godot/servers/rendering/rendering_device.cpp
Rémi Verschelde 07b88600b7
Merge pull request #86522 from RandomShaper/fix_uset_rebind
RenderingDevice: Fix uniform sets wrongly assumed to be bound
2024-01-02 21:32:25 +01:00

7072 lines
307 KiB
C++

/**************************************************************************/
/* rendering_device.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rendering_device.h"
#include "rendering_device.compat.inc"
#include "rendering_device_binds.h"
#include "core/config/project_settings.h"
#include "core/io/dir_access.h"
#include "servers/rendering/renderer_rd/api_context_rd.h"
//#define FORCE_FULL_BARRIER
RenderingDevice *RenderingDevice::singleton = nullptr;
RenderingDevice *RenderingDevice::get_singleton() {
return singleton;
}
RenderingDevice::ShaderCompileToSPIRVFunction RenderingDevice::compile_to_spirv_function = nullptr;
RenderingDevice::ShaderCacheFunction RenderingDevice::cache_function = nullptr;
RenderingDevice::ShaderSPIRVGetCacheKeyFunction RenderingDevice::get_spirv_cache_key_function = nullptr;
/***************************/
/**** ID INFRASTRUCTURE ****/
/***************************/
void RenderingDevice::_add_dependency(RID p_id, RID p_depends_on) {
if (!dependency_map.has(p_depends_on)) {
dependency_map[p_depends_on] = HashSet<RID>();
}
dependency_map[p_depends_on].insert(p_id);
if (!reverse_dependency_map.has(p_id)) {
reverse_dependency_map[p_id] = HashSet<RID>();
}
reverse_dependency_map[p_id].insert(p_depends_on);
}
void RenderingDevice::_free_dependencies(RID p_id) {
// Direct dependencies must be freed.
HashMap<RID, HashSet<RID>>::Iterator E = dependency_map.find(p_id);
if (E) {
while (E->value.size()) {
free(*E->value.begin());
}
dependency_map.remove(E);
}
// Reverse dependencies must be unreferenced.
E = reverse_dependency_map.find(p_id);
if (E) {
for (const RID &F : E->value) {
HashMap<RID, HashSet<RID>>::Iterator G = dependency_map.find(F);
ERR_CONTINUE(!G);
ERR_CONTINUE(!G->value.has(p_id));
G->value.erase(p_id);
}
reverse_dependency_map.remove(E);
}
}
void RenderingDevice::shader_set_compile_to_spirv_function(ShaderCompileToSPIRVFunction p_function) {
compile_to_spirv_function = p_function;
}
void RenderingDevice::shader_set_spirv_cache_function(ShaderCacheFunction p_function) {
cache_function = p_function;
}
void RenderingDevice::shader_set_get_cache_key_function(ShaderSPIRVGetCacheKeyFunction p_function) {
get_spirv_cache_key_function = p_function;
}
Vector<uint8_t> RenderingDevice::shader_compile_spirv_from_source(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language, String *r_error, bool p_allow_cache) {
if (p_allow_cache && cache_function) {
Vector<uint8_t> cache = cache_function(p_stage, p_source_code, p_language);
if (cache.size()) {
return cache;
}
}
ERR_FAIL_NULL_V(compile_to_spirv_function, Vector<uint8_t>());
return compile_to_spirv_function(p_stage, p_source_code, p_language, r_error, this);
}
String RenderingDevice::shader_get_spirv_cache_key() const {
if (get_spirv_cache_key_function) {
return get_spirv_cache_key_function(this);
}
return String();
}
RID RenderingDevice::shader_create_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name) {
Vector<uint8_t> bytecode = shader_compile_binary_from_spirv(p_spirv, p_shader_name);
ERR_FAIL_COND_V(bytecode.size() == 0, RID());
return shader_create_from_bytecode(bytecode);
}
/******************/
/**** BARRIERS ****/
/******************/
void RenderingDevice::_full_barrier(bool p_sync_with_draw) {
// Used for debug.
RDD::MemoryBarrier mb;
mb.src_access = (RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT |
RDD::BARRIER_ACCESS_INDEX_READ_BIT |
RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
RDD::BARRIER_ACCESS_UNIFORM_READ_BIT |
RDD::BARRIER_ACCESS_INPUT_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_SHADER_READ_BIT |
RDD::BARRIER_ACCESS_SHADER_WRITE_BIT |
RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
RDD::BARRIER_ACCESS_TRANSFER_READ_BIT |
RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT |
RDD::BARRIER_ACCESS_HOST_READ_BIT |
RDD::BARRIER_ACCESS_HOST_WRITE_BIT);
mb.dst_access = (RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT |
RDD::BARRIER_ACCESS_INDEX_READ_BIT |
RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
RDD::BARRIER_ACCESS_UNIFORM_READ_BIT |
RDD::BARRIER_ACCESS_INPUT_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_SHADER_READ_BIT |
RDD::BARRIER_ACCESS_SHADER_WRITE_BIT |
RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
RDD::BARRIER_ACCESS_TRANSFER_READ_BIT |
RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT |
RDD::BARRIER_ACCESS_HOST_READ_BIT |
RDD::BARRIER_ACCESS_HOST_WRITE_BIT);
RDD::CommandBufferID cmd_buffer = p_sync_with_draw ? frames[frame].draw_command_buffer : frames[frame].setup_command_buffer;
driver->command_pipeline_barrier(cmd_buffer, RDD::PIPELINE_STAGE_ALL_COMMANDS_BIT, RDD::PIPELINE_STAGE_ALL_COMMANDS_BIT, mb, {}, {});
}
/***************************/
/**** BUFFER MANAGEMENT ****/
/***************************/
RenderingDevice::Buffer *RenderingDevice::_get_buffer_from_owner(RID p_buffer, BitField<RDD::PipelineStageBits> &r_stages, BitField<RDD::BarrierAccessBits> &r_access, BitField<BarrierMask> p_post_barrier) {
Buffer *buffer = nullptr;
r_stages.clear();
r_access.clear();
if (vertex_buffer_owner.owns(p_buffer)) {
buffer = vertex_buffer_owner.get_or_null(p_buffer);
r_stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT);
if (buffer->usage & RDD::BUFFER_USAGE_STORAGE_BIT) {
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
r_stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
r_stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
r_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
}
}
} else if (index_buffer_owner.owns(p_buffer)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_INDEX_READ_BIT);
buffer = index_buffer_owner.get_or_null(p_buffer);
} else if (uniform_buffer_owner.owns(p_buffer)) {
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
}
r_access.set_flag(RDD::BARRIER_ACCESS_UNIFORM_READ_BIT);
buffer = uniform_buffer_owner.get_or_null(p_buffer);
} else if (texture_buffer_owner.owns(p_buffer)) {
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT);
}
// FIXME: Broken.
//buffer = texture_buffer_owner.get_or_null(p_buffer)->buffer;
} else if (storage_buffer_owner.owns(p_buffer)) {
buffer = storage_buffer_owner.get_or_null(p_buffer);
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (buffer->usage.has_flag(RDD::BUFFER_USAGE_INDIRECT_BIT)) {
r_stages.set_flag(RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT);
r_access.set_flag(RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT);
}
}
return buffer;
}
Error RenderingDevice::_insert_staging_block() {
StagingBufferBlock block;
block.driver_id = driver->buffer_create(staging_buffer_block_size, RDD::BUFFER_USAGE_TRANSFER_FROM_BIT, RDD::MEMORY_ALLOCATION_TYPE_CPU);
ERR_FAIL_COND_V(!block.driver_id, ERR_CANT_CREATE);
block.frame_used = 0;
block.fill_amount = 0;
staging_buffer_blocks.insert(staging_buffer_current, block);
return OK;
}
Error RenderingDevice::_staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment) {
// Determine a block to use.
r_alloc_size = p_amount;
while (true) {
r_alloc_offset = 0;
// See if we can use current block.
if (staging_buffer_blocks[staging_buffer_current].frame_used == frames_drawn) {
// We used this block this frame, let's see if there is still room.
uint32_t write_from = staging_buffer_blocks[staging_buffer_current].fill_amount;
{
uint32_t align_remainder = write_from % p_required_align;
if (align_remainder != 0) {
write_from += p_required_align - align_remainder;
}
}
int32_t available_bytes = int32_t(staging_buffer_block_size) - int32_t(write_from);
if ((int32_t)p_amount < available_bytes) {
// All is good, we should be ok, all will fit.
r_alloc_offset = write_from;
} else if (p_can_segment && available_bytes >= (int32_t)p_required_align) {
// Ok all won't fit but at least we can fit a chunkie.
// All is good, update what needs to be written to.
r_alloc_offset = write_from;
r_alloc_size = available_bytes - (available_bytes % p_required_align);
} else {
// Can't fit it into this buffer.
// Will need to try next buffer.
staging_buffer_current = (staging_buffer_current + 1) % staging_buffer_blocks.size();
// Before doing anything, though, let's check that we didn't manage to fill all blocks.
// Possible in a single frame.
if (staging_buffer_blocks[staging_buffer_current].frame_used == frames_drawn) {
// Guess we did.. ok, let's see if we can insert a new block.
if ((uint64_t)staging_buffer_blocks.size() * staging_buffer_block_size < staging_buffer_max_size) {
// We can, so we are safe.
Error err = _insert_staging_block();
if (err) {
return err;
}
// Claim for this frame.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
} else {
// Ok, worst case scenario, all the staging buffers belong to this frame
// and this frame is not even done.
// If this is the main thread, it means the user is likely loading a lot of resources at once,.
// Otherwise, the thread should just be blocked until the next frame (currently unimplemented).
if (false) { // Separate thread from render.
//block_until_next_frame()
continue;
} else {
// Flush EVERYTHING including setup commands. IF not immediate, also need to flush the draw commands.
_flush(true);
// Clear the whole staging buffer.
for (int i = 0; i < staging_buffer_blocks.size(); i++) {
staging_buffer_blocks.write[i].frame_used = 0;
staging_buffer_blocks.write[i].fill_amount = 0;
}
// Claim current.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
}
}
} else {
// Not from current frame, so continue and try again.
continue;
}
}
} else if (staging_buffer_blocks[staging_buffer_current].frame_used <= frames_drawn - frame_count) {
// This is an old block, which was already processed, let's reuse.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
staging_buffer_blocks.write[staging_buffer_current].fill_amount = 0;
} else {
// This block may still be in use, let's not touch it unless we have to, so.. can we create a new one?
if ((uint64_t)staging_buffer_blocks.size() * staging_buffer_block_size < staging_buffer_max_size) {
// We are still allowed to create a new block, so let's do that and insert it for current pos.
Error err = _insert_staging_block();
if (err) {
return err;
}
// Claim for this frame.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
} else {
// Oops, we are out of room and we can't create more.
// Let's flush older frames.
// The logic here is that if a game is loading a lot of data from the main thread, it will need to be stalled anyway.
// If loading from a separate thread, we can block that thread until next frame when more room is made (not currently implemented, though).
if (false) {
// Separate thread from render.
//block_until_next_frame()
continue; // And try again.
} else {
_flush(false);
for (int i = 0; i < staging_buffer_blocks.size(); i++) {
// Clear all blocks but the ones from this frame.
int block_idx = (i + staging_buffer_current) % staging_buffer_blocks.size();
if (staging_buffer_blocks[block_idx].frame_used == frames_drawn) {
break; // Ok, we reached something from this frame, abort.
}
staging_buffer_blocks.write[block_idx].frame_used = 0;
staging_buffer_blocks.write[block_idx].fill_amount = 0;
}
// Claim for current frame.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
}
}
}
// All was good, break.
break;
}
staging_buffer_used = true;
return OK;
}
Error RenderingDevice::_buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer, uint32_t p_required_align) {
// Submitting may get chunked for various reasons, so convert this to a task.
size_t to_submit = p_data_size;
size_t submit_from = 0;
while (to_submit > 0) {
uint32_t block_write_offset;
uint32_t block_write_amount;
Error err = _staging_buffer_allocate(MIN(to_submit, staging_buffer_block_size), p_required_align, block_write_offset, block_write_amount);
if (err) {
return err;
}
// Map staging buffer (It's CPU and coherent).
uint8_t *data_ptr = driver->buffer_map(staging_buffer_blocks[staging_buffer_current].driver_id);
ERR_FAIL_NULL_V(data_ptr, ERR_CANT_CREATE);
// Copy to staging buffer.
memcpy(data_ptr + block_write_offset, p_data + submit_from, block_write_amount);
// Unmap.
driver->buffer_unmap(staging_buffer_blocks[staging_buffer_current].driver_id);
// Insert a command to copy this.
RDD::BufferCopyRegion region;
region.src_offset = block_write_offset;
region.dst_offset = submit_from + p_offset;
region.size = block_write_amount;
driver->command_copy_buffer(p_use_draw_command_buffer ? frames[frame].draw_command_buffer : frames[frame].setup_command_buffer, staging_buffer_blocks[staging_buffer_current].driver_id, p_buffer->driver_id, region);
staging_buffer_blocks.write[staging_buffer_current].fill_amount = block_write_offset + block_write_amount;
to_submit -= block_write_amount;
submit_from += block_write_amount;
}
return OK;
}
Error RenderingDevice::buffer_copy(RID p_src_buffer, RID p_dst_buffer, uint32_t p_src_offset, uint32_t p_dst_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER,
"Copying buffers is forbidden during creation of a draw list");
ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER,
"Copying buffers is forbidden during creation of a compute list");
// This method assumes the barriers have been pushed prior to being called, therefore no barriers are pushed
// for the source or destination buffers before performing the copy. These masks are effectively ignored.
BitField<RDD::PipelineStageBits> src_stages;
BitField<RDD::BarrierAccessBits> src_access;
Buffer *src_buffer = _get_buffer_from_owner(p_src_buffer, src_stages, src_access, BARRIER_MASK_NO_BARRIER);
if (!src_buffer) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Source buffer argument is not a valid buffer of any type.");
}
BitField<RDD::PipelineStageBits> dst_stages;
BitField<RDD::BarrierAccessBits> dst_access;
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
// If the post barrier mask defines it, we indicate the destination buffer will require a barrier with these flags set
// after the copy command is queued.
dst_stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT);
}
Buffer *dst_buffer = _get_buffer_from_owner(p_dst_buffer, dst_stages, dst_access, p_post_barrier);
if (!dst_buffer) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Destination buffer argument is not a valid buffer of any type.");
}
// Validate the copy's dimensions for both buffers.
ERR_FAIL_COND_V_MSG((p_size + p_src_offset) > src_buffer->size, ERR_INVALID_PARAMETER, "Size is larger than the source buffer.");
ERR_FAIL_COND_V_MSG((p_size + p_dst_offset) > dst_buffer->size, ERR_INVALID_PARAMETER, "Size is larger than the destination buffer.");
// Perform the copy.
RDD::BufferCopyRegion region;
region.src_offset = p_src_offset;
region.dst_offset = p_dst_offset;
region.size = p_size;
driver->command_copy_buffer(frames[frame].draw_command_buffer, src_buffer->driver_id, dst_buffer->driver_id, region);
#ifdef FORCE_FULL_BARRIER
_full_barrier(true);
#else
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS) && p_post_barrier != RD::BARRIER_MASK_NO_BARRIER) {
if (dst_stages.is_empty()) {
dst_stages = RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
}
// As indicated by the post barrier mask, push a new barrier.
RDD::BufferBarrier bb;
bb.buffer = dst_buffer->driver_id;
bb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
bb.dst_access = dst_access;
bb.offset = p_dst_offset;
bb.size = p_size;
driver->command_pipeline_barrier(frames[frame].draw_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, dst_stages, {}, bb, {});
}
#endif
return OK;
}
Error RenderingDevice::buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER,
"Updating buffers is forbidden during creation of a draw list");
ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER,
"Updating buffers is forbidden during creation of a compute list");
BitField<RDD::PipelineStageBits> dst_stages;
BitField<RDD::BarrierAccessBits> dst_access;
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
// Protect subsequent updates.
dst_stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT);
}
Buffer *buffer = _get_buffer_from_owner(p_buffer, dst_stages, dst_access, p_post_barrier);
if (!buffer) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Buffer argument is not a valid buffer of any type.");
}
ERR_FAIL_COND_V_MSG(p_offset + p_size > buffer->size, ERR_INVALID_PARAMETER,
"Attempted to write buffer (" + itos((p_offset + p_size) - buffer->size) + " bytes) past the end.");
Error err = _buffer_update(buffer, p_offset, (uint8_t *)p_data, p_size, true);
if (err) {
return err;
}
#ifdef FORCE_FULL_BARRIER
_full_barrier(true);
#else
if (dst_stages.is_empty()) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
}
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS) && p_post_barrier != RD::BARRIER_MASK_NO_BARRIER) {
RDD::BufferBarrier bb;
bb.buffer = buffer->driver_id;
bb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
bb.dst_access = dst_access;
bb.offset = p_offset;
bb.size = p_size;
driver->command_pipeline_barrier(frames[frame].draw_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, dst_stages, {}, bb, {});
}
#endif
return err;
}
Error RenderingDevice::buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG((p_size % 4) != 0, ERR_INVALID_PARAMETER,
"Size must be a multiple of four");
ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER,
"Updating buffers in is forbidden during creation of a draw list");
ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER,
"Updating buffers is forbidden during creation of a compute list");
BitField<RDD::PipelineStageBits> dst_stages;
BitField<RDD::BarrierAccessBits> dst_access;
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
// Protect subsequent updates.
dst_stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT);
}
Buffer *buffer = _get_buffer_from_owner(p_buffer, dst_stages, dst_access, p_post_barrier);
if (!buffer) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Buffer argument is not a valid buffer of any type.");
}
ERR_FAIL_COND_V_MSG(p_offset + p_size > buffer->size, ERR_INVALID_PARAMETER,
"Attempted to write buffer (" + itos((p_offset + p_size) - buffer->size) + " bytes) past the end.");
driver->command_clear_buffer(frames[frame].draw_command_buffer, buffer->driver_id, p_offset, p_size);
#ifdef FORCE_FULL_BARRIER
_full_barrier(true);
#else
if (dst_stages.is_empty()) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
}
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::BufferBarrier bb;
bb.buffer = buffer->driver_id;
bb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
bb.dst_access = dst_access;
bb.offset = p_offset;
bb.size = p_size;
driver->command_pipeline_barrier(frames[frame].draw_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, dst_stages, {}, bb, {});
}
#endif
return OK;
}
Vector<uint8_t> RenderingDevice::buffer_get_data(RID p_buffer, uint32_t p_offset, uint32_t p_size) {
_THREAD_SAFE_METHOD_
// It could be this buffer was just created.
