godot/modules/raycast/raycast_occlusion_cull.cpp
Rémi Verschelde fe52458154
Update copyright statements to 2022
Happy new year to the wonderful Godot community!
2022-01-03 21:27:34 +01:00

619 lines
21 KiB
C++

/*************************************************************************/
/* raycast_occlusion_cull.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "raycast_occlusion_cull.h"
#include "core/config/project_settings.h"
#include "core/templates/local_vector.h"
#ifdef __SSE2__
#include <pmmintrin.h>
#endif
RaycastOcclusionCull *RaycastOcclusionCull::raycast_singleton = nullptr;
void RaycastOcclusionCull::RaycastHZBuffer::clear() {
HZBuffer::clear();
if (camera_rays_unaligned_buffer) {
memfree(camera_rays_unaligned_buffer);
camera_rays_unaligned_buffer = nullptr;
camera_rays = nullptr;
}
camera_ray_masks.clear();
camera_rays_tile_count = 0;
tile_grid_size = Size2i();
}
void RaycastOcclusionCull::RaycastHZBuffer::resize(const Size2i &p_size) {
if (p_size == Size2i()) {
clear();
return;
}
if (!sizes.is_empty() && p_size == sizes[0]) {
return; // Size didn't change
}
HZBuffer::resize(p_size);
tile_grid_size = Size2i(Math::ceil(p_size.x / (float)TILE_SIZE), Math::ceil(p_size.y / (float)TILE_SIZE));
camera_rays_tile_count = tile_grid_size.x * tile_grid_size.y;
if (camera_rays_unaligned_buffer) {
memfree(camera_rays_unaligned_buffer);
}
const int alignment = 64; // Embree requires ray packets to be 64-aligned
camera_rays_unaligned_buffer = (uint8_t *)memalloc(camera_rays_tile_count * sizeof(CameraRayTile) + alignment);
camera_rays = (CameraRayTile *)(camera_rays_unaligned_buffer + alignment - (((uint64_t)camera_rays_unaligned_buffer) % alignment));
camera_ray_masks.resize(camera_rays_tile_count * TILE_RAYS);
memset(camera_ray_masks.ptr(), ~0, camera_rays_tile_count * TILE_RAYS * sizeof(uint32_t));
}
void RaycastOcclusionCull::RaycastHZBuffer::update_camera_rays(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, ThreadWorkPool &p_thread_work_pool) {
CameraRayThreadData td;
td.thread_count = p_thread_work_pool.get_thread_count();
td.z_near = p_cam_projection.get_z_near();
td.z_far = p_cam_projection.get_z_far() * 1.05f;
td.camera_pos = p_cam_transform.origin;
td.camera_dir = -p_cam_transform.basis.get_axis(2);
td.camera_orthogonal = p_cam_orthogonal;
CameraMatrix inv_camera_matrix = p_cam_projection.inverse();
Vector3 camera_corner_proj = Vector3(-1.0f, -1.0f, -1.0f);
Vector3 camera_corner_view = inv_camera_matrix.xform(camera_corner_proj);
td.pixel_corner = p_cam_transform.xform(camera_corner_view);
Vector3 top_corner_proj = Vector3(-1.0f, 1.0f, -1.0f);
Vector3 top_corner_view = inv_camera_matrix.xform(top_corner_proj);
Vector3 top_corner_world = p_cam_transform.xform(top_corner_view);
Vector3 left_corner_proj = Vector3(1.0f, -1.0f, -1.0f);
Vector3 left_corner_view = inv_camera_matrix.xform(left_corner_proj);
Vector3 left_corner_world = p_cam_transform.xform(left_corner_view);
td.pixel_u_interp = left_corner_world - td.pixel_corner;
td.pixel_v_interp = top_corner_world - td.pixel_corner;
debug_tex_range = td.z_far;
p_thread_work_pool.do_work(td.thread_count, this, &RaycastHZBuffer::_camera_rays_threaded, &td);
}
void RaycastOcclusionCull::RaycastHZBuffer::_camera_rays_threaded(uint32_t p_thread, const CameraRayThreadData *p_data) {
uint32_t total_tiles = camera_rays_tile_count;
uint32_t total_threads = p_data->thread_count;
uint32_t from = p_thread * total_tiles / total_threads;
