mirror of
https://github.com/godotengine/godot.git
synced 2025-01-18 20:40:57 +08:00
2733 lines
62 KiB
C++
2733 lines
62 KiB
C++
/*************************************************************************/
|
|
/* baked_light_baker.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "baked_light_baker.h"
|
|
|
|
#include "editor/editor_node.h"
|
|
#include "editor/editor_settings.h"
|
|
#include "io/marshalls.h"
|
|
#include <stdlib.h>
|
|
#include <cmath>
|
|
|
|
#if 0
|
|
void baked_light_baker_add_64f(double *dst,double value);
|
|
void baked_light_baker_add_64i(int64_t *dst,int64_t value);
|
|
|
|
//-separar en 2 testuras?
|
|
//*mejorar performance y threads
|
|
//*modos lineales
|
|
//*saturacion
|
|
|
|
_FORCE_INLINE_ static uint64_t get_uv_normal_bit(const Vector3& p_vector) {
|
|
|
|
int lat = Math::fast_ftoi(Math::floor(Math::acos(p_vector.dot(Vector3(0,1,0)))*6.0/Math_PI+0.5));
|
|
|
|
if (lat==0) {
|
|
return 60;
|
|
} else if (lat==6) {
|
|
return 61;
|
|
}
|
|
|
|
int lon = Math::fast_ftoi(Math::floor( (Math_PI+Math::atan2(p_vector.x,p_vector.z))*12.0/(Math_PI*2.0) + 0.5))%12;
|
|
|
|
return lon+(lat-1)*12;
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ static Vector3 get_bit_normal(int p_bit) {
|
|
|
|
if (p_bit==61) {
|
|
return Vector3(0,1,0);
|
|
} else if (p_bit==62){
|
|
return Vector3(0,-1,0);
|
|
}
|
|
|
|
float latang = ((p_bit / 12)+1)*Math_PI/6.0;
|
|
|
|
Vector2 latv(Math::sin(latang),Math::cos(latang));
|
|
|
|
float lonang = ((p_bit%12)*Math_PI*2.0/12.0)-Math_PI;
|
|
|
|
Vector2 lonv(Math::sin(lonang),Math::cos(lonang));
|
|
|
|
return Vector3(lonv.x*latv.x,latv.y,lonv.y*latv.x).normalized();
|
|
|
|
}
|
|
|
|
|
|
BakedLightBaker::MeshTexture* BakedLightBaker::_get_mat_tex(const Ref<Texture>& p_tex) {
|
|
|
|
if (!tex_map.has(p_tex)) {
|
|
|
|
Ref<ImageTexture> imgtex=p_tex;
|
|
if (imgtex.is_null())
|
|
return NULL;
|
|
Image image=imgtex->get_data();
|
|
if (image.empty())
|
|
return NULL;
|
|
|
|
if (image.get_format()!=Image::FORMAT_RGBA8) {
|
|
if (image.get_format()>Image::FORMAT_INDEXED_ALPHA) {
|
|
Error err = image.decompress();
|
|
if (err)
|
|
return NULL;
|
|
}
|
|
|
|
if (image.get_format()!=Image::FORMAT_RGBA8)
|
|
image.convert(Image::FORMAT_RGBA8);
|
|
}
|
|
|
|
if (imgtex->get_flags()&Texture::FLAG_CONVERT_TO_LINEAR) {
|
|
Image copy = image;
|
|
copy.srgb_to_linear();
|
|
image=copy;
|
|
}
|
|
|
|
PoolVector<uint8_t> dvt=image.get_data();
|
|
PoolVector<uint8_t>::Read r=dvt.read();
|
|
MeshTexture mt;
|
|
mt.tex_w=image.get_width();
|
|
mt.tex_h=image.get_height();
|
|
int len = image.get_width()*image.get_height()*4;
|
|
mt.tex.resize(len);
|
|
copymem(mt.tex.ptr(),r.ptr(),len);
|
|
|
|
textures.push_back(mt);
|
|
tex_map[p_tex]=&textures.back()->get();
|
|
}
|
|
|
|
return tex_map[p_tex];
|
|
}
|
|
|
|
|
|
void BakedLightBaker::_add_mesh(const Ref<Mesh>& p_mesh,const Ref<Material>& p_mat_override,const Transform& p_xform,int p_baked_texture) {
|
|
|
|
|
|
for(int i=0;i<p_mesh->get_surface_count();i++) {
|
|
|
|
if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
|
|
continue;
|
|
Ref<Material> mat = p_mat_override.is_valid()?p_mat_override:p_mesh->surface_get_material(i);
|
|
|
|
MeshMaterial *matptr=NULL;
|
|
int baked_tex=p_baked_texture;
|
|
|
|
if (mat.is_valid()) {
|
|
|
|
if (!mat_map.has(mat)) {
|
|
|
|
MeshMaterial mm;
|
|
|
|
Ref<SpatialMaterial> fm = mat;
|
|
if (fm.is_valid()) {
|
|
//fixed route
|
|
mm.diffuse.color=fm->get_parameter(SpatialMaterial::PARAM_DIFFUSE);
|
|
if (linear_color)
|
|
mm.diffuse.color=mm.diffuse.color.to_linear();
|
|
mm.diffuse.tex=_get_mat_tex(fm->get_texture(SpatialMaterial::PARAM_DIFFUSE));
|
|
mm.specular.color=fm->get_parameter(SpatialMaterial::PARAM_SPECULAR);
|
|
if (linear_color)
|
|
mm.specular.color=mm.specular.color.to_linear();
|
|
|
|
mm.specular.tex=_get_mat_tex(fm->get_texture(SpatialMaterial::PARAM_SPECULAR));
|
|
} else {
|
|
|
|
mm.diffuse.color=Color(1,1,1,1);
|
|
mm.diffuse.tex=NULL;
|
|
mm.specular.color=Color(0,0,0,1);
|
|
mm.specular.tex=NULL;
|
|
}
|
|
|
|
materials.push_back(mm);
|
|
mat_map[mat]=&materials.back()->get();
|
|
|
|
}
|
|
|
|
matptr=mat_map[mat];
|
|
|
|
}
|
|
|
|
|
|
int facecount=0;
|
|
|
|
|
|
if (p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_INDEX) {
|
|
|
|
facecount=p_mesh->surface_get_array_index_len(i);
|
|
} else {
|
|
|
|
facecount=p_mesh->surface_get_array_len(i);
|
|
}
|
|
|
|
ERR_CONTINUE((facecount==0 || (facecount%3)!=0));
|
|
|
|
facecount/=3;
|
|
|
|
int tbase=triangles.size();
|
|
triangles.resize(facecount+tbase);
|
|
|
|
|
|
Array a = p_mesh->surface_get_arrays(i);
|
|
|
|
PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
|
|
PoolVector<Vector3>::Read vr=vertices.read();
|
|
PoolVector<Vector2> uv;
|
|
PoolVector<Vector2>::Read uvr;
|
|
PoolVector<Vector2> uv2;
|
|
PoolVector<Vector2>::Read uv2r;
|
|
PoolVector<Vector3> normal;
|
|
PoolVector<Vector3>::Read normalr;
|
|
bool read_uv=false;
|
|
bool read_normal=false;
|
|
|
|
if (p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_TEX_UV) {
|
|
|
|
uv=a[Mesh::ARRAY_TEX_UV];
|
|
uvr=uv.read();
|
|
read_uv=true;
|
|
|
|
if (mat.is_valid() && mat->get_flag(Material::FLAG_LIGHTMAP_ON_UV2) && p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_TEX_UV2) {
|
|
|
|
uv2=a[Mesh::ARRAY_TEX_UV2];
|
|
uv2r=uv2.read();
|
|
|
|
} else {
|
|
uv2r=uv.read();
|
|
if (baked_light->get_transfer_lightmaps_only_to_uv2()) {
|
|
baked_tex=-1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_NORMAL) {
|
|
|
|
normal=a[Mesh::ARRAY_NORMAL];
|
|
normalr=normal.read();
|
|
read_normal=true;
|
|
}
|
|
|
|
Matrix3 normal_xform = p_xform.basis.inverse().transposed();
|
|
|
|
|
|
if (p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_INDEX) {
|
|
|
|
PoolVector<int> indices = a[Mesh::ARRAY_INDEX];
|
|
PoolVector<int>::Read ir = indices.read();
|
|
|
|
for(int i=0;i<facecount;i++) {
|
|
Triangle &t=triangles[tbase+i];
|
|
t.vertices[0]=p_xform.xform(vr[ ir[i*3+0] ]);
|
|
t.vertices[1]=p_xform.xform(vr[ ir[i*3+1] ]);
|
|
t.vertices[2]=p_xform.xform(vr[ ir[i*3+2] ]);
|
|
t.material=matptr;
|
|
t.baked_texture=baked_tex;
|
|
if (read_uv) {
|
|
|
|
t.uvs[0]=uvr[ ir[i*3+0] ];
|
|
t.uvs[1]=uvr[ ir[i*3+1] ];
|
|
t.uvs[2]=uvr[ ir[i*3+2] ];
|
|
|
|
t.bake_uvs[0]=uv2r[ ir[i*3+0] ];
|
|
t.bake_uvs[1]=uv2r[ ir[i*3+1] ];
|
|
t.bake_uvs[2]=uv2r[ ir[i*3+2] ];
|
|
}
|
|
if (read_normal) {
|
|
|
|
t.normals[0]=normal_xform.xform(normalr[ ir[i*3+0] ]).normalized();
|
|
t.normals[1]=normal_xform.xform(normalr[ ir[i*3+1] ]).normalized();
|
|
t.normals[2]=normal_xform.xform(normalr[ ir[i*3+2] ]).normalized();
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
for(int i=0;i<facecount;i++) {
|
|
Triangle &t=triangles[tbase+i];
|
|
t.vertices[0]=p_xform.xform(vr[ i*3+0 ]);
|
|
t.vertices[1]=p_xform.xform(vr[ i*3+1 ]);
|
|
t.vertices[2]=p_xform.xform(vr[ i*3+2 ]);
|
|
t.material=matptr;
|
|
t.baked_texture=baked_tex;
|
|
if (read_uv) {
|
|
|
|
t.uvs[0]=uvr[ i*3+0 ];
|
|
t.uvs[1]=uvr[ i*3+1 ];
|
|
t.uvs[2]=uvr[ i*3+2 ];
|
|
|
|
t.bake_uvs[0]=uv2r[ i*3+0 ];
|
|
t.bake_uvs[1]=uv2r[ i*3+1 ];
|
|
t.bake_uvs[2]=uv2r[ i*3+2 ];
|
|
|
|
}
|
|
if (read_normal) {
|
|
|
|
t.normals[0]=normal_xform.xform(normalr[ i*3+0 ]).normalized();
|
|
t.normals[1]=normal_xform.xform(normalr[ i*3+1 ]).normalized();
|
|
t.normals[2]=normal_xform.xform(normalr[ i*3+2 ]).normalized();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void BakedLightBaker::_parse_geometry(Node* p_node) {
|
|
|
|
if (p_node->cast_to<MeshInstance>()) {
|
|
|
|
MeshInstance *meshi=p_node->cast_to<MeshInstance>();
|
|
Ref<Mesh> mesh=meshi->get_mesh();
|
|
