godot/core/io/image.cpp
Rémi Verschelde d95794ec8a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".
2023-01-05 13:25:55 +01:00

4079 lines
127 KiB
C++

/**************************************************************************/
/* image.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "image.h"
#include "core/error/error_list.h"
#include "core/error/error_macros.h"
#include "core/io/image_loader.h"
#include "core/io/resource_loader.h"
#include "core/math/math_funcs.h"
#include "core/string/print_string.h"
#include "core/templates/hash_map.h"
#include "core/variant/dictionary.h"
#include <stdio.h>
#include <cmath>
const char *Image::format_names[Image::FORMAT_MAX] = {
"Lum8", //luminance
"LumAlpha8", //luminance-alpha
"Red8",
"RedGreen",
"RGB8",
"RGBA8",
"RGBA4444",
"RGBA5551",
"RFloat", //float
"RGFloat",
"RGBFloat",
"RGBAFloat",
"RHalf", //half float
"RGHalf",
"RGBHalf",
"RGBAHalf",
"RGBE9995",
"DXT1 RGB8", //s3tc
"DXT3 RGBA8",
"DXT5 RGBA8",
"RGTC Red8",
"RGTC RedGreen8",
"BPTC_RGBA",
"BPTC_RGBF",
"BPTC_RGBFU",
"ETC", //etc1
"ETC2_R11", //etc2
"ETC2_R11S", //signed", NOT srgb.
"ETC2_RG11",
"ETC2_RG11S",
"ETC2_RGB8",
"ETC2_RGBA8",
"ETC2_RGB8A1",
"ETC2_RA_AS_RG",
"FORMAT_DXT5_RA_AS_RG",
};
SavePNGFunc Image::save_png_func = nullptr;
SaveJPGFunc Image::save_jpg_func = nullptr;
SaveEXRFunc Image::save_exr_func = nullptr;
SavePNGBufferFunc Image::save_png_buffer_func = nullptr;
SaveEXRBufferFunc Image::save_exr_buffer_func = nullptr;
SaveJPGBufferFunc Image::save_jpg_buffer_func = nullptr;
SaveWebPFunc Image::save_webp_func = nullptr;
SaveWebPBufferFunc Image::save_webp_buffer_func = nullptr;
void Image::_put_pixelb(int p_x, int p_y, uint32_t p_pixel_size, uint8_t *p_data, const uint8_t *p_pixel) {
uint32_t ofs = (p_y * width + p_x) * p_pixel_size;
memcpy(p_data + ofs, p_pixel, p_pixel_size);
}
void Image::_get_pixelb(int p_x, int p_y, uint32_t p_pixel_size, const uint8_t *p_data, uint8_t *p_pixel) {
uint32_t ofs = (p_y * width + p_x) * p_pixel_size;
memcpy(p_pixel, p_data + ofs, p_pixel_size);
}
int Image::get_format_pixel_size(Format p_format) {
switch (p_format) {
case FORMAT_L8:
return 1; //luminance
case FORMAT_LA8:
return 2; //luminance-alpha
case FORMAT_R8:
return 1;
case FORMAT_RG8:
return 2;
case FORMAT_RGB8:
return 3;
case FORMAT_RGBA8:
return 4;
case FORMAT_RGBA4444:
return 2;
case FORMAT_RGB565:
return 2;
case FORMAT_RF:
return 4; //float
case FORMAT_RGF:
return 8;
case FORMAT_RGBF:
return 12;
case FORMAT_RGBAF:
return 16;
case FORMAT_RH:
return 2; //half float
case FORMAT_RGH:
return 4;
case FORMAT_RGBH:
return 6;
case FORMAT_RGBAH:
return 8;
case FORMAT_RGBE9995:
return 4;
case FORMAT_DXT1:
return 1; //s3tc bc1
case FORMAT_DXT3:
return 1; //bc2
case FORMAT_DXT5:
return 1; //bc3
case FORMAT_RGTC_R:
return 1; //bc4
case FORMAT_RGTC_RG:
return 1; //bc5
case FORMAT_BPTC_RGBA:
return 1; //btpc bc6h
case FORMAT_BPTC_RGBF:
return 1; //float /
case FORMAT_BPTC_RGBFU:
return 1; //unsigned float
case FORMAT_ETC:
return 1; //etc1
case FORMAT_ETC2_R11:
return 1; //etc2
case FORMAT_ETC2_R11S:
return 1; //signed: return 1; NOT srgb.
case FORMAT_ETC2_RG11:
return 1;
case FORMAT_ETC2_RG11S:
return 1;
case FORMAT_ETC2_RGB8:
return 1;
case FORMAT_ETC2_RGBA8:
return 1;
case FORMAT_ETC2_RGB8A1:
return 1;
case FORMAT_ETC2_RA_AS_RG:
return 1;
case FORMAT_DXT5_RA_AS_RG:
return 1;
case FORMAT_ASTC_4x4:
return 1;
case FORMAT_ASTC_4x4_HDR:
return 1;
case FORMAT_ASTC_8x8:
return 1;
case FORMAT_ASTC_8x8_HDR:
return 1;
case FORMAT_MAX: {
}
}
return 0;
}
void Image::get_format_min_pixel_size(Format p_format, int &r_w, int &r_h) {
switch (p_format) {
case FORMAT_DXT1: //s3tc bc1
case FORMAT_DXT3: //bc2
case FORMAT_DXT5: //bc3
case FORMAT_RGTC_R: //bc4
case FORMAT_RGTC_RG: { //bc5 case case FORMAT_DXT1:
r_w = 4;
r_h = 4;
} break;
case FORMAT_ETC: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_BPTC_RGBA:
case FORMAT_BPTC_RGBF:
case FORMAT_BPTC_RGBFU: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_ETC2_R11: //etc2
case FORMAT_ETC2_R11S: //signed: NOT srgb.
case FORMAT_ETC2_RG11:
case FORMAT_ETC2_RG11S:
case FORMAT_ETC2_RGB8:
case FORMAT_ETC2_RGBA8:
case FORMAT_ETC2_RGB8A1:
case FORMAT_ETC2_RA_AS_RG:
case FORMAT_DXT5_RA_AS_RG: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_ASTC_4x4:
case FORMAT_ASTC_4x4_HDR: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_ASTC_8x8:
case FORMAT_ASTC_8x8_HDR: {
r_w = 8;
r_h = 8;
} break;
default: {
r_w = 1;
r_h = 1;
} break;
}
}
int Image::get_format_pixel_rshift(Format p_format) {
if (p_format == FORMAT_ASTC_8x8) {
return 2;
} else if (p_format == FORMAT_DXT1 || p_format == FORMAT_RGTC_R || p_format == FORMAT_ETC || p_format == FORMAT_ETC2_R11 || p_format == FORMAT_ETC2_R11S || p_format == FORMAT_ETC2_RGB8 || p_format == FORMAT_ETC2_RGB8A1) {
return 1;
} else {
return 0;
}
}
int Image::get_format_block_size(Format p_format) {
switch (p_format) {
case FORMAT_DXT1: //s3tc bc1
case FORMAT_DXT3: //bc2
case FORMAT_DXT5: //bc3
case FORMAT_RGTC_R: //bc4
case FORMAT_RGTC_RG: { //bc5 case case FORMAT_DXT1:
return 4;
}
case FORMAT_ETC: {
return 4;
}
case FORMAT_BPTC_RGBA:
case FORMAT_BPTC_RGBF:
case FORMAT_BPTC_RGBFU: {
return 4;
}
case FORMAT_ETC2_R11: //etc2
case FORMAT_ETC2_R11S: //signed: NOT srgb.
case FORMAT_ETC2_RG11:
case FORMAT_ETC2_RG11S:
case FORMAT_ETC2_RGB8:
case FORMAT_ETC2_RGBA8:
case FORMAT_ETC2_RGB8A1:
case FORMAT_ETC2_RA_AS_RG: //used to make basis universal happy
case FORMAT_DXT5_RA_AS_RG: //used to make basis universal happy
{
return 4;
}
case FORMAT_ASTC_4x4:
case FORMAT_ASTC_4x4_HDR: {
return 4;
}
case FORMAT_ASTC_8x8:
case FORMAT_ASTC_8x8_HDR: {
return 8;
}
default: {
}
}
return 1;
}
void Image::_get_mipmap_offset_and_size(int p_mipmap, int &r_offset, int &r_width, int &r_height) const {
int w = width;
int h = height;
int ofs = 0;
int pixel_size = get_format_pixel_size(format);
int pixel_rshift = get_format_pixel_rshift(format);
int block = get_format_block_size(format);
int minw, minh;
get_format_min_pixel_size(format, minw, minh);
for (int i = 0; i < p_mipmap; i++) {
int bw = w % block != 0 ? w + (block - w % block) : w;
int bh = h % block != 0 ? h + (block - h % block) : h;
int s = bw * bh;
s *= pixel_size;
s >>= pixel_rshift;
ofs += s;
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
}
r_offset = ofs;
r_width = w;
r_height = h;
}
int Image::get_mipmap_offset(int p_mipmap) const {
ERR_FAIL_INDEX_V(p_mipmap, get_mipmap_count() + 1, -1);
int ofs, w, h;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
return ofs;
}
int Image::get_mipmap_byte_size(int p_mipmap) const {
ERR_FAIL_INDEX_V(p_mipmap, get_mipmap_count() + 1, -1);
int ofs, w, h;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
int ofs2;
_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h);
return ofs2 - ofs;
}
void Image::get_mipmap_offset_and_size(int p_mipmap, int &r_ofs, int &r_size) const {
int ofs, w, h;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
int ofs2;
_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h);
r_ofs = ofs;
r_size = ofs2 - ofs;
}
void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap, int &r_ofs, int &r_size, int &w, int &h) const {
int ofs;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
int ofs2, w2, h2;
_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w2, h2);
r_ofs = ofs;
r_size = ofs2 - ofs;
}
Image::Image3DValidateError Image::validate_3d_image(Image::Format p_format, int p_width, int p_height, int p_depth, bool p_mipmaps, const Vector<Ref<Image>> &p_images) {
int w = p_width;
int h = p_height;
int d = p_depth;
int arr_ofs = 0;
while (true) {
for (int i = 0; i < d; i++) {
int idx = i + arr_ofs;
if (idx >= p_images.size()) {
return VALIDATE_3D_ERR_MISSING_IMAGES;
}
if (p_images[idx].is_null() || p_images[idx]->is_empty()) {
return VALIDATE_3D_ERR_IMAGE_EMPTY;
}
if (p_images[idx]->get_format() != p_format) {
return VALIDATE_3D_ERR_IMAGE_FORMAT_MISMATCH;
}
if (p_images[idx]->get_width() != w || p_images[idx]->get_height() != h) {
return VALIDATE_3D_ERR_IMAGE_SIZE_MISMATCH;
}
if (p_images[idx]->has_mipmaps()) {
return VALIDATE_3D_ERR_IMAGE_HAS_MIPMAPS;
}
}
arr_ofs += d;
if (!p_mipmaps) {
break;
}
if (w == 1 && h == 1 && d == 1) {
break;
}
w = MAX(1, w >> 1);
h = MAX(1, h >> 1);
d = MAX(1, d >> 1);
}
if (arr_ofs != p_images.size()) {
return VALIDATE_3D_ERR_EXTRA_IMAGES;
}
return VALIDATE_3D_OK;
}
String Image::get_3d_image_validation_error_text(Image3DValidateError p_error) {
switch (p_error) {
case VALIDATE_3D_OK: {
return "Ok";
} break;
case VALIDATE_3D_ERR_IMAGE_EMPTY: {
return "Empty Image found";
} break;
case VALIDATE_3D_ERR_MISSING_IMAGES: {
return "Missing Images";
} break;
case VALIDATE_3D_ERR_EXTRA_IMAGES: {
return "Too many Images";
} break;
case VALIDATE_3D_ERR_IMAGE_SIZE_MISMATCH: {
return "Image size mismatch";
} break;
case VALIDATE_3D_ERR_IMAGE_FORMAT_MISMATCH: {
return "Image format mismatch";
} break;
case VALIDATE_3D_ERR_IMAGE_HAS_MIPMAPS: {
return "Image has included mipmaps";
} break;
}
return String();
}
int Image::get_width() const {
return width;
}
int Image::get_height() const {
return height;
}
Size2i Image::get_size() const {
return Size2i(width, height);
}
bool Image::has_mipmaps() const {
return mipmaps;
}
int Image::get_mipmap_count() const {
if (mipmaps) {
return get_image_required_mipmaps(width, height, format);
} else {
return 0;
}
}
//using template generates perfectly optimized code due to constant expression reduction and unused variable removal present in all compilers
template <uint32_t read_bytes, bool read_alpha, uint32_t write_bytes, bool write_alpha, bool read_gray, bool write_gray>
static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p_dst) {
uint32_t max_bytes = MAX(read_bytes, write_bytes);
for (int y = 0; y < p_height; y++) {
for (int x = 0; x < p_width; x++) {
const uint8_t *rofs = &p_src[((y * p_width) + x) * (read_bytes + (read_alpha ? 1 : 0))];
uint8_t *wofs = &p_dst[((y * p_width) + x) * (write_bytes + (write_alpha ? 1 : 0))];
uint8_t rgba[4] = { 0, 0, 0, 255 };
if constexpr (read_gray) {
rgba[0] = rofs[0];
rgba[1] = rofs[0];
rgba[2] = rofs[0];
} else {
for (uint32_t i = 0; i < max_bytes; i++) {
rgba[i] = (i < read_bytes) ? rofs[i] : 0;
}
}
if constexpr (read_alpha || write_alpha) {
rgba[3] = read_alpha ? rofs[read_bytes] : 255;
}
if constexpr (write_gray) {
//TODO: not correct grayscale, should use fixed point version of actual weights
wofs[0] = uint8_t((uint16_t(rgba[0]) + uint16_t(rgba[1]) + uint16_t(rgba[2])) / 3);
} else {
for (uint32_t i = 0; i < write_bytes; i++) {
wofs[i] = rgba[i];
}
}
if constexpr (write_alpha) {
wofs[write_bytes] = rgba[3];
}
}
}
}
void Image::convert(Format p_new_format) {
if (data.size() == 0) {
return;
}
if (p_new_format == format) {
return;
}
if (format > FORMAT_RGBE9995 || p_new_format > FORMAT_RGBE9995) {
ERR_FAIL_MSG("Cannot convert to <-> from compressed formats. Use compress() and decompress() instead.");
} else if (format > FORMAT_RGBA8 || p_new_format > FORMAT_RGBA8) {
//use put/set pixel which is slower but works with non byte formats
Image new_img(width, height, false, p_new_format);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
new_img.set_pixel(i, j, get_pixel(i, j));
}
}
if (has_mipmaps()) {
new_img.generate_mipmaps();
}
_copy_internals_from(new_img);
return;
}
Image new_img(width, height, false, p_new_format);
const uint8_t *rptr = data.ptr();
uint8_t *wptr = new_img.data.ptrw();
int conversion_type = format | p_new_format << 8;
switch (conversion_type) {
case FORMAT_L8 | (FORMAT_LA8 << 8):
_convert<1, false, 1, true, true, true>(width, height, rptr, wptr);
break;
case FORMAT_L8 | (FORMAT_R8 << 8):
_convert<1, false, 1, false, true, false>(width, height, rptr, wptr);
break;
case FORMAT_L8 | (FORMAT_RG8 << 8):
_convert<1, false, 2, false, true, false>(width, height, rptr, wptr);
break;
case FORMAT_L8 | (FORMAT_RGB8 << 8):
_convert<1, false, 3, false, true, false>(width, height, rptr, wptr);
break;
case FORMAT_L8 | (FORMAT_RGBA8 << 8):
_convert<1, false, 3, true, true, false>(width, height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_L8 << 8):
_convert<1, true, 1, false, true, true>(width, height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_R8 << 8):
_convert<1, true, 1, false, true, false>(width, height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_RG8 << 8):
_convert<1, true, 2, false, true, false>(width, height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_RGB8 << 8):
_convert<1, true, 3, false, true, false>(width, height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_RGBA8 << 8):
_convert<1, true, 3, true, true, false>(width, height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_L8 << 8):
_convert<1, false, 1, false, false, true>(width, height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_LA8 << 8):
_convert<1, false, 1, true, false, true>(width, height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_RG8 << 8):
_convert<1, false, 2, false, false, false>(width, height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_RGB8 << 8):
_convert<1, false, 3, false, false, false>(width, height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_RGBA8 << 8):
_convert<1, false, 3, true, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_L8 << 8):
_convert<2, false, 1, false, false, true>(width, height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_LA8 << 8):
_convert<2, false, 1, true, false, true>(width, height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_R8 << 8):
_convert<2, false, 1, false, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_RGB8 << 8):
_convert<2, false, 3, false, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_RGBA8 << 8):
_convert<2, false, 3, true, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_L8 << 8):