uint32_t to = (p_thread + 1 == total_threads) ? total_tiles : ((p_thread + 1) * total_tiles / total_threads);
_generate_camera_rays(p_data, from, to);
}
void RaycastOcclusionCull::RaycastHZBuffer::_generate_camera_rays(const CameraRayThreadData *p_data, int p_from, int p_to) {
const Size2i &buffer_size = sizes[0];
for (int i = p_from; i < p_to; i++) {
CameraRayTile &tile = camera_rays[i];
int tile_x = (i % tile_grid_size.x) * TILE_SIZE;
int tile_y = (i / tile_grid_size.x) * TILE_SIZE;
for (int j = 0; j < TILE_RAYS; j++) {
int x = tile_x + j % TILE_SIZE;
int y = tile_y + j / TILE_SIZE;
float u = (float(x) + 0.5f) / buffer_size.x;
float v = (float(y) + 0.5f) / buffer_size.y;
Vector3 pixel_pos = p_data->pixel_corner + u * p_data->pixel_u_interp + v * p_data->pixel_v_interp;
tile.ray.tnear[j] = p_data->z_near;
Vector3 dir;
if (p_data->camera_orthogonal) {
dir = -p_data->camera_dir;
tile.ray.org_x[j] = pixel_pos.x - dir.x * p_data->z_near;
tile.ray.org_y[j] = pixel_pos.y - dir.y * p_data->z_near;
tile.ray.org_z[j] = pixel_pos.z - dir.z * p_data->z_near;
} else {
dir = (pixel_pos - p_data->camera_pos).normalized();
tile.ray.org_x[j] = p_data->camera_pos.x;
tile.ray.org_y[j] = p_data->camera_pos.y;
tile.ray.org_z[j] = p_data->camera_pos.z;
tile.ray.tnear[j] /= dir.dot(p_data->camera_dir);
}
tile.ray.dir_x[j] = dir.x;
tile.ray.dir_y[j] = dir.y;
tile.ray.dir_z[j] = dir.z;
tile.ray.tfar[j] = p_data->z_far;
tile.ray.time[j] = 0.0f;
tile.ray.flags[j] = 0;
tile.ray.mask[j] = ~0U;
tile.hit.geomID[j] = RTC_INVALID_GEOMETRY_ID;
}
}
}
void RaycastOcclusionCull::RaycastHZBuffer::sort_rays(const Vector3 &p_camera_dir, bool p_orthogonal) {
ERR_FAIL_COND(is_empty());
Size2i buffer_size = sizes[0];
for (int i = 0; i < tile_grid_size.y; i++) {
for (int j = 0; j < tile_grid_size.x; j++) {
for (int tile_i = 0; tile_i < TILE_SIZE; tile_i++) {
for (int tile_j = 0; tile_j < TILE_SIZE; tile_j++) {
int x = j * TILE_SIZE + tile_j;
int y = i * TILE_SIZE + tile_i;
if (x >= buffer_size.x || y >= buffer_size.y) {
continue;
}
int k = tile_i * TILE_SIZE + tile_j;
int tile_index = i * tile_grid_size.x + j;
float d = camera_rays[tile_index].ray.tfar[k];
if (!p_orthogonal) {
const float &dir_x = camera_rays[tile_index].ray.dir_x[k];
const float &dir_y = camera_rays[tile_index].ray.dir_y[k];
const float &dir_z = camera_rays[tile_index].ray.dir_z[k];
float cos_theta = p_camera_dir.x * dir_x + p_camera_dir.y * dir_y + p_camera_dir.z * dir_z;
d *= cos_theta;
}
mips[0][y * buffer_size.x + x] = d;
}
}
}
}
}
RaycastOcclusionCull::RaycastHZBuffer::~RaycastHZBuffer() {
if (camera_rays_unaligned_buffer) {
memfree(camera_rays_unaligned_buffer);
}
}
////////////////////////////////////////////////////////
bool RaycastOcclusionCull::is_occluder(RID p_rid) {
return occluder_owner.owns(p_rid);
}
RID RaycastOcclusionCull::occluder_allocate() {
return occluder_owner.allocate_rid();
}
void RaycastOcclusionCull::occluder_initialize(RID p_occluder) {
Occluder *occluder = memnew(Occluder);
occluder_owner.initialize_rid(p_occluder, occluder);
}
void RaycastOcclusionCull::occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices) {
Occluder *occluder = occluder_owner.get_or_null(p_occluder);
ERR_FAIL_COND(!occluder);
occluder->vertices = p_vertices;
occluder->indices = p_indices;
for (Set<InstanceID>::Element *E = occluder->users.front(); E; E = E->next()) {
RID scenario_rid = E->get().scenario;
RID instance_rid = E->get().instance;