BitField<RDD::PipelineStageBits> src_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
BitField<RDD::BarrierAccessBits> src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
// Get the vulkan buffer and the potential stage/access possible.
Buffer *buffer = _get_buffer_from_owner(p_buffer, src_stages, src_access, BARRIER_MASK_ALL_BARRIERS);
if (!buffer) {
ERR_FAIL_V_MSG(Vector<uint8_t>(), "Buffer is either invalid or this type of buffer can't be retrieved. Only Index and Vertex buffers allow retrieving.");
}
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
// Make sure no one is using the buffer -- the "true" gets us to the same command buffer as below.
RDD::BufferBarrier bb;
bb.buffer = buffer->driver_id;
bb.src_access = src_access;
bb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_READ_BIT;
bb.size = buffer->size;
driver->command_pipeline_barrier(frames[frame].draw_command_buffer, src_stages, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, bb, {});
}
// Size of buffer to retrieve.
if (!p_size) {
p_size = buffer->size;
} else {
ERR_FAIL_COND_V_MSG(p_size + p_offset > buffer->size, Vector<uint8_t>(),
"Size is larger than the buffer.");
}
RDD::BufferID tmp_buffer = driver->buffer_create(buffer->size, RDD::BUFFER_USAGE_TRANSFER_TO_BIT, RDD::MEMORY_ALLOCATION_TYPE_CPU);
ERR_FAIL_COND_V(!tmp_buffer, Vector<uint8_t>());
RDD::BufferCopyRegion region;
region.src_offset = p_offset;
region.size = p_size;
driver->command_copy_buffer(frames[frame].draw_command_buffer, buffer->driver_id, tmp_buffer, region);
// Flush everything so memory can be safely mapped.
_flush(true);
uint8_t *buffer_mem = driver->buffer_map(tmp_buffer);
ERR_FAIL_COND_V(!buffer_mem, Vector<uint8_t>());
Vector<uint8_t> buffer_data;
{
buffer_data.resize(p_size);
uint8_t *w = buffer_data.ptrw();
memcpy(w, buffer_mem, p_size);
}
driver->buffer_unmap(tmp_buffer);
driver->buffer_free(tmp_buffer);
return buffer_data;
}
RID RenderingDevice::storage_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data, BitField<StorageBufferUsage> p_usage) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID());
Buffer buffer;
buffer.size = p_size_bytes;
buffer.usage = (RDD::BUFFER_USAGE_TRANSFER_FROM_BIT | RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_STORAGE_BIT);
if (p_usage.has_flag(STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT)) {
buffer.usage.set_flag(RDD::BUFFER_USAGE_INDIRECT_BIT);
}
buffer.driver_id = driver->buffer_create(buffer.size, buffer.usage, RDD::MEMORY_ALLOCATION_TYPE_GPU);
ERR_FAIL_COND_V(!buffer.driver_id, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&buffer, 0, r, data_size);
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::BufferBarrier bb;
bb.buffer = buffer.driver_id;
bb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
bb.dst_access = (RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
bb.size = data_size;
driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT | RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, {}, bb, {});
}
}
buffer_memory += buffer.size;
return storage_buffer_owner.make_rid(buffer);
}
RID RenderingDevice::texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data) {
_THREAD_SAFE_METHOD_
uint32_t element_size = get_format_vertex_size(p_format);
ERR_FAIL_COND_V_MSG(element_size == 0, RID(), "Format requested is not supported for texture buffers");
uint64_t size_bytes = uint64_t(element_size) * p_size_elements;
ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != size_bytes, RID());
Buffer texture_buffer;
texture_buffer.size = size_bytes;
BitField<RDD::BufferUsageBits> usage = (RDD::BUFFER_USAGE_TRANSFER_FROM_BIT | RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_TEXEL_BIT);
texture_buffer.driver_id = driver->buffer_create(size_bytes, usage, RDD::MEMORY_ALLOCATION_TYPE_GPU);
ERR_FAIL_COND_V(!texture_buffer.driver_id, RID());
bool ok = driver->buffer_set_texel_format(texture_buffer.driver_id, p_format);
if (!ok) {
driver->buffer_free(texture_buffer.driver_id);
ERR_FAIL_V(RID());
}
if (p_data.size()) {
_buffer_update(&texture_buffer, 0, p_data.ptr(), p_data.size());
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::BufferBarrier bb;
bb.buffer = texture_buffer.driver_id;
bb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
bb.dst_access = RDD::BARRIER_ACCESS_SHADER_READ_BIT;
bb.size = size_bytes;
driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, (RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT | RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT), {}, bb, {});
}
}
buffer_memory += size_bytes;
RID id = texture_buffer_owner.make_rid(texture_buffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
/*****************/
/**** TEXTURE ****/
/*****************/
RID RenderingDevice::texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data) {
_THREAD_SAFE_METHOD_
// Some adjustments will happen.
TextureFormat format = p_format;
if (format.shareable_formats.size()) {
ERR_FAIL_COND_V_MSG(format.shareable_formats.find(format.format) == -1, RID(),
"If supplied a list of shareable formats, the current format must be present in the list");
ERR_FAIL_COND_V_MSG(p_view.format_override != DATA_FORMAT_MAX && format.shareable_formats.find(p_view.format_override) == -1, RID(),
"If supplied a list of shareable formats, the current view format override must be present in the list");
}
ERR_FAIL_INDEX_V(format.texture_type, RDD::TEXTURE_TYPE_MAX, RID());
ERR_FAIL_COND_V_MSG(format.width < 1, RID(), "Width must be equal or greater than 1 for all textures");
if (format.texture_type != TEXTURE_TYPE_1D && format.texture_type != TEXTURE_TYPE_1D_ARRAY) {
ERR_FAIL_COND_V_MSG(format.height < 1, RID(), "Height must be equal or greater than 1 for 2D and 3D textures");
}
if (format.texture_type == TEXTURE_TYPE_3D) {
ERR_FAIL_COND_V_MSG(format.depth < 1, RID(), "Depth must be equal or greater than 1 for 3D textures");
}
ERR_FAIL_COND_V(format.mipmaps < 1, RID());
if (format.texture_type == TEXTURE_TYPE_1D_ARRAY || format.texture_type == TEXTURE_TYPE_2D_ARRAY || format.texture_type == TEXTURE_TYPE_CUBE_ARRAY || format.texture_type == TEXTURE_TYPE_CUBE) {
ERR_FAIL_COND_V_MSG(format.array_layers < 1, RID(),
"Amount of layers must be equal or greater than 1 for arrays and cubemaps.");
ERR_FAIL_COND_V_MSG((format.texture_type == TEXTURE_TYPE_CUBE_ARRAY || format.texture_type == TEXTURE_TYPE_CUBE) && (format.array_layers % 6) != 0, RID(),
"Cubemap and cubemap array textures must provide a layer number that is multiple of 6");
} else {
format.array_layers = 1;
}
ERR_FAIL_INDEX_V(format.samples, TEXTURE_SAMPLES_MAX, RID());
format.height = format.texture_type != TEXTURE_TYPE_1D && format.texture_type != TEXTURE_TYPE_1D_ARRAY ? format.height : 1;
format.depth = format.texture_type == TEXTURE_TYPE_3D ? format.depth : 1;
uint32_t required_mipmaps = get_image_required_mipmaps(format.width, format.height, format.depth);
ERR_FAIL_COND_V_MSG(required_mipmaps < format.mipmaps, RID(),
"Too many mipmaps requested for texture format and dimensions (" + itos(format.mipmaps) + "), maximum allowed: (" + itos(required_mipmaps) + ").");
if (p_data.size()) {
ERR_FAIL_COND_V_MSG(!(format.usage_bits & TEXTURE_USAGE_CAN_UPDATE_BIT), RID(),
"Texture needs the TEXTURE_USAGE_CAN_UPDATE_BIT usage flag in order to be updated at initialization or later");
ERR_FAIL_COND_V_MSG(p_data.size() != (int)format.array_layers, RID(),
"Default supplied data for image format is of invalid length (" + itos(p_data.size()) + "), should be (" + itos(format.array_layers) + ").");
for (uint32_t i = 0; i < format.array_layers; i++) {
uint32_t required_size = get_image_format_required_size(format.format, format.width, format.height, format.depth, format.mipmaps);
ERR_FAIL_COND_V_MSG((uint32_t)p_data[i].size() != required_size, RID(),
"Data for slice index " + itos(i) + " (mapped to layer " + itos(i) + ") differs in size (supplied: " + itos(p_data[i].size()) + ") than what is required by the format (" + itos(required_size) + ").");
}
}
{
// Validate that this image is supported for the intended use.
bool cpu_readable = (format.usage_bits & RDD::TEXTURE_USAGE_CPU_READ_BIT);
BitField<RDD::TextureUsageBits> supported_usage = driver->texture_get_usages_supported_by_format(format.format, cpu_readable);
String format_text = "'" + String(FORMAT_NAMES[format.format]) + "'";
if ((format.usage_bits & TEXTURE_USAGE_SAMPLING_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_SAMPLING_BIT)) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as sampling texture.");
}
if ((format.usage_bits & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as color attachment.");
}
if ((format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as depth-stencil attachment.");
}
if ((format.usage_bits & TEXTURE_USAGE_STORAGE_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_STORAGE_BIT)) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as storage image.");
}
if ((format.usage_bits & TEXTURE_USAGE_STORAGE_ATOMIC_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_STORAGE_ATOMIC_BIT)) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as atomic storage image.");
}
if ((format.usage_bits & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_VRS_ATTACHMENT_BIT)) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as VRS attachment.");
}
}
// Transfer and validate view info.
RDD::TextureView tv;
if (p_view.format_override == DATA_FORMAT_MAX) {
tv.format = format.format;
} else {
ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID());
tv.format = p_view.format_override;
}
ERR_FAIL_INDEX_V(p_view.swizzle_r, TEXTURE_SWIZZLE_MAX, RID());
ERR_FAIL_INDEX_V(p_view.swizzle_g, TEXTURE_SWIZZLE_MAX, RID());
ERR_FAIL_INDEX_V(p_view.swizzle_b, TEXTURE_SWIZZLE_MAX, RID());
ERR_FAIL_INDEX_V(p_view.swizzle_a, TEXTURE_SWIZZLE_MAX, RID());
tv.swizzle_r = p_view.swizzle_r;
tv.swizzle_g = p_view.swizzle_g;
tv.swizzle_b = p_view.swizzle_b;
tv.swizzle_a = p_view.swizzle_a;
// Create.
Texture texture;
texture.driver_id = driver->texture_create(format, tv);
ERR_FAIL_COND_V(!texture.driver_id, RID());
texture.type = format.texture_type;
texture.format = format.format;
texture.width = format.width;
texture.height = format.height;
texture.depth = format.depth;
texture.layers = format.array_layers;
texture.mipmaps = format.mipmaps;
texture.base_mipmap = 0;
texture.base_layer = 0;
texture.is_resolve_buffer = format.is_resolve_buffer;
texture.usage_flags = format.usage_bits;
texture.samples = format.samples;
texture.allowed_shared_formats = format.shareable_formats;
// Set base layout based on usage priority.
if ((format.usage_bits & TEXTURE_USAGE_SAMPLING_BIT)) {
// First priority, readable.
texture.layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
} else if ((format.usage_bits & TEXTURE_USAGE_STORAGE_BIT)) {
// Second priority, storage.
texture.layout = RDD::TEXTURE_LAYOUT_GENERAL;
} else if ((format.usage_bits & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
// Third priority, color or depth.
texture.layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
} else if ((format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
texture.layout = RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
} else {
texture.layout = RDD::TEXTURE_LAYOUT_GENERAL;
}
if ((format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
texture.read_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT);
texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT);
if (format_has_stencil(format.format)) {
texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT);
}
} else {
texture.read_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_COLOR_BIT);
texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_COLOR_BIT);
}
texture.bound = false;
// Barrier to set layout.
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::TextureBarrier tb;
tb.texture = texture.driver_id;
tb.dst_access = RDD::BARRIER_ACCESS_SHADER_READ_BIT;
tb.prev_layout = RDD::TEXTURE_LAYOUT_UNDEFINED;
tb.next_layout = texture.layout;
tb.subresources.aspect = texture.barrier_aspect_flags;
tb.subresources.mipmap_count = format.mipmaps;
tb.subresources.layer_count = format.array_layers;
driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT, RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT | RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, {}, {}, tb);
}
texture_memory += driver->texture_get_allocation_size(texture.driver_id);
RID id = texture_owner.make_rid(texture);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
if (p_data.size()) {
for (uint32_t i = 0; i < p_format.array_layers; i++) {
_texture_update(id, i, p_data[i], BARRIER_MASK_ALL_BARRIERS, true);
}
}
return id;
}
RID RenderingDevice::texture_create_shared(const TextureView &p_view, RID p_with_texture) {
_THREAD_SAFE_METHOD_
Texture *src_texture = texture_owner.get_or_null(p_with_texture);
ERR_FAIL_COND_V(!src_texture, RID());
if (src_texture->owner.is_valid()) { // Ahh this is a share. The RenderingDeviceDriver needs the actual owner.
p_with_texture = src_texture->owner;
src_texture = texture_owner.get_or_null(src_texture->owner);
ERR_FAIL_COND_V(!src_texture, RID()); // This is a bug.
}
// Create view.
Texture texture = *src_texture;
RDD::TextureView tv;
if (p_view.format_override == DATA_FORMAT_MAX || p_view.format_override == texture.format) {
tv.format = texture.format;
} else {
ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID());
ERR_FAIL_COND_V_MSG(texture.allowed_shared_formats.find(p_view.format_override) == -1, RID(),
"Format override is not in the list of allowed shareable formats for original texture.");
tv.format = p_view.format_override;
}
tv.swizzle_r = p_view.swizzle_r;
tv.swizzle_g = p_view.swizzle_g;
tv.swizzle_b = p_view.swizzle_b;
tv.swizzle_a = p_view.swizzle_a;
texture.driver_id = driver->texture_create_shared(texture.driver_id, tv);
ERR_FAIL_COND_V(!texture.driver_id, RID());
texture.owner = p_with_texture;
RID id = texture_owner.make_rid(texture);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
_add_dependency(id, p_with_texture);
return id;
}
RID RenderingDevice::texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField<RenderingDevice::TextureUsageBits> p_usage, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers) {
_THREAD_SAFE_METHOD_
// This method creates a texture object using a VkImage created by an extension, module or other external source (OpenXR uses this).
Texture texture;
texture.type = p_type;
texture.format = p_format;
texture.samples = p_samples;
texture.width = p_width;
texture.height = p_height;
texture.depth = p_depth;
texture.layers = p_layers;
texture.mipmaps = 1;
texture.usage_flags = p_usage;
texture.base_mipmap = 0;
texture.base_layer = 0;
texture.allowed_shared_formats.push_back(RD::DATA_FORMAT_R8G8B8A8_UNORM);
texture.allowed_shared_formats.push_back(RD::DATA_FORMAT_R8G8B8A8_SRGB);
// Set base layout based on usage priority.
if (p_usage.has_flag(TEXTURE_USAGE_SAMPLING_BIT)) {
// First priority, readable.
texture.layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
} else if (p_usage.has_flag(TEXTURE_USAGE_STORAGE_BIT)) {
// Second priority, storage.
texture.layout = RDD::TEXTURE_LAYOUT_GENERAL;
} else if (p_usage.has_flag(TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
// Third priority, color or depth.
texture.layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
} else if (p_usage.has_flag(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
texture.layout = RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
} else {
texture.layout = RDD::TEXTURE_LAYOUT_GENERAL;
}
if (p_usage.has_flag(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
texture.read_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT);
texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT);
/*if (format_has_stencil(p_format.format)) {
texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT);
}*/
} else {
texture.read_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_COLOR_BIT);
texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_COLOR_BIT);
}
texture.driver_id = driver->texture_create_from_extension(p_image, p_type, p_format, p_layers, (texture.usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
ERR_FAIL_COND_V(!texture.driver_id, RID());
// Barrier to set layout.
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::TextureBarrier tb;
tb.texture = texture.driver_id;
tb.dst_access = RDD::BARRIER_ACCESS_SHADER_READ_BIT;
tb.prev_layout = RDD::TEXTURE_LAYOUT_UNDEFINED;
tb.next_layout = texture.layout;
tb.subresources.aspect = texture.barrier_aspect_flags;
tb.subresources.mipmap_count = texture.mipmaps;
tb.subresources.layer_count = texture.layers;
driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT, RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT, {}, {}, tb);
}
RID id = texture_owner.make_rid(texture);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
RID RenderingDevice::texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps, TextureSliceType p_slice_type, uint32_t p_layers) {
_THREAD_SAFE_METHOD_
Texture *src_texture = texture_owner.get_or_null(p_with_texture);
ERR_FAIL_COND_V(!src_texture, RID());
if (src_texture->owner.is_valid()) { // // Ahh this is a share. The RenderingDeviceDriver needs the actual owner.
p_with_texture = src_texture->owner;
src_texture = texture_owner.get_or_null(src_texture->owner);
ERR_FAIL_COND_V(!src_texture, RID()); // This is a bug.
}
ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_CUBEMAP && (src_texture->type != TEXTURE_TYPE_CUBE && src_texture->type != TEXTURE_TYPE_CUBE_ARRAY), RID(),
"Can only create a cubemap slice from a cubemap or cubemap array mipmap");
ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_3D && src_texture->type != TEXTURE_TYPE_3D, RID(),
"Can only create a 3D slice from a 3D texture");
ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_2D_ARRAY && (src_texture->type != TEXTURE_TYPE_2D_ARRAY), RID(),
"Can only create an array slice from a 2D array mipmap");
// Create view.
