai_mesh->mAnimMeshes[i]->mNormals[l];
Vector3 normal = Vector3(ai_normal.x, ai_normal.y, ai_normal.z);
normals.write()[l] = normal;
}
PoolVector3Array new_normals = array_copy[VisualServer::ARRAY_NORMAL].duplicate(true);
for (int l = 0; l < normals.size(); l++) {
PoolVector3Array::Write w = new_normals.write();
w[l] = normals[l];
}
array_copy[VisualServer::ARRAY_NORMAL] = new_normals;
}
if (ai_mesh->mAnimMeshes[j]->HasTangentsAndBitangents()) {
PoolColorArray tangents;
tangents.resize(num_vertices);
PoolColorArray::Write w = tangents.write();
for (size_t l = 0; l < num_vertices; l++) {
_calc_tangent_from_mesh(ai_mesh, j, l, l, w);
}
PoolRealArray new_tangents = array_copy[VisualServer::ARRAY_TANGENT].duplicate(true);
ERR_CONTINUE(new_tangents.size() != tangents.size() * 4);
for (int32_t l = 0; l < tangents.size(); l++) {
new_tangents.write()[l + 0] = tangents[l].r;
new_tangents.write()[l + 1] = tangents[l].g;
new_tangents.write()[l + 2] = tangents[l].b;
new_tangents.write()[l + 3] = tangents[l].a;
}
array_copy[VisualServer::ARRAY_TANGENT] = new_tangents;
}
morphs[j] = array_copy;
}
mesh->add_surface_from_arrays(primitive, array_mesh, morphs);
mesh->surface_set_material(i, material);
mesh->surface_set_name(i, _assimp_get_string(ai_mesh->mName));
}
return mesh;
}
void EditorSceneImporterAssimp::_generate_node(ImportState &state, const aiNode *p_assimp_node, Node *p_parent) {
Spatial *new_node = NULL;
String node_name = _assimp_get_string(p_assimp_node->mName);
Transform node_transform = _assimp_matrix_transform(p_assimp_node->mTransformation);
if (p_assimp_node->mNumMeshes > 0) {
/* MESH NODE */
Ref<Mesh> mesh;
Skeleton *skeleton = NULL;
{
//see if we have mesh cache for this.
Vector<int> surface_indices;
for (uint32_t i = 0; i < p_assimp_node->mNumMeshes; i++) {
int mesh_index = p_assimp_node->mMeshes[i];
surface_indices.push_back(mesh_index);
//take the chane and attempt to find the skeleton from the bones
if (!skeleton) {
aiMesh *ai_mesh = state.assimp_scene->mMeshes[p_assimp_node->mMeshes[i]];
for (uint32_t j = 0; j < ai_mesh->mNumBones; j++) {
aiBone *bone = ai_mesh->mBones[j];
String bone_name = _assimp_get_string(bone->mName);
if (state.bone_owners.has(bone_name)) {
skeleton = state.skeletons[state.bone_owners[bone_name]];
break;
}
}
}
}
surface_indices.sort();
String mesh_key;
for (int i = 0; i < surface_indices.size(); i++) {
if (i > 0) {
mesh_key += ":";
}
mesh_key += itos(surface_indices[i]);
}
if (!state.mesh_cache.has(mesh_key)) {
//adding cache
aiString cull_mode; //cull is on mesh, which is kind of stupid tbh
bool double_sided_material = false;
if (p_assimp_node->mMetaData) {
p_assimp_node->mMetaData->Get("Culling", cull_mode);
}
if (cull_mode.length != 0 && cull_mode == aiString("CullingOff")) {
double_sided_material = true;
}
mesh = _generate_mesh_from_surface_indices(state, surface_indices, skeleton, double_sided_material);
state.mesh_cache[mesh_key] = mesh;
}
mesh = state.mesh_cache[mesh_key];
}
MeshInstance *mesh_node = memnew(MeshInstance);
if (skeleton) {
state.mesh_skeletons[mesh_node] = skeleton;
}
mesh_node->set_mesh(mesh);
new_node = mesh_node;
} else if (state.light_cache.has(node_name)) {
Light *light = NULL;
aiLight *ai_light = state.assimp_scene->mLights[state.light_cache[node_name]];
ERR_FAIL_COND(!ai_light);
if (ai_light->mType == aiLightSource_DIRECTIONAL) {
light = memnew(DirectionalLight);
Vector3 dir = Vector3(ai_light->mDirection.y, ai_light->mDirection.x, ai_light->mDirection.z);
dir.normalize();
Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z);
Vector3 up = Vector3(ai_light->mUp.x, ai_light->mUp.y, ai_light->mUp.z);
up.normalize();
Transform light_transform;
light_transform.set_look_at(pos, pos + dir, up);
node_transform *= light_transform;
} else if (ai_light->mType == aiLightSource_POINT) {
light = memnew(OmniLight);
Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z);
Transform xform;
