mirror of
https://github.com/godotengine/godot.git
synced 2025-01-18 20:40:57 +08:00
d95794ec8a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see".
492 lines
15 KiB
C++
492 lines
15 KiB
C++
/**************************************************************************/
|
|
/* aabb.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef AABB_H
|
|
#define AABB_H
|
|
|
|
#include "core/math/plane.h"
|
|
#include "core/math/vector3.h"
|
|
|
|
/**
|
|
* AABB (Axis Aligned Bounding Box)
|
|
* This is implemented by a point (position) and the box size.
|
|
*/
|
|
|
|
class Variant;
|
|
|
|
struct _NO_DISCARD_ AABB {
|
|
Vector3 position;
|
|
Vector3 size;
|
|
|
|
real_t get_volume() const;
|
|
_FORCE_INLINE_ bool has_volume() const {
|
|
return size.x > 0.0f && size.y > 0.0f && size.z > 0.0f;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool has_surface() const {
|
|
return size.x > 0.0f || size.y > 0.0f || size.z > 0.0f;
|
|
}
|
|
|
|
const Vector3 &get_position() const { return position; }
|
|
void set_position(const Vector3 &p_pos) { position = p_pos; }
|
|
const Vector3 &get_size() const { return size; }
|
|
void set_size(const Vector3 &p_size) { size = p_size; }
|
|
|
|
bool operator==(const AABB &p_rval) const;
|
|
bool operator!=(const AABB &p_rval) const;
|
|
|
|
bool is_equal_approx(const AABB &p_aabb) const;
|
|
bool is_finite() const;
|
|
_FORCE_INLINE_ bool intersects(const AABB &p_aabb) const; /// Both AABBs overlap
|
|
_FORCE_INLINE_ bool intersects_inclusive(const AABB &p_aabb) const; /// Both AABBs (or their faces) overlap
|
|
_FORCE_INLINE_ bool encloses(const AABB &p_aabb) const; /// p_aabb is completely inside this
|
|
|
|
AABB merge(const AABB &p_with) const;
|
|
void merge_with(const AABB &p_aabb); ///merge with another AABB
|
|
AABB intersection(const AABB &p_aabb) const; ///get box where two intersect, empty if no intersection occurs
|
|
bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const;
|
|
bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const;
|
|
_FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const;
|
|
|
|
_FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const;
|
|
_FORCE_INLINE_ bool inside_convex_shape(const Plane *p_planes, int p_plane_count) const;
|
|
bool intersects_plane(const Plane &p_plane) const;
|
|
|
|
_FORCE_INLINE_ bool has_point(const Vector3 &p_point) const;
|
|
_FORCE_INLINE_ Vector3 get_support(const Vector3 &p_normal) const;
|
|
|
|
Vector3 get_longest_axis() const;
|
|
int get_longest_axis_index() const;
|
|
_FORCE_INLINE_ real_t get_longest_axis_size() const;
|
|
|
|
Vector3 get_shortest_axis() const;
|
|
int get_shortest_axis_index() const;
|
|
_FORCE_INLINE_ real_t get_shortest_axis_size() const;
|
|
|
|
AABB grow(real_t p_by) const;
|
|
_FORCE_INLINE_ void grow_by(real_t p_amount);
|
|
|
|
void get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const;
|
|
_FORCE_INLINE_ Vector3 get_endpoint(int p_point) const;
|
|
|
|
AABB expand(const Vector3 &p_vector) const;
|
|
_FORCE_INLINE_ void project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const;
|
|
_FORCE_INLINE_ void expand_to(const Vector3 &p_vector); /** expand to contain a point if necessary */
|
|
|
|
_FORCE_INLINE_ AABB abs() const {
|
|
return AABB(Vector3(position.x + MIN(size.x, (real_t)0), position.y + MIN(size.y, (real_t)0), position.z + MIN(size.z, (real_t)0)), size.abs());
|
|
}
|
|
|
|
Variant intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to) const;
|
|
Variant intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const;
|
|
|
|
_FORCE_INLINE_ void quantize(real_t p_unit);
|
|
_FORCE_INLINE_ AABB quantized(real_t p_unit) const;
|
|
|
|
_FORCE_INLINE_ void set_end(const Vector3 &p_end) {
|
|
size = p_end - position;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 get_end() const {
|
|
return position + size;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 get_center() const {
|
|
return position + (size * 0.5f);
|
|
}
|
|