_convert<3, false, 1, false, false, true>(width, height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_LA8 << 8):
_convert<3, false, 1, true, false, true>(width, height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_R8 << 8):
_convert<3, false, 1, false, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_RG8 << 8):
_convert<3, false, 2, false, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_RGBA8 << 8):
_convert<3, false, 3, true, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_L8 << 8):
_convert<3, true, 1, false, false, true>(width, height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_LA8 << 8):
_convert<3, true, 1, true, false, true>(width, height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_R8 << 8):
_convert<3, true, 1, false, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_RG8 << 8):
_convert<3, true, 2, false, false, false>(width, height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_RGB8 << 8):
_convert<3, true, 3, false, false, false>(width, height, rptr, wptr);
break;
}
bool gen_mipmaps = mipmaps;
_copy_internals_from(new_img);
if (gen_mipmaps) {
generate_mipmaps();
}
}
Image::Format Image::get_format() const {
return format;
}
static double _bicubic_interp_kernel(double x) {
x = ABS(x);
double bc = 0;
if (x <= 1) {
bc = (1.5 * x - 2.5) * x * x + 1;
} else if (x < 2) {
bc = ((-0.5 * x + 2.5) * x - 4) * x + 2;
}
return bc;
}
template <int CC, class T>
static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
// get source image size
int width = p_src_width;
int height = p_src_height;
double xfac = (double)width / p_dst_width;
double yfac = (double)height / p_dst_height;
// coordinates of source points and coefficients
double ox, oy, dx, dy;
int ox1, oy1, ox2, oy2;
// destination pixel values
// width and height decreased by 1
int ymax = height - 1;
int xmax = width - 1;
// temporary pointer
for (uint32_t y = 0; y < p_dst_height; y++) {
// Y coordinates
oy = (double)y * yfac - 0.5f;
oy1 = (int)oy;
dy = oy - (double)oy1;
for (uint32_t x = 0; x < p_dst_width; x++) {
// X coordinates
ox = (double)x * xfac - 0.5f;
ox1 = (int)ox;
dx = ox - (double)ox1;
// initial pixel value
T *__restrict dst = ((T *)p_dst) + (y * p_dst_width + x) * CC;
double color[CC];
for (int i = 0; i < CC; i++) {
color[i] = 0;
}
for (int n = -1; n < 3; n++) {
// get Y coefficient
[[maybe_unused]] double k1 = _bicubic_interp_kernel(dy - (double)n);
oy2 = oy1 + n;
if (oy2 < 0) {
oy2 = 0;
}
if (oy2 > ymax) {
oy2 = ymax;
}
for (int m = -1; m < 3; m++) {
// get X coefficient
[[maybe_unused]] double k2 = k1 * _bicubic_interp_kernel((double)m - dx);
ox2 = ox1 + m;
if (ox2 < 0) {
ox2 = 0;
}
if (ox2 > xmax) {
ox2 = xmax;
}
// get pixel of original image
const T *__restrict p = ((T *)p_src) + (oy2 * p_src_width + ox2) * CC;
for (int i = 0; i < CC; i++) {
if constexpr (sizeof(T) == 2) { //half float
color[i] = Math::half_to_float(p[i]);
} else {
color[i] += p[i] * k2;
}
}
}
}
for (int i = 0; i < CC; i++) {
if constexpr (sizeof(T) == 1) { //byte
dst[i] = CLAMP(Math::fast_ftoi(color[i]), 0, 255);
} else if constexpr (sizeof(T) == 2) { //half float
dst[i] = Math::make_half_float(color[i]);
} else {
dst[i] = color[i];
}
}
}
}
}
template <int CC, class T>
static void _scale_bilinear(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
enum {
FRAC_BITS = 8,
FRAC_LEN = (1 << FRAC_BITS),
FRAC_HALF = (FRAC_LEN >> 1),
FRAC_MASK = FRAC_LEN - 1
};
for (uint32_t i = 0; i < p_dst_height; i++) {
// Add 0.5 in order to interpolate based on pixel center
uint32_t src_yofs_up_fp = (i + 0.5) * p_src_height * FRAC_LEN / p_dst_height;
// Calculate nearest src pixel center above current, and truncate to get y index
uint32_t src_yofs_up = src_yofs_up_fp >= FRAC_HALF ? (src_yofs_up_fp - FRAC_HALF) >> FRAC_BITS : 0;
uint32_t src_yofs_down = (src_yofs_up_fp + FRAC_HALF) >> FRAC_BITS;
if (src_yofs_down >= p_src_height) {
src_yofs_down = p_src_height - 1;
}
// Calculate distance to pixel center of src_yofs_up
uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK;
src_yofs_frac = src_yofs_frac >= FRAC_HALF ? src_yofs_frac - FRAC_HALF : src_yofs_frac + FRAC_HALF;
uint32_t y_ofs_up = src_yofs_up * p_src_width * CC;
uint32_t y_ofs_down = src_yofs_down * p_src_width * CC;
for (uint32_t j = 0; j < p_dst_width; j++) {
uint32_t src_xofs_left_fp = (j + 0.5) * p_src_width * FRAC_LEN / p_dst_width;
uint32_t src_xofs_left = src_xofs_left_fp >= FRAC_HALF ? (src_xofs_left_fp - FRAC_HALF) >> FRAC_BITS : 0;
uint32_t src_xofs_right = (src_xofs_left_fp + FRAC_HALF) >> FRAC_BITS;
if (src_xofs_right >= p_src_width) {
src_xofs_right = p_src_width - 1;
}
uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK;
src_xofs_frac = src_xofs_frac >= FRAC_HALF ? src_xofs_frac - FRAC_HALF : src_xofs_frac + FRAC_HALF;
src_xofs_left *= CC;
src_xofs_right *= CC;
for (uint32_t l = 0; l < CC; l++) {
if constexpr (sizeof(T) == 1) { //uint8
uint32_t p00 = p_src[y_ofs_up + src_xofs_left + l] << FRAC_BITS;
uint32_t p10 = p_src[y_ofs_up + src_xofs_right + l] << FRAC_BITS;
uint32_t p01 = p_src[y_ofs_down + src_xofs_left + l] << FRAC_BITS;
uint32_t p11 = p_src[y_ofs_down + src_xofs_right + l] << FRAC_BITS;
uint32_t interp_up = p00 + (((p10 - p00) * src_xofs_frac) >> FRAC_BITS);
uint32_t interp_down = p01 + (((p11 - p01) * src_xofs_frac) >> FRAC_BITS);
uint32_t interp = interp_up + (((interp_down - interp_up) * src_yofs_frac) >> FRAC_BITS);
interp >>= FRAC_BITS;
p_dst[i * p_dst_width * CC + j * CC + l] = uint8_t(interp);
} else if constexpr (sizeof(T) == 2) { //half float
float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS);
float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS);
const T *src = ((const T *)p_src);
T *dst = ((T *)p_dst);
float p00 = Math::half_to_float(src[y_ofs_up + src_xofs_left + l]);
float p10 = Math::half_to_float(src[y_ofs_up + src_xofs_right + l]);
float p01 = Math::half_to_float(src[y_ofs_down + src_xofs_left + l]);
float p11 = Math::half_to_float(src[y_ofs_down + src_xofs_right + l]);
float interp_up = p00 + (p10 - p00) * xofs_frac;
float interp_down = p01 + (p11 - p01) * xofs_frac;
float interp = interp_up + ((interp_down - interp_up) * yofs_frac);
dst[i * p_dst_width * CC + j * CC + l] = Math::make_half_float(interp);
} else if constexpr (sizeof(T) == 4) { //float
float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS);
float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS);
const T *src = ((const T *)p_src);
T *dst = ((T *)p_dst);
float p00 = src[y_ofs_up + src_xofs_left + l];
float p10 = src[y_ofs_up + src_xofs_right + l];
float p01 = src[y_ofs_down + src_xofs_left + l];
float p11 = src[y_ofs_down + src_xofs_right + l];
float interp_up = p00 + (p10 - p00) * xofs_frac;
float interp_down = p01 + (p11 - p01) * xofs_frac;
float interp = interp_up + ((interp_down - interp_up) * yofs_frac);
dst[i * p_dst_width * CC + j * CC + l] = interp;
}
}
}
}
}
template <int CC, class T>
static void _scale_nearest(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
for (uint32_t i = 0; i < p_dst_height; i++) {
uint32_t src_yofs = i * p_src_height / p_dst_height;
uint32_t y_ofs = src_yofs * p_src_width * CC;
for (uint32_t j = 0; j < p_dst_width; j++) {
uint32_t src_xofs = j * p_src_width / p_dst_width;
src_xofs *= CC;
for (uint32_t l = 0; l < CC; l++) {
const T *src = ((const T *)p_src);
T *dst = ((T *)p_dst);
T p = src[y_ofs + src_xofs + l];
dst[i * p_dst_width * CC + j * CC + l] = p;
}
}
}
}
#define LANCZOS_TYPE 3
static float _lanczos(float p_x) {
return Math::abs(p_x) >= LANCZOS_TYPE ? 0 : Math::sincn(p_x) * Math::sincn(p_x / LANCZOS_TYPE);
}
template <int CC, class T>
static void _scale_lanczos(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
int32_t src_width = p_src_width;
int32_t src_height = p_src_height;
int32_t dst_height = p_dst_height;
int32_t dst_width = p_dst_width;
uint32_t buffer_size = src_height * dst_width * CC;
float *buffer = memnew_arr(float, buffer_size); // Store the first pass in a buffer
{ // FIRST PASS (horizontal)
float x_scale = float(src_width) / float(dst_width);
float scale_factor = MAX(x_scale, 1); // A larger kernel is required only when downscaling
int32_t half_kernel = LANCZOS_TYPE * scale_factor;
float *kernel = memnew_arr(float, half_kernel * 2);
for (int32_t buffer_x = 0; buffer_x < dst_width; buffer_x++) {
// The corresponding point on the source image
float src_x = (buffer_x + 0.5f) * x_scale; // Offset by 0.5 so it uses the pixel's center
int32_t start_x = MAX(0, int32_t(src_x) - half_kernel + 1);
int32_t end_x = MIN(src_width - 1, int32_t(src_x) + half_kernel);
// Create the kernel used by all the pixels of the column
for (int32_t target_x = start_x; target_x <= end_x; target_x++) {
kernel[target_x - start_x] = _lanczos((target_x + 0.5f - src_x) / scale_factor);
}
for (int32_t buffer_y = 0; buffer_y < src_height; buffer_y++) {
float pixel[CC] = { 0 };
float weight = 0;
for (int32_t target_x = start_x; target_x <= end_x; target_x++) {
float lanczos_val = kernel[target_x - start_x];
weight += lanczos_val;
const T *__restrict src_data = ((const T *)p_src) + (buffer_y * src_width + target_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
if constexpr (sizeof(T) == 2) { //half float
pixel[i] += Math::half_to_float(src_data[i]) * lanczos_val;
} else {
pixel[i] += src_data[i] * lanczos_val;
}
}
}
float *dst_data = ((float *)buffer) + (buffer_y * dst_width + buffer_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
dst_data[i] = pixel[i] / weight; // Normalize the sum of all the samples
}
}
}
memdelete_arr(kernel);
} // End of first pass
{ // SECOND PASS (vertical + result)
float y_scale = float(src_height) / float(dst_height);
float scale_factor = MAX(y_scale, 1);
int32_t half_kernel = LANCZOS_TYPE * scale_factor;
float *kernel = memnew_arr(float, half_kernel * 2);
for (int32_t dst_y = 0; dst_y < dst_height; dst_y++) {
float buffer_y = (dst_y + 0.5f) * y_scale;
int32_t start_y = MAX(0, int32_t(buffer_y) - half_kernel + 1);
int32_t end_y = MIN(src_height - 1, int32_t(buffer_y) + half_kernel);
for (int32_t target_y = start_y; target_y <= end_y; target_y++) {
kernel[target_y - start_y] = _lanczos((target_y + 0.5f - buffer_y) / scale_factor);
}
for (int32_t dst_x = 0; dst_x < dst_width; dst_x++) {
float pixel[CC] = { 0 };
float weight = 0;
for (int32_t target_y = start_y; target_y <= end_y; target_y++) {
float lanczos_val = kernel[target_y - start_y];
weight += lanczos_val;
float *buffer_data = ((float *)buffer) + (target_y * dst_width + dst_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
pixel[i] += buffer_data[i] * lanczos_val;
}
}
T *dst_data = ((T *)p_dst) + (dst_y * dst_width + dst_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
pixel[i] /= weight;
if constexpr (sizeof(T) == 1) { //byte
dst_data[i] = CLAMP(Math::fast_ftoi(pixel[i]), 0, 255);
} else if constexpr (sizeof(T) == 2) { //half float
dst_data[i] = Math::make_half_float(pixel[i]);
} else { // float
dst_data[i] = pixel[i];
}
}
}
}
memdelete_arr(kernel);
} // End of second pass
memdelete_arr(buffer);
}
static void _overlay(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, float p_alpha, uint32_t p_width, uint32_t p_height, uint32_t p_pixel_size) {
uint16_t alpha = MIN((uint16_t)(p_alpha * 256.0f), 256);
for (uint32_t i = 0; i < p_width * p_height * p_pixel_size; i++) {
p_dst[i] = (p_dst[i] * (256 - alpha) + p_src[i] * alpha) >> 8;
}
}
bool Image::is_size_po2() const {
return uint32_t(width) == next_power_of_2(width) && uint32_t(height) == next_power_of_2(height);
}
void Image::resize_to_po2(bool p_square, Interpolation p_interpolation) {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot resize in compressed or custom image formats.");
int w = next_power_of_2(width);
int h = next_power_of_2(height);
if (p_square) {
w = h = MAX(w, h);
}
if (w == width && h == height) {
if (!p_square || w == h) {
return; //nothing to do
}
}
resize(w, h, p_interpolation);
}
void Image::resize(int p_width, int p_height, Interpolation p_interpolation) {
ERR_FAIL_COND_MSG(data.size() == 0, "Cannot resize image before creating it, use set_data() first.");
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot resize in compressed or custom image formats.");
bool mipmap_aware = p_interpolation == INTERPOLATE_TRILINEAR /* || p_interpolation == INTERPOLATE_TRICUBIC */;
ERR_FAIL_COND_MSG(p_width <= 0, "Image width must be greater than 0.");
ERR_FAIL_COND_MSG(p_height <= 0, "Image height must be greater than 0.");
ERR_FAIL_COND_MSG(p_width > MAX_WIDTH, "Image width cannot be greater than " + itos(MAX_WIDTH) + ".");
ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT, "Image height cannot be greater than " + itos(MAX_HEIGHT) + ".");
ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS, "Too many pixels for image, maximum is " + itos(MAX_PIXELS));
if (p_width == width && p_height == height) {
return;
}
Image dst(p_width, p_height, false, format);
// Setup mipmap-aware scaling
Image dst2;
int mip1 = 0;
int mip2 = 0;
float mip1_weight = 0;
if (mipmap_aware) {
float avg_scale = ((float)p_width / width + (float)p_height / height) * 0.5f;
if (avg_scale >= 1.0f) {
mipmap_aware = false;
} else {
float level = Math::log(1.0f / avg_scale) / Math::log(2.0f);
mip1 = CLAMP((int)Math::floor(level), 0, get_mipmap_count());
mip2 = CLAMP((int)Math::ceil(level), 0, get_mipmap_count());
mip1_weight = 1.0f - (level - mip1);
}
}
bool interpolate_mipmaps = mipmap_aware && mip1 != mip2;
if (interpolate_mipmaps) {
dst2.initialize_data(p_width, p_height, false, format);
}
bool had_mipmaps = mipmaps;
if (interpolate_mipmaps && !had_mipmaps) {
generate_mipmaps();
}
// --
const uint8_t *r = data.ptr();
const unsigned char *r_ptr = r;
uint8_t *w = dst.data.ptrw();
unsigned char *w_ptr = w;
switch (p_interpolation) {
case INTERPOLATE_NEAREST: {
if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
switch (get_format_pixel_size(format)) {