if (mesh.is_valid()) {
|
|
_add_mesh(mesh,meshi->get_material_override(),base_inv * meshi->get_global_transform(),meshi->get_baked_light_texture_id());
|
|
}
|
|
} else if (p_node->cast_to<Light>()) {
|
|
|
|
Light *dl=p_node->cast_to<Light>();
|
|
|
|
if (dl->get_bake_mode()!=Light::BAKE_MODE_DISABLED) {
|
|
|
|
|
|
LightData dirl;
|
|
dirl.type=VS::LightType(dl->get_light_type());
|
|
dirl.diffuse=dl->get_color(DirectionalLight::COLOR_DIFFUSE);
|
|
dirl.specular=dl->get_color(DirectionalLight::COLOR_SPECULAR);
|
|
if (linear_color)
|
|
dirl.diffuse=dirl.diffuse.to_linear();
|
|
if (linear_color)
|
|
dirl.specular=dirl.specular.to_linear();
|
|
|
|
dirl.energy=dl->get_parameter(DirectionalLight::PARAM_ENERGY);
|
|
dirl.pos=dl->get_global_transform().origin;
|
|
dirl.up=dl->get_global_transform().basis.get_axis(1).normalized();
|
|
dirl.left=dl->get_global_transform().basis.get_axis(0).normalized();
|
|
dirl.dir=-dl->get_global_transform().basis.get_axis(2).normalized();
|
|
dirl.spot_angle=dl->get_parameter(DirectionalLight::PARAM_SPOT_ANGLE);
|
|
dirl.spot_attenuation=dl->get_parameter(DirectionalLight::PARAM_SPOT_ATTENUATION);
|
|
dirl.attenuation=dl->get_parameter(DirectionalLight::PARAM_ATTENUATION);
|
|
dirl.darkening=dl->get_parameter(DirectionalLight::PARAM_SHADOW_DARKENING);
|
|
dirl.radius=dl->get_parameter(DirectionalLight::PARAM_RADIUS);
|
|
dirl.bake_direct=dl->get_bake_mode()==Light::BAKE_MODE_FULL;
|
|
dirl.rays_thrown=0;
|
|
dirl.bake_shadow=dl->get_bake_mode()==Light::BAKE_MODE_INDIRECT_AND_SHADOWS;
|
|
lights.push_back(dirl);
|
|
}
|
|
|
|
} else if (p_node->cast_to<Spatial>()){
|
|
|
|
Spatial *sp = p_node->cast_to<Spatial>();
|
|
|
|
Array arr = p_node->call("_get_baked_light_meshes");
|
|
for(int i=0;i<arr.size();i+=2) {
|
|
|
|
Transform xform=arr[i];
|
|
Ref<Mesh> mesh=arr[i+1];
|
|
_add_mesh(mesh,Ref<Material>(),base_inv * (sp->get_global_transform() * xform));
|
|
}
|
|
}
|
|
|
|
for(int i=0;i<p_node->get_child_count();i++) {
|
|
|
|
_parse_geometry(p_node->get_child(i));
|
|
}
|
|
}
|
|
|
|
|
|
void BakedLightBaker::_fix_lights() {
|
|
|
|
|
|
total_light_area=0;
|
|
for(int i=0;i<lights.size();i++) {
|
|
|
|
LightData &dl=lights[i];
|
|
|
|
switch(dl.type) {
|
|
case VS::LIGHT_DIRECTIONAL: {
|
|
|
|
float up_max=-1e10;
|
|
float dir_max=-1e10;
|
|
float left_max=-1e10;
|
|
float up_min=1e10;
|
|
float dir_min=1e10;
|
|
float left_min=1e10;
|
|
|
|
for(int j=0;j<triangles.size();j++) {
|
|
|
|
for(int k=0;k<3;k++) {
|
|
|
|
Vector3 v = triangles[j].vertices[k];
|
|
|
|
float up_d = dl.up.dot(v);
|
|
float dir_d = dl.dir.dot(v);
|
|
float left_d = dl.left.dot(v);
|
|
|
|
if (up_d>up_max)
|
|
up_max=up_d;
|
|
if (up_d<up_min)
|
|
up_min=up_d;
|
|
|
|
if (left_d>left_max)
|
|
left_max=left_d;
|
|
if (left_d<left_min)
|
|
left_min=left_d;
|
|
|
|
if (dir_d>dir_max)
|
|
dir_max=dir_d;
|
|
if (dir_d<dir_min)
|
|
dir_min=dir_d;
|
|
|
|
}
|
|
}
|
|
|
|
//make a center point, then the upvector and leftvector
|
|
dl.pos = dl.left*( left_max+left_min )*0.5 + dl.up*( up_max+up_min )*0.5 + dl.dir*(dir_min-(dir_max-dir_min));
|
|
dl.left*=(left_max-left_min)*0.5;
|
|
dl.up*=(up_max-up_min)*0.5;
|
|
dl.length = (dir_max - dir_min)*10; //arbitrary number to keep it in scale
|
|
dl.area=dl.left.length()*2*dl.up.length()*2;
|
|
dl.constant=1.0/dl.area;
|
|
} break;
|
|
case VS::LIGHT_OMNI:
|
|
case VS::LIGHT_SPOT: {
|
|
|
|
dl.attenuation_table.resize(ATTENUATION_CURVE_LEN);
|
|
for(int j=0;j<ATTENUATION_CURVE_LEN;j++) {
|
|
dl.attenuation_table[j]=1.0-Math::pow(j/float(ATTENUATION_CURVE_LEN),dl.attenuation);
|
|
float falloff=j*dl.radius/float(ATTENUATION_CURVE_LEN);
|
|
if (falloff==0)
|
|
falloff=0.000001;
|
|
float intensity=4*Math_PI*(falloff*falloff);
|
|
//dl.attenuation_table[j]*=falloff*falloff;
|
|
dl.attenuation_table[j]*=1.0/(3.0/intensity);
|
|
|
|
}
|
|
if (dl.type==VS::LIGHT_OMNI) {
|
|
|
|
dl.area=4.0*Math_PI*pow(dl.radius,2.0f);
|
|
dl.constant=1.0/3.5;
|
|
} else {
|
|
|
|
|
|
float r = Math::tan(Math::deg2rad(dl.spot_angle))*dl.radius;
|
|
float c = 1.0-(Math::deg2rad(dl.spot_angle)*0.5+0.5);
|
|
dl.constant=1.0/3.5;
|
|
dl.constant*=1.0/c;
|
|
|
|
dl.area=Math_PI*r*r*c;
|
|
}
|
|
|
|
} break;
|
|
|
|
|
|
}
|
|
|
|
total_light_area+=dl.area;
|
|
}
|
|
}
|
|
|
|
BakedLightBaker::BVH* BakedLightBaker::_parse_bvh(BVH** p_children, int p_size, int p_depth, int &max_depth) {
|
|
|
|
if (p_depth>max_depth) {
|
|
max_depth=p_depth;
|
|
}
|
|
|
|
if (p_size==1) {
|
|
|
|
return p_children[0];
|
|
} else if (p_size==0) {
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
AABB aabb;
|
|
aabb=p_children[0]->aabb;
|
|
for(int i=1;i<p_size;i++) {
|
|
|
|
aabb.merge_with(p_children[i]->aabb);
|
|
}
|
|
|
|
int li=aabb.get_longest_axis_index();
|
|
|
|
switch(li) {
|
|
|
|
case Vector3::AXIS_X: {
|
|
SortArray<BVH*,BVHCmpX> sort_x;
|
|
sort_x.nth_element(0,p_size,p_size/2,p_children);
|
|
//sort_x.sort(&p_bb[p_from],p_size);
|
|
} break;
|
|
case Vector3::AXIS_Y: {
|
|
SortArray<BVH*,BVHCmpY> sort_y;
|
|
sort_y.nth_element(0,p_size,p_size/2,p_children);
|
|
//sort_y.sort(&p_bb[p_from],p_size);
|
|
} break;
|
|
case Vector3::AXIS_Z: {
|
|
SortArray<BVH*,BVHCmpZ> sort_z;
|
|
sort_z.nth_element(0,p_size,p_size/2,p_children);
|
|
//sort_z.sort(&p_bb[p_from],p_size);
|
|
|
|
} break;
|
|
}
|
|
|
|
|
|
BVH* left = _parse_bvh(p_children,p_size/2,p_depth+1,max_depth);
|
|
BVH* right = _parse_bvh(&p_children[p_size/2],p_size-p_size/2,p_depth+1,max_depth);
|
|
|
|
BVH *_new = memnew(BVH);
|
|
_new->aabb=aabb;
|
|
_new->center=aabb.pos+aabb.size*0.5;
|
|
_new->children[0]=left;
|
|
_new->children[1]=right;
|
|
_new->leaf=NULL;
|
|
|
|
return _new;
|
|
}
|
|
|
|
void BakedLightBaker::_make_bvh() {
|
|
|
|
Vector<BVH*> bases;
|
|
bases.resize(triangles.size());
|
|
int max_depth=0;
|
|
for(int i=0;i<triangles.size();i++) {
|
|
bases[i]=memnew( BVH );
|
|
bases[i]->leaf=&triangles[i];
|
|
bases[i]->aabb.pos=triangles[i].vertices[0];
|
|
bases[i]->aabb.expand_to(triangles[i].vertices[1]);
|
|
bases[i]->aabb.expand_to(triangles[i].vertices[2]);
|
|
triangles[i].aabb=bases[i]->aabb;
|
|
bases[i]->center=bases[i]->aabb.pos+bases[i]->aabb.size*0.5;
|
|
}
|
|
|
|
bvh=_parse_bvh(bases.ptr(),bases.size(),1,max_depth);
|
|
|
|
ray_stack = memnew_arr(uint32_t,max_depth);
|
|
bvh_stack = memnew_arr(BVH*,max_depth);
|
|
|
|
bvh_depth = max_depth;
|
|
}
|
|
|
|
void BakedLightBaker::_octree_insert(int p_octant,Triangle* p_triangle, int p_depth) {
|
|
|
|
|
|
|
|
|
|
uint32_t *stack=octant_stack;
|
|
uint32_t *ptr_stack=octantptr_stack;
|
|
Octant *octants=octant_pool.ptr();
|
|
|
|
stack[0]=0;
|
|
ptr_stack[0]=0;
|
|
|
|
int stack_pos=0;
|
|
|
|
|
|
while(true) {
|
|
|
|
Octant *octant=&octants[ptr_stack[stack_pos]];
|
|
if (stack[stack_pos]<8) {
|
|
|
|
int i = stack[stack_pos];
|
|
stack[stack_pos]++;
|
|
|
|
|
|
|
|
//fit_aabb=fit_aabb.grow(bvh->aabb.size.x*0.0001);
|
|
|
|
int child_idx =octant->children[i];
|
|
bool encloses;
|
|
if (!child_idx) {
|
|
|
|
AABB aabb=octant->aabb;
|
|
aabb.size*=0.5;
|
|
if (i&1)
|
|
aabb.pos.x+=aabb.size.x;
|
|
if (i&2)
|
|
aabb.pos.y+=aabb.size.y;
|
|
if (i&4)
|
|
aabb.pos.z+=aabb.size.z;
|
|
|
|
aabb.grow_by(cell_size*octree_extra_margin);
|
|
if (!aabb.intersects(p_triangle->aabb))
|
|
continue;
|
|
encloses=aabb.grow(cell_size*-octree_extra_margin*2.0).encloses(p_triangle->aabb);
|
|
if (!encloses && !Face3(p_triangle->vertices[0],p_triangle->vertices[1],p_triangle->vertices[2]).intersects_aabb2(aabb))
|
|
continue;
|
|
} else {
|
|
|
|
Octant *child=&octants[child_idx];
|
|
AABB aabb=child->aabb;
|
|
aabb.grow_by(cell_size*octree_extra_margin);
|
|