|
|
operator String() const;
|
|
|
|
_FORCE_INLINE_ AABB() {}
|
|
inline AABB(const Vector3 &p_pos, const Vector3 &p_size) :
|
|
position(p_pos),
|
|
size(p_size) {
|
|
}
|
|
};
|
|
|
|
inline bool AABB::intersects(const AABB &p_aabb) const {
|
|
#ifdef MATH_CHECKS
|
|
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
|
|
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
|
}
|
|
#endif
|
|
if (position.x >= (p_aabb.position.x + p_aabb.size.x)) {
|
|
return false;
|
|
}
|
|
if ((position.x + size.x) <= p_aabb.position.x) {
|
|
return false;
|
|
}
|
|
if (position.y >= (p_aabb.position.y + p_aabb.size.y)) {
|
|
return false;
|
|
}
|
|
if ((position.y + size.y) <= p_aabb.position.y) {
|
|
return false;
|
|
}
|
|
if (position.z >= (p_aabb.position.z + p_aabb.size.z)) {
|
|
return false;
|
|
}
|
|
if ((position.z + size.z) <= p_aabb.position.z) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool AABB::intersects_inclusive(const AABB &p_aabb) const {
|
|
#ifdef MATH_CHECKS
|
|
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
|
|
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
|
}
|
|
#endif
|
|
if (position.x > (p_aabb.position.x + p_aabb.size.x)) {
|
|
return false;
|
|
}
|
|
if ((position.x + size.x) < p_aabb.position.x) {
|
|
return false;
|
|
}
|
|
if (position.y > (p_aabb.position.y + p_aabb.size.y)) {
|
|
return false;
|
|
}
|
|
if ((position.y + size.y) < p_aabb.position.y) {
|
|
return false;
|
|
}
|
|
if (position.z > (p_aabb.position.z + p_aabb.size.z)) {
|
|
return false;
|
|
}
|
|
if ((position.z + size.z) < p_aabb.position.z) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool AABB::encloses(const AABB &p_aabb) const {
|
|
#ifdef MATH_CHECKS
|
|
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
|
|
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
|
}
|
|
#endif
|
|
Vector3 src_min = position;
|
|
Vector3 src_max = position + size;
|
|
Vector3 dst_min = p_aabb.position;
|
|
Vector3 dst_max = p_aabb.position + p_aabb.size;
|
|
|
|
return (
|
|
(src_min.x <= dst_min.x) &&
|
|
(src_max.x > dst_max.x) &&
|
|
(src_min.y <= dst_min.y) &&
|
|
(src_max.y > dst_max.y) &&
|
|
(src_min.z <= dst_min.z) &&
|
|
(src_max.z > dst_max.z));
|
|
}
|
|
|
|
Vector3 AABB::get_support(const Vector3 &p_normal) const {
|
|
Vector3 half_extents = size * 0.5f;
|
|
Vector3 ofs = position + half_extents;
|
|
|
|
return Vector3(
|
|
(p_normal.x > 0) ? half_extents.x : -half_extents.x,
|
|
(p_normal.y > 0) ? half_extents.y : -half_extents.y,
|
|
(p_normal.z > 0) ? half_extents.z : -half_extents.z) +
|
|
ofs;
|
|
}
|
|
|
|
Vector3 AABB::get_endpoint(int p_point) const {
|
|
switch (p_point) {
|
|
case 0:
|
|
return Vector3(position.x, position.y, position.z);
|
|
case 1:
|
|
return Vector3(position.x, position.y, position.z + size.z);
|
|
case 2:
|
|
return Vector3(position.x, position.y + size.y, position.z);
|
|
case 3:
|
|
return Vector3(position.x, position.y + size.y, position.z + size.z);
|
|
case 4:
|
|
return Vector3(position.x + size.x, position.y, position.z);
|
|
case 5:
|
|
return Vector3(position.x + size.x, position.y, position.z + size.z);
|
|
case 6:
|
|
return Vector3(position.x + size.x, position.y + size.y, position.z);
|
|
case 7:
|
|
return Vector3(position.x + size.x, position.y + size.y, position.z + size.z);
|
|
}
|
|
|
|
ERR_FAIL_V(Vector3());
|
|
}
|
|
|
|
bool AABB::intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
|
|
Vector3 half_extents = size * 0.5f;
|
|
Vector3 ofs = position + half_extents;
|
|
|
|
for (int i = 0; i < p_plane_count; i++) {
|
|
const Plane &p = p_planes[i];
|
|
Vector3 point(
|
|
(p.normal.x > 0) ? -half_extents.x : half_extents.x,
|
|
(p.normal.y > 0) ? -half_extents.y : half_extents.y,
|
|
(p.normal.z > 0) ? -half_extents.z : half_extents.z);
|
|
point += ofs;
|
|
if (p.is_point_over(point)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Make sure all points in the shape aren't fully separated from the AABB on
|
|
// each axis.