xform.origin = pos;
node_transform *= xform;
light->set_transform(xform);
//light->set_param(Light::PARAM_ATTENUATION, 1);
} else if (ai_light->mType == aiLightSource_SPOT) {
light = memnew(SpotLight);
Vector3 dir = Vector3(ai_light->mDirection.y, ai_light->mDirection.x, ai_light->mDirection.z);
dir.normalize();
Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z);
Vector3 up = Vector3(ai_light->mUp.x, ai_light->mUp.y, ai_light->mUp.z);
up.normalize();
Transform light_transform;
light_transform.set_look_at(pos, pos + dir, up);
node_transform *= light_transform;
//light->set_param(Light::PARAM_ATTENUATION, 0.0f);
}
ERR_FAIL_COND(light == NULL);
light->set_color(Color(ai_light->mColorDiffuse.r, ai_light->mColorDiffuse.g, ai_light->mColorDiffuse.b));
new_node = light;
} else if (state.camera_cache.has(node_name)) {
aiCamera *ai_camera = state.assimp_scene->mCameras[state.camera_cache[node_name]];
ERR_FAIL_COND(!ai_camera);
Camera *camera = memnew(Camera);
float near = ai_camera->mClipPlaneNear;
if (Math::is_equal_approx(near, 0.0f)) {
near = 0.1f;
}
camera->set_perspective(Math::rad2deg(ai_camera->mHorizontalFOV) * 2.0f, near, ai_camera->mClipPlaneFar);
Vector3 pos = Vector3(ai_camera->mPosition.x, ai_camera->mPosition.y, ai_camera->mPosition.z);
Vector3 look_at = Vector3(ai_camera->mLookAt.y, ai_camera->mLookAt.x, ai_camera->mLookAt.z).normalized();
Vector3 up = Vector3(ai_camera->mUp.x, ai_camera->mUp.y, ai_camera->mUp.z);
Transform xform;
xform.set_look_at(pos, look_at, up);
new_node = camera;
} else if (state.bone_owners.has(node_name)) {
//have to actually put the skeleton somewhere, you know.
Skeleton *skeleton = state.skeletons[state.bone_owners[node_name]];
if (skeleton->get_parent()) {
//a bone for a skeleton already added..
//could go downwards here to add meshes children of skeleton bones
//but let's not support it for now.
return;
}
//restore rest poses to local, now that we know where the skeleton finally is
Transform skeleton_transform;
if (p_assimp_node->mParent) {
skeleton_transform = _get_global_assimp_node_transform(p_assimp_node->mParent);
}
for (int i = 0; i < skeleton->get_bone_count(); i++) {
Transform rest = skeleton_transform.affine_inverse() * skeleton->get_bone_rest(i);
skeleton->set_bone_rest(i, rest.affine_inverse());
}
skeleton->localize_rests();
node_name = "Skeleton"; //don't use the bone root name
node_transform = Transform(); //dont transform
new_node = skeleton;
} else {
//generic node
new_node = memnew(Spatial);
}
{
new_node->set_name(node_name);
new_node->set_transform(node_transform);
p_parent->add_child(new_node);
new_node->set_owner(state.root);
}
state.node_map[node_name] = new_node;
for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) {
_generate_node(state, p_assimp_node->mChildren[i], new_node);
}
}
void EditorSceneImporterAssimp::_calc_tangent_from_mesh(const aiMesh *ai_mesh, int i, int tri_index, int index, PoolColorArray::Write &w) {
const aiVector3D normals = ai_mesh->mAnimMeshes[i]->mNormals[tri_index];
const Vector3 godot_normal = Vector3(normals.x, normals.y, normals.z);
const aiVector3D tangent = ai_mesh->mAnimMeshes[i]->mTangents[tri_index];
const Vector3 godot_tangent = Vector3(tangent.x, tangent.y, tangent.z);
const aiVector3D bitangent = ai_mesh->mAnimMeshes[i]->mBitangents[tri_index];
const Vector3 godot_bitangent = Vector3(bitangent.x, bitangent.y, bitangent.z);
float d = godot_normal.cross(godot_tangent).dot(godot_bitangent) > 0.0f ? 1.0f : -1.0f;
Color plane_tangent = Color(tangent.x, tangent.y, tangent.z, d);
w[index] = plane_tangent;
}
void EditorSceneImporterAssimp::_set_texture_mapping_mode(aiTextureMapMode *map_mode, Ref<Texture> texture) {
ERR_FAIL_COND(map_mode == NULL);
aiTextureMapMode tex_mode = aiTextureMapMode::aiTextureMapMode_Wrap;
//for (size_t i = 0; i < 3; i++) {
tex_mode = map_mode[0];
//}
int32_t flags = Texture::FLAGS_DEFAULT;