case 1:
_scale_nearest<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 2:
_scale_nearest<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 3:
_scale_nearest<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_nearest<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
switch (get_format_pixel_size(format)) {
case 4:
_scale_nearest<1, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_nearest<2, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 12:
_scale_nearest<3, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 16:
_scale_nearest<4, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
switch (get_format_pixel_size(format)) {
case 2:
_scale_nearest<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_nearest<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 6:
_scale_nearest<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_nearest<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
}
} break;
case INTERPOLATE_BILINEAR:
case INTERPOLATE_TRILINEAR: {
for (int i = 0; i < 2; ++i) {
int src_width;
int src_height;
const unsigned char *src_ptr;
if (!mipmap_aware) {
if (i == 0) {
// Standard behavior
src_width = width;
src_height = height;
src_ptr = r_ptr;
} else {
// No need for a second iteration
break;
}
} else {
if (i == 0) {
// Read from the first mipmap that will be interpolated
// (if both levels are the same, we will not interpolate, but at least we'll sample from the right level)
int offs;
_get_mipmap_offset_and_size(mip1, offs, src_width, src_height);
src_ptr = r_ptr + offs;
} else if (!interpolate_mipmaps) {
// No need generate a second image
break;
} else {
// Switch to read from the second mipmap that will be interpolated
int offs;
_get_mipmap_offset_and_size(mip2, offs, src_width, src_height);
src_ptr = r_ptr + offs;
// Switch to write to the second destination image
w = dst2.data.ptrw();
w_ptr = w;
}
}
if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
switch (get_format_pixel_size(format)) {
case 1:
_scale_bilinear<1, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 2:
_scale_bilinear<2, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 3:
_scale_bilinear<3, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 4:
_scale_bilinear<4, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
switch (get_format_pixel_size(format)) {
case 4:
_scale_bilinear<1, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 8:
_scale_bilinear<2, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 12:
_scale_bilinear<3, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 16:
_scale_bilinear<4, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
switch (get_format_pixel_size(format)) {
case 2:
_scale_bilinear<1, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 4:
_scale_bilinear<2, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 6:
_scale_bilinear<3, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 8:
_scale_bilinear<4, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
}
}
}
if (interpolate_mipmaps) {
// Switch to read again from the first scaled mipmap to overlay it over the second
r = dst.data.ptr();
_overlay(r, w, mip1_weight, p_width, p_height, get_format_pixel_size(format));
}
} break;
case INTERPOLATE_CUBIC: {
if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
switch (get_format_pixel_size(format)) {
case 1:
_scale_cubic<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 2:
_scale_cubic<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 3:
_scale_cubic<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_cubic<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
switch (get_format_pixel_size(format)) {
case 4:
_scale_cubic<1, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_cubic<2, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 12:
_scale_cubic<3, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 16:
_scale_cubic<4, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
switch (get_format_pixel_size(format)) {
case 2:
_scale_cubic<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_cubic<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 6:
_scale_cubic<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_cubic<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
}
} break;
case INTERPOLATE_LANCZOS: {
if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
switch (get_format_pixel_size(format)) {
case 1:
_scale_lanczos<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 2:
_scale_lanczos<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 3:
_scale_lanczos<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_lanczos<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
switch (get_format_pixel_size(format)) {
case 4:
_scale_lanczos<1, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_lanczos<2, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 12:
_scale_lanczos<3, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 16:
_scale_lanczos<4, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
switch (get_format_pixel_size(format)) {
case 2:
_scale_lanczos<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_lanczos<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 6:
_scale_lanczos<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_lanczos<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
}
} break;
}
if (interpolate_mipmaps) {
dst._copy_internals_from(dst2);
}
if (had_mipmaps) {
dst.generate_mipmaps();
}
_copy_internals_from(dst);
}
void Image::crop_from_point(int p_x, int p_y, int p_width, int p_height) {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot crop in compressed or custom image formats.");
ERR_FAIL_COND_MSG(p_x < 0, "Start x position cannot be smaller than 0.");
ERR_FAIL_COND_MSG(p_y < 0, "Start y position cannot be smaller than 0.");
ERR_FAIL_COND_MSG(p_width <= 0, "Width of image must be greater than 0.");
ERR_FAIL_COND_MSG(p_height <= 0, "Height of image must be greater than 0.");
ERR_FAIL_COND_MSG(p_x + p_width > MAX_WIDTH, "End x position cannot be greater than " + itos(MAX_WIDTH) + ".");
ERR_FAIL_COND_MSG(p_y + p_height > MAX_HEIGHT, "End y position cannot be greater than " + itos(MAX_HEIGHT) + ".");
/* to save memory, cropping should be done in-place, however, since this function
will most likely either not be used much, or in critical areas, for now it won't, because
it's a waste of time. */
if (p_width == width && p_height == height && p_x == 0 && p_y == 0) {
return;
}
uint8_t pdata[16]; //largest is 16
uint32_t pixel_size = get_format_pixel_size(format);
Image dst(p_width, p_height, false, format);
{
const uint8_t *r = data.ptr();
uint8_t *w = dst.data.ptrw();
int m_h = p_y + p_height;
int m_w = p_x + p_width;
for (int y = p_y; y < m_h; y++) {
for (int x = p_x; x < m_w; x++) {
if ((x >= width || y >= height)) {
for (uint32_t i = 0; i < pixel_size; i++) {
pdata[i] = 0;
}
} else {
_get_pixelb(x, y, pixel_size, r, pdata);
}
dst._put_pixelb(x - p_x, y - p_y, pixel_size, w, pdata);
}
}
}
if (has_mipmaps()) {
dst.generate_mipmaps();
}
_copy_internals_from(dst);
}
void Image::crop(int p_width, int p_height) {
crop_from_point(0, 0, p_width, p_height);
}
void Image::rotate_90(ClockDirection p_direction) {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot rotate in compressed or custom image formats.");
ERR_FAIL_COND_MSG(width <= 0, "The Image width specified (" + itos(width) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(height <= 0, "The Image height specified (" + itos(height) + " pixels) must be greater than 0 pixels.");
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
// In-place 90 degrees rotation by following the permutation cycles.
{
// Explanation by example (clockwise):
//
// abc da
// def -> eb
// fc
//
// In memory:
// 012345 012345
// abcdef -> daebfc
//
// Permutation cycles:
// (0 --a--> 1 --b--> 3 --d--> 0)
// (2 --c--> 5 --f--> 4 --e--> 2)
//
// Applying cycles (backwards):
// 0->s s=a (store)
// 3->0 abcdef -> dbcdef
// 1->3 dbcdef -> dbcbef
// s->1 dbcbef -> dacbef
//
// 2->s s=c
// 4->2 dacbef -> daebef
// 5->4 daebef -> daebff
// s->5 daebff -> daebfc
const int w = width;
const int h = height;
const int size = w * h;
uint8_t *data_ptr = data.ptrw();
uint32_t pixel_size = get_format_pixel_size(format);
uint8_t single_pixel_buffer[16];
#define PREV_INDEX_IN_CYCLE(index) (p_direction == CLOCKWISE) ? ((h - 1 - (index % h)) * w + (index / h)) : ((index % h) * w + (w - 1 - (index / h)))
if (w == h) { // Square case, 4-length cycles only (plus irrelevant thus skipped 1-length cycle in the middle for odd-sized squares).
for (int y = 0; y < h / 2; y++) {
for (int x = 0; x < (w + 1) / 2; x++) {
int current = y * w + x;
memcpy(single_pixel_buffer, data_ptr + current * pixel_size, pixel_size);
for (int i = 0; i < 3; i++) {
int prev = PREV_INDEX_IN_CYCLE(current);
memcpy(data_ptr + current * pixel_size, data_ptr + prev * pixel_size, pixel_size);
current = prev;
}
memcpy(data_ptr + current * pixel_size, single_pixel_buffer, pixel_size);
}
}
} else { // Rectangular case (w != h), kinda unpredictable cycles.
int permuted_pixels_count = 0;
for (int i = 0; i < size; i++) {
int prev = PREV_INDEX_IN_CYCLE(i);
if (prev == i) {
// 1-length cycle, pixel remains at the same index.
permuted_pixels_count++;
continue;
}
// Check whether we already processed this cycle.
// We iterate over it and if we'll find an index smaller than `i` then we already
// processed this cycle because we always start at the smallest index in the cycle.
// TODO: Improve this naive approach, can be done better.
while (prev > i) {
prev = PREV_INDEX_IN_CYCLE(prev);
}
if (prev < i) {
continue;
}
// Save the in-cycle pixel with the smallest index (`i`).
memcpy(single_pixel_buffer, data_ptr + i * pixel_size, pixel_size);
// Overwrite pixels one by one by the preceding pixel in the cycle.
int current = i;
prev = PREV_INDEX_IN_CYCLE(current);
while (prev != i) {
memcpy(data_ptr + current * pixel_size, data_ptr + prev * pixel_size, pixel_size);
permuted_pixels_count++;
current = prev;
prev = PREV_INDEX_IN_CYCLE(current);
};
// Overwrite the remaining pixel in the cycle by the saved pixel with the smallest index.
memcpy(data_ptr + current * pixel_size, single_pixel_buffer, pixel_size);
permuted_pixels_count++;
if (permuted_pixels_count == size) {
break;
}
}
width = h;
height = w;
}
#undef PREV_INDEX_IN_CYCLE
}
if (used_mipmaps) {
generate_mipmaps();
}
}
void Image::rotate_180() {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot rotate in compressed or custom image formats.");
ERR_FAIL_COND_MSG(width <= 0, "The Image width specified (" + itos(width) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(height <= 0, "The Image height specified (" + itos(height) + " pixels) must be greater than 0 pixels.");
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
{
uint8_t *data_ptr = data.ptrw();
uint32_t pixel_size = get_format_pixel_size(format);
uint8_t single_pixel_buffer[16];
uint8_t *from_begin_ptr = data_ptr;
uint8_t *from_end_ptr = data_ptr + (width * height - 1) * pixel_size;
while (from_begin_ptr < from_end_ptr) {
memcpy(single_pixel_buffer, from_begin_ptr, pixel_size);
memcpy(from_begin_ptr, from_end_ptr, pixel_size);
memcpy(from_end_ptr, single_pixel_buffer, pixel_size);
from_begin_ptr += pixel_size;
from_end_ptr -= pixel_size;
}
}
if (used_mipmaps) {
generate_mipmaps();
}
}
void Image::flip_y() {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot flip_y in compressed or custom image formats.");
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
{
uint8_t *w = data.ptrw();
uint8_t up[16];
uint8_t down[16];
uint32_t pixel_size = get_format_pixel_size(format);
for (int y = 0; y < height / 2; y++) {
for (int x = 0; x < width; x++) {
_get_pixelb(x, y, pixel_size, w, up);
_get_pixelb(x, height - y - 1, pixel_size, w, down);
_put_pixelb(x, height - y - 1, pixel_size, w, up);
_put_pixelb(x, y, pixel_size, w, down);
}
}
}
if (used_mipmaps) {
generate_mipmaps();
}
}
void Image::flip_x() {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot flip_x in compressed or custom image formats.");
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
{
uint8_t *w = data.ptrw();
uint8_t up[16];
uint8_t down[16];
uint32_t pixel_size = get_format_pixel_size(format);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width / 2; x++) {
_get_pixelb(x, y, pixel_size, w, up);
_get_pixelb(width - x - 1, y, pixel_size, w, down);
_put_pixelb(width - x - 1, y, pixel_size, w, up);
_put_pixelb(x, y, pixel_size, w, down);
}
}
}
if (used_mipmaps) {
generate_mipmaps();
}
}
/// Get mipmap size and offset.
int Image::_get_dst_image_size(int p_width, int p_height, Format p_format, int &r_mipmaps, int p_mipmaps, int *r_mm_width, int *r_mm_height) {
// Data offset in mipmaps (including the original texture).
int size = 0;
int w = p_width;
int h = p_height;
// Current mipmap index in the loop below. p_mipmaps is the target mipmap index.
// In this function, mipmap 0 represents the first mipmap instead of the original texture.
int mm = 0;
int pixsize = get_format_pixel_size(p_format);
int pixshift = get_format_pixel_rshift(p_format);
int block = get_format_block_size(p_format);
// Technically, you can still compress up to 1 px no matter the format, so commenting this.
//int minw, minh;
//get_format_min_pixel_size(p_format, minw, minh);
int minw = 1, minh = 1;
while (true) {
int bw = w % block != 0 ? w + (block - w % block) : w;
int bh = h % block != 0 ? h + (block - h % block) : h;
int s = bw * bh;
s *= pixsize;
s >>= pixshift;
size += s;
if (p_mipmaps >= 0) {
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
} else {
if (w == minw && h == minh) {
break;
}
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
}
// Set mipmap size.
if (r_mm_width) {
*r_mm_width = w;
}
if (r_mm_height) {
*r_mm_height = h;
}
// Reach target mipmap.