if (!aabb.intersects(p_triangle->aabb))
|
|
continue;
|
|
encloses=aabb.grow(cell_size*-octree_extra_margin*2.0).encloses(p_triangle->aabb);
|
|
if (!encloses && !Face3(p_triangle->vertices[0],p_triangle->vertices[1],p_triangle->vertices[2]).intersects_aabb2(aabb))
|
|
continue;
|
|
|
|
}
|
|
|
|
if (encloses)
|
|
stack[stack_pos]=8; // quick and dirty opt
|
|
|
|
if (!child_idx) {
|
|
|
|
|
|
if (octant_pool_size==octant_pool.size()) {
|
|
octant_pool.resize(octant_pool_size+OCTANT_POOL_CHUNK);
|
|
octants=octant_pool.ptr();
|
|
octant=&octants[ptr_stack[stack_pos]];
|
|
}
|
|
child_idx=octant_pool_size++;
|
|
octant->children[i]=child_idx;
|
|
Octant *child=&octants[child_idx];
|
|
|
|
child->aabb=octant->aabb;
|
|
child->texture_x=0;
|
|
child->texture_y=0;
|
|
|
|
child->aabb.size*=0.5;
|
|
if (i&1)
|
|
child->aabb.pos.x+=child->aabb.size.x;
|
|
if (i&2)
|
|
child->aabb.pos.y+=child->aabb.size.y;
|
|
if (i&4)
|
|
child->aabb.pos.z+=child->aabb.size.z;
|
|
|
|
|
|
child->full_accum[0]=0;
|
|
child->full_accum[1]=0;
|
|
child->full_accum[2]=0;
|
|
child->sampler_ofs=0;
|
|
|
|
|
|
|
|
if (stack_pos==octree_depth-1) {
|
|
child->leaf=true;
|
|
child->offset[0]=child->aabb.pos.x+child->aabb.size.x*0.5;
|
|
child->offset[1]=child->aabb.pos.y+child->aabb.size.y*0.5;
|
|
child->offset[2]=child->aabb.pos.z+child->aabb.size.z*0.5;
|
|
child->next_leaf=leaf_list;
|
|
|
|
|
|
for(int ci=0;ci<8;ci++) {
|
|
child->normal_accum[ci][0]=0;
|
|
child->normal_accum[ci][1]=0;
|
|
child->normal_accum[ci][2]=0;
|
|
|
|
}
|
|
|
|
child->bake_neighbour=0;
|
|
child->first_neighbour=true;
|
|
leaf_list=child_idx;
|
|
cell_count++;
|
|
|
|
for(int ci=0;ci<8;ci++) {
|
|
child->light_accum[ci][0]=0;
|
|
child->light_accum[ci][1]=0;
|
|
child->light_accum[ci][2]=0;
|
|
}
|
|
|
|
child->parent=ptr_stack[stack_pos];
|
|
|
|
} else {
|
|
|
|
child->leaf=false;
|
|
for(int j=0;j<8;j++) {
|
|
child->children[j]=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!octants[child_idx].leaf) {
|
|
stack_pos++;
|
|
stack[stack_pos]=0;
|
|
ptr_stack[stack_pos]=child_idx;
|
|
} else {
|
|
|
|
Octant *child=&octants[child_idx];
|
|
|
|
Vector3 n = Plane(p_triangle->vertices[0],p_triangle->vertices[1],p_triangle->vertices[2]).normal;
|
|
|
|
|
|
for(int ci=0;ci<8;ci++) {
|
|
|
|
Vector3 pos = child->aabb.pos;
|
|
|
|
if (ci&1)
|
|
pos.x+=child->aabb.size.x;
|
|
if (ci&2)
|
|
pos.y+=child->aabb.size.y;
|
|
if (ci&4)
|
|
pos.z+=child->aabb.size.z;
|
|
|
|
|
|
pos.x=floor((pos.x+cell_size*0.5)/cell_size);
|
|
pos.y=floor((pos.y+cell_size*0.5)/cell_size);
|
|
pos.z=floor((pos.z+cell_size*0.5)/cell_size);
|
|
|
|
{
|
|
Map<Vector3,Vector3>::Element *E=endpoint_normal.find(pos);
|
|
if (!E) {
|
|
endpoint_normal[pos]=n;
|
|
} else {
|
|
E->get()+=n;
|
|
}
|
|
}
|
|
|
|
{
|
|
|
|
uint64_t bit = get_uv_normal_bit(n);
|
|
|
|
Map<Vector3,uint64_t>::Element *E=endpoint_normal_bits.find(pos);
|
|
if (!E) {
|
|
endpoint_normal_bits[pos]=(1<<bit);
|
|
} else {
|
|
E->get()|=(1<<bit);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
} else {
|
|
stack_pos--;
|
|
if (stack_pos<0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
void BakedLightBaker::_make_octree() {
|
|
|
|
|
|
AABB base = bvh->aabb;
|
|
float lal=base.get_longest_axis_size();
|
|
//must be square because we want square blocks
|
|
base.size.x=lal;
|
|
base.size.y=lal;
|
|
base.size.z=lal;
|
|
base.grow_by(lal*0.001); //for precision
|
|
octree_aabb=base;
|
|
|
|
cell_size=base.size.x;
|
|
for(int i=0;i<octree_depth;i++)
|
|
cell_size/=2.0;
|
|
octant_stack = memnew_arr(uint32_t,octree_depth*2 );
|
|
octantptr_stack = memnew_arr(uint32_t,octree_depth*2 );
|
|
|
|
octant_pool.resize(OCTANT_POOL_CHUNK);
|
|
octant_pool_size=1;
|
|
Octant *root=octant_pool.ptr();
|
|
root->leaf=false;
|
|
root->aabb=octree_aabb;
|
|
root->parent=-1;
|
|
for(int i=0;i<8;i++)
|
|
root->children[i]=0;
|
|
|
|
EditorProgress ep("bake_octree",vformat(TTR("Parsing %d Triangles:"), triangles.size()),triangles.size());
|
|
|
|
for(int i=0;i<triangles.size();i++) {
|
|
|
|
_octree_insert(0,&triangles[i],octree_depth-1);
|
|
if ((i%1000)==0) {
|
|
|
|
ep.step(TTR("Triangle #")+itos(i),i);
|
|
}
|
|
}
|
|
|
|
{
|
|
uint32_t oct_idx=leaf_list;
|
|
Octant *octants=octant_pool.ptr();
|
|
while(oct_idx) {
|
|
|
|
BakedLightBaker::Octant *oct = &octants[oct_idx];
|
|
for(int ci=0;ci<8;ci++) {
|
|
|
|
|
|
Vector3 pos = oct->aabb.pos;
|
|
|
|
if (ci&1)
|
|
pos.x+=oct->aabb.size.x;
|
|
if (ci&2)
|
|
pos.y+=oct->aabb.size.y;
|
|
if (ci&4)
|
|
pos.z+=oct->aabb.size.z;
|
|
|
|
|
|
pos.x=floor((pos.x+cell_size*0.5)/cell_size);
|
|
pos.y=floor((pos.y+cell_size*0.5)/cell_size);
|
|
pos.z=floor((pos.z+cell_size*0.5)/cell_size);
|
|
|
|
{
|
|
Map<Vector3,Vector3>::Element *E=endpoint_normal.find(pos);
|
|
if (!E) {
|
|
//?
|
|
print_line("lolwut?");
|
|
} else {
|
|
Vector3 n = E->get().normalized();
|
|
oct->normal_accum[ci][0]=n.x;
|
|
oct->normal_accum[ci][1]=n.y;
|
|
oct->normal_accum[ci][2]=n.z;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
Map<Vector3,uint64_t>::Element *E=endpoint_normal_bits.find(pos);
|
|
if (!E) {
|
|
//?
|
|
print_line("lolwut?");
|
|
} else {
|
|
|
|
float max_aper=0;
|
|
for(uint64_t i=0;i<62;i++) {
|
|
|
|
if (!(E->get()&(1<<i)))
|
|
continue;
|
|
Vector3 ang_i = get_bit_normal(i);
|
|
|
|
for(uint64_t j=0;j<62;j++) {
|
|
|
|
if (i==j)
|
|
continue;
|
|
if (!(E->get()&(1<<j)))
|
|
continue;
|
|
Vector3 ang_j = get_bit_normal(j);
|
|
float ang = Math::acos(ang_i.dot(ang_j));
|
|
if (ang>max_aper)
|
|
max_aper=ang;
|
|
}
|
|
}
|
|
if (max_aper>0.75*Math_PI) {
|
|
//angle too wide prevent problems and forget
|
|
oct->normal_accum[ci][0]=0;
|
|
oct->normal_accum[ci][1]=0;
|
|
oct->normal_accum[ci][2]=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
oct_idx=oct->next_leaf;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BakedLightBaker::_plot_light(ThreadStack& thread_stack,const Vector3& p_plot_pos, const AABB& p_plot_aabb, const Color& p_light,const Color& p_tint_light,bool p_only_full, const Plane& p_plane) {
|
|
|
|
//stackless version
|
|
|
|
uint32_t *stack=thread_stack.octant_stack;
|
|
uint32_t *ptr_stack=thread_stack.octantptr_stack;
|
|
Octant *octants=octant_pool.ptr();
|
|
|
|
stack[0]=0;
|
|
ptr_stack[0]=0;
|
|
|
|
int stack_pos=0;
|
|
|
|
|
|
while(true) {
|
|
|
|
Octant &octant=octants[ptr_stack[stack_pos]];
|
|
|
|
if (stack[stack_pos]==0) {
|
|
|
|
|
|
Vector3 pos = octant.aabb.pos + octant.aabb.size*0.5;
|
|
float md = 1<<(octree_depth - stack_pos );
|
|
float r=cell_size*plot_size*md;
|
|
float div = 1.0/(md*md*md);
|
|
//div=1.0;
|
|
|
|
|
|
float d = p_plot_pos.distance_to(pos);
|
|
|
|
if ((p_plane.distance_to(pos)>-cell_size*1.75*md) && d<=r) {
|
|
|
|
|
|
float intensity = 1.0 - (d/r)*(d/r); //not gauss but..
|
|
|
|
baked_light_baker_add_64f(&octant.full_accum[0],p_tint_light.r*intensity*div);
|
|
baked_light_baker_add_64f(&octant.full_accum[1],p_tint_light.g*intensity*div);
|
|
baked_light_baker_add_64f(&octant.full_accum[2],p_tint_light.b*intensity*div);
|
|
}
|
|
}
|
|
|
|
if (octant.leaf) {
|
|
|
|
|
|
|
|
//if (p_plane.normal.dot(octant.aabb.get_support(p_plane.normal)) < p_plane.d-CMP_EPSILON) { //octants behind are no go
|
|
|
|
|
|
if (!p_only_full) {
|
|
float r=cell_size*plot_size;
|
|
for(int i=0;i<8;i++) {
|
|
Vector3 pos=octant.aabb.pos;
|
|
if (i&1)
|
|
pos.x+=octant.aabb.size.x;
|
|
if (i&2)
|
|
pos.y+=octant.aabb.size.y;
|
|
if (i&4)
|
|
pos.z+=octant.aabb.size.z;
|
|
|
|
|
|
|
|
float d = p_plot_pos.distance_to(pos);
|
|
|
|
if ((p_plane.distance_to(pos)>-cell_size*1.75) && d<=r) {
|
|
|
|
|
|
float intensity = 1.0 - (d/r)*(d/r); //not gauss but..