ERR_FAIL_UNSIGNED_INDEX_V(p_mipmap, src_texture->mipmaps, RID());
ERR_FAIL_COND_V(p_mipmap + p_mipmaps > src_texture->mipmaps, RID());
ERR_FAIL_UNSIGNED_INDEX_V(p_layer, src_texture->layers, RID());
int slice_layers = 1;
if (p_layers != 0) {
ERR_FAIL_COND_V_MSG(p_layers > 1 && p_slice_type != TEXTURE_SLICE_2D_ARRAY, RID(), "layer slicing only supported for 2D arrays");
ERR_FAIL_COND_V_MSG(p_layer + p_layers > src_texture->layers, RID(), "layer slice is out of bounds");
slice_layers = p_layers;
} else if (p_slice_type == TEXTURE_SLICE_2D_ARRAY) {
ERR_FAIL_COND_V_MSG(p_layer != 0, RID(), "layer must be 0 when obtaining a 2D array mipmap slice");
slice_layers = src_texture->layers;
} else if (p_slice_type == TEXTURE_SLICE_CUBEMAP) {
slice_layers = 6;
}
Texture texture = *src_texture;
get_image_format_required_size(texture.format, texture.width, texture.height, texture.depth, p_mipmap + 1, &texture.width, &texture.height);
texture.mipmaps = p_mipmaps;
texture.layers = slice_layers;
texture.base_mipmap = p_mipmap;
texture.base_layer = p_layer;
if (p_slice_type == TEXTURE_SLICE_2D) {
texture.type = TEXTURE_TYPE_2D;
} else if (p_slice_type == TEXTURE_SLICE_3D) {
texture.type = TEXTURE_TYPE_3D;
}
RDD::TextureView tv;
if (p_view.format_override == DATA_FORMAT_MAX || p_view.format_override == texture.format) {
tv.format = texture.format;
} else {
ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID());
ERR_FAIL_COND_V_MSG(texture.allowed_shared_formats.find(p_view.format_override) == -1, RID(),
"Format override is not in the list of allowed shareable formats for original texture.");
tv.format = p_view.format_override;
}
tv.swizzle_r = p_view.swizzle_r;
tv.swizzle_g = p_view.swizzle_g;
tv.swizzle_b = p_view.swizzle_b;
tv.swizzle_a = p_view.swizzle_a;
if (p_slice_type == TEXTURE_SLICE_CUBEMAP) {
ERR_FAIL_COND_V_MSG(p_layer >= src_texture->layers, RID(),
"Specified layer is invalid for cubemap");
ERR_FAIL_COND_V_MSG((p_layer % 6) != 0, RID(),
"Specified layer must be a multiple of 6.");
}
texture.driver_id = driver->texture_create_shared_from_slice(src_texture->driver_id, tv, p_slice_type, p_layer, slice_layers, p_mipmap, p_mipmaps);
ERR_FAIL_COND_V(!texture.driver_id, RID());
texture.owner = p_with_texture;
RID id = texture_owner.make_rid(texture);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
_add_dependency(id, p_with_texture);
return id;
}
Error RenderingDevice::texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier) {
return _texture_update(p_texture, p_layer, p_data, p_post_barrier, false);
}
static _ALWAYS_INLINE_ void _copy_region(uint8_t const *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_x, uint32_t p_src_y, uint32_t p_src_w, uint32_t p_src_h, uint32_t p_src_full_w, uint32_t p_dst_pitch, uint32_t p_unit_size) {
uint32_t src_offset = (p_src_y * p_src_full_w + p_src_x) * p_unit_size;
uint32_t dst_offset = 0;
for (uint32_t y = p_src_h; y > 0; y--) {
uint8_t const *__restrict src = p_src + src_offset;
uint8_t *__restrict dst = p_dst + dst_offset;
for (uint32_t x = p_src_w * p_unit_size; x > 0; x--) {
*dst = *src;
src++;
dst++;
}
src_offset += p_src_full_w * p_unit_size;
dst_offset += p_dst_pitch;
}
}
Error RenderingDevice::_texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier, bool p_use_setup_queue) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG((draw_list || compute_list) && !p_use_setup_queue, ERR_INVALID_PARAMETER,
"Updating textures is forbidden during creation of a draw or compute list");
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(texture, ERR_INVALID_PARAMETER);
if (texture->owner != RID()) {
p_texture = texture->owner;
texture = texture_owner.get_or_null(texture->owner);
ERR_FAIL_NULL_V(texture, ERR_BUG); // This is a bug.
}
ERR_FAIL_COND_V_MSG(texture->bound, ERR_CANT_ACQUIRE_RESOURCE,
"Texture can't be updated while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to update this texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_CAN_UPDATE_BIT), ERR_INVALID_PARAMETER,
"Texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_UPDATE_BIT` to be set to be updatable.");
uint32_t layer_count = texture->layers;
if (texture->type == TEXTURE_TYPE_CUBE || texture->type == TEXTURE_TYPE_CUBE_ARRAY) {
layer_count *= 6;
}
ERR_FAIL_COND_V(p_layer >= layer_count, ERR_INVALID_PARAMETER);
uint32_t width, height;
uint32_t tight_mip_size = get_image_format_required_size(texture->format, texture->width, texture->height, texture->depth, texture->mipmaps, &width, &height);
uint32_t required_size = tight_mip_size;
uint32_t required_align = get_compressed_image_format_block_byte_size(texture->format);
if (required_align == 1) {
required_align = get_image_format_pixel_size(texture->format);
}
required_align = STEPIFY(required_align, driver->api_trait_get(RDD::API_TRAIT_TEXTURE_TRANSFER_ALIGNMENT));
ERR_FAIL_COND_V_MSG(required_size != (uint32_t)p_data.size(), ERR_INVALID_PARAMETER,
"Required size for texture update (" + itos(required_size) + ") does not match data supplied size (" + itos(p_data.size()) + ").");
uint32_t region_size = texture_upload_region_size_px;
const uint8_t *r = p_data.ptr();
RDD::CommandBufferID command_buffer = p_use_setup_queue ? frames[frame].setup_command_buffer : frames[frame].draw_command_buffer;
// Barrier to transfer.
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::TextureBarrier tb;
tb.texture = texture->driver_id;
tb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
tb.prev_layout = texture->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL;
tb.subresources.aspect = texture->barrier_aspect_flags;
tb.subresources.mipmap_count = texture->mipmaps;
tb.subresources.base_layer = p_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, {}, tb);
}
uint32_t mipmap_offset = 0;
uint32_t logic_width = texture->width;
uint32_t logic_height = texture->height;
for (uint32_t mm_i = 0; mm_i < texture->mipmaps; mm_i++) {
uint32_t depth = 0;
uint32_t image_total = get_image_format_required_size(texture->format, texture->width, texture->height, texture->depth, mm_i + 1, &width, &height, &depth);
const uint8_t *read_ptr_mipmap = r + mipmap_offset;
tight_mip_size = image_total - mipmap_offset;
for (uint32_t z = 0; z < depth; z++) { // For 3D textures, depth may be > 0.
const uint8_t *read_ptr = read_ptr_mipmap + (tight_mip_size / depth) * z;
for (uint32_t y = 0; y < height; y += region_size) {
for (uint32_t x = 0; x < width; x += region_size) {
uint32_t region_w = MIN(region_size, width - x);
uint32_t region_h = MIN(region_size, height - y);
uint32_t region_logic_w = MIN(region_size, logic_width - x);
uint32_t region_logic_h = MIN(region_size, logic_height - y);
uint32_t pixel_size = get_image_format_pixel_size(texture->format);
uint32_t block_w = 0, block_h = 0;
get_compressed_image_format_block_dimensions(texture->format, block_w, block_h);
uint32_t region_pitch = (region_w * pixel_size * block_w) >> get_compressed_image_format_pixel_rshift(texture->format);
uint32_t pitch_step = driver->api_trait_get(RDD::API_TRAIT_TEXTURE_DATA_ROW_PITCH_STEP);
region_pitch = STEPIFY(region_pitch, pitch_step);
uint32_t to_allocate = region_pitch * region_h;
uint32_t alloc_offset = 0, alloc_size = 0;
Error err = _staging_buffer_allocate(to_allocate, required_align, alloc_offset, alloc_size, false);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
uint8_t *write_ptr = nullptr;
{ // Map.
uint8_t *data_ptr = driver->buffer_map(staging_buffer_blocks[staging_buffer_current].driver_id);
ERR_FAIL_NULL_V(data_ptr, ERR_CANT_CREATE);
write_ptr = data_ptr;
write_ptr += alloc_offset;
}
ERR_FAIL_COND_V(region_w % block_w, ERR_BUG);
ERR_FAIL_COND_V(region_h % block_h, ERR_BUG);
if (block_w != 1 || block_h != 1) {
// Compressed image (blocks).
// Must copy a block region.
uint32_t block_size = get_compressed_image_format_block_byte_size(texture->format);
// Re-create current variables in blocky format.
uint32_t xb = x / block_w;
uint32_t yb = y / block_h;
uint32_t wb = width / block_w;
//uint32_t hb = height / block_h;
uint32_t region_wb = region_w / block_w;
uint32_t region_hb = region_h / block_h;
_copy_region(read_ptr, write_ptr, xb, yb, region_wb, region_hb, wb, region_pitch, block_size);
} else {
// Regular image (pixels).
// Must copy a pixel region.
_copy_region(read_ptr, write_ptr, x, y, region_w, region_h, width, region_pitch, pixel_size);
}
{ // Unmap.
driver->buffer_unmap(staging_buffer_blocks[staging_buffer_current].driver_id);
}
RDD::BufferTextureCopyRegion copy_region;
copy_region.buffer_offset = alloc_offset;
copy_region.texture_subresources.aspect = texture->read_aspect_flags;
copy_region.texture_subresources.mipmap = mm_i;
copy_region.texture_subresources.base_layer = p_layer;
copy_region.texture_subresources.layer_count = 1;
copy_region.texture_offset = Vector3i(x, y, z);
copy_region.texture_region_size = Vector3i(region_logic_w, region_logic_h, 1);
driver->command_copy_buffer_to_texture(command_buffer, staging_buffer_blocks[staging_buffer_current].driver_id, texture->driver_id, RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, copy_region);
staging_buffer_blocks.write[staging_buffer_current].fill_amount = alloc_offset + alloc_size;
}
}
}
mipmap_offset = image_total;
logic_width = MAX(1u, logic_width >> 1);
logic_height = MAX(1u, logic_height >> 1);
}
// Barrier to restore layout.
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
BitField<RDD::PipelineStageBits> stages;
BitField<RDD::BarrierAccessBits> access;
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT);
}
if (stages.is_empty()) {
stages.set_flag(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
}
RDD::TextureBarrier tb;
tb.texture = texture->driver_id;
tb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
tb.dst_access = access;
tb.prev_layout = RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL;
tb.next_layout = texture->layout;
tb.subresources.aspect = texture->barrier_aspect_flags;
tb.subresources.mipmap_count = texture->mipmaps;
tb.subresources.base_layer = p_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, stages, {}, {}, tb);
if (texture->used_in_frame != frames_drawn) {
texture->used_in_raster = false;
texture->used_in_compute = false;
texture->used_in_frame = frames_drawn;
}
texture->used_in_transfer = true;
}
return OK;
}
Vector<uint8_t> RenderingDevice::_texture_get_data(Texture *tex, uint32_t p_layer, bool p_2d) {
uint32_t width, height, depth;
uint32_t tight_mip_size = get_image_format_required_size(tex->format, tex->width, tex->height, p_2d ? 1 : tex->depth, tex->mipmaps, &width, &height, &depth);
Vector<uint8_t> image_data;
image_data.resize(tight_mip_size);
uint32_t blockw, blockh;
get_compressed_image_format_block_dimensions(tex->format, blockw, blockh);
uint32_t block_size = get_compressed_image_format_block_byte_size(tex->format);
uint32_t pixel_size = get_image_format_pixel_size(tex->format);
{
uint8_t *w = image_data.ptrw();
uint32_t mipmap_offset = 0;
for (uint32_t mm_i = 0; mm_i < tex->mipmaps; mm_i++) {
uint32_t image_total = get_image_format_required_size(tex->format, tex->width, tex->height, p_2d ? 1 : tex->depth, mm_i + 1, &width, &height, &depth);
uint8_t *write_ptr_mipmap = w + mipmap_offset;
tight_mip_size = image_total - mipmap_offset;
RDD::TextureSubresource subres;
subres.aspect = RDD::TEXTURE_ASPECT_COLOR;
subres.layer = p_layer;
subres.mipmap = mm_i;
RDD::TextureCopyableLayout layout;
driver->texture_get_copyable_layout(tex->driver_id, subres, &layout);
uint8_t *img_mem = driver->texture_map(tex->driver_id, subres);
ERR_FAIL_NULL_V(img_mem, Vector<uint8_t>());
for (uint32_t z = 0; z < depth; z++) {
uint8_t *write_ptr = write_ptr_mipmap + z * tight_mip_size / depth;
const uint8_t *slice_read_ptr = img_mem + z * layout.depth_pitch;
if (block_size > 1) {
// Compressed.
uint32_t line_width = (block_size * (width / blockw));
for (uint32_t y = 0; y < height / blockh; y++) {
const uint8_t *rptr = slice_read_ptr + y * layout.row_pitch;
uint8_t *wptr = write_ptr + y * line_width;
memcpy(wptr, rptr, line_width);
}
} else {
// Uncompressed.
for (uint32_t y = 0; y < height; y++) {
const uint8_t *rptr = slice_read_ptr + y * layout.row_pitch;
uint8_t *wptr = write_ptr + y * pixel_size * width;
memcpy(wptr, rptr, (uint64_t)pixel_size * width);
}
}
}
driver->texture_unmap(tex->driver_id);
mipmap_offset = image_total;
}
}
return image_data;
}
Vector<uint8_t> RenderingDevice::texture_get_data(RID p_texture, uint32_t p_layer) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!tex, Vector<uint8_t>());
ERR_FAIL_COND_V_MSG(tex->bound, Vector<uint8_t>(),
"Texture can't be retrieved while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to retrieve this texture.");
ERR_FAIL_COND_V_MSG(!(tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), Vector<uint8_t>(),
"Texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_FROM_BIT` to be set to be retrieved.");
uint32_t layer_count = tex->layers;
if (tex->type == TEXTURE_TYPE_CUBE || tex->type == TEXTURE_TYPE_CUBE_ARRAY) {
layer_count *= 6;
}
ERR_FAIL_COND_V(p_layer >= layer_count, Vector<uint8_t>());
if ((tex->usage_flags & TEXTURE_USAGE_CPU_READ_BIT)) {
// Does not need anything fancy, map and read.
return _texture_get_data(tex, p_layer);
} else {
LocalVector<RDD::TextureCopyableLayout> mip_layouts;
uint32_t work_mip_alignment = driver->api_trait_get(RDD::API_TRAIT_TEXTURE_TRANSFER_ALIGNMENT);
uint32_t work_buffer_size = 0;
mip_layouts.resize(tex->mipmaps);
for (uint32_t i = 0; i < tex->mipmaps; i++) {
RDD::TextureSubresource subres;
subres.aspect = RDD::TEXTURE_ASPECT_COLOR;
subres.layer = p_layer;
subres.mipmap = i;
driver->texture_get_copyable_layout(tex->driver_id, subres, &mip_layouts[i]);
// Assuming layers are tightly packed. If this is not true on some driver, we must modify the copy algorithm.
DEV_ASSERT(mip_layouts[i].layer_pitch == mip_layouts[i].size / layer_count);
work_buffer_size = STEPIFY(work_buffer_size, work_mip_alignment) + mip_layouts[i].size;
}
RDD::BufferID tmp_buffer = driver->buffer_create(work_buffer_size, RDD::BUFFER_USAGE_TRANSFER_TO_BIT, RDD::MEMORY_ALLOCATION_TYPE_CPU);
ERR_FAIL_COND_V(!tmp_buffer, Vector<uint8_t>());
RDD::CommandBufferID command_buffer = frames[frame].draw_command_buffer; // Makes more sense to retrieve.
// Pre-copy barrier.
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::TextureBarrier tb;
tb.texture = tex->driver_id;
tb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_READ_BIT;
tb.prev_layout = tex->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL;
tb.subresources.aspect = tex->barrier_aspect_flags;
tb.subresources.mipmap_count = tex->mipmaps;
tb.subresources.base_layer = p_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, {}, tb);
}
{
uint32_t w = tex->width;
uint32_t h = tex->height;
uint32_t d = tex->depth;
for (uint32_t i = 0; i < tex->mipmaps; i++) {
RDD::BufferTextureCopyRegion copy_region;
copy_region.buffer_offset = mip_layouts[i].offset;
copy_region.texture_subresources.aspect = tex->read_aspect_flags;
copy_region.texture_subresources.mipmap = i;
copy_region.texture_subresources.base_layer = p_layer;
copy_region.texture_subresources.layer_count = 1;
copy_region.texture_region_size.x = w;
copy_region.texture_region_size.y = h;
copy_region.texture_region_size.z = d;
driver->command_copy_texture_to_buffer(command_buffer, tex->driver_id, RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL, tmp_buffer, copy_region);
w = MAX(1u, w >> 1);
h = MAX(1u, h >> 1);
d = MAX(1u, d >> 1);
}
}
// Post-copy barrier.