if (p_mipmaps >= 0 && mm == p_mipmaps) {
break;
}
mm++;
}
r_mipmaps = mm;
return size;
}
bool Image::_can_modify(Format p_format) const {
return p_format <= FORMAT_RGBE9995;
}
template <class Component, int CC, bool renormalize,
void (*average_func)(Component &, const Component &, const Component &, const Component &, const Component &),
void (*renormalize_func)(Component *)>
static void _generate_po2_mipmap(const Component *p_src, Component *p_dst, uint32_t p_width, uint32_t p_height) {
//fast power of 2 mipmap generation
uint32_t dst_w = MAX(p_width >> 1, 1u);
uint32_t dst_h = MAX(p_height >> 1, 1u);
int right_step = (p_width == 1) ? 0 : CC;
int down_step = (p_height == 1) ? 0 : (p_width * CC);
for (uint32_t i = 0; i < dst_h; i++) {
const Component *rup_ptr = &p_src[i * 2 * down_step];
const Component *rdown_ptr = rup_ptr + down_step;
Component *dst_ptr = &p_dst[i * dst_w * CC];
uint32_t count = dst_w;
while (count) {
count--;
for (int j = 0; j < CC; j++) {
average_func(dst_ptr[j], rup_ptr[j], rup_ptr[j + right_step], rdown_ptr[j], rdown_ptr[j + right_step]);
}
if (renormalize) {
renormalize_func(dst_ptr);
}
dst_ptr += CC;
rup_ptr += right_step * 2;
rdown_ptr += right_step * 2;
}
}
}
void Image::shrink_x2() {
ERR_FAIL_COND(data.size() == 0);
if (mipmaps) {
//just use the lower mipmap as base and copy all
Vector<uint8_t> new_img;
int ofs = get_mipmap_offset(1);
int new_size = data.size() - ofs;
new_img.resize(new_size);
ERR_FAIL_COND(new_img.size() == 0);
{
uint8_t *w = new_img.ptrw();
const uint8_t *r = data.ptr();
memcpy(w, &r[ofs], new_size);
}
width = MAX(width / 2, 1);
height = MAX(height / 2, 1);
data = new_img;
} else {
Vector<uint8_t> new_img;
ERR_FAIL_COND(!_can_modify(format));
int ps = get_format_pixel_size(format);
new_img.resize((width / 2) * (height / 2) * ps);
ERR_FAIL_COND(new_img.size() == 0);
ERR_FAIL_COND(data.size() == 0);
{
uint8_t *w = new_img.ptrw();
const uint8_t *r = data.ptr();
switch (format) {
case FORMAT_L8:
case FORMAT_R8:
_generate_po2_mipmap<uint8_t, 1, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_LA8:
_generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_RG8:
_generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_RGB8:
_generate_po2_mipmap<uint8_t, 3, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_RGBA8:
_generate_po2_mipmap<uint8_t, 4, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_RF:
_generate_po2_mipmap<float, 1, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r), reinterpret_cast<float *>(w), width, height);
break;
case FORMAT_RGF:
_generate_po2_mipmap<float, 2, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r), reinterpret_cast<float *>(w), width, height);
break;
case FORMAT_RGBF:
_generate_po2_mipmap<float, 3, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r), reinterpret_cast<float *>(w), width, height);
break;
case FORMAT_RGBAF:
_generate_po2_mipmap<float, 4, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r), reinterpret_cast<float *>(w), width, height);
break;
case FORMAT_RH:
_generate_po2_mipmap<uint16_t, 1, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r), reinterpret_cast<uint16_t *>(w), width, height);
break;
case FORMAT_RGH:
_generate_po2_mipmap<uint16_t, 2, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r), reinterpret_cast<uint16_t *>(w), width, height);
break;
case FORMAT_RGBH:
_generate_po2_mipmap<uint16_t, 3, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r), reinterpret_cast<uint16_t *>(w), width, height);
break;
case FORMAT_RGBAH:
_generate_po2_mipmap<uint16_t, 4, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r), reinterpret_cast<uint16_t *>(w), width, height);
break;
case FORMAT_RGBE9995:
_generate_po2_mipmap<uint32_t, 1, false, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(r), reinterpret_cast<uint32_t *>(w), width, height);
break;
default: {
}
}
}
width /= 2;
height /= 2;
data = new_img;
}
}
void Image::normalize() {
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
Color c = get_pixel(x, y);
Vector3 v(c.r * 2.0 - 1.0, c.g * 2.0 - 1.0, c.b * 2.0 - 1.0);
v.normalize();
c.r = v.x * 0.5 + 0.5;
c.g = v.y * 0.5 + 0.5;
c.b = v.z * 0.5 + 0.5;
set_pixel(x, y, c);
}
}
if (used_mipmaps) {
generate_mipmaps(true);
}
}
Error Image::generate_mipmaps(bool p_renormalize) {
ERR_FAIL_COND_V_MSG(!_can_modify(format), ERR_UNAVAILABLE, "Cannot generate mipmaps in compressed or custom image formats.");
ERR_FAIL_COND_V_MSG(format == FORMAT_RGBA4444, ERR_UNAVAILABLE, "Cannot generate mipmaps from RGBA4444 format.");
ERR_FAIL_COND_V_MSG(width == 0 || height == 0, ERR_UNCONFIGURED, "Cannot generate mipmaps with width or height equal to 0.");
int mmcount;
int size = _get_dst_image_size(width, height, format, mmcount);
data.resize(size);
uint8_t *wp = data.ptrw();
int prev_ofs = 0;
int prev_h = height;
int prev_w = width;
for (int i = 1; i <= mmcount; i++) {
int ofs, w, h;
_get_mipmap_offset_and_size(i, ofs, w, h);
switch (format) {
case FORMAT_L8:
case FORMAT_R8:
_generate_po2_mipmap<uint8_t, 1, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
break;
case FORMAT_LA8:
case FORMAT_RG8:
_generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
break;
case FORMAT_RGB8:
if (p_renormalize) {
_generate_po2_mipmap<uint8_t, 3, true, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
} else {
_generate_po2_mipmap<uint8_t, 3, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
}
break;
case FORMAT_RGBA8:
if (p_renormalize) {
_generate_po2_mipmap<uint8_t, 4, true, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
} else {
_generate_po2_mipmap<uint8_t, 4, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
}
break;
case FORMAT_RF:
_generate_po2_mipmap<float, 1, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
break;
case FORMAT_RGF:
_generate_po2_mipmap<float, 2, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
break;
case FORMAT_RGBF:
if (p_renormalize) {
_generate_po2_mipmap<float, 3, true, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<float, 3, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
}
break;
case FORMAT_RGBAF:
if (p_renormalize) {
_generate_po2_mipmap<float, 4, true, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<float, 4, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
}
break;
case FORMAT_RH:
_generate_po2_mipmap<uint16_t, 1, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
break;
case FORMAT_RGH:
_generate_po2_mipmap<uint16_t, 2, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
break;
case FORMAT_RGBH:
if (p_renormalize) {
_generate_po2_mipmap<uint16_t, 3, true, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<uint16_t, 3, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
}
break;
case FORMAT_RGBAH:
if (p_renormalize) {
_generate_po2_mipmap<uint16_t, 4, true, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<uint16_t, 4, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
}
break;
case FORMAT_RGBE9995:
if (p_renormalize) {
_generate_po2_mipmap<uint32_t, 1, true, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(&wp[prev_ofs]), reinterpret_cast<uint32_t *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<uint32_t, 1, false, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(&wp[prev_ofs]), reinterpret_cast<uint32_t *>(&wp[ofs]), prev_w, prev_h);
}
break;
default: {
}
}
prev_ofs = ofs;
prev_w = w;
prev_h = h;
}
mipmaps = true;
return OK;
}
Error Image::generate_mipmap_roughness(RoughnessChannel p_roughness_channel, const Ref<Image> &p_normal_map) {
Vector<double> normal_sat_vec; //summed area table
double *normal_sat = nullptr; //summed area table for normal map
int normal_w = 0, normal_h = 0;
ERR_FAIL_COND_V_MSG(p_normal_map.is_null() || p_normal_map->is_empty(), ERR_INVALID_PARAMETER, "Must provide a valid normal map for roughness mipmaps");
Ref<Image> nm = p_normal_map->duplicate();
if (nm->is_compressed()) {
nm->decompress();
}
normal_w = nm->get_width();
normal_h = nm->get_height();
normal_sat_vec.resize(normal_w * normal_h * 3);
normal_sat = normal_sat_vec.ptrw();
//create summed area table
for (int y = 0; y < normal_h; y++) {
double line_sum[3] = { 0, 0, 0 };
for (int x = 0; x < normal_w; x++) {
double normal[3];
Color color = nm->get_pixel(x, y);
normal[0] = color.r * 2.0 - 1.0;
normal[1] = color.g * 2.0 - 1.0;
normal[2] = Math::sqrt(MAX(0.0, 1.0 - (normal[0] * normal[0] + normal[1] * normal[1]))); //reconstruct if missing
line_sum[0] += normal[0];
line_sum[1] += normal[1];
line_sum[2] += normal[2];
uint32_t ofs = (y * normal_w + x) * 3;
normal_sat[ofs + 0] = line_sum[0];
normal_sat[ofs + 1] = line_sum[1];
normal_sat[ofs + 2] = line_sum[2];
if (y > 0) {
uint32_t prev_ofs = ((y - 1) * normal_w + x) * 3;
normal_sat[ofs + 0] += normal_sat[prev_ofs + 0];
normal_sat[ofs + 1] += normal_sat[prev_ofs + 1];
normal_sat[ofs + 2] += normal_sat[prev_ofs + 2];
}
}
}
#if 0
{
Vector3 beg(normal_sat_vec[0], normal_sat_vec[1], normal_sat_vec[2]);
Vector3 end(normal_sat_vec[normal_sat_vec.size() - 3], normal_sat_vec[normal_sat_vec.size() - 2], normal_sat_vec[normal_sat_vec.size() - 1]);
Vector3 avg = (end - beg) / (normal_w * normal_h);
print_line("average: " + avg);
}
#endif
int mmcount;
_get_dst_image_size(width, height, format, mmcount);
uint8_t *base_ptr = data.ptrw();
for (int i = 1; i <= mmcount; i++) {
int ofs, w, h;
_get_mipmap_offset_and_size(i, ofs, w, h);
uint8_t *ptr = &base_ptr[ofs];
for (int x = 0; x < w; x++) {
for (int y = 0; y < h; y++) {
int from_x = x * normal_w / w;
int from_y = y * normal_h / h;
int to_x = (x + 1) * normal_w / w;
int to_y = (y + 1) * normal_h / h;
to_x = MIN(to_x - 1, normal_w);
to_y = MIN(to_y - 1, normal_h);
int size_x = (to_x - from_x) + 1;
int size_y = (to_y - from_y) + 1;
//summed area table version (much faster)
double avg[3] = { 0, 0, 0 };
if (from_x > 0 && from_y > 0) {
uint32_t tofs = ((from_y - 1) * normal_w + (from_x - 1)) * 3;
avg[0] += normal_sat[tofs + 0];
avg[1] += normal_sat[tofs + 1];
avg[2] += normal_sat[tofs + 2];
}
if (from_y > 0) {
uint32_t tofs = ((from_y - 1) * normal_w + to_x) * 3;
avg[0] -= normal_sat[tofs + 0];
avg[1] -= normal_sat[tofs + 1];
avg[2] -= normal_sat[tofs + 2];
}
if (from_x > 0) {
uint32_t tofs = (to_y * normal_w + (from_x - 1)) * 3;
avg[0] -= normal_sat[tofs + 0];
avg[1] -= normal_sat[tofs + 1];
avg[2] -= normal_sat[tofs + 2];
}
uint32_t tofs = (to_y * normal_w + to_x) * 3;
avg[0] += normal_sat[tofs + 0];
avg[1] += normal_sat[tofs + 1];
avg[2] += normal_sat[tofs + 2];
double div = double(size_x * size_y);
Vector3 vec(avg[0] / div, avg[1] / div, avg[2] / div);
float r = vec.length();
int pixel_ofs = y * w + x;
Color c = _get_color_at_ofs(ptr, pixel_ofs);
float roughness = 0;
switch (p_roughness_channel) {
case ROUGHNESS_CHANNEL_R: {
roughness = c.r;
} break;
case ROUGHNESS_CHANNEL_G: {
roughness = c.g;
} break;
case ROUGHNESS_CHANNEL_B: {
roughness = c.b;
} break;
case ROUGHNESS_CHANNEL_L: {
roughness = c.get_v();
} break;
case ROUGHNESS_CHANNEL_A: {
roughness = c.a;
} break;
}
float variance = 0;
if (r < 1.0f) {
float r2 = r * r;
float kappa = (3.0f * r - r * r2) / (1.0f - r2);
variance = 0.25f / kappa;
}
float threshold = 0.4;
roughness = Math::sqrt(roughness * roughness + MIN(3.0f * variance, threshold * threshold));
switch (p_roughness_channel) {
case ROUGHNESS_CHANNEL_R: {
c.r = roughness;
} break;
case ROUGHNESS_CHANNEL_G: {
c.g = roughness;
} break;
case ROUGHNESS_CHANNEL_B: {
c.b = roughness;
} break;
case ROUGHNESS_CHANNEL_L: {
c.r = roughness;
c.g = roughness;
c.b = roughness;
} break;
case ROUGHNESS_CHANNEL_A: {
c.a = roughness;
} break;
}
_set_color_at_ofs(ptr, pixel_ofs, c);
}
}
#if 0
{
int size = get_mipmap_byte_size(i);
print_line("size for mimpap " + itos(i) + ": " + itos(size));
Vector<uint8_t> imgdata;
imgdata.resize(size);
uint8_t* wr = imgdata.ptrw();
memcpy(wr.ptr(), ptr, size);
wr = uint8_t*();
Ref<Image> im = Image::create_from_data(w, h, false, format, imgdata);
im->save_png("res://mipmap_" + itos(i) + ".png");
}
#endif
}
return OK;
}
void Image::clear_mipmaps() {
if (!mipmaps) {
return;
}
if (is_empty()) {
return;
}
int ofs, w, h;
_get_mipmap_offset_and_size(1, ofs, w, h);
data.resize(ofs);
mipmaps = false;
}
bool Image::is_empty() const {
return (data.size() == 0);
}
Vector<uint8_t> Image::get_data() const {
return data;
}
Ref<Image> Image::create_empty(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {
Ref<Image> image;
image.instantiate();
image->initialize_data(p_width, p_height, p_use_mipmaps, p_format);
return image;
}
Ref<Image> Image::create_from_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector<uint8_t> &p_data) {
Ref<Image> image;
image.instantiate();
image->initialize_data(p_width, p_height, p_use_mipmaps, p_format, p_data);
return image;
}
void Image::set_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector<uint8_t> &p_data) {
initialize_data(p_width, p_height, p_use_mipmaps, p_format, p_data);
}
void Image::initialize_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {
ERR_FAIL_COND_MSG(p_width <= 0, "The Image width specified (" + itos(p_width) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(p_height <= 0, "The Image height specified (" + itos(p_height) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(p_width > MAX_WIDTH,
"The Image width specified (" + itos(p_width) + " pixels) cannot be greater than " + itos(MAX_WIDTH) + "pixels.");
ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT,
"The Image height specified (" + itos(p_height) + " pixels) cannot be greater than " + itos(MAX_HEIGHT) + "pixels.");
ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS,
"Too many pixels for Image. Maximum is " + itos(MAX_WIDTH) + "x" + itos(MAX_HEIGHT) + " = " + itos(MAX_PIXELS) + "pixels.");
ERR_FAIL_INDEX_MSG(p_format, FORMAT_MAX, "The Image format specified (" + itos(p_format) + ") is out of range. See Image's Format enum.");
int mm = 0;
int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0);
data.resize(size);
{
uint8_t *w = data.ptrw();
memset(w, 0, size);
}
width = p_width;
height = p_height;
mipmaps = p_use_mipmaps;
format = p_format;
}
void Image::initialize_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector<uint8_t> &p_data) {
ERR_FAIL_COND_MSG(p_width <= 0, "The Image width specified (" + itos(p_width) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(p_height <= 0, "The Image height specified (" + itos(p_height) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(p_width > MAX_WIDTH,
"The Image width specified (" + itos(p_width) + " pixels) cannot be greater than " + itos(MAX_WIDTH) + " pixels.");
ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT,
"The Image height specified (" + itos(p_height) + " pixels) cannot be greater than " + itos(MAX_HEIGHT) + " pixels.");
ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS,
"Too many pixels for Image. Maximum is " + itos(MAX_WIDTH) + "x" + itos(MAX_HEIGHT) + " = " + itos(MAX_PIXELS) + "pixels .");
ERR_FAIL_INDEX_MSG(p_format, FORMAT_MAX, "The Image format specified (" + itos(p_format) + ") is out of range. See Image's Format enum.");
int mm;
int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0);
if (unlikely(p_data.size() != size)) {
String description_mipmaps;
if (p_use_mipmaps) {
const int num_mipmaps = get_image_required_mipmaps(p_width, p_height, p_format);
if (num_mipmaps != 1) {
description_mipmaps = vformat("with %d mipmaps", num_mipmaps);
} else {
description_mipmaps = "with 1 mipmap";
}
} else {
description_mipmaps = "without mipmaps";
}
const String description = vformat("%dx%dx%d (%s)", p_width, p_height, get_format_pixel_size(p_format), description_mipmaps);
ERR_FAIL_MSG(vformat("Expected Image data size of %s = %d bytes, got %d bytes instead.", description, size, p_data.size()));
}
height = p_height;
width = p_width;
format = p_format;
data = p_data;
mipmaps = p_use_mipmaps;
}
void Image::initialize_data(const char **p_xpm) {
int size_width = 0;
int size_height = 0;
int pixelchars = 0;
mipmaps = false;
bool has_alpha = false;
enum Status {
READING_HEADER,
READING_COLORS,
READING_PIXELS,
DONE
};
Status status = READING_HEADER;
int line = 0;
HashMap<String, Color> colormap;
int colormap_size = 0;
uint32_t pixel_size = 0;
uint8_t *data_write = nullptr;
while (status != DONE) {
const char *line_ptr = p_xpm[line];
switch (status) {
case READING_HEADER: {
String line_str = line_ptr;
line_str.replace("\t", " ");
size_width = line_str.get_slicec(' ', 0).to_int();
size_height = line_str.get_slicec(' ', 1).to_int();
colormap_size = line_str.get_slicec(' ', 2).to_int();
pixelchars = line_str.get_slicec(' ', 3).to_int();
ERR_FAIL_COND(colormap_size > 32766);
ERR_FAIL_COND(pixelchars > 5);
ERR_FAIL_COND(size_width > 32767);
ERR_FAIL_COND(size_height > 32767);
status = READING_COLORS;
} break;
case READING_COLORS: {
String colorstring;
for (int i = 0; i < pixelchars; i++) {
colorstring += *line_ptr;
line_ptr++;
}
//skip spaces
while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) {
if (*line_ptr == 0) {
break;
}
line_ptr++;
}
if (*line_ptr == 'c') {
line_ptr++;
while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) {
if (*line_ptr == 0) {
break;
}
line_ptr++;
}
if (*line_ptr == '#') {
line_ptr++;
uint8_t col_r = 0;
uint8_t col_g = 0;
uint8_t col_b = 0;
//uint8_t col_a=255;
for (int i = 0; i < 6; i++) {
char v = line_ptr[i];
if (is_digit(v)) {
v -= '0';
} else if (v >= 'A' && v <= 'F') {
v = (v - 'A') + 10;
} else if (v >= 'a' && v <= 'f') {