if (tex_mode == aiTextureMapMode_Wrap) {
//Default
} else if (tex_mode == aiTextureMapMode_Clamp) {
flags = flags & ~Texture::FLAG_REPEAT;
} else if (tex_mode == aiTextureMapMode_Mirror) {
flags = flags | Texture::FLAG_MIRRORED_REPEAT;
}
texture->set_flags(flags);
}
void EditorSceneImporterAssimp::_find_texture_path(const String &r_p_path, String &r_path, bool &r_found) {
_Directory dir;
List<String> exts;
ImageLoader::get_recognized_extensions(&exts);
Vector<String> split_path = r_path.get_basename().split("*");
if (split_path.size() == 2) {
r_found = true;
return;
}
if (dir.file_exists(r_p_path.get_base_dir() + r_path.get_file())) {
r_path = r_p_path.get_base_dir() + r_path.get_file();
r_found = true;
return;
}
for (int32_t i = 0; i < exts.size(); i++) {
if (r_found) {
return;
}
if (r_found == false) {
_find_texture_path(r_p_path, dir, r_path, r_found, "." + exts[i]);
}
}
}
void EditorSceneImporterAssimp::_find_texture_path(const String &p_path, _Directory &dir, String &path, bool &found, String extension) {
String name = path.get_basename() + extension;
if (dir.file_exists(name)) {
found = true;
path = name;
return;
}
String name_ignore_sub_directory = p_path.get_base_dir() + "/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_ignore_sub_directory)) {
found = true;
path = name_ignore_sub_directory;
return;
}
String name_find_texture_sub_directory = p_path.get_base_dir() + "/textures/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_find_texture_sub_directory)) {
found = true;
path = name_find_texture_sub_directory;
return;
}
String name_find_texture_upper_sub_directory = p_path.get_base_dir() + "/Textures/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_find_texture_upper_sub_directory)) {
found = true;
path = name_find_texture_upper_sub_directory;
return;
}
String name_find_texture_outside_sub_directory = p_path.get_base_dir() + "/../textures/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_find_texture_outside_sub_directory)) {
found = true;
path = name_find_texture_outside_sub_directory;
return;
}
String name_find_upper_texture_outside_sub_directory = p_path.get_base_dir() + "/../Textures/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_find_upper_texture_outside_sub_directory)) {
found = true;
path = name_find_upper_texture_outside_sub_directory;
return;
}
}
String EditorSceneImporterAssimp::_assimp_get_string(const aiString p_string) const {
//convert an assimp String to a Godot String
String name;
name.parse_utf8(p_string.C_Str() /*,p_string.length*/);
if (name.find(":") != -1) {
String replaced_name = name.split(":")[1];
print_verbose("Replacing " + name + " containing : with " + replaced_name);
name = replaced_name;
}
name = name.replace(".", ""); //can break things, specially bone names
return name;
}
String EditorSceneImporterAssimp::_assimp_anim_string_to_string(const aiString p_string) const {
String name;
name.parse_utf8(p_string.C_Str() /*,p_string.length*/);
if (name.find(":") != -1) {
String replaced_name = name.split(":")[1];
print_verbose("Replacing " + name + " containing : with " + replaced_name);
name = replaced_name;
}
return name;
}
String EditorSceneImporterAssimp::_assimp_raw_string_to_string(const aiString p_string) const {
String name;
name.parse_utf8(p_string.C_Str() /*,p_string.length*/);
return name;
}
Ref<Animation> EditorSceneImporterAssimp::import_animation(const String &p_path, uint32_t p_flags, int p_bake_fps) {
return Ref<Animation>();
}
const Transform EditorSceneImporterAssimp::_assimp_matrix_transform(const aiMatrix4x4 p_matrix) {
aiMatrix4x4 matrix = p_matrix;
Transform xform;
//xform.set(matrix.a1, matrix.b1, matrix.c1, matrix.a2, matrix.b2, matrix.c2, matrix.a3, matrix.b3, matrix.c3, matrix.a4, matrix.b4, matrix.c4);
xform.set(matrix.a1, matrix.a2, matrix.a3, matrix.b1, matrix.b2, matrix.b3, matrix.c1, matrix.c2, matrix.c3, matrix.a4, matrix.b4, matrix.c4);
return xform;
}