|
|
if (edge_damp>0) {
|
|
Vector3 normal = Vector3(octant.normal_accum[i][0],octant.normal_accum[i][1],octant.normal_accum[i][2]);
|
|
if (normal.x>0 || normal.y>0 || normal.z>0) {
|
|
|
|
float damp = Math::abs(p_plane.normal.dot(normal));
|
|
intensity*=pow(damp,edge_damp);
|
|
|
|
}
|
|
}
|
|
|
|
//intensity*=1.0-Math::abs(p_plane.distance_to(pos))/(plot_size*cell_size);
|
|
//intensity = Math::cos(d*Math_PI*0.5/r);
|
|
|
|
baked_light_baker_add_64f(&octant.light_accum[i][0],p_light.r*intensity);
|
|
baked_light_baker_add_64f(&octant.light_accum[i][1],p_light.g*intensity);
|
|
baked_light_baker_add_64f(&octant.light_accum[i][2],p_light.b*intensity);
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
stack_pos--;
|
|
} else if (stack[stack_pos]<8) {
|
|
|
|
int i = stack[stack_pos];
|
|
stack[stack_pos]++;
|
|
|
|
if (!octant.children[i]) {
|
|
continue;
|
|
}
|
|
|
|
Octant &child=octants[octant.children[i]];
|
|
|
|
if (!child.aabb.intersects(p_plot_aabb))
|
|
continue;
|
|
|
|
if (child.aabb.encloses(p_plot_aabb)) {
|
|
stack[stack_pos]=8; //don't test the rest
|
|
}
|
|
|
|
stack_pos++;
|
|
stack[stack_pos]=0;
|
|
ptr_stack[stack_pos]=octant.children[i];
|
|
} else {
|
|
stack_pos--;
|
|
if (stack_pos<0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
float BakedLightBaker::_throw_ray(ThreadStack& thread_stack,bool p_bake_direct,const Vector3& p_begin, const Vector3& p_end,float p_rest,const Color& p_light,float *p_att_curve,float p_att_pos,int p_att_curve_len,int p_bounces,bool p_first_bounce,bool p_only_dist) {
|
|
|
|
|
|
uint32_t* stack = thread_stack.ray_stack;
|
|
BVH **bstack = thread_stack.bvh_stack;
|
|
|
|
enum {
|
|
TEST_AABB_BIT=0,
|
|
VISIT_LEFT_BIT=1,
|
|
VISIT_RIGHT_BIT=2,
|
|
VISIT_DONE_BIT=3,
|
|
|
|
|
|
};
|
|
|
|
Vector3 n = (p_end-p_begin);
|
|
float len=n.length();
|
|
if (len==0)
|
|
return 0;
|
|
n/=len;
|
|
|
|
|
|
|
|
real_t d=1e10;
|
|
bool inters=false;
|
|
Vector3 r_normal;
|
|
Vector3 r_point;
|
|
Vector3 end=p_end;
|
|
|
|
Triangle *triangle=NULL;
|
|
|
|
/*
|
|
for(int i=0;i<max_depth;i++)
|
|
stack[i]=0;
|
|
*/
|
|
|
|
int level=0;
|
|
//AABB ray_aabb;
|
|
//ray_aabb.pos=p_begin;
|
|
//ray_aabb.expand_to(p_end);
|
|
|
|
|
|
bstack[0]=bvh;
|
|
stack[0]=TEST_AABB_BIT;
|
|
|
|
|
|
while(true) {
|
|
|
|
uint32_t mode = stack[level];
|
|
const BVH &b = *bstack[level];
|
|
bool done=false;
|
|
|
|
switch(mode) {
|
|
case TEST_AABB_BIT: {
|
|
|
|
if (b.leaf) {
|
|
|
|
|
|
Face3 f3(b.leaf->vertices[0],b.leaf->vertices[1],b.leaf->vertices[2]);
|
|
|
|
|
|
Vector3 res;
|
|
|
|
if (f3.intersects_segment(p_begin,end,&res)) {
|
|
|
|
|
|
float nd = n.dot(res);
|
|
if (nd<d) {
|
|
|
|
d=nd;
|
|
r_point=res;
|
|
end=res;
|
|
len=(p_begin-end).length();
|
|
r_normal=f3.get_plane().get_normal();
|
|
triangle=b.leaf;
|
|
inters=true;
|
|
}
|
|
|
|
}
|
|
|
|
stack[level]=VISIT_DONE_BIT;
|
|
} else {
|
|
|
|
|
|
bool valid = b.aabb.smits_intersect_ray(p_begin,n,0,len);
|
|
//bool valid = b.aabb.intersects_segment(p_begin,p_end);
|
|
//bool valid = b.aabb.intersects(ray_aabb);
|
|
|
|
if (!valid) {
|
|
|
|
stack[level]=VISIT_DONE_BIT;
|
|
|
|
} else {
|
|
|
|
stack[level]=VISIT_LEFT_BIT;
|
|
}
|
|
}
|
|
|
|
} continue;
|
|
case VISIT_LEFT_BIT: {
|
|
|
|
stack[level]=VISIT_RIGHT_BIT;
|
|
bstack[level+1]=b.children[0];
|
|
stack[level+1]=TEST_AABB_BIT;
|
|
level++;
|
|
|
|
} continue;
|
|
case VISIT_RIGHT_BIT: {
|
|
|
|
stack[level]=VISIT_DONE_BIT;
|
|
bstack[level+1]=b.children[1];
|
|
stack[level+1]=TEST_AABB_BIT;
|
|
level++;
|
|
} continue;
|
|
case VISIT_DONE_BIT: {
|
|
|
|
if (level==0) {
|
|
done=true;
|
|
break;
|
|
} else
|
|
level--;
|
|
|
|
} continue;
|
|
}
|
|
|
|
|
|
if (done)
|
|
break;
|
|
}
|
|
|
|
|
|
|
|
if (inters) {
|
|
|
|
if (p_only_dist) {
|
|
|
|
return p_begin.distance_to(r_point);
|
|
}
|
|
|
|
|
|
//should check if there is normals first
|
|
Vector2 uv;
|
|
if (true) {
|
|
|
|
triangle->get_uv_and_normal(r_point,uv,r_normal);
|
|
|
|
} else {
|
|
|
|
}
|
|
|
|
if (n.dot(r_normal)>0)
|
|
return -1;
|
|
|
|
if (n.dot(r_normal)>0)
|
|
r_normal=-r_normal;
|
|
|
|
|
|
//ok...
|
|
Color diffuse_at_point(0.8,0.8,0.8);
|
|
Color specular_at_point(0.0,0.0,0.0);
|
|
|
|
|
|
float dist = p_begin.distance_to(r_point);
|
|
|
|
AABB aabb;
|
|
aabb.pos=r_point;
|
|
aabb.pos-=Vector3(1,1,1)*cell_size*plot_size;
|
|
aabb.size=Vector3(2,2,2)*cell_size*plot_size;
|
|
|
|
Color res_light=p_light;
|
|
float att=1.0;
|
|
float dp=(1.0-normal_damp)*n.dot(-r_normal)+normal_damp;
|
|
|
|
if (p_att_curve) {
|
|
|
|
p_att_pos+=dist;
|
|
int cpos = Math::fast_ftoi((p_att_pos/p_att_curve_len)*ATTENUATION_CURVE_LEN);
|
|
cpos=CLAMP(cpos,0,ATTENUATION_CURVE_LEN-1);
|
|
att=p_att_curve[cpos];
|
|
}
|
|
|
|
|
|
res_light.r*=dp;
|
|
res_light.g*=dp;
|
|
res_light.b*=dp;
|
|
|
|
//light is plotted before multiplication with diffuse, this way
|
|
//the multiplication can happen with more detail in the shader
|
|
|
|
|
|
|
|
if (triangle->material) {
|
|
|
|
//triangle->get_uv(r_point);
|
|
|
|
diffuse_at_point=triangle->material->diffuse.get_color(uv);
|
|
specular_at_point=triangle->material->specular.get_color(uv);
|
|
}
|
|
|
|
|
|
diffuse_at_point.r=res_light.r*diffuse_at_point.r;
|
|
diffuse_at_point.g=res_light.g*diffuse_at_point.g;
|
|
diffuse_at_point.b=res_light.b*diffuse_at_point.b;
|
|
|
|
if (p_bounces>0) {
|
|
|
|
|
|
p_rest-=dist;
|
|
if (p_rest<CMP_EPSILON)
|
|
return 0;
|
|
|
|
if (r_normal==-n)
|
|
return 0; //todo change a little
|
|
|
|
r_point+=r_normal*0.01;
|
|
|
|
|
|
|
|
|
|
specular_at_point.r=res_light.r*specular_at_point.r;
|
|
specular_at_point.g=res_light.g*specular_at_point.g;
|
|
specular_at_point.b=res_light.b*specular_at_point.b;
|
|
|
|
|
|
|
|
if (use_diffuse && (diffuse_at_point.r>CMP_EPSILON || diffuse_at_point.g>CMP_EPSILON || diffuse_at_point.b>CMP_EPSILON)) {
|
|
//diffuse bounce
|
|
|
|
Vector3 c1=r_normal.cross(n).normalized();
|
|
Vector3 c2=r_normal.cross(c1).normalized();
|
|
double r1 = double(rand())/RAND_MAX;
|
|
double r2 = double(rand())/RAND_MAX;
|
|
double r3 = double(rand())/RAND_MAX;
|
|
#if 0
|
|
Vector3 next = - ((c1*(r1-0.5)) + (c2*(r2-0.5)) + (r_normal*(r3-0.5))).normalized()*0.5 + r_normal*0.5;
|
|
|
|
if (next==Vector3())
|
|
next=r_normal;
|
|
Vector3 rn=next.normalized();
|
|
|
|
#else
|
|
Vector3 rn = ((c1*(r1-0.5)) + (c2*(r2-0.5)) + (r_normal*r3*0.5)).normalized();
|
|
#endif
|
|
|
|
|
|
_throw_ray(thread_stack,p_bake_direct,r_point,r_point+rn*p_rest,p_rest,diffuse_at_point,p_att_curve,p_att_pos,p_att_curve_len,p_bounces-1);
|
|
}
|
|
|
|
if (use_specular && (specular_at_point.r>CMP_EPSILON || specular_at_point.g>CMP_EPSILON || specular_at_point.b>CMP_EPSILON)) {
|
|
//specular bounce
|
|
|
|
//Vector3 c1=r_normal.cross(n).normalized();
|
|
//Vector3 c2=r_normal.cross(c1).normalized();
|
|
|
|
Vector3 rn = n - r_normal *r_normal.dot(n) * 2.0;
|
|
|
|
_throw_ray(thread_stack,p_bake_direct,r_point,r_point+rn*p_rest,p_rest,specular_at_point,p_att_curve,p_att_pos,p_att_curve_len,p_bounces-1);
|
|
}
|
|
}
|
|
|
|
//specular later
|
|
//_plot_light_point(r_point,octree,octree_aabb,p_light);
|
|
|
|
|
|
Color plot_light=res_light.linear_interpolate(diffuse_at_point,tint);
|
|
plot_light.r*=att;
|
|
plot_light.g*=att;
|
|
plot_light.b*=att;
|
|
Color tint_light=diffuse_at_point;
|
|
tint_light.r*=att;
|
|
tint_light.g*=att;
|
|
tint_light.b*=att;
|
|
|
|
bool skip=false;
|
|
|
|
if (!p_first_bounce || p_bake_direct) {
|
|
|
|
|
|
float r = plot_size * cell_size*2;
|
|
if (dist<r) {
|
|
//avoid accumulaiton of light on corners
|
|
//plot_light=plot_light.linear_interpolate(Color(0,0,0,0),1.0-sd/plot_size*plot_size);
|
|
skip=true;
|
|
|
|
} else {
|
|
|
|
|
|
Vector3 c1=r_normal.cross(n).normalized();
|
|
Vector3 c2=r_normal.cross(c1).normalized();
|
|
double r1 = double(rand())/RAND_MAX;
|
|
double r2 = double(rand())/RAND_MAX;
|
|
double r3 = double(rand())/RAND_MAX;
|
|
Vector3 rn = ((c1*(r1-0.5)) + (c2*(r2-0.5)) + (r_normal*r3*0.25)).normalized();
|
|
float d =_throw_ray(thread_stack,p_bake_direct,r_point,r_point+rn*p_rest,p_rest,diffuse_at_point,p_att_curve,p_att_pos,p_att_curve_len,p_bounces-1,false,true);
|
|
r = plot_size*cell_size*ao_radius;
|
|
if (d>0 && d<r) {
|
|
//avoid accumulaiton of light on corners
|
|
//plot_light=plot_light.linear_interpolate(Color(0,0,0,0),1.0-sd/plot_size*plot_size);
|
|
skip=true;
|
|
|
|
} else {
|
|
//plot_light=Color(0,0,0,0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Plane plane(r_point,r_normal);