v = (v - 'a') + 10;
} else {
break;
}
switch (i) {
case 0:
col_r = v << 4;
break;
case 1:
col_r |= v;
break;
case 2:
col_g = v << 4;
break;
case 3:
col_g |= v;
break;
case 4:
col_b = v << 4;
break;
case 5:
col_b |= v;
break;
}
}
// magenta mask
if (col_r == 255 && col_g == 0 && col_b == 255) {
colormap[colorstring] = Color(0, 0, 0, 0);
has_alpha = true;
} else {
colormap[colorstring] = Color(col_r / 255.0, col_g / 255.0, col_b / 255.0, 1.0);
}
}
}
if (line == colormap_size) {
status = READING_PIXELS;
initialize_data(size_width, size_height, false, has_alpha ? FORMAT_RGBA8 : FORMAT_RGB8);
data_write = data.ptrw();
pixel_size = has_alpha ? 4 : 3;
}
} break;
case READING_PIXELS: {
int y = line - colormap_size - 1;
for (int x = 0; x < size_width; x++) {
char pixelstr[6] = { 0, 0, 0, 0, 0, 0 };
for (int i = 0; i < pixelchars; i++) {
pixelstr[i] = line_ptr[x * pixelchars + i];
}
Color *colorptr = colormap.getptr(pixelstr);
ERR_FAIL_COND(!colorptr);
uint8_t pixel[4];
for (uint32_t i = 0; i < pixel_size; i++) {
pixel[i] = CLAMP((*colorptr)[i] * 255, 0, 255);
}
_put_pixelb(x, y, pixel_size, data_write, pixel);
}
if (y == (size_height - 1)) {
status = DONE;
}
} break;
default: {
}
}
line++;
}
}
#define DETECT_ALPHA_MAX_THRESHOLD 254
#define DETECT_ALPHA_MIN_THRESHOLD 2
#define DETECT_ALPHA(m_value) \
{ \
uint8_t value = m_value; \
if (value < DETECT_ALPHA_MIN_THRESHOLD) \
bit = true; \
else if (value < DETECT_ALPHA_MAX_THRESHOLD) { \
detected = true; \
break; \
} \
}
#define DETECT_NON_ALPHA(m_value) \
{ \
uint8_t value = m_value; \
if (value > 0) { \
detected = true; \
break; \
} \
}
bool Image::is_invisible() const {
if (format == FORMAT_L8 ||
format == FORMAT_RGB8 || format == FORMAT_RG8) {
return false;
}
int len = data.size();
if (len == 0) {
return true;
}
int w, h;
_get_mipmap_offset_and_size(1, len, w, h);
const uint8_t *r = data.ptr();
const unsigned char *data_ptr = r;
bool detected = false;
switch (format) {
case FORMAT_LA8: {
for (int i = 0; i < (len >> 1); i++) {
DETECT_NON_ALPHA(data_ptr[(i << 1) + 1]);
}
} break;
case FORMAT_RGBA8: {
for (int i = 0; i < (len >> 2); i++) {
DETECT_NON_ALPHA(data_ptr[(i << 2) + 3])
}
} break;
case FORMAT_DXT3:
case FORMAT_DXT5: {
detected = true;
} break;
default: {
}
}
return !detected;
}
Image::AlphaMode Image::detect_alpha() const {
int len = data.size();
if (len == 0) {
return ALPHA_NONE;
}
int w, h;
_get_mipmap_offset_and_size(1, len, w, h);
const uint8_t *r = data.ptr();
const unsigned char *data_ptr = r;
bool bit = false;
bool detected = false;
switch (format) {
case FORMAT_LA8: {
for (int i = 0; i < (len >> 1); i++) {
DETECT_ALPHA(data_ptr[(i << 1) + 1]);
}
} break;
case FORMAT_RGBA8: {
for (int i = 0; i < (len >> 2); i++) {
DETECT_ALPHA(data_ptr[(i << 2) + 3])
}
} break;
case FORMAT_DXT3:
case FORMAT_DXT5: {
detected = true;
} break;
default: {
}
}
if (detected) {
return ALPHA_BLEND;
} else if (bit) {
return ALPHA_BIT;
} else {
return ALPHA_NONE;
}
}
Error Image::load(const String &p_path) {
#ifdef DEBUG_ENABLED
if (p_path.begins_with("res://") && ResourceLoader::exists(p_path)) {
WARN_PRINT("Loaded resource as image file, this will not work on export: '" + p_path + "'. Instead, import the image file as an Image resource and load it normally as a resource.");
}
#endif
return ImageLoader::load_image(p_path, this);
}
Ref<Image> Image::load_from_file(const String &p_path) {
#ifdef DEBUG_ENABLED
if (p_path.begins_with("res://") && ResourceLoader::exists(p_path)) {
WARN_PRINT("Loaded resource as image file, this will not work on export: '" + p_path + "'. Instead, import the image file as an Image resource and load it normally as a resource.");
}
#endif
Ref<Image> image;
image.instantiate();
Error err = ImageLoader::load_image(p_path, image);
if (err != OK) {
ERR_FAIL_V_MSG(Ref<Image>(), vformat("Failed to load image. Error %d", err));
}
return image;
}
Error Image::save_png(const String &p_path) const {
if (save_png_func == nullptr) {
return ERR_UNAVAILABLE;
}
return save_png_func(p_path, Ref<Image>((Image *)this));
}
Error Image::save_jpg(const String &p_path, float p_quality) const {
if (save_jpg_func == nullptr) {
return ERR_UNAVAILABLE;
}
return save_jpg_func(p_path, Ref<Image>((Image *)this), p_quality);
}
Vector<uint8_t> Image::save_png_to_buffer() const {
if (save_png_buffer_func == nullptr) {
return Vector<uint8_t>();
}
return save_png_buffer_func(Ref<Image>((Image *)this));
}
Vector<uint8_t> Image::save_jpg_to_buffer(float p_quality) const {
if (save_jpg_buffer_func == nullptr) {
return Vector<uint8_t>();
}
return save_jpg_buffer_func(Ref<Image>((Image *)this), p_quality);
}
Error Image::save_exr(const String &p_path, bool p_grayscale) const {
if (save_exr_func == nullptr) {
return ERR_UNAVAILABLE;
}
return save_exr_func(p_path, Ref<Image>((Image *)this), p_grayscale);
}
Vector<uint8_t> Image::save_exr_to_buffer(bool p_grayscale) const {
if (save_exr_buffer_func == nullptr) {
return Vector<uint8_t>();
}
return save_exr_buffer_func(Ref<Image>((Image *)this), p_grayscale);
}
Error Image::save_webp(const String &p_path, const bool p_lossy, const float p_quality) const {
if (save_webp_func == nullptr) {
return ERR_UNAVAILABLE;
}
ERR_FAIL_COND_V_MSG(p_lossy && !(0.0f <= p_quality && p_quality <= 1.0f), ERR_INVALID_PARAMETER, "The WebP lossy quality was set to " + rtos(p_quality) + ", which is not valid. WebP lossy quality must be between 0.0 and 1.0 (inclusive).");
return save_webp_func(p_path, Ref<Image>((Image *)this), p_lossy, p_quality);
}
Vector<uint8_t> Image::save_webp_to_buffer(const bool p_lossy, const float p_quality) const {
if (save_webp_buffer_func == nullptr) {
return Vector<uint8_t>();
}
ERR_FAIL_COND_V_MSG(p_lossy && !(0.0f <= p_quality && p_quality <= 1.0f), Vector<uint8_t>(), "The WebP lossy quality was set to " + rtos(p_quality) + ", which is not valid. WebP lossy quality must be between 0.0 and 1.0 (inclusive).");
return save_webp_buffer_func(Ref<Image>((Image *)this), p_lossy, p_quality);
}
int Image::get_image_data_size(int p_width, int p_height, Format p_format, bool p_mipmaps) {
int mm;
return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmaps ? -1 : 0);
}
int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) {
int mm;
_get_dst_image_size(p_width, p_height, p_format, mm, -1);
return mm;
}
Size2i Image::get_image_mipmap_size(int p_width, int p_height, Format p_format, int p_mipmap) {
int mm;
Size2i ret;
_get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap, &ret.x, &ret.y);
return ret;
}
int Image::get_image_mipmap_offset(int p_width, int p_height, Format p_format, int p_mipmap) {
if (p_mipmap <= 0) {
return 0;
}
int mm;
return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap - 1);
}
int Image::get_image_mipmap_offset_and_dimensions(int p_width, int p_height, Format p_format, int p_mipmap, int &r_w, int &r_h) {
if (p_mipmap <= 0) {
r_w = p_width;
r_h = p_height;
return 0;
}
int mm;
return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap - 1, &r_w, &r_h);
}
bool Image::is_compressed() const {
return format > FORMAT_RGBE9995;
}
Error Image::decompress() {
if (((format >= FORMAT_DXT1 && format <= FORMAT_RGTC_RG) || (format == FORMAT_DXT5_RA_AS_RG)) && _image_decompress_bc) {
_image_decompress_bc(this);
} else if (format >= FORMAT_BPTC_RGBA && format <= FORMAT_BPTC_RGBFU && _image_decompress_bptc) {
_image_decompress_bptc(this);
} else if (format == FORMAT_ETC && _image_decompress_etc1) {
_image_decompress_etc1(this);
} else if (format >= FORMAT_ETC2_R11 && format <= FORMAT_ETC2_RA_AS_RG && _image_decompress_etc2) {
_image_decompress_etc2(this);
} else if (format >= FORMAT_ASTC_4x4 && format <= FORMAT_ASTC_8x8_HDR && _image_decompress_astc) {
_image_decompress_astc(this);
} else {
return ERR_UNAVAILABLE;
}
return OK;
}
Error Image::compress(CompressMode p_mode, CompressSource p_source, float p_lossy_quality, ASTCFormat p_astc_format) {
ERR_FAIL_INDEX_V_MSG(p_mode, COMPRESS_MAX, ERR_INVALID_PARAMETER, "Invalid compress mode.");
ERR_FAIL_INDEX_V_MSG(p_source, COMPRESS_SOURCE_MAX, ERR_INVALID_PARAMETER, "Invalid compress source.");
return compress_from_channels(p_mode, detect_used_channels(p_source), p_lossy_quality, p_astc_format);
}
Error Image::compress_from_channels(CompressMode p_mode, UsedChannels p_channels, float p_lossy_quality, ASTCFormat p_astc_format) {
ERR_FAIL_COND_V(data.is_empty(), ERR_INVALID_DATA);
switch (p_mode) {
case COMPRESS_S3TC: {
ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE);
_image_compress_bc_func(this, p_lossy_quality, p_channels);
} break;
case COMPRESS_ETC: {
ERR_FAIL_COND_V(!_image_compress_etc1_func, ERR_UNAVAILABLE);
_image_compress_etc1_func(this, p_lossy_quality);
} break;
case COMPRESS_ETC2: {
ERR_FAIL_COND_V(!_image_compress_etc2_func, ERR_UNAVAILABLE);
_image_compress_etc2_func(this, p_lossy_quality, p_channels);
} break;
case COMPRESS_BPTC: {
ERR_FAIL_COND_V(!_image_compress_bptc_func, ERR_UNAVAILABLE);
_image_compress_bptc_func(this, p_lossy_quality, p_channels);
} break;
case COMPRESS_ASTC: {
ERR_FAIL_COND_V(!_image_compress_bptc_func, ERR_UNAVAILABLE);
_image_compress_astc_func(this, p_lossy_quality, p_astc_format);
} break;
case COMPRESS_MAX: {
ERR_FAIL_V(ERR_INVALID_PARAMETER);
} break;
}
return OK;
}
Image::Image(const char **p_xpm) {
width = 0;
height = 0;
mipmaps = false;
format = FORMAT_L8;
initialize_data(p_xpm);
}
Image::Image(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {
width = 0;
height = 0;
mipmaps = p_use_mipmaps;
format = FORMAT_L8;
initialize_data(p_width, p_height, p_use_mipmaps, p_format);
}
Image::Image(int p_width, int p_height, bool p_mipmaps, Format p_format, const Vector<uint8_t> &p_data) {
width = 0;
height = 0;
mipmaps = p_mipmaps;
format = FORMAT_L8;
initialize_data(p_width, p_height, p_mipmaps, p_format, p_data);
}
Rect2i Image::get_used_rect() const {
if (format != FORMAT_LA8 && format != FORMAT_RGBA8 && format != FORMAT_RGBAF && format != FORMAT_RGBAH && format != FORMAT_RGBA4444 && format != FORMAT_RGB565) {
return Rect2i(0, 0, width, height);
}
int len = data.size();
if (len == 0) {
return Rect2i();
}
int minx = 0xFFFFFF, miny = 0xFFFFFFF;
int maxx = -1, maxy = -1;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
if (!(get_pixel(i, j).a > 0)) {
continue;
}
if (i > maxx) {
maxx = i;
}
if (j > maxy) {
maxy = j;
}
if (i < minx) {
minx = i;
}
if (j < miny) {
miny = j;
}
}
}
if (maxx == -1) {
return Rect2i();
} else {
return Rect2i(minx, miny, maxx - minx + 1, maxy - miny + 1);
}
}
Ref<Image> Image::get_region(const Rect2i &p_region) const {
Ref<Image> img = memnew(Image(p_region.size.x, p_region.size.y, mipmaps, format));
img->blit_rect(Ref<Image>((Image *)this), p_region, Point2i(0, 0));
return img;
}
void Image::_get_clipped_src_and_dest_rects(const Ref<Image> &p_src, const Rect2i &p_src_rect, const Point2i &p_dest, Rect2i &r_clipped_src_rect, Rect2i &r_clipped_dest_rect) const {
r_clipped_dest_rect.position = p_dest;
r_clipped_src_rect = p_src_rect;
if (r_clipped_src_rect.position.x < 0) {
r_clipped_dest_rect.position.x -= r_clipped_src_rect.position.x;
r_clipped_src_rect.size.x += r_clipped_src_rect.position.x;
r_clipped_src_rect.position.x = 0;
}
if (r_clipped_src_rect.position.y < 0) {
r_clipped_dest_rect.position.y -= r_clipped_src_rect.position.y;
r_clipped_src_rect.size.y += r_clipped_src_rect.position.y;
r_clipped_src_rect.position.y = 0;
}
if (r_clipped_dest_rect.position.x < 0) {
r_clipped_src_rect.position.x -= r_clipped_dest_rect.position.x;
r_clipped_src_rect.size.x += r_clipped_dest_rect.position.x;
r_clipped_dest_rect.position.x = 0;
}
if (r_clipped_dest_rect.position.y < 0) {
r_clipped_src_rect.position.y -= r_clipped_dest_rect.position.y;
r_clipped_src_rect.size.y += r_clipped_dest_rect.position.y;
r_clipped_dest_rect.position.y = 0;
}
r_clipped_src_rect.size.x = MAX(0, MIN(r_clipped_src_rect.size.x, MIN(p_src->width - r_clipped_src_rect.position.x, width - r_clipped_dest_rect.position.x)));
r_clipped_src_rect.size.y = MAX(0, MIN(r_clipped_src_rect.size.y, MIN(p_src->height - r_clipped_src_rect.position.y, height - r_clipped_dest_rect.position.y)));
r_clipped_dest_rect.size.x = r_clipped_src_rect.size.x;
r_clipped_dest_rect.size.y = r_clipped_src_rect.size.y;
}
void Image::blit_rect(const Ref<Image> &p_src, const Rect2i &p_src_rect, const Point2i &p_dest) {
ERR_FAIL_COND_MSG(p_src.is_null(), "It's not a reference to a valid Image object.");
int dsize = data.size();
int srcdsize = p_src->data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(format != p_src->format);
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot blit_rect in compressed or custom image formats.");
Rect2i src_rect;
Rect2i dest_rect;
_get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect);
if (!src_rect.has_area() || !dest_rect.has_area()) {
return;
}
uint8_t *wp = data.ptrw();
uint8_t *dst_data_ptr = wp;
const uint8_t *rp = p_src->data.ptr();
const uint8_t *src_data_ptr = rp;
int pixel_size = get_format_pixel_size(format);
for (int i = 0; i < dest_rect.size.y; i++) {
for (int j = 0; j < dest_rect.size.x; j++) {
int src_x = src_rect.position.x + j;
int src_y = src_rect.position.y + i;
int dst_x = dest_rect.position.x + j;
int dst_y = dest_rect.position.y + i;
const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size];
uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size];
for (int k = 0; k < pixel_size; k++) {
dst[k] = src[k];
}
}
}
}
void Image::blit_rect_mask(const Ref<Image> &p_src, const Ref<Image> &p_mask, const Rect2i &p_src_rect, const Point2i &p_dest) {
ERR_FAIL_COND_MSG(p_src.is_null(), "It's not a reference to a valid Image object.");
ERR_FAIL_COND_MSG(p_mask.is_null(), "It's not a reference to a valid Image object.");
int dsize = data.size();
int srcdsize = p_src->data.size();
int maskdsize = p_mask->data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(maskdsize == 0);
ERR_FAIL_COND_MSG(p_src->width != p_mask->width, "Source image width is different from mask width.");
ERR_FAIL_COND_MSG(p_src->height != p_mask->height, "Source image height is different from mask height.");
ERR_FAIL_COND(format != p_src->format);
Rect2i src_rect;
Rect2i dest_rect;
_get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect);
if (!src_rect.has_area() || !dest_rect.has_area()) {
return;
}
uint8_t *wp = data.ptrw();
uint8_t *dst_data_ptr = wp;
const uint8_t *rp = p_src->data.ptr();
const uint8_t *src_data_ptr = rp;
int pixel_size = get_format_pixel_size(format);
Ref<Image> msk = p_mask;
for (int i = 0; i < dest_rect.size.y; i++) {
for (int j = 0; j < dest_rect.size.x; j++) {
int src_x = src_rect.position.x + j;
int src_y = src_rect.position.y + i;
if (msk->get_pixel(src_x, src_y).a != 0) {
int dst_x = dest_rect.position.x + j;
int dst_y = dest_rect.position.y + i;
const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size];
uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size];
for (int k = 0; k < pixel_size; k++) {
dst[k] = src[k];
}
}
}
}
}
void Image::blend_rect(const Ref<Image> &p_src, const Rect2i &p_src_rect, const Point2i &p_dest) {
ERR_FAIL_COND_MSG(p_src.is_null(), "It's not a reference to a valid Image object.");
int dsize = data.size();
int srcdsize = p_src->data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(format != p_src->format);
Rect2i src_rect;
Rect2i dest_rect;
_get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect);
if (!src_rect.has_area() || !dest_rect.has_area()) {
return;
}
Ref<Image> img = p_src;
for (int i = 0; i < dest_rect.size.y; i++) {
for (int j = 0; j < dest_rect.size.x; j++) {
int src_x = src_rect.position.x + j;
int src_y = src_rect.position.y + i;
int dst_x = dest_rect.position.x + j;
int dst_y = dest_rect.position.y + i;
Color sc = img->get_pixel(src_x, src_y);
if (sc.a != 0) {
Color dc = get_pixel(dst_x, dst_y);
dc = dc.blend(sc);
set_pixel(dst_x, dst_y, dc);
}
}
}
}
void Image::blend_rect_mask(const Ref<Image> &p_src, const Ref<Image> &p_mask, const Rect2i &p_src_rect, const Point2i &p_dest) {
ERR_FAIL_COND_MSG(p_src.is_null(), "It's not a reference to a valid Image object.");
ERR_FAIL_COND_MSG(p_mask.is_null(), "It's not a reference to a valid Image object.");
int dsize = data.size();
int srcdsize = p_src->data.size();
int maskdsize = p_mask->data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(maskdsize == 0);
ERR_FAIL_COND_MSG(p_src->width != p_mask->width, "Source image width is different from mask width.");
ERR_FAIL_COND_MSG(p_src->height != p_mask->height, "Source image height is different from mask height.");
ERR_FAIL_COND(format != p_src->format);
Rect2i src_rect;
Rect2i dest_rect;
_get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect);
if (!src_rect.has_area() || !dest_rect.has_area()) {
return;
}
Ref<Image> img = p_src;
Ref<Image> msk = p_mask;
for (int i = 0; i < dest_rect.size.y; i++) {
for (int j = 0; j < dest_rect.size.x; j++) {
int src_x = src_rect.position.x + j;
int src_y = src_rect.position.y + i;
// If the mask's pixel is transparent then we skip it
//Color c = msk->get_pixel(src_x, src_y);
//if (c.a == 0) continue;
if (msk->get_pixel(src_x, src_y).a != 0) {
int dst_x = dest_rect.position.x + j;
int dst_y = dest_rect.position.y + i;
Color sc = img->get_pixel(src_x, src_y);
if (sc.a != 0) {
Color dc = get_pixel(dst_x, dst_y);
dc = dc.blend(sc);
set_pixel(dst_x, dst_y, dc);
}
}
}
}
}
// Repeats `p_pixel` `p_count` times in consecutive memory.