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::TextureBarrier tb;
tb.texture = tex->driver_id;
tb.src_access = RDD::BARRIER_ACCESS_TRANSFER_READ_BIT;
tb.dst_access = RDD::BARRIER_ACCESS_SHADER_READ_BIT;
if ((tex->usage_flags & TEXTURE_USAGE_STORAGE_BIT)) {
tb.dst_access.set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
tb.prev_layout = RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL;
tb.next_layout = tex->layout;
tb.subresources.aspect = tex->barrier_aspect_flags;
tb.subresources.mipmap_count = tex->mipmaps;
tb.subresources.base_layer = p_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT | RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, {}, {}, tb);
}
_flush(true);
const uint8_t *read_ptr = driver->buffer_map(tmp_buffer);
ERR_FAIL_NULL_V(read_ptr, Vector<uint8_t>());
Vector<uint8_t> buffer_data;
{
uint32_t tight_buffer_size = get_image_format_required_size(tex->format, tex->width, tex->height, tex->depth, tex->mipmaps);
buffer_data.resize(tight_buffer_size);
uint8_t *write_ptr = buffer_data.ptrw();
uint32_t w = tex->width;
uint32_t h = tex->height;
uint32_t d = tex->depth;
for (uint32_t i = 0; i < tex->mipmaps; i++) {
uint32_t width = 0, height = 0, depth = 0;
uint32_t tight_mip_size = get_image_format_required_size(tex->format, w, h, d, 1, &width, &height, &depth);
uint32_t block_w = 0, block_h = 0;
get_compressed_image_format_block_dimensions(tex->format, block_w, block_h);
uint32_t tight_row_pitch = tight_mip_size / ((height / block_h) * depth);
{
// Copy row-by-row to erase padding due to alignments.
const uint8_t *rp = read_ptr;
uint8_t *wp = write_ptr;
for (uint32_t row = h * d / block_h; row != 0; row--) {
memcpy(wp, rp, tight_row_pitch);
rp += mip_layouts[i].row_pitch;
wp += tight_row_pitch;
}
}
w = MAX(1u, w >> 1);
h = MAX(1u, h >> 1);
d = MAX(1u, d >> 1);
read_ptr += mip_layouts[i].size;
write_ptr += tight_mip_size;
}
}
driver->buffer_unmap(tmp_buffer);
driver->buffer_free(tmp_buffer);
return buffer_data;
}
}
bool RenderingDevice::texture_is_shared(RID p_texture) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!tex, false);
return tex->owner.is_valid();
}
bool RenderingDevice::texture_is_valid(RID p_texture) {
return texture_owner.owns(p_texture);
}
RD::TextureFormat RenderingDevice::texture_get_format(RID p_texture) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!tex, TextureFormat());
TextureFormat tf;
tf.format = tex->format;
tf.width = tex->width;
tf.height = tex->height;
tf.depth = tex->depth;
tf.array_layers = tex->layers;
tf.mipmaps = tex->mipmaps;
tf.texture_type = tex->type;
tf.samples = tex->samples;
tf.usage_bits = tex->usage_flags;
tf.shareable_formats = tex->allowed_shared_formats;
tf.is_resolve_buffer = tex->is_resolve_buffer;
return tf;
}
Size2i RenderingDevice::texture_size(RID p_texture) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!tex, Size2i());
return Size2i(tex->width, tex->height);
}
#ifndef DISABLE_DEPRECATED
uint64_t RenderingDevice::texture_get_native_handle(RID p_texture) {
return get_driver_resource(DRIVER_RESOURCE_TEXTURE, p_texture);
}
#endif
Error RenderingDevice::texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
Texture *src_tex = texture_owner.get_or_null(p_from_texture);
ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER,
"Source texture can't be copied while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to copy this texture.");
ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), ERR_INVALID_PARAMETER,
"Source texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_FROM_BIT` to be set to be retrieved.");
uint32_t src_layer_count = src_tex->layers;
uint32_t src_width, src_height, src_depth;
get_image_format_required_size(src_tex->format, src_tex->width, src_tex->height, src_tex->depth, p_src_mipmap + 1, &src_width, &src_height, &src_depth);
if (src_tex->type == TEXTURE_TYPE_CUBE || src_tex->type == TEXTURE_TYPE_CUBE_ARRAY) {
src_layer_count *= 6;
}
ERR_FAIL_COND_V(p_from.x < 0 || p_from.x + p_size.x > src_width, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_from.y < 0 || p_from.y + p_size.y > src_height, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_from.z < 0 || p_from.z + p_size.z > src_depth, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_src_mipmap >= src_tex->mipmaps, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_src_layer >= src_layer_count, ERR_INVALID_PARAMETER);
Texture *dst_tex = texture_owner.get_or_null(p_to_texture);
ERR_FAIL_NULL_V(dst_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(dst_tex->bound, ERR_INVALID_PARAMETER,
"Destination texture can't be copied while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to copy this texture.");
ERR_FAIL_COND_V_MSG(!(dst_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER,
"Destination texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_TO_BIT` to be set to be retrieved.");
uint32_t dst_layer_count = dst_tex->layers;
uint32_t dst_width, dst_height, dst_depth;
get_image_format_required_size(dst_tex->format, dst_tex->width, dst_tex->height, dst_tex->depth, p_dst_mipmap + 1, &dst_width, &dst_height, &dst_depth);
if (dst_tex->type == TEXTURE_TYPE_CUBE || dst_tex->type == TEXTURE_TYPE_CUBE_ARRAY) {
dst_layer_count *= 6;
}
ERR_FAIL_COND_V(p_to.x < 0 || p_to.x + p_size.x > dst_width, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_to.y < 0 || p_to.y + p_size.y > dst_height, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_to.z < 0 || p_to.z + p_size.z > dst_depth, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_dst_mipmap >= dst_tex->mipmaps, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_dst_layer >= dst_layer_count, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(src_tex->read_aspect_flags != dst_tex->read_aspect_flags, ERR_INVALID_PARAMETER,
"Source and destination texture must be of the same type (color or depth).");
RDD::CommandBufferID command_buffer = frames[frame].draw_command_buffer;
// PRE Copy the image.
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
{ // Source.
RDD::TextureBarrier tb;
tb.texture = src_tex->driver_id;
tb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_READ_BIT;
tb.prev_layout = src_tex->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL;
tb.subresources.aspect = src_tex->barrier_aspect_flags;
tb.subresources.base_mipmap = p_src_mipmap;
tb.subresources.mipmap_count = 1;
tb.subresources.base_layer = p_src_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, {}, tb);
}
{ // Dest.
RDD::TextureBarrier tb;
tb.texture = dst_tex->driver_id;
tb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
tb.prev_layout = dst_tex->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL;
tb.subresources.aspect = dst_tex->read_aspect_flags;
tb.subresources.base_mipmap = p_dst_mipmap;
tb.subresources.mipmap_count = 1;
tb.subresources.base_layer = p_dst_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, {}, tb);
}
}
// COPY.
{
RDD::TextureCopyRegion copy_region;
copy_region.src_subresources.aspect = src_tex->read_aspect_flags;
copy_region.src_subresources.mipmap = p_src_mipmap;
copy_region.src_subresources.base_layer = p_src_layer;
copy_region.src_subresources.layer_count = 1;
copy_region.src_offset = p_from;
copy_region.dst_subresources.aspect = dst_tex->read_aspect_flags;
copy_region.dst_subresources.mipmap = p_dst_mipmap;
copy_region.dst_subresources.base_layer = p_dst_layer;
copy_region.dst_subresources.layer_count = 1;
copy_region.dst_offset = p_to;
copy_region.size = p_size;
driver->command_copy_texture(command_buffer, src_tex->driver_id, RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_tex->driver_id, RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, copy_region);
}
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
// RESTORE LAYOUT for SRC and DST.
BitField<RDD::PipelineStageBits> stages;
BitField<RDD::BarrierAccessBits> access;
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT);
}
if (stages.is_empty()) {
stages.set_flag(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
}
{ // Restore src.
RDD::TextureBarrier tb;
tb.texture = src_tex->driver_id;
tb.src_access = RDD::BARRIER_ACCESS_TRANSFER_READ_BIT;
tb.dst_access = access;
tb.prev_layout = RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL;
tb.next_layout = src_tex->layout;
tb.subresources.aspect = src_tex->barrier_aspect_flags;
tb.subresources.base_mipmap = p_src_mipmap;
tb.subresources.mipmap_count = 1;
tb.subresources.base_layer = p_src_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, stages, {}, {}, tb);
}
{ // Make dst readable.
RDD::TextureBarrier tb;
tb.texture = dst_tex->driver_id;
tb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
tb.dst_access = access;
tb.prev_layout = RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL;
tb.next_layout = dst_tex->layout;
tb.subresources.aspect = dst_tex->read_aspect_flags;
tb.subresources.base_mipmap = p_dst_mipmap;
tb.subresources.mipmap_count = 1;
tb.subresources.base_layer = p_dst_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, stages, {}, {}, tb);
}
if (dst_tex->used_in_frame != frames_drawn) {
dst_tex->used_in_raster = false;
dst_tex->used_in_compute = false;
dst_tex->used_in_frame = frames_drawn;
}
dst_tex->used_in_transfer = true;
}
return OK;
}
Error RenderingDevice::texture_resolve_multisample(RID p_from_texture, RID p_to_texture, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
Texture *src_tex = texture_owner.get_or_null(p_from_texture);
ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER,
"Source texture can't be copied while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to copy this texture.");
ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), ERR_INVALID_PARAMETER,
"Source texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_FROM_BIT` to be set to be retrieved.");
ERR_FAIL_COND_V_MSG(src_tex->type != TEXTURE_TYPE_2D, ERR_INVALID_PARAMETER, "Source texture must be 2D (or a slice of a 3D/Cube texture)");
ERR_FAIL_COND_V_MSG(src_tex->samples == TEXTURE_SAMPLES_1, ERR_INVALID_PARAMETER, "Source texture must be multisampled.");
Texture *dst_tex = texture_owner.get_or_null(p_to_texture);
ERR_FAIL_NULL_V(dst_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(dst_tex->bound, ERR_INVALID_PARAMETER,
"Destination texture can't be copied while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to copy this texture.");
ERR_FAIL_COND_V_MSG(!(dst_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER,
"Destination texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_TO_BIT` to be set to be retrieved.");
ERR_FAIL_COND_V_MSG(dst_tex->type != TEXTURE_TYPE_2D, ERR_INVALID_PARAMETER, "Destination texture must be 2D (or a slice of a 3D/Cube texture).");
ERR_FAIL_COND_V_MSG(dst_tex->samples != TEXTURE_SAMPLES_1, ERR_INVALID_PARAMETER, "Destination texture must not be multisampled.");
ERR_FAIL_COND_V_MSG(src_tex->format != dst_tex->format, ERR_INVALID_PARAMETER, "Source and Destination textures must be the same format.");
ERR_FAIL_COND_V_MSG(src_tex->width != dst_tex->width && src_tex->height != dst_tex->height && src_tex->depth != dst_tex->depth, ERR_INVALID_PARAMETER, "Source and Destination textures must have the same dimensions.");
ERR_FAIL_COND_V_MSG(src_tex->read_aspect_flags != dst_tex->read_aspect_flags, ERR_INVALID_PARAMETER,
"Source and destination texture must be of the same type (color or depth).");
RDD::CommandBufferID command_buffer = frames[frame].draw_command_buffer;
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
// PRE Copy the image.
{ // Source.
RDD::TextureBarrier tb;
tb.texture = src_tex->driver_id;
tb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_READ_BIT;
tb.prev_layout = src_tex->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL;
tb.subresources.aspect = src_tex->barrier_aspect_flags;
tb.subresources.base_mipmap = src_tex->base_mipmap;
tb.subresources.mipmap_count = 1;
tb.subresources.base_layer = src_tex->base_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, {}, tb);
}
{ // Dest.
RDD::TextureBarrier tb;
tb.texture = dst_tex->driver_id;
tb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
tb.prev_layout = dst_tex->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL;
tb.subresources.aspect = dst_tex->barrier_aspect_flags;
tb.subresources.base_mipmap = dst_tex->base_mipmap;
tb.subresources.mipmap_count = 1;
tb.subresources.base_layer = dst_tex->base_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, {}, tb);
}
}
// RESOLVE.
driver->command_resolve_texture(command_buffer, src_tex->driver_id, RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL, src_tex->base_layer, src_tex->base_mipmap, dst_tex->driver_id, RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, dst_tex->base_layer, dst_tex->base_mipmap);
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
// RESTORE LAYOUT for SRC and DST.
BitField<RDD::PipelineStageBits> stages;
BitField<RDD::BarrierAccessBits> access;
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT);
}
if (stages.is_empty()) {
stages.set_flag(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
}
{ // Restore src.
RDD::TextureBarrier tb;
tb.texture = src_tex->driver_id;
tb.src_access = RDD::BARRIER_ACCESS_TRANSFER_READ_BIT;
tb.dst_access = access;
tb.prev_layout = RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL;
tb.next_layout = src_tex->layout;
tb.subresources.aspect = src_tex->barrier_aspect_flags;
tb.subresources.base_mipmap = src_tex->base_mipmap;
tb.subresources.mipmap_count = 1;
tb.subresources.base_layer = src_tex->base_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT, stages, {}, {}, tb);
}
{ // Make dst readable.
RDD::TextureBarrier tb;
tb.texture = dst_tex->driver_id;
tb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
tb.dst_access = access;
tb.prev_layout = RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL;
tb.next_layout = dst_tex->layout;
tb.subresources.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT;
tb.subresources.base_mipmap = dst_tex->base_mipmap;
tb.subresources.mipmap_count = 1;
tb.subresources.base_layer = dst_tex->base_layer;
tb.subresources.layer_count = 1;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, stages, {}, {}, tb);
}
}
return OK;
}
Error RenderingDevice::texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
Texture *src_tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER,
"Source texture can't be cleared while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to clear this texture.");
ERR_FAIL_COND_V(p_layers == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_mipmaps == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER,
"Source texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_TO_BIT` to be set to be cleared.");
uint32_t src_layer_count = src_tex->layers;
if (src_tex->type == TEXTURE_TYPE_CUBE || src_tex->type == TEXTURE_TYPE_CUBE_ARRAY) {
src_layer_count *= 6;
}
ERR_FAIL_COND_V(p_base_mipmap + p_mipmaps > src_tex->mipmaps, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_base_layer + p_layers > src_layer_count, ERR_INVALID_PARAMETER);
RDD::CommandBufferID command_buffer = frames[frame].draw_command_buffer;
RDD::TextureLayout clear_layout = (src_tex->layout == RDD::TEXTURE_LAYOUT_GENERAL) ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL;
// NOTE: Perhaps the valid stages/accesses for a given owner should be a property of the owner. (Here and places like _get_buffer_from_owner.)
const BitField<RDD::PipelineStageBits> valid_texture_stages = RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT | RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT;
constexpr BitField<RDD::BarrierAccessBits> read_access = RDD::BARRIER_ACCESS_SHADER_READ_BIT;
constexpr BitField<RDD::BarrierAccessBits> read_write_access = RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT;
const BitField<RDD::BarrierAccessBits> valid_texture_access = (src_tex->usage_flags & TEXTURE_USAGE_STORAGE_BIT) ? read_write_access : read_access;
// Barrier from previous access with optional layout change (see clear_layout logic above).
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::TextureBarrier tb;
tb.texture = src_tex->driver_id;
tb.src_access = valid_texture_access;
tb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
tb.prev_layout = src_tex->layout;
tb.next_layout = clear_layout;
tb.subresources.aspect = src_tex->read_aspect_flags;
tb.subresources.base_mipmap = src_tex->base_mipmap + p_base_mipmap;
tb.subresources.mipmap_count = p_mipmaps;
tb.subresources.base_layer = src_tex->base_layer + p_base_layer;
tb.subresources.layer_count = p_layers;
driver->command_pipeline_barrier(command_buffer, valid_texture_stages, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, {}, tb);
}
RDD::TextureSubresourceRange range;
range.aspect = src_tex->read_aspect_flags;
range.base_mipmap = src_tex->base_mipmap + p_base_mipmap;
range.mipmap_count = p_mipmaps;
range.base_layer = src_tex->base_layer + p_base_layer;
range.layer_count = p_layers;
driver->command_clear_color_texture(command_buffer, src_tex->driver_id, clear_layout, p_color, range);
// Barrier to post clear accesses (changing back the layout if needed).
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
BitField<RDD::PipelineStageBits> stages;
BitField<RDD::BarrierAccessBits> access;
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT);
}
if (stages.is_empty()) {
stages.set_flag(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
}
RDD::TextureBarrier tb;
tb.texture = src_tex->driver_id;
tb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
tb.dst_access = access;
tb.prev_layout = clear_layout;
tb.next_layout = src_tex->layout;
tb.subresources.aspect = src_tex->read_aspect_flags;
tb.subresources.base_mipmap = src_tex->base_mipmap + p_base_mipmap;
tb.subresources.mipmap_count = p_mipmaps;
tb.subresources.base_layer = src_tex->base_layer + p_base_layer;
tb.subresources.layer_count = p_layers;
driver->command_pipeline_barrier(command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, stages, {}, {}, tb);
if (src_tex->used_in_frame != frames_drawn) {
src_tex->used_in_raster = false;
src_tex->used_in_compute = false;
src_tex->used_in_frame = frames_drawn;
}
src_tex->used_in_transfer = true;
}
return OK;
}
bool RenderingDevice::texture_is_format_supported_for_usage(DataFormat p_format, BitField<RenderingDevice::TextureUsageBits> p_usage) const {
ERR_FAIL_INDEX_V(p_format, DATA_FORMAT_MAX, false);
_THREAD_SAFE_METHOD_
bool cpu_readable = (p_usage & RDD::TEXTURE_USAGE_CPU_READ_BIT);
BitField<TextureUsageBits> supported = driver->texture_get_usages_supported_by_format(p_format, cpu_readable);
bool any_unsupported = (((int64_t)supported) | ((int64_t)p_usage)) != ((int64_t)supported);
return !any_unsupported;
}
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
RDD::RenderPassID RenderingDevice::_render_pass_create(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, uint32_t p_view_count, Vector<TextureSamples> *r_samples) {
// NOTE:
// Before the refactor to RenderingDevice-RenderingDeviceDriver, there was commented out code to
// specify dependencies to external subpasses. Since it had been unused for a long timel it wasn't ported
// to the new architecture.
LocalVector<int32_t> attachment_last_pass;
attachment_last_pass.resize(p_attachments.size());
if (p_view_count > 1) {
const RDD::MultiviewCapabilities &capabilities = driver->get_multiview_capabilities();
// This only works with multiview!
ERR_FAIL_COND_V_MSG(!capabilities.is_supported, RDD::RenderPassID(), "Multiview not supported");
// Make sure we limit this to the number of views we support.
ERR_FAIL_COND_V_MSG(p_view_count > capabilities.max_view_count, RDD::RenderPassID(), "Hardware does not support requested number of views for Multiview render pass");
}
LocalVector<RDD::Attachment> attachments;
LocalVector<int> attachment_remap;
for (int i = 0; i < p_attachments.size(); i++) {
if (p_attachments[i].usage_flags == AttachmentFormat::UNUSED_ATTACHMENT) {
attachment_remap.push_back(RDD::AttachmentReference::UNUSED);
continue;
}
ERR_FAIL_INDEX_V(p_attachments[i].format, DATA_FORMAT_MAX, RDD::RenderPassID());
ERR_FAIL_INDEX_V(p_attachments[i].samples, TEXTURE_SAMPLES_MAX, RDD::RenderPassID());
ERR_FAIL_COND_V_MSG(!(p_attachments[i].usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT | TEXTURE_USAGE_VRS_ATTACHMENT_BIT)),
RDD::RenderPassID(), "Texture format for index (" + itos(i) + ") requires an attachment (color, depth-stencil, input or VRS) bit set.");
RDD::Attachment description;
description.format = p_attachments[i].format;
description.samples = p_attachments[i].samples;
bool is_sampled = (p_attachments[i].usage_flags & TEXTURE_USAGE_SAMPLING_BIT);
bool is_storage = (p_attachments[i].usage_flags & TEXTURE_USAGE_STORAGE_BIT);
bool is_depth = (p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
// We can setup a framebuffer where we write to our VRS texture to set it up.