|
|
if (!skip)
|
|
_plot_light(thread_stack,r_point,aabb,plot_light,tint_light,!(!p_first_bounce || p_bake_direct),plane);
|
|
|
|
|
|
return dist;
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void BakedLightBaker::_make_octree_texture() {
|
|
|
|
|
|
BakedLightBaker::Octant *octants=octant_pool.ptr();
|
|
|
|
//find neighbours first, to have a better idea of what amount of space is needed
|
|
{
|
|
|
|
Vector<OctantHash> octant_hashing;
|
|
octant_hashing.resize(octant_pool_size);
|
|
Vector<uint32_t> hash_table;
|
|
int hash_table_size=Math::larger_prime(16384);
|
|
hash_table.resize(hash_table_size);
|
|
uint32_t*hashptr = hash_table.ptr();
|
|
OctantHash*octhashptr = octant_hashing.ptr();
|
|
|
|
for(int i=0;i<hash_table_size;i++)
|
|
hashptr[i]=0;
|
|
|
|
|
|
//step 1 add to hash table
|
|
|
|
uint32_t oct_idx=leaf_list;
|
|
|
|
|
|
while(oct_idx) {
|
|
|
|
BakedLightBaker::Octant *oct = &octants[oct_idx];
|
|
uint64_t base=0;
|
|
Vector3 pos = oct->aabb.pos - octree_aabb.pos; //make sure is always positive
|
|
base=int((pos.x+cell_size*0.5)/cell_size);
|
|
base<<=16;
|
|
base|=int((pos.y+cell_size*0.5)/cell_size);
|
|
base<<=16;
|
|
base|=int((pos.z+cell_size*0.5)/cell_size);
|
|
|
|
uint32_t hash = HashMapHasherDefault::hash(base);
|
|
uint32_t idx = hash % hash_table_size;
|
|
octhashptr[oct_idx].next=hashptr[idx];
|
|
octhashptr[oct_idx].hash=hash;
|
|
octhashptr[oct_idx].value=base;
|
|
hashptr[idx]=oct_idx;
|
|
|
|
oct_idx=oct->next_leaf;
|
|
|
|
}
|
|
|
|
//step 2 find neighbours
|
|
oct_idx=leaf_list;
|
|
int neighbours=0;
|
|
|
|
|
|
while(oct_idx) {
|
|
|
|
BakedLightBaker::Octant *oct = &octants[oct_idx];
|
|
Vector3 pos = oct->aabb.pos - octree_aabb.pos; //make sure is always positive
|
|
pos.x+=cell_size;
|
|
uint64_t base=0;
|
|
base=int((pos.x+cell_size*0.5)/cell_size);
|
|
base<<=16;
|
|
base|=int((pos.y+cell_size*0.5)/cell_size);
|
|
base<<=16;
|
|
base|=int((pos.z+cell_size*0.5)/cell_size);
|
|
|
|
uint32_t hash = HashMapHasherDefault::hash(base);
|
|
uint32_t idx = hash % hash_table_size;
|
|
|
|
uint32_t bucket = hashptr[idx];
|
|
|
|
while(bucket) {
|
|
|
|
if (octhashptr[bucket].value==base) {
|
|
|
|
oct->bake_neighbour=bucket;
|
|
octants[bucket].first_neighbour=false;
|
|
neighbours++;
|
|
break;
|
|
}
|
|
|
|
bucket = octhashptr[bucket].next;
|
|
}
|
|
|
|
oct_idx=oct->next_leaf;
|
|
|
|
}
|
|
|
|
print_line("octant with neighbour: "+itos(neighbours));
|
|
|
|
}
|
|
|
|
|
|
//ok let's try to just create a texture
|
|
|
|
int otex_w=256;
|
|
|
|
while (true) {
|
|
|
|
|
|
|
|
uint32_t oct_idx=leaf_list;
|
|
|
|
int row=0;
|
|
|
|
|
|
print_line("begin at row "+itos(row));
|
|
int longest_line_reused=0;
|
|
int col=0;
|
|
int processed=0;
|
|
|
|
//reset
|
|
while(oct_idx) {
|
|
|
|
BakedLightBaker::Octant *oct = &octants[oct_idx];
|
|
oct->texture_x=0;
|
|
oct->texture_y=0;
|
|
oct_idx=oct->next_leaf;
|
|
|
|
}
|
|
|
|
oct_idx=leaf_list;
|
|
//assign
|
|
while(oct_idx) {
|
|
|
|
BakedLightBaker::Octant *oct = &octants[oct_idx];
|
|
if (oct->first_neighbour && oct->texture_x==0 && oct->texture_y==0) {
|
|
//was not processed
|
|
uint32_t current_idx=oct_idx;
|
|
int reused=0;
|
|
|
|
while(current_idx) {
|
|
BakedLightBaker::Octant *o = &octants[current_idx];
|
|
if (col+1 >= otex_w) {
|
|
col=0;
|
|
row+=4;
|
|
}
|
|
o->texture_x=col;
|
|
o->texture_y=row;
|
|
processed++;
|
|
|
|
if (o->bake_neighbour) {
|
|
reused++;
|
|
}
|
|
col+=o->bake_neighbour ? 1 : 2; //reuse neighbour
|
|
current_idx=o->bake_neighbour;
|
|
}
|
|
|
|
if (reused>longest_line_reused) {
|
|
longest_line_reused=reused;
|
|
}
|
|
}
|
|
oct_idx=oct->next_leaf;
|
|
}
|
|
|
|
row+=4;
|
|
|
|
if (otex_w < row) {
|
|
|
|
otex_w*=2;
|
|
} else {
|
|
|
|
baked_light_texture_w=otex_w;
|
|
baked_light_texture_h=nearest_power_of_2(row);
|
|
print_line("w: "+itos(otex_w));
|
|
print_line("h: "+itos(row));
|
|
break;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
{
|
|
|
|
otex_w=(1<<lattice_size)*(1<<lattice_size)*2; //make sure lattice fits horizontally
|
|
Vector3 lattice_cell_size=octree_aabb.size;
|
|
for(int i=0;i<lattice_size;i++) {
|
|
|
|
lattice_cell_size*=0.5;
|
|
}
|
|
|
|
|
|
|
|
while(true) {
|
|
|
|
//let's plot the leafs first, given the octree is not so obvious which size it will have
|
|
int row=4+4*(1<<lattice_size);
|
|
int col=0;
|
|
|
|
col=0;
|
|
row+=4;
|
|
print_line("end at row "+itos(row));
|
|
|
|
//put octree, no need for recursion, just loop backwards.
|
|
int regular_octants=0;
|
|
for(int i=octant_pool_size-1;i>=0;i--) {
|
|
|
|
BakedLightBaker::Octant *oct = &octants[i];
|
|
if (oct->leaf) //ignore leaf
|
|
continue;
|
|
if (oct->aabb.size.x>lattice_cell_size.x*1.1) { //bigger than latice, skip
|
|
oct->texture_x=0;
|
|
oct->texture_y=0;
|
|
} else if (oct->aabb.size.x>lattice_cell_size.x*0.8) {
|
|
//this is the initial lattice
|
|
Vector3 pos = oct->aabb.pos - octree_aabb.pos; //make sure is always positive
|
|
int x = int((pos.x+lattice_cell_size.x*0.5)/lattice_cell_size.x);
|
|
int y = int((pos.y+lattice_cell_size.y*0.5)/lattice_cell_size.y);
|
|
int z = int((pos.z+lattice_cell_size.z*0.5)/lattice_cell_size.z);
|
|
//bug net
|
|
ERR_FAIL_INDEX(x,(1<<lattice_size));
|
|
ERR_FAIL_INDEX(y,(1<<lattice_size));
|
|
ERR_FAIL_INDEX(z,(1<<lattice_size));
|
|
|
|
/*int ofs = z*(1<<lattice_size)*(1<<lattice_size)+y*(1<<lattice_size)+x;
|
|
ofs*=4;
|
|
oct->texture_x=ofs%otex_w;
|
|
oct->texture_y=(ofs/otex_w)*4+4;
|
|
*/
|
|
|
|
oct->texture_x=(x+(1<<lattice_size)*z)*2;
|
|
oct->texture_y=4+y*4;
|
|
//print_line("pos: "+itos(x)+","+itos(y)+","+itos(z)+" - ofs"+itos(oct->texture_x)+","+itos(oct->texture_y));
|
|
|
|
|
|
} else {
|
|
//an everyday regular octant
|
|
|
|
if (col+2 > otex_w) {
|
|
col=0;
|
|
row+=4;
|
|
}
|
|
|
|
oct->texture_x=col;
|
|
oct->texture_y=row;
|
|
col+=2;
|
|
regular_octants++;
|
|
|
|
|
|
}
|
|
}
|
|
print_line("octants end at row "+itos(row)+" totalling"+itos(regular_octants));
|
|
|
|
//ok evaluation.
|
|
|
|
if (otex_w<=2048 && row>2048) { //too big upwards, try bigger texture
|
|
otex_w*=2;
|
|
continue;
|
|
} else {
|
|
baked_octree_texture_w=otex_w;
|
|
baked_octree_texture_h=row+4;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
baked_octree_texture_h=nearest_power_of_2(baked_octree_texture_h);
|
|
print_line("RESULT! "+itos(baked_octree_texture_w)+","+itos(baked_octree_texture_h));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
double BakedLightBaker::get_normalization(int p_light_idx) const {
|
|
|
|
double nrg=0;
|
|
|
|
const LightData &dl=lights[p_light_idx];
|
|
double cell_area = cell_size*cell_size;
|
|
//nrg+= /*dl.energy */ (dl.rays_thrown * cell_area / dl.area);
|
|
nrg=dl.rays_thrown * cell_area;
|
|
nrg*=(Math_PI*plot_size*plot_size)*0.5; // damping of radial linear gradient kernel
|
|
nrg*=dl.constant;
|
|
//nrg*=5;
|
|
|
|
|
|
return nrg;
|
|
}
|
|
|
|
|
|
|
|
double BakedLightBaker::get_modifier(int p_light_idx) const {
|
|
|
|
double nrg=0;
|
|
|
|
const LightData &dl=lights[p_light_idx];
|
|
double cell_area = cell_size*cell_size;
|
|
//nrg+= /*dl.energy */ (dl.rays_thrown * cell_area / dl.area);
|
|
nrg=cell_area;
|
|
nrg*=(Math_PI*plot_size*plot_size)*0.5; // damping of radial linear gradient kernel
|
|
nrg*=dl.constant;
|
|
//nrg*=5;
|
|
|
|
|
|
return nrg;
|
|
}
|
|
|
|
void BakedLightBaker::throw_rays(ThreadStack& thread_stack,int p_amount) {
|
|
|
|
|
|
|
|
for(int i=0;i<lights.size();i++) {
|
|
|
|
LightData &dl=lights[i];
|
|
|
|
|
|
int amount = p_amount * total_light_area / dl.area;
|
|
double mod = 1.0/double(get_modifier(i));
|
|
mod*=p_amount/float(amount);
|
|
|
|
switch(dl.type) {
|
|
|
|
case VS::LIGHT_DIRECTIONAL: {
|
|
|
|
|
|
for(int j=0;j<amount;j++) {
|
|
Vector3 from = dl.pos;
|
|
double r1 = double(rand())/RAND_MAX;
|
|
double r2 = double(rand())/RAND_MAX;
|
|
from+=dl.up*(r1*2.0-1.0);
|
|
from+=dl.left*(r2*2.0-1.0);
|
|
Vector3 to = from+dl.dir*dl.length;
|
|
Color col=dl.diffuse;
|
|
float m = mod*dl.energy;
|
|
col.r*=m;
|
|
col.g*=m;
|
|
col.b*=m;
|
|
|
|
dl.rays_thrown++;
|
|
baked_light_baker_add_64i(&total_rays,1);
|
|
|
|
_throw_ray(thread_stack,dl.bake_direct,from,to,dl.length,col,NULL,0,0,max_bounces,true);
|
|
}
|
|
} break;
|
|
case VS::LIGHT_OMNI: {
|
|
|
|
|
|
for(int j=0;j<amount;j++) {
|
|
Vector3 from = dl.pos;
|
|
|
|
double r1 = double(rand())/RAND_MAX;
|
|
double r2 = double(rand())/RAND_MAX;
|
|
double r3 = double(rand())/RAND_MAX;
|
|
|
|
#if 0
|
|
//crap is not uniform..