// Results in the original pixel and `p_count - 1` subsequent copies of it.
void Image::_repeat_pixel_over_subsequent_memory(uint8_t *p_pixel, int p_pixel_size, int p_count) {
int offset = 1;
for (int stride = 1; offset + stride <= p_count; stride *= 2) {
memcpy(p_pixel + offset * p_pixel_size, p_pixel, stride * p_pixel_size);
offset += stride;
}
if (offset < p_count) {
memcpy(p_pixel + offset * p_pixel_size, p_pixel, (p_count - offset) * p_pixel_size);
}
}
void Image::fill(const Color &p_color) {
if (data.size() == 0) {
return;
}
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot fill in compressed or custom image formats.");
uint8_t *dst_data_ptr = data.ptrw();
int pixel_size = get_format_pixel_size(format);
// Put first pixel with the format-aware API.
_set_color_at_ofs(dst_data_ptr, 0, p_color);
_repeat_pixel_over_subsequent_memory(dst_data_ptr, pixel_size, width * height);
}
void Image::fill_rect(const Rect2i &p_rect, const Color &p_color) {
if (data.size() == 0) {
return;
}
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot fill rect in compressed or custom image formats.");
Rect2i r = Rect2i(0, 0, width, height).intersection(p_rect.abs());
if (!r.has_area()) {
return;
}
uint8_t *dst_data_ptr = data.ptrw();
int pixel_size = get_format_pixel_size(format);
// Put first pixel with the format-aware API.
uint8_t *rect_first_pixel_ptr = &dst_data_ptr[(r.position.y * width + r.position.x) * pixel_size];
_set_color_at_ofs(rect_first_pixel_ptr, 0, p_color);
if (r.size.x == width) {
// No need to fill rows separately.
_repeat_pixel_over_subsequent_memory(rect_first_pixel_ptr, pixel_size, width * r.size.y);
} else {
_repeat_pixel_over_subsequent_memory(rect_first_pixel_ptr, pixel_size, r.size.x);
for (int y = 1; y < r.size.y; y++) {
memcpy(rect_first_pixel_ptr + y * width * pixel_size, rect_first_pixel_ptr, r.size.x * pixel_size);
}
}
}
ImageMemLoadFunc Image::_png_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_jpg_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_webp_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_tga_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_bmp_mem_loader_func = nullptr;
void (*Image::_image_compress_bc_func)(Image *, float, Image::UsedChannels) = nullptr;
void (*Image::_image_compress_bptc_func)(Image *, float, Image::UsedChannels) = nullptr;
void (*Image::_image_compress_etc1_func)(Image *, float) = nullptr;
void (*Image::_image_compress_etc2_func)(Image *, float, Image::UsedChannels) = nullptr;
void (*Image::_image_compress_astc_func)(Image *, float, Image::ASTCFormat) = nullptr;
void (*Image::_image_decompress_bc)(Image *) = nullptr;
void (*Image::_image_decompress_bptc)(Image *) = nullptr;
void (*Image::_image_decompress_etc1)(Image *) = nullptr;
void (*Image::_image_decompress_etc2)(Image *) = nullptr;
void (*Image::_image_decompress_astc)(Image *) = nullptr;
Vector<uint8_t> (*Image::webp_lossy_packer)(const Ref<Image> &, float) = nullptr;
Vector<uint8_t> (*Image::webp_lossless_packer)(const Ref<Image> &) = nullptr;
Ref<Image> (*Image::webp_unpacker)(const Vector<uint8_t> &) = nullptr;
Vector<uint8_t> (*Image::png_packer)(const Ref<Image> &) = nullptr;
Ref<Image> (*Image::png_unpacker)(const Vector<uint8_t> &) = nullptr;
Vector<uint8_t> (*Image::basis_universal_packer)(const Ref<Image> &, Image::UsedChannels) = nullptr;
Ref<Image> (*Image::basis_universal_unpacker)(const Vector<uint8_t> &) = nullptr;
Ref<Image> (*Image::basis_universal_unpacker_ptr)(const uint8_t *, int) = nullptr;
void Image::_set_data(const Dictionary &p_data) {
ERR_FAIL_COND(!p_data.has("width"));
ERR_FAIL_COND(!p_data.has("height"));
ERR_FAIL_COND(!p_data.has("format"));
ERR_FAIL_COND(!p_data.has("mipmaps"));
ERR_FAIL_COND(!p_data.has("data"));
int dwidth = p_data["width"];
int dheight = p_data["height"];
String dformat = p_data["format"];
bool dmipmaps = p_data["mipmaps"];
Vector<uint8_t> ddata = p_data["data"];
Format ddformat = FORMAT_MAX;
for (int i = 0; i < FORMAT_MAX; i++) {
if (dformat == get_format_name(Format(i))) {
ddformat = Format(i);
break;
}
}
ERR_FAIL_COND(ddformat == FORMAT_MAX);
initialize_data(dwidth, dheight, dmipmaps, ddformat, ddata);
}
Dictionary Image::_get_data() const {
Dictionary d;
d["width"] = width;
d["height"] = height;
d["format"] = get_format_name(format);
d["mipmaps"] = mipmaps;
d["data"] = data;
return d;
}
Color Image::get_pixelv(const Point2i &p_point) const {
return get_pixel(p_point.x, p_point.y);
}
Color Image::_get_color_at_ofs(const uint8_t *ptr, uint32_t ofs) const {
switch (format) {
case FORMAT_L8: {
float l = ptr[ofs] / 255.0;
return Color(l, l, l, 1);
}
case FORMAT_LA8: {
float l = ptr[ofs * 2 + 0] / 255.0;
float a = ptr[ofs * 2 + 1] / 255.0;
return Color(l, l, l, a);
}
case FORMAT_R8: {
float r = ptr[ofs] / 255.0;
return Color(r, 0, 0, 1);
}
case FORMAT_RG8: {
float r = ptr[ofs * 2 + 0] / 255.0;
float g = ptr[ofs * 2 + 1] / 255.0;
return Color(r, g, 0, 1);
}
case FORMAT_RGB8: {
float r = ptr[ofs * 3 + 0] / 255.0;
float g = ptr[ofs * 3 + 1] / 255.0;
float b = ptr[ofs * 3 + 2] / 255.0;
return Color(r, g, b, 1);
}
case FORMAT_RGBA8: {
float r = ptr[ofs * 4 + 0] / 255.0;
float g = ptr[ofs * 4 + 1] / 255.0;
float b = ptr[ofs * 4 + 2] / 255.0;
float a = ptr[ofs * 4 + 3] / 255.0;
return Color(r, g, b, a);
}
case FORMAT_RGBA4444: {
uint16_t u = ((uint16_t *)ptr)[ofs];
float r = ((u >> 12) & 0xF) / 15.0;
float g = ((u >> 8) & 0xF) / 15.0;
float b = ((u >> 4) & 0xF) / 15.0;
float a = (u & 0xF) / 15.0;
return Color(r, g, b, a);
}
case FORMAT_RGB565: {
uint16_t u = ((uint16_t *)ptr)[ofs];
float r = (u & 0x1F) / 31.0;
float g = ((u >> 5) & 0x3F) / 63.0;
float b = ((u >> 11) & 0x1F) / 31.0;
return Color(r, g, b, 1.0);
}
case FORMAT_RF: {
float r = ((float *)ptr)[ofs];
return Color(r, 0, 0, 1);
}
case FORMAT_RGF: {
float r = ((float *)ptr)[ofs * 2 + 0];
float g = ((float *)ptr)[ofs * 2 + 1];
return Color(r, g, 0, 1);
}
case FORMAT_RGBF: {
float r = ((float *)ptr)[ofs * 3 + 0];
float g = ((float *)ptr)[ofs * 3 + 1];
float b = ((float *)ptr)[ofs * 3 + 2];
return Color(r, g, b, 1);
}
case FORMAT_RGBAF: {
float r = ((float *)ptr)[ofs * 4 + 0];
float g = ((float *)ptr)[ofs * 4 + 1];
float b = ((float *)ptr)[ofs * 4 + 2];
float a = ((float *)ptr)[ofs * 4 + 3];
return Color(r, g, b, a);
}
case FORMAT_RH: {
uint16_t r = ((uint16_t *)ptr)[ofs];
return Color(Math::half_to_float(r), 0, 0, 1);
}
case FORMAT_RGH: {
uint16_t r = ((uint16_t *)ptr)[ofs * 2 + 0];
uint16_t g = ((uint16_t *)ptr)[ofs * 2 + 1];
return Color(Math::half_to_float(r), Math::half_to_float(g), 0, 1);
}
case FORMAT_RGBH: {
uint16_t r = ((uint16_t *)ptr)[ofs * 3 + 0];
uint16_t g = ((uint16_t *)ptr)[ofs * 3 + 1];
uint16_t b = ((uint16_t *)ptr)[ofs * 3 + 2];
return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), 1);
}
case FORMAT_RGBAH: {
uint16_t r = ((uint16_t *)ptr)[ofs * 4 + 0];
uint16_t g = ((uint16_t *)ptr)[ofs * 4 + 1];
uint16_t b = ((uint16_t *)ptr)[ofs * 4 + 2];
uint16_t a = ((uint16_t *)ptr)[ofs * 4 + 3];
return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), Math::half_to_float(a));
}
case FORMAT_RGBE9995: {
return Color::from_rgbe9995(((uint32_t *)ptr)[ofs]);
}
default: {
ERR_FAIL_V_MSG(Color(), "Can't get_pixel() on compressed image, sorry.");
}
}
}
void Image::_set_color_at_ofs(uint8_t *ptr, uint32_t ofs, const Color &p_color) {
switch (format) {
case FORMAT_L8: {
ptr[ofs] = uint8_t(CLAMP(p_color.get_v() * 255.0, 0, 255));
} break;
case FORMAT_LA8: {
ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.get_v() * 255.0, 0, 255));
ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255));
} break;
case FORMAT_R8: {
ptr[ofs] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
} break;
case FORMAT_RG8: {
ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
} break;
case FORMAT_RGB8: {
ptr[ofs * 3 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
ptr[ofs * 3 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
ptr[ofs * 3 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255));
} break;
case FORMAT_RGBA8: {
ptr[ofs * 4 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
ptr[ofs * 4 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
ptr[ofs * 4 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255));
ptr[ofs * 4 + 3] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255));
} break;
case FORMAT_RGBA4444: {
uint16_t rgba = 0;
rgba = uint16_t(CLAMP(p_color.r * 15.0, 0, 15)) << 12;
rgba |= uint16_t(CLAMP(p_color.g * 15.0, 0, 15)) << 8;
rgba |= uint16_t(CLAMP(p_color.b * 15.0, 0, 15)) << 4;
rgba |= uint16_t(CLAMP(p_color.a * 15.0, 0, 15));
((uint16_t *)ptr)[ofs] = rgba;
} break;
case FORMAT_RGB565: {
uint16_t rgba = 0;
rgba = uint16_t(CLAMP(p_color.r * 31.0, 0, 31));
rgba |= uint16_t(CLAMP(p_color.g * 63.0, 0, 33)) << 5;
rgba |= uint16_t(CLAMP(p_color.b * 31.0, 0, 31)) << 11;
((uint16_t *)ptr)[ofs] = rgba;
} break;
case FORMAT_RF: {
((float *)ptr)[ofs] = p_color.r;
} break;
case FORMAT_RGF: {
((float *)ptr)[ofs * 2 + 0] = p_color.r;
((float *)ptr)[ofs * 2 + 1] = p_color.g;
} break;
case FORMAT_RGBF: {
((float *)ptr)[ofs * 3 + 0] = p_color.r;
((float *)ptr)[ofs * 3 + 1] = p_color.g;
((float *)ptr)[ofs * 3 + 2] = p_color.b;
} break;
case FORMAT_RGBAF: {
((float *)ptr)[ofs * 4 + 0] = p_color.r;
((float *)ptr)[ofs * 4 + 1] = p_color.g;
((float *)ptr)[ofs * 4 + 2] = p_color.b;
((float *)ptr)[ofs * 4 + 3] = p_color.a;
} break;
case FORMAT_RH: {
((uint16_t *)ptr)[ofs] = Math::make_half_float(p_color.r);
} break;
case FORMAT_RGH: {
((uint16_t *)ptr)[ofs * 2 + 0] = Math::make_half_float(p_color.r);
((uint16_t *)ptr)[ofs * 2 + 1] = Math::make_half_float(p_color.g);
} break;
case FORMAT_RGBH: {
((uint16_t *)ptr)[ofs * 3 + 0] = Math::make_half_float(p_color.r);
((uint16_t *)ptr)[ofs * 3 + 1] = Math::make_half_float(p_color.g);
((uint16_t *)ptr)[ofs * 3 + 2] = Math::make_half_float(p_color.b);
} break;
case FORMAT_RGBAH: {
((uint16_t *)ptr)[ofs * 4 + 0] = Math::make_half_float(p_color.r);
((uint16_t *)ptr)[ofs * 4 + 1] = Math::make_half_float(p_color.g);
((uint16_t *)ptr)[ofs * 4 + 2] = Math::make_half_float(p_color.b);
((uint16_t *)ptr)[ofs * 4 + 3] = Math::make_half_float(p_color.a);
} break;
case FORMAT_RGBE9995: {
((uint32_t *)ptr)[ofs] = p_color.to_rgbe9995();
} break;
default: {
ERR_FAIL_MSG("Can't set_pixel() on compressed image, sorry.");
}
}
}