// We make the assumption here that if our texture is actually used as our VRS attachment.
// It is used as such for each subpass. This is fairly certain seeing the restrictions on subpasses.
bool is_vrs = (p_attachments[i].usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) && i == p_passes[0].vrs_attachment;
if (is_vrs) {
// For VRS we only read, there is no writing to this texture.
description.load_op = RDD::ATTACHMENT_LOAD_OP_LOAD;
description.initial_layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_LOAD;
} else {
// For each UNDEFINED, assume the prior use was a *read*, as we'd be discarding the output of a write.
// Also, each UNDEFINED will do an immediate layout transition (write), s.t. we must ensure execution synchronization vs
// the read. If this is a performance issue, one could track the actual last accessor of each resource, adding only that
// stage.
switch (is_depth ? p_initial_depth_action : p_initial_action) {
case INITIAL_ACTION_CLEAR_REGION:
case INITIAL_ACTION_CLEAR: {
if ((p_attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
description.load_op = RDD::ATTACHMENT_LOAD_OP_CLEAR;
description.initial_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
} else if ((p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
description.load_op = RDD::ATTACHMENT_LOAD_OP_CLEAR;
description.initial_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_CLEAR;
} else {
description.load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.initial_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; // Don't care what is there.
}
} break;
case INITIAL_ACTION_KEEP: {
if ((p_attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
description.load_op = RDD::ATTACHMENT_LOAD_OP_LOAD;
description.initial_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
} else if ((p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
description.load_op = RDD::ATTACHMENT_LOAD_OP_LOAD;
description.initial_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_LOAD;
} else {
description.load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.initial_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; // Don't care what is there.
}
} break;
case INITIAL_ACTION_DROP: {
if ((p_attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
description.load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.initial_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
} else if ((p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
description.load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.initial_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; // Don't care what is there.
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
} else {
description.load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.initial_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; // Don't care what is there.
}
} break;
case INITIAL_ACTION_CLEAR_REGION_CONTINUE:
case INITIAL_ACTION_CONTINUE: {
if ((p_attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
description.load_op = RDD::ATTACHMENT_LOAD_OP_LOAD;
description.initial_layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
} else if ((p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
description.load_op = RDD::ATTACHMENT_LOAD_OP_LOAD;
description.initial_layout = RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_LOAD;
} else {
description.load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.initial_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; // Don't care what is there.
}
} break;
default: {
ERR_FAIL_V(RDD::RenderPassID()); // Should never reach here.
}
}
}
bool used_last = false;
{
int last_pass = p_passes.size() - 1;
if (is_depth) {
// Likely missing depth resolve?
if (p_passes[last_pass].depth_attachment == i) {
used_last = true;
}
} else if (is_vrs) {
if (p_passes[last_pass].vrs_attachment == i) {
used_last = true;
}
} else {
if (p_passes[last_pass].resolve_attachments.size()) {
// If using resolve attachments, check resolve attachments.
for (int j = 0; j < p_passes[last_pass].resolve_attachments.size(); j++) {
if (p_passes[last_pass].resolve_attachments[j] == i) {
used_last = true;
break;
}
}
}
if (!used_last) {
for (int j = 0; j < p_passes[last_pass].color_attachments.size(); j++) {
if (p_passes[last_pass].color_attachments[j] == i) {
used_last = true;
break;
}
}
}
}
if (!used_last) {
for (int j = 0; j < p_passes[last_pass].preserve_attachments.size(); j++) {
if (p_passes[last_pass].preserve_attachments[j] == i) {
used_last = true;
break;
}
}
}
}
FinalAction final_action = p_final_action;
FinalAction final_depth_action = p_final_depth_action;
if (!used_last) {
if (is_depth) {
final_depth_action = FINAL_ACTION_DISCARD;
} else {
final_action = FINAL_ACTION_DISCARD;
}
}
if (is_vrs) {
// We don't change our VRS texture during this process.
description.store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.final_layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
} else {
switch (is_depth ? final_depth_action : final_action) {
case FINAL_ACTION_READ: {
if ((p_attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
description.store_op = RDD::ATTACHMENT_STORE_OP_STORE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.final_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
} else if ((p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
description.store_op = RDD::ATTACHMENT_STORE_OP_STORE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_STORE;
description.final_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
} else {
description.load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE;
description.final_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; // Don't care what is there.
// TODO: What does this mean about the next usage (and thus appropriate dependency masks.
}
} break;
case FINAL_ACTION_DISCARD: {
if ((p_attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
description.store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.final_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
} else if ((p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
description.store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.final_layout = is_sampled ? RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? RDD::TEXTURE_LAYOUT_GENERAL : RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
} else {
description.store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.final_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; // Don't care what is there.
}
} break;
case FINAL_ACTION_CONTINUE: {
if ((p_attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
description.store_op = RDD::ATTACHMENT_STORE_OP_STORE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.final_layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
} else if ((p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
description.store_op = RDD::ATTACHMENT_STORE_OP_STORE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_STORE;
description.final_layout = RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
} else {
description.store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE;
description.final_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; // Don't care what is there.
}
} break;
default: {
ERR_FAIL_V(RDD::RenderPassID()); // Should never reach here.
}
}
}
attachment_last_pass[i] = -1;
attachment_remap.push_back(attachments.size());
attachments.push_back(description);
}
LocalVector<RDD::Subpass> subpasses;
subpasses.resize(p_passes.size());
LocalVector<RDD::SubpassDependency> subpass_dependencies;
for (int i = 0; i < p_passes.size(); i++) {
const FramebufferPass *pass = &p_passes[i];
RDD::Subpass &subpass = subpasses[i];
TextureSamples texture_samples = TEXTURE_SAMPLES_1;
bool is_multisample_first = true;
for (int j = 0; j < pass->color_attachments.size(); j++) {
int32_t attachment = pass->color_attachments[j];
RDD::AttachmentReference reference;
if (attachment == ATTACHMENT_UNUSED) {
reference.attachment = RDD::AttachmentReference::UNUSED;
reference.layout = RDD::TEXTURE_LAYOUT_UNDEFINED;
} else {
ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), color attachment (" + itos(j) + ").");
ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as depth, but it's not usable as color attachment.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
if (is_multisample_first) {
texture_samples = p_attachments[attachment].samples;
is_multisample_first = false;
} else {
ERR_FAIL_COND_V_MSG(texture_samples != p_attachments[attachment].samples, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), if an attachment is marked as multisample, all of them should be multisample and use the same number of samples.");
}
reference.attachment = attachment_remap[attachment];
reference.layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachment_last_pass[attachment] = i;
}
reference.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT;
subpass.color_references.push_back(reference);
}
for (int j = 0; j < pass->input_attachments.size(); j++) {
int32_t attachment = pass->input_attachments[j];
RDD::AttachmentReference reference;
if (attachment == ATTACHMENT_UNUSED) {
reference.attachment = RDD::AttachmentReference::UNUSED;
reference.layout = RDD::TEXTURE_LAYOUT_UNDEFINED;
} else {
ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), input attachment (" + itos(j) + ").");
ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_INPUT_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it isn't marked as an input texture.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
reference.attachment = attachment_remap[attachment];
reference.layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
attachment_last_pass[attachment] = i;
}
reference.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT;
subpass.input_references.push_back(reference);
}
if (pass->resolve_attachments.size() > 0) {
ERR_FAIL_COND_V_MSG(pass->resolve_attachments.size() != pass->color_attachments.size(), RDD::RenderPassID(), "The amount of resolve attachments (" + itos(pass->resolve_attachments.size()) + ") must match the number of color attachments (" + itos(pass->color_attachments.size()) + ").");
ERR_FAIL_COND_V_MSG(texture_samples == TEXTURE_SAMPLES_1, RDD::RenderPassID(), "Resolve attachments specified, but color attachments are not multisample.");
}
for (int j = 0; j < pass->resolve_attachments.size(); j++) {
int32_t attachment = pass->resolve_attachments[j];
RDD::AttachmentReference reference;
if (attachment == ATTACHMENT_UNUSED) {
reference.attachment = RDD::AttachmentReference::UNUSED;
reference.layout = RDD::TEXTURE_LAYOUT_UNDEFINED;
} else {
ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment (" + itos(j) + ").");
ERR_FAIL_COND_V_MSG(pass->color_attachments[j] == ATTACHMENT_UNUSED, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment (" + itos(j) + "), the respective color attachment is marked as unused.");
ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment, it isn't marked as a color texture.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
bool multisample = p_attachments[attachment].samples > TEXTURE_SAMPLES_1;
ERR_FAIL_COND_V_MSG(multisample, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachments can't be multisample.");
reference.attachment = attachment_remap[attachment];
reference.layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
attachment_last_pass[attachment] = i;
}
reference.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT;
subpass.resolve_references.push_back(reference);
}
if (pass->depth_attachment != ATTACHMENT_UNUSED) {
int32_t attachment = pass->depth_attachment;
ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), depth attachment.");
ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as depth, but it's not a depth attachment.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
subpass.depth_stencil_reference.attachment = attachment_remap[attachment];
subpass.depth_stencil_reference.layout = RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachment_last_pass[attachment] = i;
if (is_multisample_first) {
texture_samples = p_attachments[attachment].samples;
is_multisample_first = false;
} else {
ERR_FAIL_COND_V_MSG(texture_samples != p_attachments[attachment].samples, RDD::RenderPassID(), "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), if an attachment is marked as multisample, all of them should be multisample and use the same number of samples including the depth.");
}
} else {
subpass.depth_stencil_reference.attachment = RDD::AttachmentReference::UNUSED;
subpass.depth_stencil_reference.layout = RDD::TEXTURE_LAYOUT_UNDEFINED;
}
if (pass->vrs_attachment != ATTACHMENT_UNUSED) {
int32_t attachment = pass->vrs_attachment;
ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer VRS format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), VRS attachment.");
ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer VRS format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as VRS, but it's not a VRS attachment.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer VRS attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
subpass.vrs_reference.attachment = attachment_remap[attachment];
subpass.vrs_reference.layout = RDD::TEXTURE_LAYOUT_VRS_ATTACHMENT_OPTIMAL;
attachment_last_pass[attachment] = i;
}
for (int j = 0; j < pass->preserve_attachments.size(); j++) {
int32_t attachment = pass->preserve_attachments[j];
ERR_FAIL_COND_V_MSG(attachment == ATTACHMENT_UNUSED, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), preserve attachment (" + itos(j) + "). Preserve attachments can't be unused.");
ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), preserve attachment (" + itos(j) + ").");
if (attachment_last_pass[attachment] != i) {
// Preserve can still be used to keep depth or color from being discarded after use.
attachment_last_pass[attachment] = i;
subpasses[i].preserve_attachments.push_back(attachment);
}
}
if (r_samples) {
r_samples->push_back(texture_samples);
}
if (i > 0) {
RDD::SubpassDependency dependency;
dependency.src_subpass = i - 1;
dependency.dst_subpass = i;
dependency.src_stages = (RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT);
dependency.dst_stages = (RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
dependency.src_access = (RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT);
dependency.dst_access = (RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT | RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | RDD::BARRIER_ACCESS_INPUT_ATTACHMENT_READ_BIT);
subpass_dependencies.push_back(dependency);
}
}
RDD::RenderPassID render_pass = driver->render_pass_create(attachments, subpasses, subpass_dependencies, p_view_count);
ERR_FAIL_COND_V(!render_pass, RDD::RenderPassID());
return render_pass;
}
RenderingDevice::FramebufferFormatID RenderingDevice::framebuffer_format_create(const Vector<AttachmentFormat> &p_format, uint32_t p_view_count) {
FramebufferPass pass;
for (int i = 0; i < p_format.size(); i++) {
if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
pass.depth_attachment = i;
} else {
pass.color_attachments.push_back(i);
}
}
Vector<FramebufferPass> passes;
passes.push_back(pass);
return framebuffer_format_create_multipass(p_format, passes, p_view_count);
}
RenderingDevice::FramebufferFormatID RenderingDevice::framebuffer_format_create_multipass(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, uint32_t p_view_count) {
_THREAD_SAFE_METHOD_
FramebufferFormatKey key;
key.attachments = p_attachments;
key.passes = p_passes;
key.view_count = p_view_count;
const RBMap<FramebufferFormatKey, FramebufferFormatID>::Element *E = framebuffer_format_cache.find(key);
if (E) {
// Exists, return.
return E->get();
}
Vector<TextureSamples> samples;
RDD::RenderPassID render_pass = _render_pass_create(p_attachments, p_passes, INITIAL_ACTION_CLEAR, FINAL_ACTION_READ, INITIAL_ACTION_CLEAR, FINAL_ACTION_READ, p_view_count, &samples); // Actions don't matter for this use case.
if (!render_pass) { // Was likely invalid.
return INVALID_ID;
}
FramebufferFormatID id = FramebufferFormatID(framebuffer_format_cache.size()) | (FramebufferFormatID(ID_TYPE_FRAMEBUFFER_FORMAT) << FramebufferFormatID(ID_BASE_SHIFT));
E = framebuffer_format_cache.insert(key, id);
FramebufferFormat fb_format;
fb_format.E = E;
fb_format.render_pass = render_pass;
fb_format.pass_samples = samples;
fb_format.view_count = p_view_count;
framebuffer_formats[id] = fb_format;
return id;
}
RenderingDevice::FramebufferFormatID RenderingDevice::framebuffer_format_create_empty(TextureSamples p_samples) {
FramebufferFormatKey key;
key.passes.push_back(FramebufferPass());
const RBMap<FramebufferFormatKey, FramebufferFormatID>::Element *E = framebuffer_format_cache.find(key);
if (E) {
// Exists, return.
return E->get();
}
LocalVector<RDD::Subpass> subpass;
subpass.resize(1);
RDD::RenderPassID render_pass = driver->render_pass_create({}, subpass, {}, 1);
ERR_FAIL_COND_V(!render_pass, FramebufferFormatID());
FramebufferFormatID id = FramebufferFormatID(framebuffer_format_cache.size()) | (FramebufferFormatID(ID_TYPE_FRAMEBUFFER_FORMAT) << FramebufferFormatID(ID_BASE_SHIFT));
E = framebuffer_format_cache.insert(key, id);
FramebufferFormat fb_format;
fb_format.E = E;
fb_format.render_pass = render_pass;
fb_format.pass_samples.push_back(p_samples);
framebuffer_formats[id] = fb_format;
return id;
}
RenderingDevice::TextureSamples RenderingDevice::framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass) {
HashMap<FramebufferFormatID, FramebufferFormat>::Iterator E = framebuffer_formats.find(p_format);
ERR_FAIL_COND_V(!E, TEXTURE_SAMPLES_1);
ERR_FAIL_COND_V(p_pass >= uint32_t(E->value.pass_samples.size()), TEXTURE_SAMPLES_1);
return E->value.pass_samples[p_pass];
}
RID RenderingDevice::framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples, FramebufferFormatID p_format_check) {
_THREAD_SAFE_METHOD_
Framebuffer framebuffer;
framebuffer.format_id = framebuffer_format_create_empty(p_samples);
ERR_FAIL_COND_V(p_format_check != INVALID_FORMAT_ID && framebuffer.format_id != p_format_check, RID());
framebuffer.size = p_size;
framebuffer.view_count = 1;
RID id = framebuffer_owner.make_rid(framebuffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
RID RenderingDevice::framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check, uint32_t p_view_count) {
_THREAD_SAFE_METHOD_
FramebufferPass pass;
for (int i = 0; i < p_texture_attachments.size(); i++) {
Texture *texture = texture_owner.get_or_null(p_texture_attachments[i]);
ERR_FAIL_COND_V_MSG(texture && texture->layers != p_view_count, RID(), "Layers of our texture doesn't match view count for this framebuffer");
if (texture && texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
pass.depth_attachment = i;
} else if (texture && texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) {
pass.vrs_attachment = i;
} else {
if (texture && texture->is_resolve_buffer) {
pass.resolve_attachments.push_back(i);
} else {
pass.color_attachments.push_back(texture ? i : ATTACHMENT_UNUSED);
}
}
}
Vector<FramebufferPass> passes;
passes.push_back(pass);
return framebuffer_create_multipass(p_texture_attachments, passes, p_format_check, p_view_count);
}
RID RenderingDevice::framebuffer_create_multipass(const Vector<RID> &p_texture_attachments, const Vector<FramebufferPass> &p_passes, FramebufferFormatID p_format_check, uint32_t p_view_count) {
_THREAD_SAFE_METHOD_
Vector<AttachmentFormat> attachments;
attachments.resize(p_texture_attachments.size());
Size2i size;
bool size_set = false;
for (int i = 0; i < p_texture_attachments.size(); i++) {
AttachmentFormat af;
Texture *texture = texture_owner.get_or_null(p_texture_attachments[i]);
if (!texture) {
af.usage_flags = AttachmentFormat::UNUSED_ATTACHMENT;
} else {
ERR_FAIL_COND_V_MSG(texture->layers != p_view_count, RID(), "Layers of our texture doesn't match view count for this framebuffer");
if (!size_set) {
size.width = texture->width;
size.height = texture->height;
size_set = true;
} else if (texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) {
// If this is not the first attachment we assume this is used as the VRS attachment.
// In this case this texture will be 1/16th the size of the color attachment.
// So we skip the size check.