|
|
Vector3 dir = Vector3(r1*2.0-1.0,r2*2.0-1.0,r3*2.0-1.0).normalized();
|
|
|
|
#else
|
|
|
|
double phi = r1*Math_PI*2.0;
|
|
double costheta = r2*2.0-1.0;
|
|
double u = r3;
|
|
|
|
double theta = acos( costheta );
|
|
double r = 1.0 * pow( u,1/3.0 );
|
|
|
|
Vector3 dir(
|
|
r * sin( theta) * cos( phi ),
|
|
r * sin( theta) * sin( phi ),
|
|
r * cos( theta )
|
|
);
|
|
dir.normalize();
|
|
|
|
#endif
|
|
Vector3 to = dl.pos+dir*dl.radius;
|
|
Color col=dl.diffuse;
|
|
float m = mod*dl.energy;
|
|
col.r*=m;
|
|
col.g*=m;
|
|
col.b*=m;
|
|
|
|
dl.rays_thrown++;
|
|
baked_light_baker_add_64i(&total_rays,1);
|
|
_throw_ray(thread_stack,dl.bake_direct,from,to,dl.radius,col,dl.attenuation_table.ptr(),0,dl.radius,max_bounces,true);
|
|
//_throw_ray(i,from,to,dl.radius,col,NULL,0,dl.radius,max_bounces,true);
|
|
}
|
|
|
|
} break;
|
|
case VS::LIGHT_SPOT: {
|
|
|
|
for(int j=0;j<amount;j++) {
|
|
Vector3 from = dl.pos;
|
|
|
|
double r1 = double(rand())/RAND_MAX;
|
|
//double r2 = double(rand())/RAND_MAX;
|
|
double r3 = double(rand())/RAND_MAX;
|
|
|
|
float d=Math::tan(Math::deg2rad(dl.spot_angle));
|
|
|
|
float x = sin(r1*Math_PI*2.0)*d;
|
|
float y = cos(r1*Math_PI*2.0)*d;
|
|
|
|
Vector3 dir = r3*(dl.dir + dl.up*y + dl.left*x) + (1.0-r3)*dl.dir;
|
|
dir.normalize();
|
|
|
|
|
|
Vector3 to = dl.pos+dir*dl.radius;
|
|
Color col=dl.diffuse;
|
|
float m = mod*dl.energy;
|
|
col.r*=m;
|
|
col.g*=m;
|
|
col.b*=m;
|
|
|
|
dl.rays_thrown++;
|
|
baked_light_baker_add_64i(&total_rays,1);
|
|
_throw_ray(thread_stack,dl.bake_direct,from,to,dl.radius,col,dl.attenuation_table.ptr(),0,dl.radius,max_bounces,true);
|
|
//_throw_ray(i,from,to,dl.radius,col,NULL,0,dl.radius,max_bounces,true);
|
|
}
|
|
|
|
} break;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void BakedLightBaker::bake(const Ref<BakedLight> &p_light, Node* p_node) {
|
|
|
|
if (baking)
|
|
return;
|
|
cell_count=0;
|
|
|
|
base_inv=p_node->cast_to<Spatial>()->get_global_transform().affine_inverse();
|
|
EditorProgress ep("bake",TTR("Light Baker Setup:"),5);
|
|
baked_light=p_light;
|
|
lattice_size=baked_light->get_initial_lattice_subdiv();
|
|
octree_depth=baked_light->get_cell_subdivision();
|
|
plot_size=baked_light->get_plot_size();
|
|
max_bounces=baked_light->get_bounces();
|
|
use_diffuse=baked_light->get_bake_flag(BakedLight::BAKE_DIFFUSE);
|
|
use_specular=baked_light->get_bake_flag(BakedLight::BAKE_SPECULAR);
|
|
use_translucency=baked_light->get_bake_flag(BakedLight::BAKE_TRANSLUCENT);
|
|
|
|
edge_damp=baked_light->get_edge_damp();
|
|
normal_damp=baked_light->get_normal_damp();
|
|
octree_extra_margin=baked_light->get_cell_extra_margin();
|
|
tint=baked_light->get_tint();
|
|
ao_radius=baked_light->get_ao_radius();
|
|
ao_strength=baked_light->get_ao_strength();
|
|
linear_color=baked_light->get_bake_flag(BakedLight::BAKE_LINEAR_COLOR);
|
|
|
|
baked_textures.clear();
|
|
for(int i=0;i<baked_light->get_lightmaps_count();i++) {
|
|
BakeTexture bt;
|
|
bt.width=baked_light->get_lightmap_gen_size(i).x;
|
|
bt.height=baked_light->get_lightmap_gen_size(i).y;
|
|
baked_textures.push_back(bt);
|
|
}
|
|
|
|
|
|
ep.step(TTR("Parsing Geometry"),0);
|
|
_parse_geometry(p_node);
|
|
mat_map.clear();
|
|
tex_map.clear();
|
|
print_line("\ttotal triangles: "+itos(triangles.size()));
|
|
// no geometry
|
|
if (triangles.size() == 0) {
|
|
return;
|
|
}
|
|
ep.step(TTR("Fixing Lights"),1);
|
|
_fix_lights();
|
|
ep.step(TTR("Making BVH"),2);
|
|
_make_bvh();
|
|
ep.step(TTR("Creating Light Octree"),3);
|
|
_make_octree();
|
|
ep.step(TTR("Creating Octree Texture"),4);
|
|
_make_octree_texture();
|
|
baking=true;
|
|
_start_thread();
|
|
|
|
}
|
|
|
|
|
|
void BakedLightBaker::update_octree_sampler(PoolVector<int> &p_sampler) {
|
|
|
|
BakedLightBaker::Octant *octants=octant_pool.ptr();
|
|
double norm = 1.0/double(total_rays);
|
|
|
|
|
|
|
|
if (p_sampler.size()==0 || first_bake_to_map) {
|
|
|
|
Vector<int> tmp_smp;
|
|
tmp_smp.resize(32); //32 for header
|
|
|
|
for(int i=0;i<32;i++) {
|
|
tmp_smp[i]=0;
|
|
}
|
|
|
|
for(int i=octant_pool_size-1;i>=0;i--) {
|
|
|
|
if (i==0)
|
|
tmp_smp[1]=tmp_smp.size();
|
|
|
|
Octant &octant=octants[i];
|
|
octant.sampler_ofs = tmp_smp.size();
|
|
int idxcol[2]={0,0};
|
|
|
|
int r = CLAMP((octant.full_accum[0]*norm)*2048,0,32767);
|
|
int g = CLAMP((octant.full_accum[1]*norm)*2048,0,32767);
|
|
int b = CLAMP((octant.full_accum[2]*norm)*2048,0,32767);
|
|
|
|
idxcol[0]|=r;
|
|
idxcol[1]|=(g<<16)|b;
|
|
|
|
if (octant.leaf) {
|
|
tmp_smp.push_back(idxcol[0]);
|
|
tmp_smp.push_back(idxcol[1]);
|
|
} else {
|
|
|
|
for(int j=0;j<8;j++) {
|
|
if (octant.children[j]) {
|
|
idxcol[0]|=(1<<(j+16));
|
|
}
|
|
}
|
|
tmp_smp.push_back(idxcol[0]);
|
|
tmp_smp.push_back(idxcol[1]);
|
|
for(int j=0;j<8;j++) {
|
|
if (octant.children[j]) {
|
|
tmp_smp.push_back(octants[octant.children[j]].sampler_ofs);
|
|
if (octants[octant.children[j]].sampler_ofs==0) {
|
|
print_line("FUUUUUUUUCK");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
p_sampler.resize(tmp_smp.size());
|
|
PoolVector<int>::Write w = p_sampler.write();
|
|
int ss = tmp_smp.size();
|
|
for(int i=0;i<ss;i++) {
|
|
w[i]=tmp_smp[i];
|
|
}
|
|
|
|
first_bake_to_map=false;
|
|
|
|
}
|
|
|
|
double gamma = baked_light->get_gamma_adjust();
|
|
double mult = baked_light->get_energy_multiplier();
|
|
float saturation = baked_light->get_saturation();
|
|
|
|
PoolVector<int>::Write w = p_sampler.write();
|
|
|
|
encode_uint32(octree_depth,(uint8_t*)&w[2]);
|
|
encode_uint32(linear_color,(uint8_t*)&w[3]);
|
|
|
|
encode_float(octree_aabb.pos.x,(uint8_t*)&w[4]);
|
|
encode_float(octree_aabb.pos.y,(uint8_t*)&w[5]);
|
|
encode_float(octree_aabb.pos.z,(uint8_t*)&w[6]);
|
|
encode_float(octree_aabb.size.x,(uint8_t*)&w[7]);
|
|
encode_float(octree_aabb.size.y,(uint8_t*)&w[8]);
|
|
encode_float(octree_aabb.size.z,(uint8_t*)&w[9]);
|
|
|
|
//norm*=multiplier;
|
|
|
|
for(int i=octant_pool_size-1;i>=0;i--) {
|
|
|
|
Octant &octant=octants[i];
|
|
int idxcol[2]={w[octant.sampler_ofs],w[octant.sampler_ofs+1]};
|
|
|
|
double rf=pow(octant.full_accum[0]*norm*mult,gamma);
|
|
double gf=pow(octant.full_accum[1]*norm*mult,gamma);
|
|
double bf=pow(octant.full_accum[2]*norm*mult,gamma);
|
|
|
|
double gray = (rf+gf+bf)/3.0;
|
|
rf = gray + (rf-gray)*saturation;
|
|
gf = gray + (gf-gray)*saturation;
|
|
bf = gray + (bf-gray)*saturation;
|
|
|
|
|
|
int r = CLAMP((rf)*2048,0,32767);
|
|
int g = CLAMP((gf)*2048,0,32767);
|
|
int b = CLAMP((bf)*2048,0,32767);
|
|
|
|
idxcol[0]=((idxcol[0]>>16)<<16)|r;
|
|
idxcol[1]=(g<<16)|b;
|
|
w[octant.sampler_ofs]=idxcol[0];
|
|
w[octant.sampler_ofs+1]=idxcol[1];
|
|
}
|
|
|
|
}
|
|
|
|
void BakedLightBaker::update_octree_images(PoolVector<uint8_t> &p_octree,PoolVector<uint8_t> &p_light) {
|
|
|
|
|
|
int len = baked_octree_texture_w*baked_octree_texture_h*4;
|
|
p_octree.resize(len);
|
|
|
|
int ilen = baked_light_texture_w*baked_light_texture_h*4;
|
|
p_light.resize(ilen);
|
|
|
|
|
|
PoolVector<uint8_t>::Write w = p_octree.write();
|
|
zeromem(w.ptr(),len);
|
|
|
|
PoolVector<uint8_t>::Write iw = p_light.write();
|
|
zeromem(iw.ptr(),ilen);
|
|
|
|
float gamma = baked_light->get_gamma_adjust();
|
|
float mult = baked_light->get_energy_multiplier();
|
|
|
|
for(int i=0;i<len;i+=4) {
|
|
w[i+0]=0xFF;
|
|
w[i+1]=0;
|
|
w[i+2]=0xFF;
|
|
w[i+3]=0xFF;
|
|
}
|
|
|
|
for(int i=0;i<ilen;i+=4) {
|
|
iw[i+0]=0xFF;
|
|
iw[i+1]=0;
|
|
iw[i+2]=0xFF;
|
|
iw[i+3]=0xFF;
|
|
}
|
|
|
|
float multiplier=1.0;
|
|
|
|
if (baked_light->get_format()==BakedLight::FORMAT_HDR8)
|
|
multiplier=8;
|
|
encode_uint32(baked_octree_texture_w,&w[0]);
|
|
encode_uint32(baked_octree_texture_h,&w[4]);
|
|
encode_uint32(0,&w[8]);
|
|
encode_float(1<<lattice_size,&w[12]);
|
|
encode_uint32(octree_depth-lattice_size,&w[16]);
|
|
encode_uint32(multiplier,&w[20]);
|
|
encode_uint16(baked_light_texture_w,&w[24]); //if present, use the baked light texture
|
|
encode_uint16(baked_light_texture_h,&w[26]);
|
|
encode_uint32(0,&w[28]); //baked light texture format
|
|
|
|
encode_float(octree_aabb.pos.x,&w[32]);
|
|
encode_float(octree_aabb.pos.y,&w[36]);
|
|
encode_float(octree_aabb.pos.z,&w[40]);
|
|
encode_float(octree_aabb.size.x,&w[44]);
|
|
encode_float(octree_aabb.size.y,&w[48]);
|
|
encode_float(octree_aabb.size.z,&w[52]);
|
|
|
|
|
|
BakedLightBaker::Octant *octants=octant_pool.ptr();
|
|
int octant_count=octant_pool_size;
|
|
uint8_t *ptr = w.ptr();
|
|
uint8_t *lptr = iw.ptr();
|
|
|
|
|
|
int child_offsets[8]={
|
|
0,
|
|
4,
|
|
baked_octree_texture_w*4,
|
|
baked_octree_texture_w*4+4,
|
|
baked_octree_texture_w*8+0,
|
|
baked_octree_texture_w*8+4,
|
|
baked_octree_texture_w*8+baked_octree_texture_w*4,
|
|