|
|
int bad_point_counts_positive[3] = { 0 };
|
|
int bad_point_counts_negative[3] = { 0 };
|
|
|
|
for (int k = 0; k < 3; k++) {
|
|
for (int i = 0; i < p_point_count; i++) {
|
|
if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) {
|
|
bad_point_counts_positive[k]++;
|
|
}
|
|
if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) {
|
|
bad_point_counts_negative[k]++;
|
|
}
|
|
}
|
|
|
|
if (bad_point_counts_negative[k] == p_point_count) {
|
|
return false;
|
|
}
|
|
if (bad_point_counts_positive[k] == p_point_count) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AABB::inside_convex_shape(const Plane *p_planes, int p_plane_count) const {
|
|
Vector3 half_extents = size * 0.5f;
|
|
Vector3 ofs = position + half_extents;
|
|
|
|
for (int i = 0; i < p_plane_count; i++) {
|
|
const Plane &p = p_planes[i];
|
|
Vector3 point(
|
|
(p.normal.x < 0) ? -half_extents.x : half_extents.x,
|
|
(p.normal.y < 0) ? -half_extents.y : half_extents.y,
|
|
(p.normal.z < 0) ? -half_extents.z : half_extents.z);
|
|
point += ofs;
|
|
if (p.is_point_over(point)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AABB::has_point(const Vector3 &p_point) const {
|
|
#ifdef MATH_CHECKS
|
|
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
|
|
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
|
}
|
|
#endif
|
|
if (p_point.x < position.x) {
|
|
return false;
|
|
}
|
|
if (p_point.y < position.y) {
|
|
return false;
|
|
}
|
|
if (p_point.z < position.z) {
|
|
return false;
|
|
}
|
|
if (p_point.x > position.x + size.x) {
|
|
return false;
|
|
}
|
|
if (p_point.y > position.y + size.y) {
|
|
return false;
|
|
}
|
|
if (p_point.z > position.z + size.z) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline void AABB::expand_to(const Vector3 &p_vector) {
|
|
#ifdef MATH_CHECKS
|
|
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
|
|
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
|
}
|
|
#endif
|
|
Vector3 begin = position;
|
|
Vector3 end = position + size;
|
|
|
|
if (p_vector.x < begin.x) {
|
|
begin.x = p_vector.x;
|
|
}
|
|
if (p_vector.y < begin.y) {
|
|
begin.y = p_vector.y;
|
|
}
|
|
if (p_vector.z < begin.z) {
|
|
begin.z = p_vector.z;
|
|
}
|
|
|
|
if (p_vector.x > end.x) {
|
|
end.x = p_vector.x;
|
|
}
|
|
if (p_vector.y > end.y) {
|
|
end.y = p_vector.y;
|
|
}
|
|
if (p_vector.z > end.z) {
|
|
end.z = p_vector.z;
|
|
}
|
|
|
|
position = begin;
|
|
size = end - begin;
|
|
}
|
|
|
|
void AABB::project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const {
|
|
Vector3 half_extents(size.x * 0.5f, size.y * 0.5f, size.z * 0.5f);
|
|
Vector3 center(position.x + half_extents.x, position.y + half_extents.y, position.z + half_extents.z);
|
|
|
|
real_t length = p_plane.normal.abs().dot(half_extents);
|
|
real_t distance = p_plane.distance_to(center);
|
|
r_min = distance - length;
