mirror of
https://github.com/godotengine/godot.git
synced 2025-01-18 20:40:57 +08:00
202 lines
5.4 KiB
C++
202 lines
5.4 KiB
C++
/*************************************************************************/
|
|
/* vector3.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "vector3.h"
|
|
|
|
|
|
|
|
void Vector3::rotate(const Vector3& p_axis,float p_phi) {
|
|
|
|
Vector3 axis1 = cross(p_axis);
|
|
float l = axis1.length();
|
|
if (l==0)
|
|
return;
|
|
axis1/=l;
|
|
Vector3 axis2 = axis1.cross(p_axis).normalized();
|
|
|
|
float _x = axis1.dot(*this);
|
|
float _y = axis2.dot(*this);
|
|
|
|
float ang = Math::atan2(_x,_y);
|
|
|
|
ang+=p_phi;
|
|
|
|
*this=((axis1 * Math::cos(ang)) + (axis2 * Math::sin(ang))) * length();
|
|
|
|
}
|
|
|
|
Vector3 Vector3::rotated(const Vector3& p_axis,float p_phi) const {
|
|
|
|
Vector3 r = *this;
|
|
r.rotate(p_axis,p_phi);
|
|
return r;
|
|
}
|
|
|
|
void Vector3::set_axis(int p_axis,real_t p_value) {
|
|
ERR_FAIL_INDEX(p_axis,3);
|
|
coord[p_axis]=p_value;
|
|
|
|
}
|
|
real_t Vector3::get_axis(int p_axis) const {
|
|
|
|
ERR_FAIL_INDEX_V(p_axis,3,0);
|
|
return operator[](p_axis);
|
|
}
|
|
|
|
int Vector3::min_axis() const {
|
|
|
|
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
|
|
}
|
|
int Vector3::max_axis() const {
|
|
|
|
return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
|
|
}
|
|
|
|
|
|
void Vector3::snap(float p_val) {
|
|
|
|
x+=p_val/2.0;
|
|
x-=Math::fmod(x,p_val);
|
|
y+=p_val/2.0;
|
|
y-=Math::fmod(y,p_val);
|
|
z+=p_val/2.0;
|
|
z-=Math::fmod(z,p_val);
|
|
|
|
}
|
|
Vector3 Vector3::snapped(float p_val) const {
|
|
|
|
Vector3 v=*this;
|
|
v.snap(p_val);
|
|
return v;
|
|
}
|
|
|
|
|
|
Vector3 Vector3::cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
|
|
|
|
Vector3 p0=p_pre_a;
|
|
Vector3 p1=*this;
|
|
Vector3 p2=p_b;
|
|
Vector3 p3=p_post_b;
|
|
|
|
{
|
|
//normalize
|
|
|
|
float ab = p0.distance_to(p1);
|
|
float bc = p1.distance_to(p2);
|
|
float cd = p2.distance_to(p3);
|
|
|
|
if (ab>0)
|
|
p0 = p1+(p0-p1)*(bc/ab);
|
|
if (cd>0)
|
|
p3 = p2+(p3-p2)*(bc/cd);
|
|
}
|
|
|
|
|
|
float t = p_t;
|
|
float t2 = t * t;
|
|
float t3 = t2 * t;
|
|
|
|
Vector3 out;
|
|
out = 0.5f * ( ( p1 * 2.0f) +
|
|
( -p0 + p2 ) * t +
|
|
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
|
|
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
|
|
return out;
|
|
|
|
}
|
|
|
|
Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
|
|
|
|
Vector3 p0=p_pre_a;
|
|
Vector3 p1=*this;
|
|
Vector3 p2=p_b;
|
|
Vector3 p3=p_post_b;
|
|
|
|
float t = p_t;
|
|
float t2 = t * t;
|
|
float t3 = t2 * t;
|
|
|
|
Vector3 out;
|
|
out = 0.5f * ( ( p1 * 2.0f) +
|
|
( -p0 + p2 ) * t +
|
|
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
|
|
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
|
|
return out;
|
|
|
|
}
|
|
|
|
#if 0
|
|
Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
|
|
|
|
Vector3 p0=p_pre_a;
|
|
Vector3 p1=*this;
|
|
Vector3 p2=p_b;
|
|
Vector3 p3=p_post_b;
|
|
|
|
if (true) {
|
|
|
|
float ab = p0.distance_to(p1);
|
|
float bc = p1.distance_to(p2);
|
|
float cd = p2.distance_to(p3);
|
|
|
|
//if (ab>bc) {
|
|
if (ab>0)
|
|
p0 = p1+(p0-p1)*(bc/ab);
|
|
//}
|
|
|
|
//if (cd>bc) {
|
|
if (cd>0)
|
|
p3 = p2+(p3-p2)*(bc/cd);
|
|
//}
|
|
}
|
|
|
|
float t = p_t;
|
|
float t2 = t * t;
|
|
float t3 = t2 * t;
|
|
|
|
Vector3 out;
|
|
out.x = 0.5f * ( ( 2.0f * p1.x ) +
|
|
( -p0.x + p2.x ) * t +
|
|
( 2.0f * p0.x - 5.0f * p1.x + 4 * p2.x - p3.x ) * t2 +
|
|
( -p0.x + 3.0f * p1.x - 3.0f * p2.x + p3.x ) * t3 );
|
|
out.y = 0.5f * ( ( 2.0f * p1.y ) +
|
|
( -p0.y + p2.y ) * t +
|
|
( 2.0f * p0.y - 5.0f * p1.y + 4 * p2.y - p3.y ) * t2 +
|
|
( -p0.y + 3.0f * p1.y - 3.0f * p2.y + p3.y ) * t3 );
|
|
out.z = 0.5f * ( ( 2.0f * p1.z ) +
|
|
( -p0.z + p2.z ) * t +
|
|
( 2.0f * p0.z - 5.0f * p1.z + 4 * p2.z - p3.z ) * t2 +
|
|
( -p0.z + 3.0f * p1.z - 3.0f * p2.z + p3.z ) * t3 );
|
|
return out;
|
|
}
|
|
# endif
|
|
Vector3::operator String() const {
|
|
|
|
return (rtos(x)+", "+rtos(y)+", "+rtos(z));
|
|
}
|