baked_octree_texture_w*8+baked_octree_texture_w*4+4,
|
|
};
|
|
|
|
int lchild_offsets[8]={
|
|
0,
|
|
4,
|
|
baked_light_texture_w*4,
|
|
baked_light_texture_w*4+4,
|
|
baked_light_texture_w*8+0,
|
|
baked_light_texture_w*8+4,
|
|
baked_light_texture_w*8+baked_light_texture_w*4,
|
|
baked_light_texture_w*8+baked_light_texture_w*4+4,
|
|
};
|
|
|
|
/*Vector<double> norm_arr;
|
|
norm_arr.resize(lights.size());
|
|
|
|
for(int i=0;i<lights.size();i++) {
|
|
norm_arr[i] = 1.0/get_normalization(i);
|
|
}
|
|
|
|
const double *normptr=norm_arr.ptr();
|
|
*/
|
|
double norm = 1.0/double(total_rays);
|
|
mult/=multiplier;
|
|
double saturation = baked_light->get_saturation();
|
|
|
|
for(int i=0;i<octant_count;i++) {
|
|
|
|
Octant &oct=octants[i];
|
|
if (oct.texture_x==0 && oct.texture_y==0)
|
|
continue;
|
|
|
|
|
|
if (oct.leaf) {
|
|
|
|
int ofs = (oct.texture_y * baked_light_texture_w + oct.texture_x)<<2;
|
|
ERR_CONTINUE(ofs<0 || ofs >ilen);
|
|
//write colors
|
|
for(int j=0;j<8;j++) {
|
|
|
|
/*
|
|
if (!oct.children[j])
|
|
continue;
|
|
*/
|
|
uint8_t *iptr=&lptr[ofs+lchild_offsets[j]];
|
|
|
|
float r=oct.light_accum[j][0]*norm;
|
|
float g=oct.light_accum[j][1]*norm;
|
|
float b=oct.light_accum[j][2]*norm;
|
|
|
|
r=pow(r*mult,gamma);
|
|
g=pow(g*mult,gamma);
|
|
b=pow(b*mult,gamma);
|
|
|
|
double gray = (r+g+b)/3.0;
|
|
r = gray + (r-gray)*saturation;
|
|
g = gray + (g-gray)*saturation;
|
|
b = gray + (b-gray)*saturation;
|
|
|
|
float ic[3]={
|
|
r,
|
|
g,
|
|
b,
|
|
};
|
|
iptr[0]=CLAMP(ic[0]*255.0,0,255);
|
|
iptr[1]=CLAMP(ic[1]*255.0,0,255);
|
|
iptr[2]=CLAMP(ic[2]*255.0,0,255);
|
|
iptr[3]=255;
|
|
}
|
|
|
|
} else {
|
|
|
|
int ofs = (oct.texture_y * baked_octree_texture_w + oct.texture_x)<<2;
|
|
ERR_CONTINUE(ofs<0 || ofs >len);
|
|
|
|
//write indices
|
|
for(int j=0;j<8;j++) {
|
|
|
|
if (!oct.children[j])
|
|
continue;
|
|
Octant&choct=octants[oct.children[j]];
|
|
uint8_t *iptr=&ptr[ofs+child_offsets[j]];
|
|
|
|
iptr[0]=choct.texture_x>>8;
|
|
iptr[1]=choct.texture_x&0xFF;
|
|
iptr[2]=choct.texture_y>>8;
|
|
iptr[3]=choct.texture_y&0xFF;
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
void BakedLightBaker::_free_bvh(BVH* p_bvh) {
|
|
|
|
if (!p_bvh->leaf) {
|
|
if (p_bvh->children[0])
|
|
_free_bvh(p_bvh->children[0]);
|
|
if (p_bvh->children[1])
|
|
_free_bvh(p_bvh->children[1]);
|
|
}
|
|
|
|
memdelete(p_bvh);
|
|
|
|
}
|
|
|
|
|
|
bool BakedLightBaker::is_baking() {
|
|
|
|
return baking;
|
|
}
|
|
|
|
void BakedLightBaker::set_pause(bool p_pause){
|
|
|
|
if (paused==p_pause)
|
|
return;
|
|
|
|
paused=p_pause;
|
|
|
|
if (paused) {
|
|
_stop_thread();
|
|
} else {
|
|
_start_thread();
|
|
}
|
|
}
|
|
bool BakedLightBaker::is_paused() {
|
|
|
|
return paused;
|
|
|
|
}
|
|
|
|
void BakedLightBaker::_bake_thread_func(void *arg) {
|
|
|
|
BakedLightBaker *ble = (BakedLightBaker*)arg;
|
|
|
|
|
|
|
|
ThreadStack thread_stack;
|
|
|
|
thread_stack.ray_stack = memnew_arr(uint32_t,ble->bvh_depth);
|
|
thread_stack.bvh_stack = memnew_arr(BVH*,ble->bvh_depth);
|
|
thread_stack.octant_stack = memnew_arr(uint32_t,ble->octree_depth*2 );
|
|
thread_stack.octantptr_stack = memnew_arr(uint32_t,ble->octree_depth*2 );
|
|
|
|
while(!ble->bake_thread_exit) {
|
|
|
|
ble->throw_rays(thread_stack,1000);
|
|
}
|
|
|
|
memdelete_arr(thread_stack.ray_stack );
|
|
memdelete_arr(thread_stack.bvh_stack );
|
|
memdelete_arr(thread_stack.octant_stack );
|
|
memdelete_arr(thread_stack.octantptr_stack );
|
|
|
|
}
|
|
|
|
void BakedLightBaker::_start_thread() {
|
|
|
|
if (threads.size()!=0)
|
|
return;
|
|
bake_thread_exit=false;
|
|
|
|
int thread_count = EDITOR_DEF("light_baker/custom_bake_threads",0);
|
|
if (thread_count<=0 || thread_count>64)
|
|
thread_count=OS::get_singleton()->get_processor_count();
|
|
|
|
//thread_count=1;
|
|
threads.resize(thread_count);
|
|
for(int i=0;i<threads.size();i++) {
|
|
threads[i]=Thread::create(_bake_thread_func,this);
|
|
}
|
|
}
|
|
|
|
void BakedLightBaker::_stop_thread() {
|
|
|
|
if (threads.size()==0)
|
|
return;
|
|
bake_thread_exit=true;
|
|
for(int i=0;i<threads.size();i++) {
|
|
Thread::wait_to_finish(threads[i]);
|
|
memdelete(threads[i]);
|
|
}
|
|
threads.clear();
|
|
}
|
|
|
|
void BakedLightBaker::_plot_pixel_to_lightmap(int x, int y, int width, int height, uint8_t *image, const Vector3& p_pos,const Vector3& p_normal,double *p_norm_ptr,float mult,float gamma) {
|
|
|
|
|
|
uint8_t *ptr = &image[(y*width+x)*4];
|
|
//int lc = lights.size();
|
|
double norm = 1.0/double(total_rays);
|
|
|
|
|
|
Color color;
|
|
|
|
Octant *octants=octant_pool.ptr();
|
|
|
|
|
|
int octant_idx=0;
|
|
|
|
|
|
while(true) {
|
|
|
|
Octant &octant=octants[octant_idx];
|
|
|
|
if (octant.leaf) {
|
|
|
|
Vector3 lpos = p_pos-octant.aabb.pos;
|
|
lpos/=octant.aabb.size;
|
|
|
|
Vector3 cols[8];
|
|
|
|
for(int i=0;i<8;i++) {
|
|
|
|
cols[i].x+=octant.light_accum[i][0]*norm;
|
|
cols[i].y+=octant.light_accum[i][1]*norm;
|
|
cols[i].z+=octant.light_accum[i][2]*norm;
|
|
}
|
|
|
|
|
|
/*Vector3 final = (cols[0] + (cols[1] - cols[0]) * lpos.y);
|
|
final = final + ((cols[2] + (cols[3] - cols[2]) * lpos.y) - final)*lpos.x;
|
|
|
|
Vector3 final2 = (cols[4+0] + (cols[4+1] - cols[4+0]) * lpos.y);
|
|
final2 = final2 + ((cols[4+2] + (cols[4+3] - cols[4+2]) * lpos.y) - final2)*lpos.x;*/
|
|
|
|
Vector3 finala = cols[0].linear_interpolate(cols[1],lpos.x);
|
|
Vector3 finalb = cols[2].linear_interpolate(cols[3],lpos.x);
|
|
Vector3 final = finala.linear_interpolate(finalb,lpos.y);
|
|
|
|
Vector3 final2a = cols[4+0].linear_interpolate(cols[4+1],lpos.x);
|
|
Vector3 final2b = cols[4+2].linear_interpolate(cols[4+3],lpos.x);
|
|
Vector3 final2 = final2a.linear_interpolate(final2b,lpos.y);
|
|
|
|
final = final.linear_interpolate(final2,lpos.z);
|
|
if (baked_light->get_format()==BakedLight::FORMAT_HDR8)
|
|
final*=8.0;
|
|
|
|
|
|
color.r=pow(final.x*mult,gamma);
|
|
color.g=pow(final.y*mult,gamma);
|
|
color.b=pow(final.z*mult,gamma);
|
|
color.a=1.0;
|
|
|
|
int lc = lights.size();
|
|
LightData *lv = lights.ptr();
|
|
for(int i=0;i<lc;i++) {
|
|
//shadow baking
|
|
if (!lv[i].bake_shadow)
|
|
continue;
|
|
Vector3 from = p_pos+p_normal*0.01;
|
|
Vector3 to;
|
|
float att=0;
|
|
switch(lv[i].type) {
|
|
case VS::LIGHT_DIRECTIONAL: {
|
|
to=from-lv[i].dir*lv[i].length;
|
|
} break;
|
|
case VS::LIGHT_OMNI: {
|
|
to=lv[i].pos;
|
|
float d = MIN(lv[i].radius,to.distance_to(from))/lv[i].radius;
|
|
att=d;//1.0-d;
|
|
} break;
|
|
default: continue;
|
|
}
|
|
|
|
uint32_t* stack = ray_stack;
|
|
BVH **bstack = bvh_stack;
|
|
|
|
enum {
|
|
TEST_RAY_BIT=0,
|
|
VISIT_LEFT_BIT=1,
|
|
VISIT_RIGHT_BIT=2,
|
|
VISIT_DONE_BIT=3,
|
|
|
|
|
|
};
|
|
|
|
bool intersected=false;
|
|
|
|
int level=0;
|
|
|
|
Vector3 n = (to-from);
|
|
float len=n.length();
|
|
if (len==0)
|
|
continue;
|
|
n/=len;
|
|
|
|
bstack[0]=bvh;
|
|
stack[0]=TEST_RAY_BIT;
|
|
|
|
|
|
while(!intersected) {
|
|
|
|
uint32_t mode = stack[level];
|
|
const BVH &b = *bstack[level];
|
|
bool done=false;
|
|
|
|
switch(mode) {
|
|
case TEST_RAY_BIT: {
|
|
|
|
if (b.leaf) {
|
|
|
|
|
|
Face3 f3(b.leaf->vertices[0],b.leaf->vertices[1],b.leaf->vertices[2]);
|
|
|
|
|
|
Vector3 res;
|
|
|
|
if (f3.intersects_segment(from,to)) {
|
|
intersected=true;
|
|
done=true;
|
|
}
|
|
|
|
stack[level]=VISIT_DONE_BIT;
|
|
} else {
|
|
|
|
|
|
bool valid = b.aabb.smits_intersect_ray(from,n,0,len);
|
|
//bool valid = b.aabb.intersects_segment(p_begin,p_end);
|
|
//bool valid = b.aabb.intersects(ray_aabb);
|
|
|
|
if (!valid) {
|
|
|
|
stack[level]=VISIT_DONE_BIT;
|
|
|
|
} else {
|
|
|
|
stack[level]=VISIT_LEFT_BIT;
|
|
}
|
|
}
|
|
|
|
} continue;
|
|
case VISIT_LEFT_BIT: {
|
|
|
|
stack[level]=VISIT_RIGHT_BIT;
|
|
bstack[level+1]=b.children[0];
|
|
stack[level+1]=TEST_RAY_BIT;
|
|
level++;
|
|
|
|
} continue;
|
|
case VISIT_RIGHT_BIT: {
|
|
|
|
stack[level]=VISIT_DONE_BIT;
|
|
bstack[level+1]=b.children[1];
|
|
stack[level+1]=TEST_RAY_BIT;
|
|
level++;
|
|
} continue;
|
|
case VISIT_DONE_BIT: {
|
|
|
|
if (level==0) {
|
|
done=true;
|
|
break;
|
|
} else
|
|
level--;
|
|
|
|
} continue;
|
|
}
|
|
|
|
|
|
if (done)
|
|
break;
|
|
}
|
|
|
|
|
|
|
|
if (intersected) {
|
|
|
|
color.a=Math::lerp(MAX(0.01,lv[i].darkening),1.0,att);
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
} else {
|
|
|
|
Vector3 lpos = p_pos - octant.aabb.pos;
|
|
Vector3 half = octant.aabb.size * 0.5;
|
|
|
|
int ofs=0;
|
|
|
|
if (lpos.x >= half.x)
|
|
ofs|=1;
|
|
if (lpos.y >= half.y)
|
|
ofs|=2;
|
|
if (lpos.z >= half.z)
|
|
ofs|=4;
|
|
|
|
octant_idx = octant.children[ofs];
|
|
|
|
if (octant_idx==0)
|
|
return;
|
|
|
|
}
|
|
}
|
|
|
|
ptr[0]=CLAMP(color.r*255.0,0,255);
|
|
ptr[1]=CLAMP(color.g*255.0,0,255);
|
|