Color Image::get_pixel(int p_x, int p_y) const {
#ifdef DEBUG_ENABLED
ERR_FAIL_INDEX_V(p_x, width, Color());
ERR_FAIL_INDEX_V(p_y, height, Color());
#endif
uint32_t ofs = p_y * width + p_x;
return _get_color_at_ofs(data.ptr(), ofs);
}
void Image::set_pixelv(const Point2i &p_point, const Color &p_color) {
set_pixel(p_point.x, p_point.y, p_color);
}
void Image::set_pixel(int p_x, int p_y, const Color &p_color) {
#ifdef DEBUG_ENABLED
ERR_FAIL_INDEX(p_x, width);
ERR_FAIL_INDEX(p_y, height);
#endif
uint32_t ofs = p_y * width + p_x;
_set_color_at_ofs(data.ptrw(), ofs, p_color);
}
void Image::adjust_bcs(float p_brightness, float p_contrast, float p_saturation) {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot adjust_bcs in compressed or custom image formats.");
uint8_t *w = data.ptrw();
uint32_t pixel_size = get_format_pixel_size(format);
uint32_t pixel_count = data.size() / pixel_size;
for (uint32_t i = 0; i < pixel_count; i++) {
Color c = _get_color_at_ofs(w, i);
Vector3 rgb(c.r, c.g, c.b);
rgb *= p_brightness;
rgb = Vector3(0.5, 0.5, 0.5).lerp(rgb, p_contrast);
float center = (rgb.x + rgb.y + rgb.z) / 3.0;
rgb = Vector3(center, center, center).lerp(rgb, p_saturation);
c.r = rgb.x;
c.g = rgb.y;
c.b = rgb.z;
_set_color_at_ofs(w, i, c);
}
}
Image::UsedChannels Image::detect_used_channels(CompressSource p_source) const {
ERR_FAIL_COND_V(data.size() == 0, USED_CHANNELS_RGBA);
ERR_FAIL_COND_V(is_compressed(), USED_CHANNELS_RGBA);
bool r = false, g = false, b = false, a = false, c = false;
const uint8_t *data_ptr = data.ptr();
uint32_t data_total = width * height;
for (uint32_t i = 0; i < data_total; i++) {
Color col = _get_color_at_ofs(data_ptr, i);
if (col.r > 0.001) {
r = true;
}
if (col.g > 0.001) {
g = true;
}
if (col.b > 0.001) {
b = true;
}
if (col.a < 0.999) {
a = true;
}
if (col.r != col.b || col.r != col.g || col.b != col.g) {
c = true;
}
}
UsedChannels used_channels;
if (!c && !a) {
used_channels = USED_CHANNELS_L;
} else if (!c && a) {
used_channels = USED_CHANNELS_LA;
} else if (r && !g && !b && !a) {
used_channels = USED_CHANNELS_R;
} else if (r && g && !b && !a) {
used_channels = USED_CHANNELS_RG;
} else if (r && g && b && !a) {
used_channels = USED_CHANNELS_RGB;
} else {
used_channels = USED_CHANNELS_RGBA;
}
if (p_source == COMPRESS_SOURCE_SRGB && (used_channels == USED_CHANNELS_R || used_channels == USED_CHANNELS_RG)) {
//R and RG do not support SRGB
used_channels = USED_CHANNELS_RGB;
}
if (p_source == COMPRESS_SOURCE_NORMAL) {
//use RG channels only for normal
used_channels = USED_CHANNELS_RG;
}
return used_channels;
}
void Image::optimize_channels() {
switch (detect_used_channels()) {
case USED_CHANNELS_L:
convert(FORMAT_L8);
break;
case USED_CHANNELS_LA:
convert(FORMAT_LA8);
break;
case USED_CHANNELS_R:
convert(FORMAT_R8);
break;
case USED_CHANNELS_RG:
convert(FORMAT_RG8);
break;
case USED_CHANNELS_RGB:
convert(FORMAT_RGB8);
break;
case USED_CHANNELS_RGBA:
convert(FORMAT_RGBA8);
break;
}
}
void Image::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_width"), &Image::get_width);
ClassDB::bind_method(D_METHOD("get_height"), &Image::get_height);
ClassDB::bind_method(D_METHOD("get_size"), &Image::get_size);
ClassDB::bind_method(D_METHOD("has_mipmaps"), &Image::has_mipmaps);
ClassDB::bind_method(D_METHOD("get_format"), &Image::get_format);
ClassDB::bind_method(D_METHOD("get_data"), &Image::get_data);
ClassDB::bind_method(D_METHOD("convert", "format"), &Image::convert);
ClassDB::bind_method(D_METHOD("get_mipmap_offset", "mipmap"), &Image::get_mipmap_offset);
ClassDB::bind_method(D_METHOD("resize_to_po2", "square", "interpolation"), &Image::resize_to_po2, DEFVAL(false), DEFVAL(INTERPOLATE_BILINEAR));
ClassDB::bind_method(D_METHOD("resize", "width", "height", "interpolation"), &Image::resize, DEFVAL(INTERPOLATE_BILINEAR));
ClassDB::bind_method(D_METHOD("shrink_x2"), &Image::shrink_x2);
ClassDB::bind_method(D_METHOD("crop", "width", "height"), &Image::crop);
ClassDB::bind_method(D_METHOD("flip_x"), &Image::flip_x);
ClassDB::bind_method(D_METHOD("flip_y"), &Image::flip_y);
ClassDB::bind_method(D_METHOD("generate_mipmaps", "renormalize"), &Image::generate_mipmaps, DEFVAL(false));
ClassDB::bind_method(D_METHOD("clear_mipmaps"), &Image::clear_mipmaps);
ClassDB::bind_static_method("Image", D_METHOD("create", "width", "height", "use_mipmaps", "format"), &Image::create_empty);
ClassDB::bind_static_method("Image", D_METHOD("create_from_data", "width", "height", "use_mipmaps", "format", "data"), &Image::create_from_data);
ClassDB::bind_method(D_METHOD("set_data", "width", "height", "use_mipmaps", "format", "data"), &Image::set_data);
ClassDB::bind_method(D_METHOD("is_empty"), &Image::is_empty);
ClassDB::bind_method(D_METHOD("load", "path"), &Image::load);
ClassDB::bind_static_method("Image", D_METHOD("load_from_file", "path"), &Image::load_from_file);
ClassDB::bind_method(D_METHOD("save_png", "path"), &Image::save_png);
ClassDB::bind_method(D_METHOD("save_png_to_buffer"), &Image::save_png_to_buffer);
ClassDB::bind_method(D_METHOD("save_jpg", "path", "quality"), &Image::save_jpg, DEFVAL(0.75));
ClassDB::bind_method(D_METHOD("save_jpg_to_buffer", "quality"), &Image::save_jpg_to_buffer, DEFVAL(0.75));
ClassDB::bind_method(D_METHOD("save_exr", "path", "grayscale"), &Image::save_exr, DEFVAL(false));
ClassDB::bind_method(D_METHOD("save_exr_to_buffer", "grayscale"), &Image::save_exr_to_buffer, DEFVAL(false));
ClassDB::bind_method(D_METHOD("save_webp", "path", "lossy", "quality"), &Image::save_webp, DEFVAL(false), DEFVAL(0.75f));
ClassDB::bind_method(D_METHOD("save_webp_to_buffer", "lossy", "quality"), &Image::save_webp_to_buffer, DEFVAL(false), DEFVAL(0.75f));
ClassDB::bind_method(D_METHOD("detect_alpha"), &Image::detect_alpha);
ClassDB::bind_method(D_METHOD("is_invisible"), &Image::is_invisible);
ClassDB::bind_method(D_METHOD("detect_used_channels", "source"), &Image::detect_used_channels, DEFVAL(COMPRESS_SOURCE_GENERIC));
ClassDB::bind_method(D_METHOD("compress", "mode", "source", "lossy_quality", "astc_format"), &Image::compress, DEFVAL(COMPRESS_SOURCE_GENERIC), DEFVAL(0.7), DEFVAL(ASTC_FORMAT_4x4));
ClassDB::bind_method(D_METHOD("compress_from_channels", "mode", "channels", "lossy_quality", "astc_format"), &Image::compress_from_channels, DEFVAL(0.7), DEFVAL(ASTC_FORMAT_4x4));
ClassDB::bind_method(D_METHOD("decompress"), &Image::decompress);
ClassDB::bind_method(D_METHOD("is_compressed"), &Image::is_compressed);
ClassDB::bind_method(D_METHOD("rotate_90", "direction"), &Image::rotate_90);
ClassDB::bind_method(D_METHOD("rotate_180"), &Image::rotate_180);
ClassDB::bind_method(D_METHOD("fix_alpha_edges"), &Image::fix_alpha_edges);
ClassDB::bind_method(D_METHOD("premultiply_alpha"), &Image::premultiply_alpha);
ClassDB::bind_method(D_METHOD("srgb_to_linear"), &Image::srgb_to_linear);
ClassDB::bind_method(D_METHOD("normal_map_to_xy"), &Image::normal_map_to_xy);
ClassDB::bind_method(D_METHOD("rgbe_to_srgb"), &Image::rgbe_to_srgb);
ClassDB::bind_method(D_METHOD("bump_map_to_normal_map", "bump_scale"), &Image::bump_map_to_normal_map, DEFVAL(1.0));
ClassDB::bind_method(D_METHOD("compute_image_metrics", "compared_image", "use_luma"), &Image::compute_image_metrics);
ClassDB::bind_method(D_METHOD("blit_rect", "src", "src_rect", "dst"), &Image::blit_rect);
ClassDB::bind_method(D_METHOD("blit_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blit_rect_mask);
ClassDB::bind_method(D_METHOD("blend_rect", "src", "src_rect", "dst"), &Image::blend_rect);
ClassDB::bind_method(D_METHOD("blend_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blend_rect_mask);
ClassDB::bind_method(D_METHOD("fill", "color"), &Image::fill);
ClassDB::bind_method(D_METHOD("fill_rect", "rect", "color"), &Image::fill_rect);
ClassDB::bind_method(D_METHOD("get_used_rect"), &Image::get_used_rect);
ClassDB::bind_method(D_METHOD("get_region", "region"), &Image::get_region);
ClassDB::bind_method(D_METHOD("copy_from", "src"), &Image::copy_internals_from);
ClassDB::bind_method(D_METHOD("_set_data", "data"), &Image::_set_data);
ClassDB::bind_method(D_METHOD("_get_data"), &Image::_get_data);
ClassDB::bind_method(D_METHOD("get_pixelv", "point"), &Image::get_pixelv);
ClassDB::bind_method(D_METHOD("get_pixel", "x", "y"), &Image::get_pixel);
ClassDB::bind_method(D_METHOD("set_pixelv", "point", "color"), &Image::set_pixelv);
ClassDB::bind_method(D_METHOD("set_pixel", "x", "y", "color"), &Image::set_pixel);
ClassDB::bind_method(D_METHOD("adjust_bcs", "brightness", "contrast", "saturation"), &Image::adjust_bcs);
ClassDB::bind_method(D_METHOD("load_png_from_buffer", "buffer"), &Image::load_png_from_buffer);
ClassDB::bind_method(D_METHOD("load_jpg_from_buffer", "buffer"), &Image::load_jpg_from_buffer);
ClassDB::bind_method(D_METHOD("load_webp_from_buffer", "buffer"), &Image::load_webp_from_buffer);
ClassDB::bind_method(D_METHOD("load_tga_from_buffer", "buffer"), &Image::load_tga_from_buffer);
ClassDB::bind_method(D_METHOD("load_bmp_from_buffer", "buffer"), &Image::load_bmp_from_buffer);
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE), "_set_data", "_get_data");
BIND_CONSTANT(MAX_WIDTH);
BIND_CONSTANT(MAX_HEIGHT);
BIND_ENUM_CONSTANT(FORMAT_L8); //luminance
BIND_ENUM_CONSTANT(FORMAT_LA8); //luminance-alpha
BIND_ENUM_CONSTANT(FORMAT_R8);
BIND_ENUM_CONSTANT(FORMAT_RG8);
BIND_ENUM_CONSTANT(FORMAT_RGB8);
BIND_ENUM_CONSTANT(FORMAT_RGBA8);
BIND_ENUM_CONSTANT(FORMAT_RGBA4444);
BIND_ENUM_CONSTANT(FORMAT_RGB565);
BIND_ENUM_CONSTANT(FORMAT_RF); //float
BIND_ENUM_CONSTANT(FORMAT_RGF);
BIND_ENUM_CONSTANT(FORMAT_RGBF);
BIND_ENUM_CONSTANT(FORMAT_RGBAF);
BIND_ENUM_CONSTANT(FORMAT_RH); //half float
BIND_ENUM_CONSTANT(FORMAT_RGH);
BIND_ENUM_CONSTANT(FORMAT_RGBH);
BIND_ENUM_CONSTANT(FORMAT_RGBAH);
BIND_ENUM_CONSTANT(FORMAT_RGBE9995);
BIND_ENUM_CONSTANT(FORMAT_DXT1); //s3tc bc1
BIND_ENUM_CONSTANT(FORMAT_DXT3); //bc2
BIND_ENUM_CONSTANT(FORMAT_DXT5); //bc3
BIND_ENUM_CONSTANT(FORMAT_RGTC_R);
BIND_ENUM_CONSTANT(FORMAT_RGTC_RG);
BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBA); //btpc bc6h
BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBF); //float /
BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBFU); //unsigned float
BIND_ENUM_CONSTANT(FORMAT_ETC); //etc1
BIND_ENUM_CONSTANT(FORMAT_ETC2_R11); //etc2
BIND_ENUM_CONSTANT(FORMAT_ETC2_R11S); //signed ); NOT srgb.
BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11S);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RGBA8);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8A1);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RA_AS_RG);
BIND_ENUM_CONSTANT(FORMAT_DXT5_RA_AS_RG);
BIND_ENUM_CONSTANT(FORMAT_ASTC_4x4);
BIND_ENUM_CONSTANT(FORMAT_ASTC_4x4_HDR);
BIND_ENUM_CONSTANT(FORMAT_ASTC_8x8);
BIND_ENUM_CONSTANT(FORMAT_ASTC_8x8_HDR);
BIND_ENUM_CONSTANT(FORMAT_MAX);
BIND_ENUM_CONSTANT(INTERPOLATE_NEAREST);
BIND_ENUM_CONSTANT(INTERPOLATE_BILINEAR);
BIND_ENUM_CONSTANT(INTERPOLATE_CUBIC);
BIND_ENUM_CONSTANT(INTERPOLATE_TRILINEAR);
BIND_ENUM_CONSTANT(INTERPOLATE_LANCZOS);
BIND_ENUM_CONSTANT(ALPHA_NONE);
BIND_ENUM_CONSTANT(ALPHA_BIT);
BIND_ENUM_CONSTANT(ALPHA_BLEND);
BIND_ENUM_CONSTANT(COMPRESS_S3TC);
BIND_ENUM_CONSTANT(COMPRESS_ETC);
BIND_ENUM_CONSTANT(COMPRESS_ETC2);
BIND_ENUM_CONSTANT(COMPRESS_BPTC);
BIND_ENUM_CONSTANT(USED_CHANNELS_L);
BIND_ENUM_CONSTANT(USED_CHANNELS_LA);
BIND_ENUM_CONSTANT(USED_CHANNELS_R);
BIND_ENUM_CONSTANT(USED_CHANNELS_RG);
BIND_ENUM_CONSTANT(USED_CHANNELS_RGB);
BIND_ENUM_CONSTANT(USED_CHANNELS_RGBA);
BIND_ENUM_CONSTANT(COMPRESS_SOURCE_GENERIC);
BIND_ENUM_CONSTANT(COMPRESS_SOURCE_SRGB);
BIND_ENUM_CONSTANT(COMPRESS_SOURCE_NORMAL);
BIND_ENUM_CONSTANT(ASTC_FORMAT_4x4);
BIND_ENUM_CONSTANT(ASTC_FORMAT_8x8);
}
void Image::set_compress_bc_func(void (*p_compress_func)(Image *, float, UsedChannels)) {
_image_compress_bc_func = p_compress_func;
}
void Image::set_compress_bptc_func(void (*p_compress_func)(Image *, float, UsedChannels)) {
_image_compress_bptc_func = p_compress_func;
}
void Image::normal_map_to_xy() {
convert(Image::FORMAT_RGBA8);
{
int len = data.size() / 4;
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < len; i++) {
data_ptr[(i << 2) + 3] = data_ptr[(i << 2) + 0]; //x to w
data_ptr[(i << 2) + 0] = data_ptr[(i << 2) + 1]; //y to xz
data_ptr[(i << 2) + 2] = data_ptr[(i << 2) + 1];
}
}
convert(Image::FORMAT_LA8);
}
Ref<Image> Image::rgbe_to_srgb() {
if (data.size() == 0) {
return Ref<Image>();
}
ERR_FAIL_COND_V(format != FORMAT_RGBE9995, Ref<Image>());
Ref<Image> new_image = create_empty(width, height, false, Image::FORMAT_RGB8);
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
new_image->set_pixel(col, row, get_pixel(col, row).linear_to_srgb());
}
}
if (has_mipmaps()) {
new_image->generate_mipmaps();
}
return new_image;
}
Ref<Image> Image::get_image_from_mipmap(int p_mipamp) const {
int ofs, size, w, h;
get_mipmap_offset_size_and_dimensions(p_mipamp, ofs, size, w, h);
Vector<uint8_t> new_data;
new_data.resize(size);
{
uint8_t *wr = new_data.ptrw();
const uint8_t *rd = data.ptr();
memcpy(wr, rd + ofs, size);
}
Ref<Image> image;
image.instantiate();
image->width = w;
image->height = h;
image->format = format;
image->data = new_data;
image->mipmaps = false;
return image;
}
void Image::bump_map_to_normal_map(float bump_scale) {
ERR_FAIL_COND(!_can_modify(format));
clear_mipmaps();
convert(Image::FORMAT_RF);
Vector<uint8_t> result_image; //rgba output
result_image.resize(width * height * 4);
{
const uint8_t *rp = data.ptr();
uint8_t *wp = result_image.ptrw();
ERR_FAIL_COND(!rp);
unsigned char *write_ptr = wp;
float *read_ptr = (float *)rp;
for (int ty = 0; ty < height; ty++) {
int py = ty + 1;
if (py >= height) {
py -= height;
}
for (int tx = 0; tx < width; tx++) {
int px = tx + 1;
if (px >= width) {
px -= width;
}
float here = read_ptr[ty * width + tx];
float to_right = read_ptr[ty * width + px];
float above = read_ptr[py * width + tx];
Vector3 up = Vector3(0, 1, (here - above) * bump_scale);
Vector3 across = Vector3(1, 0, (to_right - here) * bump_scale);
Vector3 normal = across.cross(up);
normal.normalize();
write_ptr[((ty * width + tx) << 2) + 0] = (127.5 + normal.x * 127.5);
write_ptr[((ty * width + tx) << 2) + 1] = (127.5 + normal.y * 127.5);
write_ptr[((ty * width + tx) << 2) + 2] = (127.5 + normal.z * 127.5);
write_ptr[((ty * width + tx) << 2) + 3] = 255;
}
}
}
format = FORMAT_RGBA8;
data = result_image;
}
void Image::srgb_to_linear() {
if (data.size() == 0) {
return;
}
static const uint8_t srgb2lin[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252, 255 };
ERR_FAIL_COND(format != FORMAT_RGB8 && format != FORMAT_RGBA8);
if (format == FORMAT_RGBA8) {
int len = data.size() / 4;
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < len; i++) {
data_ptr[(i << 2) + 0] = srgb2lin[data_ptr[(i << 2) + 0]];
data_ptr[(i << 2) + 1] = srgb2lin[data_ptr[(i << 2) + 1]];
data_ptr[(i << 2) + 2] = srgb2lin[data_ptr[(i << 2) + 2]];
}
} else if (format == FORMAT_RGB8) {
int len = data.size() / 3;
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < len; i++) {
data_ptr[(i * 3) + 0] = srgb2lin[data_ptr[(i * 3) + 0]];
data_ptr[(i * 3) + 1] = srgb2lin[data_ptr[(i * 3) + 1]];
data_ptr[(i * 3) + 2] = srgb2lin[data_ptr[(i * 3) + 2]];
}
}
}
void Image::premultiply_alpha() {
if (data.size() == 0) {
return;
}
if (format != FORMAT_RGBA8) {
return; //not needed
}
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
uint8_t *ptr = &data_ptr[(i * width + j) * 4];
ptr[0] = (uint16_t(ptr[0]) * uint16_t(ptr[3])) >> 8;
ptr[1] = (uint16_t(ptr[1]) * uint16_t(ptr[3])) >> 8;
ptr[2] = (uint16_t(ptr[2]) * uint16_t(ptr[3])) >> 8;
}
}
}
void Image::fix_alpha_edges() {
if (data.size() == 0) {
return;
}
if (format != FORMAT_RGBA8) {
return; //not needed
}
Vector<uint8_t> dcopy = data;
const uint8_t *srcptr = dcopy.ptr();
uint8_t *data_ptr = data.ptrw();
const int max_radius = 4;
const int alpha_threshold = 20;
const int max_dist = 0x7FFFFFFF;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
const uint8_t *rptr = &srcptr[(i * width + j) * 4];
uint8_t *wptr = &data_ptr[(i * width + j) * 4];
if (rptr[3] >= alpha_threshold) {
continue;
}
int closest_dist = max_dist;
uint8_t closest_color[3];
int from_x = MAX(0, j - max_radius);
int to_x = MIN(width - 1, j + max_radius);
int from_y = MAX(0, i - max_radius);
int to_y = MIN(height - 1, i + max_radius);
for (int k = from_y; k <= to_y; k++) {
for (int l = from_x; l <= to_x; l++) {
int dy = i - k;
int dx = j - l;
int dist = dy * dy + dx * dx;
if (dist >= closest_dist) {
continue;
}
const uint8_t *rp2 = &srcptr[(k * width + l) << 2];
if (rp2[3] < alpha_threshold) {
continue;
}
closest_dist = dist;
closest_color[0] = rp2[0];
closest_color[1] = rp2[1];
closest_color[2] = rp2[2];
}
}
if (closest_dist != max_dist) {
wptr[0] = closest_color[0];
wptr[1] = closest_color[1];
wptr[2] = closest_color[2];
}
}
}
}
String Image::get_format_name(Format p_format) {
ERR_FAIL_INDEX_V(p_format, FORMAT_MAX, String());
return format_names[p_format];
}
Error Image::load_png_from_buffer(const Vector<uint8_t> &p_array) {
return _load_from_buffer(p_array, _png_mem_loader_func);
}
Error Image::load_jpg_from_buffer(const Vector<uint8_t> &p_array) {
return _load_from_buffer(p_array, _jpg_mem_loader_func);
}
Error Image::load_webp_from_buffer(const Vector<uint8_t> &p_array) {
return _load_from_buffer(p_array, _webp_mem_loader_func);
}
Error Image::load_tga_from_buffer(const Vector<uint8_t> &p_array) {
ERR_FAIL_NULL_V_MSG(
_tga_mem_loader_func,
ERR_UNAVAILABLE,
"The TGA module isn't enabled. Recompile the Godot editor or export template binary with the `module_tga_enabled=yes` SCons option.");
return _load_from_buffer(p_array, _tga_mem_loader_func);
}
Error Image::load_bmp_from_buffer(const Vector<uint8_t> &p_array) {
ERR_FAIL_NULL_V_MSG(
_bmp_mem_loader_func,
ERR_UNAVAILABLE,
"The BMP module isn't enabled. Recompile the Godot editor or export template binary with the `module_bmp_enabled=yes` SCons option.");
return _load_from_buffer(p_array, _bmp_mem_loader_func);
}
void Image::convert_rg_to_ra_rgba8() {
ERR_FAIL_COND(format != FORMAT_RGBA8);
ERR_FAIL_COND(!data.size());
int s = data.size();
uint8_t *w = data.ptrw();
for (int i = 0; i < s; i += 4) {
w[i + 3] = w[i + 1];
w[i + 1] = 0;
w[i + 2] = 0;
}
}
void Image::convert_ra_rgba8_to_rg() {
ERR_FAIL_COND(format != FORMAT_RGBA8);
ERR_FAIL_COND(!data.size());
int s = data.size();
uint8_t *w = data.ptrw();
for (int i = 0; i < s; i += 4) {
w[i + 1] = w[i + 3];
w[i + 2] = 0;
w[i + 3] = 255;
}
}
void Image::convert_rgba8_to_bgra8() {
ERR_FAIL_COND(format != FORMAT_RGBA8);
ERR_FAIL_COND(!data.size());
int s = data.size();
uint8_t *w = data.ptrw();
for (int i = 0; i < s; i += 4) {
uint8_t r = w[i];
w[i] = w[i + 2]; // Swap R to B
w[i + 2] = r; // Swap B to R
}
}
Error Image::_load_from_buffer(const Vector<uint8_t> &p_array, ImageMemLoadFunc p_loader) {
int buffer_size = p_array.size();
ERR_FAIL_COND_V(buffer_size == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(!p_loader, ERR_INVALID_PARAMETER);
const uint8_t *r = p_array.ptr();
Ref<Image> image = p_loader(r, buffer_size);
ERR_FAIL_COND_V(!image.is_valid(), ERR_PARSE_ERROR);
copy_internals_from(image);
return OK;
}
void Image::average_4_uint8(uint8_t &p_out, const uint8_t &p_a, const uint8_t &p_b, const uint8_t &p_c, const uint8_t &p_d) {
p_out = static_cast<uint8_t>((p_a + p_b + p_c + p_d + 2) >> 2);
}
void Image::average_4_float(float &p_out, const float &p_a, const float &p_b, const float &p_c, const float &p_d) {
p_out = (p_a + p_b + p_c + p_d) * 0.25f;
}
void Image::average_4_half(uint16_t &p_out, const uint16_t &p_a, const uint16_t &p_b, const uint16_t &p_c, const uint16_t &p_d) {
p_out = Math::make_half_float((Math::half_to_float(p_a) + Math::half_to_float(p_b) + Math::half_to_float(p_c) + Math::half_to_float(p_d)) * 0.25f);
}
void Image::average_4_rgbe9995(uint32_t &p_out, const uint32_t &p_a, const uint32_t &p_b, const uint32_t &p_c, const uint32_t &p_d) {
p_out = ((Color::from_rgbe9995(p_a) + Color::from_rgbe9995(p_b) + Color::from_rgbe9995(p_c) + Color::from_rgbe9995(p_d)) * 0.25f).to_rgbe9995();
}
void Image::renormalize_uint8(uint8_t *p_rgb) {
Vector3 n(p_rgb[0] / 255.0, p_rgb[1] / 255.0, p_rgb[2] / 255.0);
n *= 2.0;
n -= Vector3(1, 1, 1);
n.normalize();
n += Vector3(1, 1, 1);
n *= 0.5;
n *= 255;
p_rgb[0] = CLAMP(int(n.x), 0, 255);
p_rgb[1] = CLAMP(int(n.y), 0, 255);
p_rgb[2] = CLAMP(int(n.z), 0, 255);
}
void Image::renormalize_float(float *p_rgb) {
Vector3 n(p_rgb[0], p_rgb[1], p_rgb[2]);
n.normalize();
p_rgb[0] = n.x;
p_rgb[1] = n.y;
p_rgb[2] = n.z;
}
void Image::renormalize_half(uint16_t *p_rgb) {
Vector3 n(Math::half_to_float(p_rgb[0]), Math::half_to_float(p_rgb[1]), Math::half_to_float(p_rgb[2]));
n.normalize();
p_rgb[0] = Math::make_half_float(n.x);
p_rgb[1] = Math::make_half_float(n.y);
p_rgb[2] = Math::make_half_float(n.z);
}
void Image::renormalize_rgbe9995(uint32_t *p_rgb) {
// Never used
}
Image::Image(const uint8_t *p_mem_png_jpg, int p_len) {
width = 0;
height = 0;
mipmaps = false;
format = FORMAT_L8;
if (_png_mem_loader_func) {
copy_internals_from(_png_mem_loader_func(p_mem_png_jpg, p_len));
}
if (is_empty() && _jpg_mem_loader_func) {
copy_internals_from(_jpg_mem_loader_func(p_mem_png_jpg, p_len));
}
if (is_empty() && _webp_mem_loader_func) {
copy_internals_from(_webp_mem_loader_func(p_mem_png_jpg, p_len));
}
}
Ref<Resource> Image::duplicate(bool p_subresources) const {
Ref<Image> copy;
copy.instantiate();
copy->_copy_internals_from(*this);
return copy;
}
void Image::set_as_black() {
memset(data.ptrw(), 0, data.size());
}
Dictionary Image::compute_image_metrics(const Ref<Image> p_compared_image, bool p_luma_metric) {
// https://github.com/richgel999/bc7enc_rdo/blob/master/LICENSE
//
// This is free and unencumbered software released into the public domain.
// Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
// software, either in source code form or as a compiled binary, for any purpose,
// commercial or non - commercial, and by any means.
// In jurisdictions that recognize copyright laws, the author or authors of this
// software dedicate any and all copyright interest in the software to the public
// domain. We make this dedication for the benefit of the public at large and to
// the detriment of our heirs and successors. We intend this dedication to be an
// overt act of relinquishment in perpetuity of all present and future rights to
// this software under copyright law.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Dictionary result;
result["max"] = INFINITY;
result["mean"] = INFINITY;
result["mean_squared"] = INFINITY;
result["root_mean_squared"] = INFINITY;
result["peak_snr"] = 0.0f;
ERR_FAIL_NULL_V(p_compared_image, result);
Error err = OK;
Ref<Image> compared_image = duplicate(true);
if (compared_image->is_compressed()) {
err = compared_image->decompress();
}
ERR_FAIL_COND_V(err != OK, result);
Ref<Image> source_image = p_compared_image->duplicate(true);
if (source_image->is_compressed()) {
err = source_image->decompress();
}
ERR_FAIL_COND_V(err != OK, result);
ERR_FAIL_COND_V(err != OK, result);
ERR_FAIL_COND_V_MSG((compared_image->get_format() >= Image::FORMAT_RH) && (compared_image->get_format() <= Image::FORMAT_RGBE9995), result, "Metrics on HDR images are not supported.");
ERR_FAIL_COND_V_MSG((source_image->get_format() >= Image::FORMAT_RH) && (source_image->get_format() <= Image::FORMAT_RGBE9995), result, "Metrics on HDR images are not supported.");
double image_metric_max, image_metric_mean, image_metric_mean_squared, image_metric_root_mean_squared, image_metric_peak_snr = 0.0;
const bool average_component_error = true;
const uint32_t w = MIN(compared_image->get_width(), source_image->get_width());
const uint32_t h = MIN(compared_image->get_height(), source_image->get_height());
// Histogram approach originally due to Charles Bloom.
double hist[256];
memset(hist, 0, sizeof(hist));
for (uint32_t y = 0; y < h; y++) {
for (uint32_t x = 0; x < w; x++) {
const Color color_a = compared_image->get_pixel(x, y);
const Color color_b = source_image->get_pixel(x, y);
if (!p_luma_metric) {
ERR_FAIL_COND_V_MSG(color_a.r > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.r > 1.0f, Dictionary(), "Can't compare HDR colors.");
hist[Math::abs(color_a.get_r8() - color_b.get_r8())]++;
ERR_FAIL_COND_V_MSG(color_a.g > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.g > 1.0f, Dictionary(), "Can't compare HDR colors.");
hist[Math::abs(color_a.get_g8() - color_b.get_g8())]++;
ERR_FAIL_COND_V_MSG(color_a.b > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.b > 1.0f, Dictionary(), "Can't compare HDR colors.");
hist[Math::abs(color_a.get_b8() - color_b.get_b8())]++;
ERR_FAIL_COND_V_MSG(color_a.a > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.a > 1.0f, Dictionary(), "Can't compare HDR colors.");
hist[Math::abs(color_a.get_a8() - color_b.get_a8())]++;
} else {
ERR_FAIL_COND_V_MSG(color_a.r > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.r > 1.0f, Dictionary(), "Can't compare HDR colors.");
// REC709 weightings
int luma_a = (13938U * color_a.get_r8() + 46869U * color_a.get_g8() + 4729U * color_a.get_b8() + 32768U) >> 16U;
int luma_b = (13938U * color_b.get_r8() + 46869U * color_b.get_g8() + 4729U * color_b.get_b8() + 32768U) >> 16U;
hist[Math::abs(luma_a - luma_b)]++;
}
}
}
image_metric_max = 0;
double sum = 0.0f, sum2 = 0.0f;
for (uint32_t i = 0; i < 256; i++) {
if (!hist[i]) {
continue;
}
image_metric_max = MAX(image_metric_max, i);
double x = i * hist[i];
sum += x;
sum2 += i * x;
}
// See http://richg42.blogspot.com/2016/09/how-to-compute-psnr-from-old-berkeley.html
double total_values = w * h;
if (average_component_error) {
total_values *= 4;
}
image_metric_mean = CLAMP(sum / total_values, 0.0f, 255.0f);
image_metric_mean_squared = CLAMP(sum2 / total_values, 0.0f, 255.0f * 255.0f);
image_metric_root_mean_squared = sqrt(image_metric_mean_squared);
if (!image_metric_root_mean_squared) {
image_metric_peak_snr = 1e+10f;
} else {
image_metric_peak_snr = CLAMP(log10(255.0f / image_metric_root_mean_squared) * 20.0f, 0.0f, 500.0f);
}
result["max"] = image_metric_max;
result["mean"] = image_metric_mean;
result["mean_squared"] = image_metric_mean_squared;
result["root_mean_squared"] = image_metric_root_mean_squared;
result["peak_snr"] = image_metric_peak_snr;
return result;
}