} else {
ERR_FAIL_COND_V_MSG((uint32_t)size.width != texture->width || (uint32_t)size.height != texture->height, RID(),
"All textures in a framebuffer should be the same size.");
}
af.format = texture->format;
af.samples = texture->samples;
af.usage_flags = texture->usage_flags;
}
attachments.write[i] = af;
}
ERR_FAIL_COND_V_MSG(!size_set, RID(), "All attachments unused.");
FramebufferFormatID format_id = framebuffer_format_create_multipass(attachments, p_passes, p_view_count);
if (format_id == INVALID_ID) {
return RID();
}
ERR_FAIL_COND_V_MSG(p_format_check != INVALID_ID && format_id != p_format_check, RID(),
"The format used to check this framebuffer differs from the intended framebuffer format.");
Framebuffer framebuffer;
framebuffer.format_id = format_id;
framebuffer.texture_ids = p_texture_attachments;
framebuffer.size = size;
framebuffer.view_count = p_view_count;
RID id = framebuffer_owner.make_rid(framebuffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
for (int i = 0; i < p_texture_attachments.size(); i++) {
if (p_texture_attachments[i].is_valid()) {
_add_dependency(id, p_texture_attachments[i]);
}
}
return id;
}
RenderingDevice::FramebufferFormatID RenderingDevice::framebuffer_get_format(RID p_framebuffer) {
_THREAD_SAFE_METHOD_
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer);
ERR_FAIL_NULL_V(framebuffer, INVALID_ID);
return framebuffer->format_id;
}
bool RenderingDevice::framebuffer_is_valid(RID p_framebuffer) const {
_THREAD_SAFE_METHOD_
return framebuffer_owner.owns(p_framebuffer);
}
void RenderingDevice::framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata) {
_THREAD_SAFE_METHOD_
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer);
ERR_FAIL_COND(!framebuffer);
framebuffer->invalidated_callback = p_callback;
framebuffer->invalidated_callback_userdata = p_userdata;
}
/*****************/
/**** SAMPLER ****/
/*****************/
RID RenderingDevice::sampler_create(const SamplerState &p_state) {
_THREAD_SAFE_METHOD_
ERR_FAIL_INDEX_V(p_state.repeat_u, SAMPLER_REPEAT_MODE_MAX, RID());
ERR_FAIL_INDEX_V(p_state.repeat_v, SAMPLER_REPEAT_MODE_MAX, RID());
ERR_FAIL_INDEX_V(p_state.repeat_w, SAMPLER_REPEAT_MODE_MAX, RID());
ERR_FAIL_INDEX_V(p_state.compare_op, COMPARE_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_state.border_color, SAMPLER_BORDER_COLOR_MAX, RID());
RDD::SamplerID sampler = driver->sampler_create(p_state);
ERR_FAIL_COND_V(!sampler, RID());
RID id = sampler_owner.make_rid(sampler);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
bool RenderingDevice::sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_sampler_filter) const {
ERR_FAIL_INDEX_V(p_format, DATA_FORMAT_MAX, false);
_THREAD_SAFE_METHOD_
return driver->sampler_is_format_supported_for_filter(p_format, p_sampler_filter);
}
/***********************/
/**** VERTEX BUFFER ****/
/***********************/
RID RenderingDevice::vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data, bool p_use_as_storage) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID());
Buffer buffer;
buffer.size = p_size_bytes;
buffer.usage = RDD::BUFFER_USAGE_TRANSFER_FROM_BIT | RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_VERTEX_BIT;
if (p_use_as_storage) {
buffer.usage.set_flag(RDD::BUFFER_USAGE_STORAGE_BIT);
}
buffer.driver_id = driver->buffer_create(buffer.size, buffer.usage, RDD::MEMORY_ALLOCATION_TYPE_GPU);
ERR_FAIL_COND_V(!buffer.driver_id, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&buffer, 0, r, data_size);
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::BufferBarrier bb;
bb.buffer = buffer.driver_id;
bb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
bb.dst_access = RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
bb.size = data_size;
driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT, {}, bb, {});
}
}
buffer_memory += buffer.size;
RID id = vertex_buffer_owner.make_rid(buffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated.
RenderingDevice::VertexFormatID RenderingDevice::vertex_format_create(const Vector<VertexAttribute> &p_vertex_descriptions) {
_THREAD_SAFE_METHOD_
VertexDescriptionKey key;
key.vertex_formats = p_vertex_descriptions;
VertexFormatID *idptr = vertex_format_cache.getptr(key);
if (idptr) {
return *idptr;
}
HashSet<int> used_locations;
for (int i = 0; i < p_vertex_descriptions.size(); i++) {
ERR_CONTINUE(p_vertex_descriptions[i].format >= DATA_FORMAT_MAX);
ERR_FAIL_COND_V(used_locations.has(p_vertex_descriptions[i].location), INVALID_ID);
ERR_FAIL_COND_V_MSG(get_format_vertex_size(p_vertex_descriptions[i].format) == 0, INVALID_ID,
"Data format for attachment (" + itos(i) + "), '" + FORMAT_NAMES[p_vertex_descriptions[i].format] + "', is not valid for a vertex array.");
used_locations.insert(p_vertex_descriptions[i].location);
}
RDD::VertexFormatID driver_id = driver->vertex_format_create(p_vertex_descriptions);
ERR_FAIL_COND_V(!driver_id, 0);
VertexFormatID id = (vertex_format_cache.size() | ((int64_t)ID_TYPE_VERTEX_FORMAT << ID_BASE_SHIFT));
vertex_format_cache[key] = id;
vertex_formats[id].vertex_formats = p_vertex_descriptions;
vertex_formats[id].driver_id = driver_id;
return id;
}
RID RenderingDevice::vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers, const Vector<uint64_t> &p_offsets) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(!vertex_formats.has(p_vertex_format), RID());
const VertexDescriptionCache &vd = vertex_formats[p_vertex_format];
ERR_FAIL_COND_V(vd.vertex_formats.size() != p_src_buffers.size(), RID());
for (int i = 0; i < p_src_buffers.size(); i++) {
ERR_FAIL_COND_V(!vertex_buffer_owner.owns(p_src_buffers[i]), RID());
}
VertexArray vertex_array;
if (p_offsets.is_empty()) {
vertex_array.offsets.resize_zeroed(p_src_buffers.size());
} else {
ERR_FAIL_COND_V(p_offsets.size() != p_src_buffers.size(), RID());
vertex_array.offsets = p_offsets;
}
vertex_array.vertex_count = p_vertex_count;
vertex_array.description = p_vertex_format;
vertex_array.max_instances_allowed = 0xFFFFFFFF; // By default as many as you want.
for (int i = 0; i < p_src_buffers.size(); i++) {
Buffer *buffer = vertex_buffer_owner.get_or_null(p_src_buffers[i]);
// Validate with buffer.
{
const VertexAttribute &atf = vd.vertex_formats[i];
uint32_t element_size = get_format_vertex_size(atf.format);
ERR_FAIL_COND_V(element_size == 0, RID()); // Should never happens since this was prevalidated.
if (atf.frequency == VERTEX_FREQUENCY_VERTEX) {
// Validate size for regular drawing.
uint64_t total_size = uint64_t(atf.stride) * (p_vertex_count - 1) + atf.offset + element_size;
ERR_FAIL_COND_V_MSG(total_size > buffer->size, RID(),
"Attachment (" + itos(i) + ") will read past the end of the buffer.");
} else {
// Validate size for instances drawing.
uint64_t available = buffer->size - atf.offset;
ERR_FAIL_COND_V_MSG(available < element_size, RID(),
"Attachment (" + itos(i) + ") uses instancing, but it's just too small.");
uint32_t instances_allowed = available / atf.stride;
vertex_array.max_instances_allowed = MIN(instances_allowed, vertex_array.max_instances_allowed);
}
}
vertex_array.buffers.push_back(buffer->driver_id);
}
RID id = vertex_array_owner.make_rid(vertex_array);
for (int i = 0; i < p_src_buffers.size(); i++) {
_add_dependency(id, p_src_buffers[i]);
}
return id;
}
RID RenderingDevice::index_buffer_create(uint32_t p_index_count, IndexBufferFormat p_format, const Vector<uint8_t> &p_data, bool p_use_restart_indices) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_index_count == 0, RID());
IndexBuffer index_buffer;
index_buffer.format = p_format;
index_buffer.supports_restart_indices = p_use_restart_indices;
index_buffer.index_count = p_index_count;
uint32_t size_bytes = p_index_count * ((p_format == INDEX_BUFFER_FORMAT_UINT16) ? 2 : 4);
#ifdef DEBUG_ENABLED
if (p_data.size()) {
index_buffer.max_index = 0;
ERR_FAIL_COND_V_MSG((uint32_t)p_data.size() != size_bytes, RID(),
"Default index buffer initializer array size (" + itos(p_data.size()) + ") does not match format required size (" + itos(size_bytes) + ").");
const uint8_t *r = p_data.ptr();
if (p_format == INDEX_BUFFER_FORMAT_UINT16) {
const uint16_t *index16 = (const uint16_t *)r;
for (uint32_t i = 0; i < p_index_count; i++) {
if (p_use_restart_indices && index16[i] == 0xFFFF) {
continue; // Restart index, ignore.
}
index_buffer.max_index = MAX(index16[i], index_buffer.max_index);
}
} else {
const uint32_t *index32 = (const uint32_t *)r;
for (uint32_t i = 0; i < p_index_count; i++) {
if (p_use_restart_indices && index32[i] == 0xFFFFFFFF) {
continue; // Restart index, ignore.
}
index_buffer.max_index = MAX(index32[i], index_buffer.max_index);
}
}
} else {
index_buffer.max_index = 0xFFFFFFFF;
}
#else
index_buffer.max_index = 0xFFFFFFFF;
#endif
index_buffer.size = size_bytes;
index_buffer.usage = (RDD::BUFFER_USAGE_TRANSFER_FROM_BIT | RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_INDEX_BIT);
index_buffer.driver_id = driver->buffer_create(index_buffer.size, index_buffer.usage, RDD::MEMORY_ALLOCATION_TYPE_GPU);
ERR_FAIL_COND_V(!index_buffer.driver_id, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&index_buffer, 0, r, data_size);
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::BufferBarrier bb;
bb.buffer = index_buffer.driver_id;
bb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
bb.dst_access = RDD::BARRIER_ACCESS_INDEX_READ_BIT;
bb.size = data_size;
driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT, {}, bb, {});
}
}
buffer_memory += index_buffer.size;
RID id = index_buffer_owner.make_rid(index_buffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
RID RenderingDevice::index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(!index_buffer_owner.owns(p_index_buffer), RID());
IndexBuffer *index_buffer = index_buffer_owner.get_or_null(p_index_buffer);
ERR_FAIL_COND_V(p_index_count == 0, RID());
ERR_FAIL_COND_V(p_index_offset + p_index_count > index_buffer->index_count, RID());
IndexArray index_array;
index_array.max_index = index_buffer->max_index;
index_array.driver_id = index_buffer->driver_id;
index_array.offset = p_index_offset;
index_array.indices = p_index_count;
index_array.format = index_buffer->format;
index_array.supports_restart_indices = index_buffer->supports_restart_indices;
RID id = index_array_owner.make_rid(index_array);
_add_dependency(id, p_index_buffer);
return id;
}
/****************/
/**** SHADER ****/
/****************/
static const char *SHADER_UNIFORM_NAMES[RenderingDevice::UNIFORM_TYPE_MAX] = {
"Sampler", "CombinedSampler", "Texture", "Image", "TextureBuffer", "SamplerTextureBuffer", "ImageBuffer", "UniformBuffer", "StorageBuffer", "InputAttachment"
};
String RenderingDevice::_shader_uniform_debug(RID p_shader, int p_set) {
String ret;
const Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, String());
for (int i = 0; i < shader->uniform_sets.size(); i++) {
if (p_set >= 0 && i != p_set) {
continue;
}
for (int j = 0; j < shader->uniform_sets[i].size(); j++) {
const ShaderUniform &ui = shader->uniform_sets[i][j];
if (!ret.is_empty()) {
ret += "\n";
}
ret += "Set: " + itos(i) + " Binding: " + itos(ui.binding) + " Type: " + SHADER_UNIFORM_NAMES[ui.type] + " Writable: " + (ui.writable ? "Y" : "N") + " Length: " + itos(ui.length);
}
}
return ret;
}
String RenderingDevice::shader_get_binary_cache_key() const {
return driver->shader_get_binary_cache_key();
}
Vector<uint8_t> RenderingDevice::shader_compile_binary_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name) {
return driver->shader_compile_binary_from_spirv(p_spirv, p_shader_name);
}
RID RenderingDevice::shader_create_from_bytecode(const Vector<uint8_t> &p_shader_binary, RID p_placeholder) {
_THREAD_SAFE_METHOD_
ShaderDescription shader_desc;
String name;
RDD::ShaderID shader_id = driver->shader_create_from_bytecode(p_shader_binary, shader_desc, name);
ERR_FAIL_COND_V(!shader_id, RID());
// All good, let's create modules.
RID id;
if (p_placeholder.is_null()) {
id = shader_owner.make_rid();
} else {
id = p_placeholder;
}
Shader *shader = shader_owner.get_or_null(id);
ERR_FAIL_NULL_V(shader, RID());
*((ShaderDescription *)shader) = shader_desc; // ShaderDescription bundle.
shader->name = name;
shader->driver_id = shader_id;
shader->layout_hash = driver->shader_get_layout_hash(shader_id);
for (int i = 0; i < shader->uniform_sets.size(); i++) {
uint32_t format = 0; // No format, default.
if (shader->uniform_sets[i].size()) {
// Sort and hash.
shader->uniform_sets.write[i].sort();
UniformSetFormat usformat;
usformat.uniforms = shader->uniform_sets[i];
RBMap<UniformSetFormat, uint32_t>::Element *E = uniform_set_format_cache.find(usformat);
if (E) {
format = E->get();
} else {
format = uniform_set_format_cache.size() + 1;
uniform_set_format_cache.insert(usformat, format);
}
}
shader->set_formats.push_back(format);
}
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
RID RenderingDevice::shader_create_placeholder() {
Shader shader;
return shader_owner.make_rid(shader);
}
uint64_t RenderingDevice::shader_get_vertex_input_attribute_mask(RID p_shader) {
_THREAD_SAFE_METHOD_
const Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, 0);
return shader->vertex_input_mask;
}
/******************/
/**** UNIFORMS ****/
/******************/
RID RenderingDevice::uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID());
Buffer buffer;
buffer.size = p_size_bytes;
buffer.usage = (RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_UNIFORM_BIT);
buffer.driver_id = driver->buffer_create(buffer.size, buffer.usage, RDD::MEMORY_ALLOCATION_TYPE_GPU);
ERR_FAIL_COND_V(!buffer.driver_id, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&buffer, 0, r, data_size);
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::BufferBarrier bb;
bb.buffer = buffer.driver_id;
bb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
bb.dst_access = RDD::BARRIER_ACCESS_UNIFORM_READ_BIT;
bb.size = data_size;
driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT | RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, {}, bb, {});
}
}
buffer_memory += buffer.size;
RID id = uniform_buffer_owner.make_rid(buffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
RID RenderingDevice::uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_uniforms.size() == 0, RID());
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, RID());
ERR_FAIL_COND_V_MSG(p_shader_set >= (uint32_t)shader->uniform_sets.size() || shader->uniform_sets[p_shader_set].size() == 0, RID(),
"Desired set (" + itos(p_shader_set) + ") not used by shader.");
// See that all sets in shader are satisfied.
const Vector<ShaderUniform> &set = shader->uniform_sets[p_shader_set];
uint32_t uniform_count = p_uniforms.size();
const Uniform *uniforms = p_uniforms.ptr();
uint32_t set_uniform_count = set.size();
const ShaderUniform *set_uniforms = set.ptr();
LocalVector<RDD::BoundUniform> driver_uniforms;
driver_uniforms.resize(set_uniform_count);
// Used for verification to make sure a uniform set does not use a framebuffer bound texture.