ptr[2]=CLAMP(color.b*255.0,0,255);
|
|
ptr[3]=CLAMP(color.a*255.0,0,255);
|
|
|
|
}
|
|
|
|
|
|
Error BakedLightBaker::transfer_to_lightmaps() {
|
|
|
|
if (!triangles.size() || baked_textures.size()==0)
|
|
return ERR_UNCONFIGURED;
|
|
|
|
EditorProgress ep("transfer_to_lightmaps",TTR("Transfer to Lightmaps:"),baked_textures.size()*2+triangles.size());
|
|
|
|
for(int i=0;i<baked_textures.size();i++) {
|
|
|
|
ERR_FAIL_COND_V( baked_textures[i].width<=0 || baked_textures[i].height<=0,ERR_UNCONFIGURED );
|
|
|
|
baked_textures[i].data.resize( baked_textures[i].width*baked_textures[i].height*4 );
|
|
zeromem(baked_textures[i].data.ptr(),baked_textures[i].data.size());
|
|
ep.step(TTR("Allocating Texture #")+itos(i+1),i);
|
|
}
|
|
|
|
Vector<double> norm_arr;
|
|
norm_arr.resize(lights.size());
|
|
|
|
for(int i=0;i<lights.size();i++) {
|
|
norm_arr[i] = 1.0/get_normalization(i);
|
|
}
|
|
float gamma = baked_light->get_gamma_adjust();
|
|
float mult = baked_light->get_energy_multiplier();
|
|
|
|
for(int i=0;i<triangles.size();i++) {
|
|
|
|
if (i%200==0) {
|
|
ep.step(TTR("Baking Triangle #")+itos(i),i+baked_textures.size());
|
|
}
|
|
Triangle &t=triangles[i];
|
|
if (t.baked_texture<0 || t.baked_texture>=baked_textures.size())
|
|
continue;
|
|
|
|
BakeTexture &bt=baked_textures[t.baked_texture];
|
|
Vector3 normal = Plane(t.vertices[0],t.vertices[1],t.vertices[2]).normal;
|
|
|
|
|
|
int x[3];
|
|
int y[3];
|
|
|
|
Vector3 vertices[3]={
|
|
t.vertices[0],
|
|
t.vertices[1],
|
|
t.vertices[2]
|
|
};
|
|
|
|
for(int j=0;j<3;j++) {
|
|
|
|
x[j]=t.bake_uvs[j].x*bt.width;
|
|
y[j]=t.bake_uvs[j].y*bt.height;
|
|
x[j]=CLAMP(x[j],0,bt.width-1);
|
|
y[j]=CLAMP(y[j],0,bt.height-1);
|
|
}
|
|
|
|
|
|
{
|
|
|
|
// sort the points vertically
|
|
if (y[1] > y[2]) {
|
|
SWAP(x[1], x[2]);
|
|
SWAP(y[1], y[2]);
|
|
SWAP(vertices[1],vertices[2]);
|
|
}
|
|
if (y[0] > y[1]) {
|
|
SWAP(x[0], x[1]);
|
|
SWAP(y[0], y[1]);
|
|
SWAP(vertices[0],vertices[1]);
|
|
}
|
|
if (y[1] > y[2]) {
|
|
SWAP(x[1], x[2]);
|
|
SWAP(y[1], y[2]);
|
|
SWAP(vertices[1],vertices[2]);
|
|
}
|
|
|
|
double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1);
|
|
double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1);
|
|
double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1);
|
|
double xf = x[0];
|
|
double xt = x[0] + dx_upper; // if y[0] == y[1], special case
|
|
for (int yi = y[0]; yi <= (y[2] > bt.height-1 ? bt.height-1 : y[2]); yi++)
|
|
{
|
|
if (yi >= 0) {
|
|
for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < bt.width ? xt : bt.width-1) ; xi++) {
|
|
//pixels[int(x + y * width)] = color;
|
|
|
|
Vector2 v0 = Vector2(x[1]-x[0],y[1]-y[0]);
|
|
Vector2 v1 = Vector2(x[2]-x[0],y[2]-y[0]);
|
|
//vertices[2] - vertices[0];
|
|
Vector2 v2 = Vector2(xi-x[0],yi-y[0]);
|
|
float d00 = v0.dot( v0);
|
|
float d01 = v0.dot( v1);
|
|
float d11 = v1.dot( v1);
|
|
float d20 = v2.dot( v0);
|
|
float d21 = v2.dot( v1);
|
|
float denom = (d00 * d11 - d01 * d01);
|
|
Vector3 pos;
|
|
if (denom==0) {
|
|
pos=t.vertices[0];
|
|
} else {
|
|
float v = (d11 * d20 - d01 * d21) / denom;
|
|
float w = (d00 * d21 - d01 * d20) / denom;
|
|
float u = 1.0f - v - w;
|
|
pos = vertices[0]*u + vertices[1]*v + vertices[2]*w;
|
|
}
|
|
_plot_pixel_to_lightmap(xi,yi,bt.width,bt.height,bt.data.ptr(),pos,normal,norm_arr.ptr(),mult,gamma);
|
|
|
|
}
|
|
|
|
for (int xi = (xf < bt.width ? int(xf) : bt.width-1); xi >= (xt > 0 ? xt : 0); xi--) {
|
|
//pixels[int(x + y * width)] = color;
|
|
Vector2 v0 = Vector2(x[1]-x[0],y[1]-y[0]);
|
|
Vector2 v1 = Vector2(x[2]-x[0],y[2]-y[0]);
|
|
//vertices[2] - vertices[0];
|
|
Vector2 v2 = Vector2(xi-x[0],yi-y[0]);
|
|
float d00 = v0.dot( v0);
|
|
float d01 = v0.dot( v1);
|
|
float d11 = v1.dot( v1);
|
|
float d20 = v2.dot( v0);
|
|
float d21 = v2.dot( v1);
|
|
float denom = (d00 * d11 - d01 * d01);
|
|
Vector3 pos;
|
|
if (denom==0) {
|
|
pos=t.vertices[0];
|
|
} else {
|
|
float v = (d11 * d20 - d01 * d21) / denom;
|
|
float w = (d00 * d21 - d01 * d20) / denom;
|
|
float u = 1.0f - v - w;
|
|
pos = vertices[0]*u + vertices[1]*v + vertices[2]*w;
|
|
}
|
|
|
|
_plot_pixel_to_lightmap(xi,yi,bt.width,bt.height,bt.data.ptr(),pos,normal,norm_arr.ptr(),mult,gamma);
|
|
|
|
}
|
|
}
|
|
xf += dx_far;
|
|
if (yi < y[1])
|
|
xt += dx_upper;
|
|
else
|
|
xt += dx_low;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
for(int i=0;i<baked_textures.size();i++) {
|
|
|
|
|
|
{
|
|
|
|
ep.step(TTR("Post-Processing Texture #")+itos(i),i+baked_textures.size()+triangles.size());
|
|
|
|
BakeTexture &bt=baked_textures[i];
|
|
|
|
Vector<uint8_t> copy_data=bt.data;
|
|
uint8_t *data=bt.data.ptr();
|
|
const int max_radius=8;
|
|
const int shadow_radius=2;
|
|
const int max_dist=0x7FFFFFFF;
|
|
|
|
for(int x=0;x<bt.width;x++) {
|
|
|
|
for(int y=0;y<bt.height;y++) {
|
|
|
|
|
|
uint8_t a = copy_data[(y*bt.width+x)*4+3];
|
|
|
|
if (a>0) {
|
|
//blur shadow
|
|
|
|
int from_x = MAX(0,x-shadow_radius);
|
|
int to_x = MIN(bt.width-1,x+shadow_radius);
|
|
int from_y = MAX(0,y-shadow_radius);
|
|
int to_y = MIN(bt.height-1,y+shadow_radius);
|
|
|
|
int sum=0;
|
|
int sumc=0;
|
|
|
|
for(int k=from_y;k<=to_y;k++) {
|
|
for(int l=from_x;l<=to_x;l++) {
|
|
|
|
const uint8_t * rp = ©_data[(k*bt.width+l)<<2];
|
|
|
|
sum+=rp[3];
|
|
sumc++;
|
|
}
|
|
}
|
|
|
|
sum/=sumc;
|
|
data[(y*bt.width+x)*4+3]=sum;
|
|
|
|
} else {
|
|
|
|
int closest_dist=max_dist;
|
|
uint8_t closest_color[4];
|
|
|
|
int from_x = MAX(0,x-max_radius);
|
|
int to_x = MIN(bt.width-1,x+max_radius);
|
|
int from_y = MAX(0,y-max_radius);
|
|
int to_y = MIN(bt.height-1,y+max_radius);
|
|
|
|
for(int k=from_y;k<=to_y;k++) {
|
|
for(int l=from_x;l<=to_x;l++) {
|
|
|
|
int dy = y-k;
|
|
int dx = x-l;
|
|
int dist = dy*dy+dx*dx;
|
|
if (dist>=closest_dist)
|
|
continue;
|
|
|
|
const uint8_t * rp = ©_data[(k*bt.width+l)<<2];
|
|
|
|
if (rp[3]==0)
|
|
continue;
|
|
|
|
closest_dist=dist;
|
|
closest_color[0]=rp[0];
|
|
closest_color[1]=rp[1];
|
|
closest_color[2]=rp[2];
|
|
closest_color[3]=rp[3];
|
|
}
|
|
}
|
|
|
|
|
|
if (closest_dist!=max_dist) {
|
|
|
|
data[(y*bt.width+x)*4+0]=closest_color[0];
|
|
data[(y*bt.width+x)*4+1]=closest_color[1];
|
|
data[(y*bt.width+x)*4+2]=closest_color[2];
|
|
data[(y*bt.width+x)*4+3]=closest_color[3];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PoolVector<uint8_t> dv;
|
|
dv.resize(baked_textures[i].data.size());
|
|
{
|
|
PoolVector<uint8_t>::Write w = dv.write();
|
|
copymem(w.ptr(),baked_textures[i].data.ptr(),baked_textures[i].data.size());
|
|
}
|
|
|
|
Image img(baked_textures[i].width,baked_textures[i].height,0,Image::FORMAT_RGBA8,dv);
|
|
Ref<ImageTexture> tex = memnew( ImageTexture );
|
|
tex->create_from_image(img);
|
|
baked_light->set_lightmap_texture(i,tex);
|
|
}
|
|
|
|
|
|
return OK;
|
|
}
|
|
|
|
void BakedLightBaker::clear() {
|
|
|
|
|
|
|
|
_stop_thread();
|
|
|
|
if (bvh)
|
|
_free_bvh(bvh);
|
|
|
|
if (ray_stack)
|
|
memdelete_arr(ray_stack);
|
|
if (octant_stack)
|
|
memdelete_arr(octant_stack);
|
|
if (octantptr_stack)
|
|
memdelete_arr(octantptr_stack);
|
|
if (bvh_stack)
|
|
memdelete_arr(bvh_stack);
|
|
/*
|
|
* ???
|
|
for(int i=0;i<octant_pool.size();i++) {
|
|
/*
|
|
if (octant_pool[i].leaf) {
|
|
memdelete_arr( octant_pool[i].light );
|
|
}
|
|
Vector<double> norm_arr;
|
|
norm_arr.resize(lights.size());
|
|
*/
|
|
|
|
for(int i=0;i<lights.size();i++) {
|
|
norm_arr[i] = 1.0/get_normalization(i);
|
|
}
|
|
|
|
const double *normptr=norm_arr.ptr();
|
|
}
|
|
*/
|
|
octant_pool.clear();
|
|
octant_pool_size=0;
|
|
bvh=NULL;
|
|
leaf_list=0;
|
|
cell_count=0;
|
|
ray_stack=NULL;
|
|
octant_stack=NULL;
|
|
octantptr_stack=NULL;
|
|
bvh_stack=NULL;
|
|
materials.clear();
|
|
materials.clear();
|
|
textures.clear();
|
|
lights.clear();
|
|
triangles.clear();
|
|
endpoint_normal.clear();
|
|
endpoint_normal_bits.clear();
|
|
baked_octree_texture_w=0;
|
|
baked_octree_texture_h=0;
|
|
paused=false;
|
|
baking=false;
|
|
|
|
bake_thread_exit=false;
|
|
first_bake_to_map=true;
|
|
baked_light=Ref<BakedLight>();
|
|
total_rays=0;
|
|
|
|
}
|
|
|
|
BakedLightBaker::BakedLightBaker() {
|
|
octree_depth=9;
|
|
lattice_size=4;
|
|
octant_pool.clear();
|
|
octant_pool_size=0;
|
|
bvh=NULL;
|
|
leaf_list=0;
|
|
cell_count=0;
|
|
ray_stack=NULL;
|
|
bvh_stack=NULL;
|
|
octant_stack=NULL;
|
|
octantptr_stack=NULL;
|
|
plot_size=2.5;
|
|
max_bounces=2;
|
|
materials.clear();
|
|
baked_octree_texture_w=0;
|
|
baked_octree_texture_h=0;
|
|
paused=false;
|
|
baking=false;
|
|
|
|
bake_thread_exit=false;
|
|
total_rays=0;
|
|
first_bake_to_map=true;
|
|
linear_color=false;
|
|
|
|
}
|
|
|
|
BakedLightBaker::~BakedLightBaker() {
|
|
|
|
clear();
|
|
}
|
|
#endif
|