|
|
r_max = distance + length;
|
|
}
|
|
|
|
inline real_t AABB::get_longest_axis_size() const {
|
|
real_t max_size = size.x;
|
|
|
|
if (size.y > max_size) {
|
|
max_size = size.y;
|
|
}
|
|
|
|
if (size.z > max_size) {
|
|
max_size = size.z;
|
|
}
|
|
|
|
return max_size;
|
|
}
|
|
|
|
inline real_t AABB::get_shortest_axis_size() const {
|
|
real_t max_size = size.x;
|
|
|
|
if (size.y < max_size) {
|
|
max_size = size.y;
|
|
}
|
|
|
|
if (size.z < max_size) {
|
|
max_size = size.z;
|
|
}
|
|
|
|
return max_size;
|
|
}
|
|
|
|
bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const {
|
|
#ifdef MATH_CHECKS
|
|
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
|
|
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
|
}
|
|
#endif
|
|
real_t divx = 1.0f / p_dir.x;
|
|
real_t divy = 1.0f / p_dir.y;
|
|
real_t divz = 1.0f / p_dir.z;
|
|
|
|
Vector3 upbound = position + size;
|
|
real_t tmin, tmax, tymin, tymax, tzmin, tzmax;
|
|
if (p_dir.x >= 0) {
|
|
tmin = (position.x - p_from.x) * divx;
|
|
tmax = (upbound.x - p_from.x) * divx;
|
|
} else {
|
|
tmin = (upbound.x - p_from.x) * divx;
|
|
tmax = (position.x - p_from.x) * divx;
|
|
}
|
|
if (p_dir.y >= 0) {
|
|
tymin = (position.y - p_from.y) * divy;
|
|
tymax = (upbound.y - p_from.y) * divy;
|
|
} else {
|
|
tymin = (upbound.y - p_from.y) * divy;
|
|
tymax = (position.y - p_from.y) * divy;
|
|
}
|
|
if ((tmin > tymax) || (tymin > tmax)) {
|
|
return false;
|
|
}
|
|
if (tymin > tmin) {
|
|
tmin = tymin;
|
|
}
|
|
if (tymax < tmax) {
|
|
tmax = tymax;
|
|
}
|
|
if (p_dir.z >= 0) {
|
|
tzmin = (position.z - p_from.z) * divz;
|
|
tzmax = (upbound.z - p_from.z) * divz;
|
|
} else {
|
|
tzmin = (upbound.z - p_from.z) * divz;
|
|
tzmax = (position.z - p_from.z) * divz;
|
|
}
|
|
if ((tmin > tzmax) || (tzmin > tmax)) {
|
|
return false;
|
|
}
|
|
if (tzmin > tmin) {
|
|
tmin = tzmin;
|
|
}
|
|
if (tzmax < tmax) {
|
|
tmax = tzmax;
|
|
}
|
|
return ((tmin < t1) && (tmax > t0));
|
|
}
|
|
|
|
void AABB::grow_by(real_t p_amount) {
|
|
position.x -= p_amount;
|
|
position.y -= p_amount;
|
|
position.z -= p_amount;
|
|
size.x += 2.0f * p_amount;
|
|
size.y += 2.0f * p_amount;
|
|
size.z += 2.0f * p_amount;
|
|
}
|
|
|
|
void AABB::quantize(real_t p_unit) {
|
|
size += position;
|
|
|
|
position.x -= Math::fposmodp(position.x, p_unit);
|
|
position.y -= Math::fposmodp(position.y, p_unit);
|
|
position.z -= Math::fposmodp(position.z, p_unit);
|
|
|
|
size.x -= Math::fposmodp(size.x, p_unit);
|
|
size.y -= Math::fposmodp(size.y, p_unit);
|
|
size.z -= Math::fposmodp(size.z, p_unit);
|
|
|
|
size.x += p_unit;
|
|
size.y += p_unit;
|
|
size.z += p_unit;
|
|
|
|
size -= position;
|
|
}
|
|
|
|
AABB AABB::quantized(real_t p_unit) const {
|
|
AABB ret = *this;
|
|
ret.quantize(p_unit);
|
|
return ret;
|
|
}
|
|
|
|
#endif // AABB_H
|