ERR_CONTINUE(!scenarios.has(scenario_rid));
Scenario &scenario = scenarios[scenario_rid];
ERR_CONTINUE(!scenario.instances.has(instance_rid));
if (!scenario.dirty_instances.has(instance_rid)) {
scenario.dirty_instances.insert(instance_rid);
scenario.dirty_instances_array.push_back(instance_rid);
}
}
}
void RaycastOcclusionCull::free_occluder(RID p_occluder) {
Occluder *occluder = occluder_owner.get_or_null(p_occluder);
ERR_FAIL_COND(!occluder);
memdelete(occluder);
occluder_owner.free(p_occluder);
}
////////////////////////////////////////////////////////
void RaycastOcclusionCull::add_scenario(RID p_scenario) {
if (scenarios.has(p_scenario)) {
scenarios[p_scenario].removed = false;
} else {
scenarios[p_scenario] = Scenario();
}
}
void RaycastOcclusionCull::remove_scenario(RID p_scenario) {
ERR_FAIL_COND(!scenarios.has(p_scenario));
Scenario &scenario = scenarios[p_scenario];
scenario.removed = true;
}
void RaycastOcclusionCull::scenario_set_instance(RID p_scenario, RID p_instance, RID p_occluder, const Transform3D &p_xform, bool p_enabled) {
ERR_FAIL_COND(!scenarios.has(p_scenario));
Scenario &scenario = scenarios[p_scenario];
if (!scenario.instances.has(p_instance)) {
scenario.instances[p_instance] = OccluderInstance();
}
OccluderInstance &instance = scenario.instances[p_instance];
if (instance.removed) {
instance.removed = false;
scenario.removed_instances.erase(p_instance);
}
bool changed = false;
if (instance.occluder != p_occluder) {
Occluder *old_occluder = occluder_owner.get_or_null(instance.occluder);
if (old_occluder) {
old_occluder->users.erase(InstanceID(p_scenario, p_instance));
}
instance.occluder = p_occluder;
if (p_occluder.is_valid()) {
Occluder *occluder = occluder_owner.get_or_null(p_occluder);
ERR_FAIL_COND(!occluder);
occluder->users.insert(InstanceID(p_scenario, p_instance));
}
changed = true;
}
if (instance.xform != p_xform) {
scenario.instances[p_instance].xform = p_xform;
changed = true;
}
if (instance.enabled != p_enabled) {
instance.enabled = p_enabled;
scenario.dirty = true; // The scenario needs a scene re-build, but the instance doesn't need update
}
if (changed && !scenario.dirty_instances.has(p_instance)) {
scenario.dirty_instances.insert(p_instance);
scenario.dirty_instances_array.push_back(p_instance);
scenario.dirty = true;
}
}
void RaycastOcclusionCull::scenario_remove_instance(RID p_scenario, RID p_instance) {
ERR_FAIL_COND(!scenarios.has(p_scenario));
Scenario &scenario = scenarios[p_scenario];
if (scenario.instances.has(p_instance)) {
OccluderInstance &instance = scenario.instances[p_instance];
if (!instance.removed) {
Occluder *occluder = occluder_owner.get_or_null(instance.occluder);
if (occluder) {
occluder->users.erase(InstanceID(p_scenario, p_instance));
}
scenario.removed_instances.push_back(p_instance);
instance.removed = true;
}
}
}
void RaycastOcclusionCull::Scenario::_update_dirty_instance_thread(int p_idx, RID *p_instances) {
_update_dirty_instance(p_idx, p_instances, nullptr);
}
void RaycastOcclusionCull::Scenario::_update_dirty_instance(int p_idx, RID *p_instances, ThreadWorkPool *p_thread_pool) {
OccluderInstance *occ_inst = instances.getptr(p_instances[p_idx]);
if (!occ_inst) {
return;
}
Occluder *occ = raycast_singleton->occluder_owner.get_or_null(occ_inst->occluder);
if (!occ) {
return;
}
int vertices_size = occ->vertices.size();
// Embree requires the last element to be readable by a 16-byte SSE load instruction, so we add padding to be safe.