LocalVector<UniformSet::AttachableTexture> attachable_textures;
Vector<Texture *> mutable_sampled_textures;
Vector<Texture *> mutable_storage_textures;
for (uint32_t i = 0; i < set_uniform_count; i++) {
const ShaderUniform &set_uniform = set_uniforms[i];
int uniform_idx = -1;
for (int j = 0; j < (int)uniform_count; j++) {
if (uniforms[j].binding == set_uniform.binding) {
uniform_idx = j;
}
}
ERR_FAIL_COND_V_MSG(uniform_idx == -1, RID(),
"All the shader bindings for the given set must be covered by the uniforms provided. Binding (" + itos(set_uniform.binding) + "), set (" + itos(p_shader_set) + ") was not provided.");
const Uniform &uniform = uniforms[uniform_idx];
ERR_FAIL_COND_V_MSG(uniform.uniform_type != set_uniform.type, RID(),
"Mismatch uniform type for binding (" + itos(set_uniform.binding) + "), set (" + itos(p_shader_set) + "). Expected '" + SHADER_UNIFORM_NAMES[set_uniform.type] + "', supplied: '" + SHADER_UNIFORM_NAMES[uniform.uniform_type] + "'.");
RDD::BoundUniform &driver_uniform = driver_uniforms[i];
driver_uniform.type = uniform.uniform_type;
driver_uniform.binding = uniform.binding;
switch (uniform.uniform_type) {
case UNIFORM_TYPE_SAMPLER: {
if (uniform.get_id_count() != (uint32_t)set_uniform.length) {
if (set_uniform.length > 1) {
ERR_FAIL_V_MSG(RID(), "Sampler (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") sampler elements, so it should be provided equal number of sampler IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "Sampler (binding: " + itos(uniform.binding) + ") should provide one ID referencing a sampler (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
RDD::SamplerID *sampler_driver_id = sampler_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_COND_V_MSG(!sampler_driver_id, RID(), "Sampler (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid sampler.");
driver_uniform.ids.push_back(*sampler_driver_id);
}
} break;
case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: {
if (uniform.get_id_count() != (uint32_t)set_uniform.length * 2) {
if (set_uniform.length > 1) {
ERR_FAIL_V_MSG(RID(), "SamplerTexture (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") sampler&texture elements, so it should provided twice the amount of IDs (sampler,texture pairs) to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "SamplerTexture (binding: " + itos(uniform.binding) + ") should provide two IDs referencing a sampler and then a texture (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j += 2) {
RDD::SamplerID *sampler_driver_id = sampler_owner.get_or_null(uniform.get_id(j + 0));
ERR_FAIL_COND_V_MSG(!sampler_driver_id, RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ", index " + itos(j + 1) + ") is not a valid sampler.");
Texture *texture = texture_owner.get_or_null(uniform.get_id(j + 1));
ERR_FAIL_NULL_V_MSG(texture, RID(), "Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(),
"Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform.");
if ((texture->usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT))) {
UniformSet::AttachableTexture attachable_texture;
attachable_texture.bind = set_uniform.binding;
attachable_texture.texture = texture->owner.is_valid() ? texture->owner : uniform.get_id(j + 1);
attachable_textures.push_back(attachable_texture);
}
if ((texture->usage_flags & TEXTURE_USAGE_STORAGE_BIT)) {
mutable_sampled_textures.push_back(texture);
}
DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner));
driver_uniform.ids.push_back(*sampler_driver_id);
driver_uniform.ids.push_back(texture->driver_id);
}
} break;
case UNIFORM_TYPE_TEXTURE: {
if (uniform.get_id_count() != (uint32_t)set_uniform.length) {
if (set_uniform.length > 1) {
ERR_FAIL_V_MSG(RID(), "Texture (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "Texture (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
Texture *texture = texture_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_NULL_V_MSG(texture, RID(), "Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(),
"Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform.");
if ((texture->usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT))) {
UniformSet::AttachableTexture attachable_texture;
attachable_texture.bind = set_uniform.binding;
attachable_texture.texture = texture->owner.is_valid() ? texture->owner : uniform.get_id(j);
attachable_textures.push_back(attachable_texture);
}
if ((texture->usage_flags & TEXTURE_USAGE_STORAGE_BIT)) {
mutable_sampled_textures.push_back(texture);
}
DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner));
driver_uniform.ids.push_back(texture->driver_id);
}
} break;
case UNIFORM_TYPE_IMAGE: {
if (uniform.get_id_count() != (uint32_t)set_uniform.length) {
if (set_uniform.length > 1) {
ERR_FAIL_V_MSG(RID(), "Image (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "Image (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
Texture *texture = texture_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_NULL_V_MSG(texture, RID(),
"Image (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_STORAGE_BIT), RID(),
"Image (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_STORAGE_BIT usage flag set in order to be used as uniform.");
if ((texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT)) {
mutable_storage_textures.push_back(texture);
}
DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner));
driver_uniform.ids.push_back(texture->driver_id);
}
} break;
case UNIFORM_TYPE_TEXTURE_BUFFER: {
if (uniform.get_id_count() != (uint32_t)set_uniform.length) {
if (set_uniform.length > 1) {
ERR_FAIL_V_MSG(RID(), "Buffer (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") texture buffer elements, so it should be provided equal number of texture buffer IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "Buffer (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture buffer (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
Buffer *buffer = texture_buffer_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_NULL_V_MSG(buffer, RID(), "Texture Buffer (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture buffer.");
driver_uniform.ids.push_back(buffer->driver_id);
}
} break;
case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: {
if (uniform.get_id_count() != (uint32_t)set_uniform.length * 2) {
if (set_uniform.length > 1) {
ERR_FAIL_V_MSG(RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") sampler buffer elements, so it should provided twice the amount of IDs (sampler,buffer pairs) to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ") should provide two IDs referencing a sampler and then a texture buffer (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j += 2) {
RDD::SamplerID *sampler_driver_id = sampler_owner.get_or_null(uniform.get_id(j + 0));
ERR_FAIL_COND_V_MSG(!sampler_driver_id, RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ", index " + itos(j + 1) + ") is not a valid sampler.");
Buffer *buffer = texture_buffer_owner.get_or_null(uniform.get_id(j + 1));
ERR_FAIL_NULL_V_MSG(buffer, RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ", index " + itos(j + 1) + ") is not a valid texture buffer.");
driver_uniform.ids.push_back(*sampler_driver_id);
driver_uniform.ids.push_back(buffer->driver_id);
}
} break;
case UNIFORM_TYPE_IMAGE_BUFFER: {
// Todo.
} break;
case UNIFORM_TYPE_UNIFORM_BUFFER: {
ERR_FAIL_COND_V_MSG(uniform.get_id_count() != 1, RID(),
"Uniform buffer supplied (binding: " + itos(uniform.binding) + ") must provide one ID (" + itos(uniform.get_id_count()) + " provided).");
Buffer *buffer = uniform_buffer_owner.get_or_null(uniform.get_id(0));
ERR_FAIL_NULL_V_MSG(buffer, RID(), "Uniform buffer supplied (binding: " + itos(uniform.binding) + ") is invalid.");
ERR_FAIL_COND_V_MSG(buffer->size < (uint32_t)set_uniform.length, RID(),
"Uniform buffer supplied (binding: " + itos(uniform.binding) + ") size (" + itos(buffer->size) + " is smaller than size of shader uniform: (" + itos(set_uniform.length) + ").");
driver_uniform.ids.push_back(buffer->driver_id);
} break;
case UNIFORM_TYPE_STORAGE_BUFFER: {
ERR_FAIL_COND_V_MSG(uniform.get_id_count() != 1, RID(),
"Storage buffer supplied (binding: " + itos(uniform.binding) + ") must provide one ID (" + itos(uniform.get_id_count()) + " provided).");
Buffer *buffer = nullptr;
if (storage_buffer_owner.owns(uniform.get_id(0))) {
buffer = storage_buffer_owner.get_or_null(uniform.get_id(0));
} else if (vertex_buffer_owner.owns(uniform.get_id(0))) {
buffer = vertex_buffer_owner.get_or_null(uniform.get_id(0));
ERR_FAIL_COND_V_MSG(!(buffer->usage.has_flag(RDD::BUFFER_USAGE_STORAGE_BIT)), RID(), "Vertex buffer supplied (binding: " + itos(uniform.binding) + ") was not created with storage flag.");
}
ERR_FAIL_NULL_V_MSG(buffer, RID(), "Storage buffer supplied (binding: " + itos(uniform.binding) + ") is invalid.");
// If 0, then it's sized on link time.
ERR_FAIL_COND_V_MSG(set_uniform.length > 0 && buffer->size != (uint32_t)set_uniform.length, RID(),
"Storage buffer supplied (binding: " + itos(uniform.binding) + ") size (" + itos(buffer->size) + " does not match size of shader uniform: (" + itos(set_uniform.length) + ").");
driver_uniform.ids.push_back(buffer->driver_id);
} break;
case UNIFORM_TYPE_INPUT_ATTACHMENT: {
ERR_FAIL_COND_V_MSG(shader->is_compute, RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") supplied for compute shader (this is not allowed).");
if (uniform.get_id_count() != (uint32_t)set_uniform.length) {
if (set_uniform.length > 1) {
ERR_FAIL_V_MSG(RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
Texture *texture = texture_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_NULL_V_MSG(texture, RID(),
"InputAttachment (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(),
"InputAttachment (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform.");
DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner));
driver_uniform.ids.push_back(texture->driver_id);
}
} break;
default: {
}
}
}
RDD::UniformSetID driver_uniform_set = driver->uniform_set_create(driver_uniforms, shader->driver_id, p_shader_set);
ERR_FAIL_COND_V(!driver_uniform_set, RID());
UniformSet uniform_set;
uniform_set.driver_id = driver_uniform_set;
uniform_set.format = shader->set_formats[p_shader_set];
uniform_set.attachable_textures = attachable_textures;
uniform_set.mutable_sampled_textures = mutable_sampled_textures;
uniform_set.mutable_storage_textures = mutable_storage_textures;
uniform_set.shader_set = p_shader_set;
uniform_set.shader_id = p_shader;
RID id = uniform_set_owner.make_rid(uniform_set);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
// Add dependencies.
_add_dependency(id, p_shader);
for (uint32_t i = 0; i < uniform_count; i++) {
const Uniform &uniform = uniforms[i];
int id_count = uniform.get_id_count();
for (int j = 0; j < id_count; j++) {
_add_dependency(id, uniform.get_id(j));
}
}
return id;
}
bool RenderingDevice::uniform_set_is_valid(RID p_uniform_set) {
return uniform_set_owner.owns(p_uniform_set);
}
void RenderingDevice::uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata) {
UniformSet *us = uniform_set_owner.get_or_null(p_uniform_set);
ERR_FAIL_NULL(us);
us->invalidated_callback = p_callback;
us->invalidated_callback_userdata = p_userdata;
}
/*******************/
/**** PIPELINES ****/
/*******************/
RID RenderingDevice::render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags, uint32_t p_for_render_pass, const Vector<PipelineSpecializationConstant> &p_specialization_constants) {
_THREAD_SAFE_METHOD_
// Needs a shader.
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, RID());
ERR_FAIL_COND_V_MSG(shader->is_compute, RID(),
"Compute shaders can't be used in render pipelines");
if (p_framebuffer_format == INVALID_ID) {
// If nothing provided, use an empty one (no attachments).
p_framebuffer_format = framebuffer_format_create(Vector<AttachmentFormat>());
}
ERR_FAIL_COND_V(!framebuffer_formats.has(p_framebuffer_format), RID());
const FramebufferFormat &fb_format = framebuffer_formats[p_framebuffer_format];
// Validate shader vs. framebuffer.
{
ERR_FAIL_COND_V_MSG(p_for_render_pass >= uint32_t(fb_format.E->key().passes.size()), RID(), "Render pass requested for pipeline creation (" + itos(p_for_render_pass) + ") is out of bounds");
const FramebufferPass &pass = fb_format.E->key().passes[p_for_render_pass];
uint32_t output_mask = 0;
for (int i = 0; i < pass.color_attachments.size(); i++) {
if (pass.color_attachments[i] != ATTACHMENT_UNUSED) {
output_mask |= 1 << i;
}
}
ERR_FAIL_COND_V_MSG(shader->fragment_output_mask != output_mask, RID(),
"Mismatch fragment shader output mask (" + itos(shader->fragment_output_mask) + ") and framebuffer color output mask (" + itos(output_mask) + ") when binding both in render pipeline.");
}
RDD::VertexFormatID driver_vertex_format;
if (p_vertex_format != INVALID_ID) {
// Uses vertices, else it does not.
ERR_FAIL_COND_V(!vertex_formats.has(p_vertex_format), RID());
const VertexDescriptionCache &vd = vertex_formats[p_vertex_format];
driver_vertex_format = vertex_formats[p_vertex_format].driver_id;
// Validate with inputs.
for (uint32_t i = 0; i < 64; i++) {
if (!(shader->vertex_input_mask & ((uint64_t)1) << i)) {
continue;
}
bool found = false;
for (int j = 0; j < vd.vertex_formats.size(); j++) {
if (vd.vertex_formats[j].location == i) {
found = true;
}
}
ERR_FAIL_COND_V_MSG(!found, RID(),
"Shader vertex input location (" + itos(i) + ") not provided in vertex input description for pipeline creation.");
}
} else {
ERR_FAIL_COND_V_MSG(shader->vertex_input_mask != 0, RID(),
"Shader contains vertex inputs, but no vertex input description was provided for pipeline creation.");
}
ERR_FAIL_INDEX_V(p_render_primitive, RENDER_PRIMITIVE_MAX, RID());
ERR_FAIL_INDEX_V(p_rasterization_state.cull_mode, 3, RID());
if (p_multisample_state.sample_mask.size()) {
// Use sample mask.
ERR_FAIL_COND_V((int)TEXTURE_SAMPLES_COUNT[p_multisample_state.sample_count] != p_multisample_state.sample_mask.size(), RID());
}
ERR_FAIL_INDEX_V(p_depth_stencil_state.depth_compare_operator, COMPARE_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.fail, STENCIL_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.pass, STENCIL_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.depth_fail, STENCIL_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.compare, COMPARE_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.fail, STENCIL_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.pass, STENCIL_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.depth_fail, STENCIL_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.compare, COMPARE_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_blend_state.logic_op, LOGIC_OP_MAX, RID());
const FramebufferPass &pass = fb_format.E->key().passes[p_for_render_pass];
ERR_FAIL_COND_V(p_blend_state.attachments.size() < pass.color_attachments.size(), RID());
for (int i = 0; i < pass.color_attachments.size(); i++) {
if (pass.color_attachments[i] != ATTACHMENT_UNUSED) {
ERR_FAIL_INDEX_V(p_blend_state.attachments[i].src_color_blend_factor, BLEND_FACTOR_MAX, RID());
ERR_FAIL_INDEX_V(p_blend_state.attachments[i].dst_color_blend_factor, BLEND_FACTOR_MAX, RID());
ERR_FAIL_INDEX_V(p_blend_state.attachments[i].color_blend_op, BLEND_OP_MAX, RID());
ERR_FAIL_INDEX_V(p_blend_state.attachments[i].src_alpha_blend_factor, BLEND_FACTOR_MAX, RID());
ERR_FAIL_INDEX_V(p_blend_state.attachments[i].dst_alpha_blend_factor, BLEND_FACTOR_MAX, RID());
ERR_FAIL_INDEX_V(p_blend_state.attachments[i].alpha_blend_op, BLEND_OP_MAX, RID());
}
}
for (int i = 0; i < shader->specialization_constants.size(); i++) {
const ShaderSpecializationConstant &sc = shader->specialization_constants[i];
for (int j = 0; j < p_specialization_constants.size(); j++) {
const PipelineSpecializationConstant &psc = p_specialization_constants[j];
if (psc.constant_id == sc.constant_id) {
ERR_FAIL_COND_V_MSG(psc.type != sc.type, RID(), "Specialization constant provided for id (" + itos(sc.constant_id) + ") is of the wrong type.");
break;
}
}
}
RenderPipeline pipeline;
pipeline.driver_id = driver->render_pipeline_create(
shader->driver_id,
driver_vertex_format,
p_render_primitive,
p_rasterization_state,
p_multisample_state,
p_depth_stencil_state,
p_blend_state,
pass.color_attachments,
p_dynamic_state_flags,
fb_format.render_pass,
p_for_render_pass,
p_specialization_constants);
ERR_FAIL_COND_V(!pipeline.driver_id, RID());
if (pipelines_cache_enabled) {
_update_pipeline_cache();
}
pipeline.shader = p_shader;
pipeline.shader_driver_id = shader->driver_id;
pipeline.shader_layout_hash = shader->layout_hash;
pipeline.set_formats = shader->set_formats;
pipeline.push_constant_size = shader->push_constant_size;
#ifdef DEBUG_ENABLED
pipeline.validation.dynamic_state = p_dynamic_state_flags;
pipeline.validation.framebuffer_format = p_framebuffer_format;
pipeline.validation.render_pass = p_for_render_pass;
pipeline.validation.vertex_format = p_vertex_format;
pipeline.validation.uses_restart_indices = p_render_primitive == RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_RESTART_INDEX;
static const uint32_t primitive_divisor[RENDER_PRIMITIVE_MAX] = {
1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1
};
pipeline.validation.primitive_divisor = primitive_divisor[p_render_primitive];
static const uint32_t primitive_minimum[RENDER_PRIMITIVE_MAX] = {
1,
2,
2,
2,
2,
3,
3,
3,
3,
3,
1,
};
pipeline.validation.primitive_minimum = primitive_minimum[p_render_primitive];
#endif
// Create ID to associate with this pipeline.
RID id = render_pipeline_owner.make_rid(pipeline);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
// Now add all the dependencies.
_add_dependency(id, p_shader);
return id;
}
bool RenderingDevice::render_pipeline_is_valid(RID p_pipeline) {
_THREAD_SAFE_METHOD_
return render_pipeline_owner.owns(p_pipeline);
}
RID RenderingDevice::compute_pipeline_create(RID p_shader, const Vector<PipelineSpecializationConstant> &p_specialization_constants) {
_THREAD_SAFE_METHOD_
// Needs a shader.
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, RID());
ERR_FAIL_COND_V_MSG(!shader->is_compute, RID(),
"Non-compute shaders can't be used in compute pipelines");
for (int i = 0; i < shader->specialization_constants.size(); i++) {
const ShaderSpecializationConstant &sc = shader->specialization_constants[i];
for (int j = 0; j < p_specialization_constants.size(); j++) {
const PipelineSpecializationConstant &psc = p_specialization_constants[j];
if (psc.constant_id == sc.constant_id) {
ERR_FAIL_COND_V_MSG(psc.type != sc.type, RID(), "Specialization constant provided for id (" + itos(sc.constant_id) + ") is of the wrong type.");
break;
}
}
}
ComputePipeline pipeline;
pipeline.driver_id = driver->compute_pipeline_create(shader->driver_id, p_specialization_constants);
ERR_FAIL_COND_V(!pipeline.driver_id, RID());
if (pipelines_cache_enabled) {
_update_pipeline_cache();
}
pipeline.shader = p_shader;
pipeline.shader_driver_id = shader->driver_id;
pipeline.shader_layout_hash = shader->layout_hash;
pipeline.set_formats = shader->set_formats;
pipeline.push_constant_size = shader->push_constant_size;
pipeline.local_group_size[0] = shader->compute_local_size[0];
pipeline.local_group_size[1] = shader->compute_local_size[1];
pipeline.local_group_size[2] = shader->compute_local_size[2];
// Create ID to associate with this pipeline.
RID id = compute_pipeline_owner.make_rid(pipeline);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
// Now add all the dependencies.