occ_inst->xformed_vertices.resize(vertices_size + 1);
const Vector3 *read_ptr = occ->vertices.ptr();
Vector3 *write_ptr = occ_inst->xformed_vertices.ptr();
if (p_thread_pool && vertices_size > 1024) {
TransformThreadData td;
td.xform = occ_inst->xform;
td.read = read_ptr;
td.write = write_ptr;
td.vertex_count = vertices_size;
td.thread_count = p_thread_pool->get_thread_count();
p_thread_pool->do_work(td.thread_count, this, &Scenario::_transform_vertices_thread, &td);
} else {
_transform_vertices_range(read_ptr, write_ptr, occ_inst->xform, 0, vertices_size);
}
occ_inst->indices.resize(occ->indices.size());
memcpy(occ_inst->indices.ptr(), occ->indices.ptr(), occ->indices.size() * sizeof(int32_t));
}
void RaycastOcclusionCull::Scenario::_transform_vertices_thread(uint32_t p_thread, TransformThreadData *p_data) {
uint32_t vertex_total = p_data->vertex_count;
uint32_t total_threads = p_data->thread_count;
uint32_t from = p_thread * vertex_total / total_threads;
uint32_t to = (p_thread + 1 == total_threads) ? vertex_total : ((p_thread + 1) * vertex_total / total_threads);
_transform_vertices_range(p_data->read, p_data->write, p_data->xform, from, to);
}
void RaycastOcclusionCull::Scenario::_transform_vertices_range(const Vector3 *p_read, Vector3 *p_write, const Transform3D &p_xform, int p_from, int p_to) {
for (int i = p_from; i < p_to; i++) {
p_write[i] = p_xform.xform(p_read[i]);
}
}
void RaycastOcclusionCull::Scenario::_commit_scene(void *p_ud) {
Scenario *scenario = (Scenario *)p_ud;
int commit_idx = 1 - (scenario->current_scene_idx);
rtcCommitScene(scenario->ebr_scene[commit_idx]);
scenario->commit_done = true;
}
bool RaycastOcclusionCull::Scenario::update(ThreadWorkPool &p_thread_pool) {
ERR_FAIL_COND_V(singleton == nullptr, false);
if (commit_thread == nullptr) {
commit_thread = memnew(Thread);
}
if (commit_thread->is_started()) {
if (commit_done) {
commit_thread->wait_to_finish();
current_scene_idx = 1 - current_scene_idx;
} else {
return false;
}
}
if (removed) {
if (ebr_scene[0]) {
rtcReleaseScene(ebr_scene[0]);
}
if (ebr_scene[1]) {
rtcReleaseScene(ebr_scene[1]);
}
return true;
}
if (!dirty && removed_instances.is_empty() && dirty_instances_array.is_empty()) {
return false;
}
for (unsigned int i = 0; i < removed_instances.size(); i++) {
instances.erase(removed_instances[i]);
}
if (dirty_instances_array.size() / p_thread_pool.get_thread_count() > 128) {
// Lots of instances, use per-instance threading
p_thread_pool.do_work(dirty_instances_array.size(), this, &Scenario::_update_dirty_instance_thread, dirty_instances_array.ptr());
} else {
// Few instances, use threading on the vertex transforms
for (unsigned int i = 0; i < dirty_instances_array.size(); i++) {
_update_dirty_instance(i, dirty_instances_array.ptr(), &p_thread_pool);
}
}
dirty_instances.clear();
dirty_instances_array.clear();
removed_instances.clear();
if (raycast_singleton->ebr_device == nullptr) {
raycast_singleton->_init_embree();
}
int next_scene_idx = 1 - current_scene_idx;
RTCScene &next_scene = ebr_scene[next_scene_idx];
if (next_scene) {
rtcReleaseScene(next_scene);
}
next_scene = rtcNewScene(raycast_singleton->ebr_device);
rtcSetSceneBuildQuality(next_scene, RTCBuildQuality(raycast_singleton->build_quality));
const RID *inst_rid = nullptr;
while ((inst_rid = instances.next(inst_rid))) {
OccluderInstance *occ_inst = instances.getptr(*inst_rid);
Occluder *occ = raycast_singleton->occluder_owner.get_or_null(occ_inst->occluder);
if (!occ || !occ_inst->enabled) {
continue;
}
RTCGeometry geom = rtcNewGeometry(raycast_singleton->ebr_device, RTC_GEOMETRY_TYPE_TRIANGLE);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, occ_inst->xformed_vertices.ptr(), 0, sizeof(Vector3), occ_inst->xformed_vertices.size());
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, occ_inst->indices.ptr(), 0, sizeof(uint32_t) * 3, occ_inst->indices.size() / 3);
rtcCommitGeometry(geom);
rtcAttachGeometry(next_scene, geom);
rtcReleaseGeometry(geom);
}
dirty = false;
commit_done = false;
commit_thread->start(&Scenario::_commit_scene, this);
return false;
}
void RaycastOcclusionCull::Scenario::_raycast(uint32_t p_idx, const RaycastThreadData *p_raycast_data) const {
RTCIntersectContext ctx;
rtcInitIntersectContext(&ctx);
ctx.flags = RTC_INTERSECT_CONTEXT_FLAG_COHERENT;
rtcIntersect16((const int *)&p_raycast_data->masks[p_idx * TILE_RAYS], ebr_scene[current_scene_idx], &ctx, &p_raycast_data->rays[p_idx]);
}
void RaycastOcclusionCull::Scenario::raycast(CameraRayTile *r_rays, const uint32_t *p_valid_masks, uint32_t p_tile_count, ThreadWorkPool &p_thread_pool) const {
ERR_FAIL_COND(singleton == nullptr);
if (raycast_singleton->ebr_device == nullptr) {
return; // Embree is initialized on demand when there is some scenario with occluders in it.
}
if (ebr_scene[current_scene_idx] == nullptr) {
return;
}
RaycastThreadData td;
td.rays = r_rays;
td.masks = p_valid_masks;
p_thread_pool.do_work(p_tile_count, this, &Scenario::_raycast, &td);
}
////////////////////////////////////////////////////////
void RaycastOcclusionCull::add_buffer(RID p_buffer) {
ERR_FAIL_COND(buffers.has(p_buffer));
buffers[p_buffer] = RaycastHZBuffer();
}
void RaycastOcclusionCull::remove_buffer(RID p_buffer) {
ERR_FAIL_COND(!buffers.has(p_buffer));
buffers.erase(p_buffer);
}
void RaycastOcclusionCull::buffer_set_scenario(RID p_buffer, RID p_scenario) {
ERR_FAIL_COND(!buffers.has(p_buffer));
ERR_FAIL_COND(p_scenario.is_valid() && !scenarios.has(p_scenario));
buffers[p_buffer].scenario_rid = p_scenario;
}
void RaycastOcclusionCull::buffer_set_size(RID p_buffer, const Vector2i &p_size) {
ERR_FAIL_COND(!buffers.has(p_buffer));
buffers[p_buffer].resize(p_size);
}
void RaycastOcclusionCull::buffer_update(RID p_buffer, const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, ThreadWorkPool &p_thread_pool) {
if (!buffers.has(p_buffer)) {
return;
}
RaycastHZBuffer &buffer = buffers[p_buffer];
if (buffer.is_empty() || !scenarios.has(buffer.scenario_rid)) {
return;
}
Scenario &scenario = scenarios[buffer.scenario_rid];
bool removed = scenario.update(p_thread_pool);
if (removed) {
scenarios.erase(buffer.scenario_rid);
return;
}
buffer.update_camera_rays(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_thread_pool);
scenario.raycast(buffer.camera_rays, buffer.camera_ray_masks.ptr(), buffer.camera_rays_tile_count, p_thread_pool);
buffer.sort_rays(-p_cam_transform.basis.get_axis(2), p_cam_orthogonal);
buffer.update_mips();
}
RaycastOcclusionCull::HZBuffer *RaycastOcclusionCull::buffer_get_ptr(RID p_buffer) {
if (!buffers.has(p_buffer)) {
return nullptr;
}
return &buffers[p_buffer];
}
RID RaycastOcclusionCull::buffer_get_debug_texture(RID p_buffer) {
ERR_FAIL_COND_V(!buffers.has(p_buffer), RID());
return buffers[p_buffer].get_debug_texture();
}
////////////////////////////////////////////////////////
void RaycastOcclusionCull::set_build_quality(RS::ViewportOcclusionCullingBuildQuality p_quality) {
if (build_quality == p_quality) {
return;
}
build_quality = p_quality;
const RID *scenario_rid = nullptr;
while ((scenario_rid = scenarios.next(scenario_rid))) {
scenarios[*scenario_rid].dirty = true;
}
}
void RaycastOcclusionCull::_init_embree() {
#ifdef __SSE2__
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
#endif
String settings = vformat("threads=%d", MAX(1, OS::get_singleton()->get_processor_count() - 2));
ebr_device = rtcNewDevice(settings.utf8().ptr());
}
RaycastOcclusionCull::RaycastOcclusionCull() {
raycast_singleton = this;
int default_quality = GLOBAL_GET("rendering/occlusion_culling/bvh_build_quality");
build_quality = RS::ViewportOcclusionCullingBuildQuality(default_quality);
}
RaycastOcclusionCull::~RaycastOcclusionCull() {
const RID *scenario_rid = nullptr;
while ((scenario_rid = scenarios.next(scenario_rid))) {
Scenario &scenario = scenarios[*scenario_rid];
if (scenario.commit_thread) {
scenario.commit_thread->wait_to_finish();
memdelete(scenario.commit_thread);
}
for (int i = 0; i < 2; i++) {
if (scenario.ebr_scene[i]) {
rtcReleaseScene(scenario.ebr_scene[i]);
}
}
}
if (ebr_device != nullptr) {
rtcReleaseDevice(ebr_device);
}
raycast_singleton = nullptr;
}