_add_dependency(id, p_shader);
return id;
}
bool RenderingDevice::compute_pipeline_is_valid(RID p_pipeline) {
return compute_pipeline_owner.owns(p_pipeline);
}
/****************/
/**** SCREEN ****/
/****************/
int RenderingDevice::screen_get_width(DisplayServer::WindowID p_screen) const {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(local_device.is_valid(), -1, "Local devices have no screen");
return context->window_get_width(p_screen);
}
int RenderingDevice::screen_get_height(DisplayServer::WindowID p_screen) const {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(local_device.is_valid(), -1, "Local devices have no screen");
return context->window_get_height(p_screen);
}
RenderingDevice::FramebufferFormatID RenderingDevice::screen_get_framebuffer_format() const {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(local_device.is_valid(), INVALID_ID, "Local devices have no screen");
DataFormat format = driver->screen_get_format();
ERR_FAIL_COND_V(format == DATA_FORMAT_MAX, INVALID_ID);
AttachmentFormat attachment;
attachment.format = format;
attachment.samples = TEXTURE_SAMPLES_1;
attachment.usage_flags = TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
Vector<AttachmentFormat> screen_attachment;
screen_attachment.push_back(attachment);
return const_cast<RenderingDevice *>(this)->framebuffer_format_create(screen_attachment);
}
/*******************/
/**** DRAW LIST ****/
/*******************/
RenderingDevice::DrawListID RenderingDevice::draw_list_begin_for_screen(DisplayServer::WindowID p_screen, const Color &p_clear_color) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(local_device.is_valid(), INVALID_ID, "Local devices have no screen");
ERR_FAIL_COND_V_MSG(draw_list != nullptr, INVALID_ID, "Only one draw list can be active at the same time.");
ERR_FAIL_COND_V_MSG(compute_list != nullptr, INVALID_ID, "Only one draw/compute list can be active at the same time.");
RDD::CommandBufferID command_buffer = frames[frame].draw_command_buffer;
if (!context->window_is_valid_swapchain(p_screen)) {
return INVALID_ID;
}
Size2i size = Size2i(context->window_get_width(p_screen), context->window_get_height(p_screen));
_draw_list_allocate(Rect2i(Vector2i(), size), 0, 0);
#ifdef DEBUG_ENABLED
draw_list_framebuffer_format = screen_get_framebuffer_format();
#endif
draw_list_subpass_count = 1;
RDD::RenderPassClearValue clear_value;
clear_value.color = p_clear_color;
driver->command_begin_render_pass(
command_buffer,
context->window_get_render_pass(p_screen),
context->window_get_framebuffer(p_screen),
RDD::COMMAND_BUFFER_TYPE_PRIMARY,
Rect2i(0, 0, size.width, size.height),
VectorView(&clear_value, 1));
driver->command_render_set_viewport(command_buffer, Rect2i(Point2i(), size));
driver->command_render_set_scissor(command_buffer, Rect2i(Point2i(), size));
return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT;
}
Error RenderingDevice::_draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, RDD::FramebufferID *r_framebuffer, RDD::RenderPassID *r_render_pass, uint32_t *r_subpass_count) {
Framebuffer::VersionKey vk;
vk.initial_color_action = p_initial_color_action;
vk.final_color_action = p_final_color_action;
vk.initial_depth_action = p_initial_depth_action;
vk.final_depth_action = p_final_depth_action;
vk.view_count = p_framebuffer->view_count;
if (!p_framebuffer->framebuffers.has(vk)) {
// Need to create this version.
Framebuffer::Version version;
version.render_pass = _render_pass_create(framebuffer_formats[p_framebuffer->format_id].E->key().attachments, framebuffer_formats[p_framebuffer->format_id].E->key().passes, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_framebuffer->view_count);
LocalVector<RDD::TextureID> attachments;
for (int i = 0; i < p_framebuffer->texture_ids.size(); i++) {
Texture *texture = texture_owner.get_or_null(p_framebuffer->texture_ids[i]);
if (texture) {
attachments.push_back(texture->driver_id);
if (!(texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT)) { // VRS attachment will be a different size.
ERR_FAIL_COND_V(texture->width != p_framebuffer->size.width, ERR_BUG);
ERR_FAIL_COND_V(texture->height != p_framebuffer->size.height, ERR_BUG);
}
}
}
version.framebuffer = driver->framebuffer_create(version.render_pass, attachments, p_framebuffer->size.width, p_framebuffer->size.height);
ERR_FAIL_COND_V(!version.framebuffer, ERR_CANT_CREATE);
version.subpass_count = framebuffer_formats[p_framebuffer->format_id].E->key().passes.size();
p_framebuffer->framebuffers.insert(vk, version);
}
const Framebuffer::Version &version = p_framebuffer->framebuffers[vk];
*r_framebuffer = version.framebuffer;
*r_render_pass = version.render_pass;
*r_subpass_count = version.subpass_count;
return OK;
}
Error RenderingDevice::_draw_list_render_pass_begin(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i p_viewport_offset, Point2i p_viewport_size, RDD::FramebufferID p_framebuffer_driver_id, RDD::RenderPassID p_render_pass, RDD::CommandBufferID p_command_buffer, RDD::CommandBufferType p_cmd_buffer_mode, const Vector<RID> &p_storage_textures, bool p_constrained_to_region) {
LocalVector<RDD::RenderPassClearValue> clear_values;
clear_values.resize(p_framebuffer->texture_ids.size());
int clear_values_count = 0;
{
int color_index = 0;
for (int i = 0; i < p_framebuffer->texture_ids.size(); i++) {
RDD::RenderPassClearValue clear_value;
Texture *texture = texture_owner.get_or_null(p_framebuffer->texture_ids[i]);
if (!texture) {
color_index++;
continue;
}
if (color_index < p_clear_colors.size() && texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) {
ERR_FAIL_INDEX_V(color_index, p_clear_colors.size(), ERR_BUG); // A bug.
clear_value.color = p_clear_colors[color_index];
color_index++;
} else if (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
clear_value.depth = p_clear_depth;
clear_value.stencil = p_clear_stencil;
}
clear_values[clear_values_count++] = clear_value;
}
}
for (int i = 0; i < p_storage_textures.size(); i++) {
Texture *texture = texture_owner.get_or_null(p_storage_textures[i]);
if (!texture) {
continue;
}
ERR_CONTINUE_MSG(!(texture->usage_flags & TEXTURE_USAGE_STORAGE_BIT), "Supplied storage texture " + itos(i) + " for draw list is not set to be used for storage.");
if (texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT) {
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
// Must change layout to general.
RDD::TextureBarrier tb;
tb.texture = texture->driver_id;
tb.src_access = (RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
tb.dst_access = (RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
tb.prev_layout = texture->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_GENERAL;
tb.subresources.aspect = texture->read_aspect_flags;
tb.subresources.base_mipmap = texture->base_mipmap;
tb.subresources.mipmap_count = texture->mipmaps;
tb.subresources.base_layer = texture->base_layer;
tb.subresources.layer_count = texture->layers;
driver->command_pipeline_barrier(p_command_buffer, RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT, RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT, {}, {}, tb);
texture->layout = RDD::TEXTURE_LAYOUT_GENERAL;
}
draw_list_storage_textures.push_back(p_storage_textures[i]);
}
}
Rect2i region;
if (p_constrained_to_region) {
region = Rect2i(p_viewport_offset, p_viewport_size);
} else {
region = Rect2i(Point2i(), p_framebuffer->size);
}
driver->command_begin_render_pass(
p_command_buffer,
p_render_pass,
p_framebuffer_driver_id,
p_cmd_buffer_mode,
region,
clear_values);
// Mark textures as bound.
draw_list_bound_textures.clear();
draw_list_unbind_color_textures = p_final_color_action != FINAL_ACTION_CONTINUE;
draw_list_unbind_depth_textures = p_final_depth_action != FINAL_ACTION_CONTINUE;
for (int i = 0; i < p_framebuffer->texture_ids.size(); i++) {
Texture *texture = texture_owner.get_or_null(p_framebuffer->texture_ids[i]);
if (!texture) {
continue;
}
texture->bound = true;
draw_list_bound_textures.push_back(p_framebuffer->texture_ids[i]);
}
return OK;
}
void RenderingDevice::_draw_list_insert_clear_region(DrawList *p_draw_list, Framebuffer *p_framebuffer, Point2i p_viewport_offset, Point2i p_viewport_size, bool p_clear_color, const Vector<Color> &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil) {
LocalVector<RDD::AttachmentClear> clear_attachments;
int color_index = 0;
int texture_index = 0;
for (int i = 0; i < p_framebuffer->texture_ids.size(); i++) {
Texture *texture = texture_owner.get_or_null(p_framebuffer->texture_ids[i]);
if (!texture) {
texture_index++;
continue;
}
RDD::AttachmentClear clear_at;
if (p_clear_color && (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
Color clear_color = p_clear_colors[texture_index++];
clear_at.value.color = clear_color;
clear_at.color_attachment = color_index++;
clear_at.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT;
} else if (p_clear_depth && (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
clear_at.value.depth = p_depth;
clear_at.value.stencil = p_stencil;
clear_at.color_attachment = 0;
clear_at.aspect = RDD::TEXTURE_ASPECT_DEPTH_BIT;
if (format_has_stencil(texture->format)) {
clear_at.aspect.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT);
}
} else {
ERR_CONTINUE(true);
}
clear_attachments.push_back(clear_at);
}
Rect2i rect = Rect2i(p_viewport_offset, p_viewport_size);
driver->command_render_clear_attachments(p_draw_list->command_buffer, clear_attachments, rect);
}
RenderingDevice::DrawListID RenderingDevice::draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const Vector<RID> &p_storage_textures) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(draw_list != nullptr, INVALID_ID, "Only one draw list can be active at the same time.");
ERR_FAIL_COND_V_MSG(compute_list != nullptr && !compute_list->state.allow_draw_overlap, INVALID_ID, "Only one draw/compute list can be active at the same time.");
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer);
ERR_FAIL_NULL_V(framebuffer, INVALID_ID);
Point2i viewport_offset;
Point2i viewport_size = framebuffer->size;
bool constrained_to_region = false;
bool needs_clear_color = false;
bool needs_clear_depth = false;
if (p_region != Rect2() && p_region != Rect2(Vector2(), viewport_size)) { // Check custom region.
Rect2i viewport(viewport_offset, viewport_size);
Rect2i regioni = p_region;
if (!(regioni.position.x >= viewport.position.x) && (regioni.position.y >= viewport.position.y) &&
((regioni.position.x + regioni.size.x) <= (viewport.position.x + viewport.size.x)) &&
((regioni.position.y + regioni.size.y) <= (viewport.position.y + viewport.size.y))) {
ERR_FAIL_V_MSG(INVALID_ID, "When supplying a custom region, it must be contained within the framebuffer rectangle");
}
viewport_offset = regioni.position;
viewport_size = regioni.size;
// If clearing regions both in color and depth, we can switch to a fast path where we let Vulkan to the clears
// and we constrain the render area to the region.
if (p_initial_color_action == INITIAL_ACTION_CLEAR_REGION && p_initial_depth_action == INITIAL_ACTION_CLEAR_REGION) {
constrained_to_region = true;
p_initial_color_action = INITIAL_ACTION_CLEAR;
p_initial_depth_action = INITIAL_ACTION_CLEAR;
} else {
if (p_initial_color_action == INITIAL_ACTION_CLEAR_REGION_CONTINUE) {
needs_clear_color = true;
p_initial_color_action = INITIAL_ACTION_CONTINUE;
}
if (p_initial_depth_action == INITIAL_ACTION_CLEAR_REGION_CONTINUE) {
needs_clear_depth = true;
p_initial_depth_action = INITIAL_ACTION_CONTINUE;
}
if (p_initial_color_action == INITIAL_ACTION_CLEAR_REGION) {
needs_clear_color = true;
p_initial_color_action = INITIAL_ACTION_KEEP;
}
if (p_initial_depth_action == INITIAL_ACTION_CLEAR_REGION) {
needs_clear_depth = true;
p_initial_depth_action = INITIAL_ACTION_KEEP;
}
}
}
if (p_initial_color_action == INITIAL_ACTION_CLEAR || needs_clear_color) { // Check clear values.
int color_count = 0;
for (int i = 0; i < framebuffer->texture_ids.size(); i++) {
Texture *texture = texture_owner.get_or_null(framebuffer->texture_ids[i]);
// We only check for our VRS usage bit if this is not the first texture id.
// If it is the first we're likely populating our VRS texture.
// Bit dirty but...
if (!texture || (!(texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(i != 0 && texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT))) {
if (!texture || !texture->is_resolve_buffer) {
color_count++;
}
}
}
ERR_FAIL_COND_V_MSG(p_clear_color_values.size() != color_count, INVALID_ID, "Clear color values supplied (" + itos(p_clear_color_values.size()) + ") differ from the amount required for framebuffer color attachments (" + itos(color_count) + ").");
}
RDD::FramebufferID fb_driver_id;
RDD::RenderPassID render_pass;
Error err = _draw_list_setup_framebuffer(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, &fb_driver_id, &render_pass, &draw_list_subpass_count);
ERR_FAIL_COND_V(err != OK, INVALID_ID);
RDD::CommandBufferID command_buffer = frames[frame].draw_command_buffer;
err = _draw_list_render_pass_begin(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, viewport_offset, viewport_size, fb_driver_id, render_pass, command_buffer, RDD::COMMAND_BUFFER_TYPE_PRIMARY, p_storage_textures, constrained_to_region);
if (err != OK) {
return INVALID_ID;
}
draw_list_render_pass = render_pass;
draw_list_vkframebuffer = fb_driver_id;
_draw_list_allocate(Rect2i(viewport_offset, viewport_size), 0, 0);
#ifdef DEBUG_ENABLED
draw_list_framebuffer_format = framebuffer->format_id;
#endif
draw_list_current_subpass = 0;
if (needs_clear_color || needs_clear_depth) {
DEV_ASSERT(!constrained_to_region);
_draw_list_insert_clear_region(draw_list, framebuffer, viewport_offset, viewport_size, needs_clear_color, p_clear_color_values, needs_clear_depth, p_clear_depth, p_clear_stencil);
}
driver->command_render_set_viewport(command_buffer, Rect2i(viewport_offset, viewport_size));
driver->command_render_set_scissor(command_buffer, Rect2i(viewport_offset, viewport_size));
return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT;
}
Error RenderingDevice::draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const Vector<RID> &p_storage_textures) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(draw_list != nullptr, ERR_BUSY, "Only one draw list can be active at the same time.");
ERR_FAIL_COND_V_MSG(compute_list != nullptr && !compute_list->state.allow_draw_overlap, ERR_BUSY, "Only one draw/compute list can be active at the same time.");
ERR_FAIL_COND_V(p_splits < 1, ERR_INVALID_DECLARATION);
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer);
ERR_FAIL_NULL_V(framebuffer, ERR_INVALID_DECLARATION);
Point2i viewport_offset;
Point2i viewport_size = framebuffer->size;
bool constrained_to_region = false;
bool needs_clear_color = false;
bool needs_clear_depth = false;
if (p_region != Rect2() && p_region != Rect2(Vector2(), viewport_size)) { // Check custom region.
Rect2i viewport(viewport_offset, viewport_size);
Rect2i regioni = p_region;
if (!(regioni.position.x >= viewport.position.x) && (regioni.position.y >= viewport.position.y) &&
((regioni.position.x + regioni.size.x) <= (viewport.position.x + viewport.size.x)) &&
((regioni.position.y + regioni.size.y) <= (viewport.position.y + viewport.size.y))) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "When supplying a custom region, it must be contained within the framebuffer rectangle");
}
viewport_offset = regioni.position;
viewport_size = regioni.size;
// If clearing regions both in color and depth, we can switch to a fast path where we let Vulkan to the clears
// and we constrain the render area to the region.
if (p_initial_color_action == INITIAL_ACTION_CLEAR_REGION && p_initial_depth_action == INITIAL_ACTION_CLEAR_REGION) {
constrained_to_region = true;
p_initial_color_action = INITIAL_ACTION_CLEAR;
p_initial_depth_action = INITIAL_ACTION_CLEAR;
} else {
if (p_initial_color_action == INITIAL_ACTION_CLEAR_REGION_CONTINUE) {
needs_clear_color = true;
p_initial_color_action = INITIAL_ACTION_CONTINUE;
}
if (p_initial_depth_action == INITIAL_ACTION_CLEAR_REGION_CONTINUE) {
needs_clear_depth = true;
p_initial_depth_action = INITIAL_ACTION_CONTINUE;
}
if (p_initial_color_action == INITIAL_ACTION_CLEAR_REGION) {
needs_clear_color = true;
p_initial_color_action = INITIAL_ACTION_KEEP;
}
if (p_initial_depth_action == INITIAL_ACTION_CLEAR_REGION) {
needs_clear_depth = true;
p_initial_depth_action = INITIAL_ACTION_KEEP;
}
}
}
if (p_initial_color_action == INITIAL_ACTION_CLEAR || needs_clear_color) { // Check clear values.
int color_count = 0;
for (int i = 0; i < framebuffer->texture_ids.size(); i++) {
Texture *texture = texture_owner.get_or_null(framebuffer->texture_ids[i]);
if (!texture || !(texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
color_count++;
}
}
ERR_FAIL_COND_V_MSG(p_clear_color_values.size() != color_count, ERR_INVALID_PARAMETER,
"Clear color values supplied (" + itos(p_clear_color_values.size()) + ") differ from the amount required for framebuffer (" + itos(color_count) + ").");
}
RDD::FramebufferID fb_driver_id;
RDD::RenderPassID render_pass;
Error err = _draw_list_setup_framebuffer(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, &fb_driver_id, &render_pass, &draw_list_subpass_count);
ERR_FAIL_COND_V(err != OK, ERR_CANT_CREATE);
RDD::CommandBufferID frame_command_buffer = frames[frame].draw_command_buffer;
err = _draw_list_render_pass_begin(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, viewport_offset, viewport_size, fb_driver_id, render_pass, frame_command_buffer, RDD::COMMAND_BUFFER_TYPE_SECONDARY, p_storage_textures, constrained_to_region);
if (err != OK) {
return ERR_CANT_CREATE;
}
draw_list_current_subpass = 0;
#ifdef DEBUG_ENABLED
draw_list_framebuffer_format = framebuffer->format_id;
#endif
draw_list_render_pass = render_pass;
draw_list_vkframebuffer = fb_driver_id;
err = _draw_list_allocate(Rect2i(viewport_offset, viewport_size), p_splits, 0);
if (err != OK) {
return err;
}
if (needs_clear_color || needs_clear_depth) {
DEV_ASSERT(!constrained_to_region);
_draw_list_insert_clear_region(&draw_list[0], framebuffer, viewport_offset, viewport_size, needs_clear_color, p_clear_color_values, needs_clear_depth, p_clear_depth, p_clear_stencil);
}
bool secondary_viewport_scissor = driver->api_trait_get(RDD::API_TRAIT_SECONDARY_VIEWPORT_SCISSOR);
for (uint32_t i = 0; i < p_splits; i++) {
if (secondary_viewport_scissor) {
driver->command_render_set_viewport(draw_list[i].command_buffer, Rect2i(viewport_offset, viewport_size));
driver->command_render_set_scissor(draw_list[i].command_buffer, Rect2i(viewport_offset, viewport_size));
}
r_split_ids[i] = (int64_t(ID_TYPE_SPLIT_DRAW_LIST) << ID_BASE_SHIFT) + i;
}
return OK;
}
RenderingDevice::DrawList *RenderingDevice::_get_draw_list_ptr(DrawListID p_id) {
if (p_id < 0) {
return nullptr;
}
if (!draw_list) {
return nullptr;
} else if (p_id == (int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT)) {
if (draw_list_split) {
return nullptr;
}
return draw_list;
} else if (p_id >> DrawListID(ID_BASE_SHIFT) == ID_TYPE_SPLIT_DRAW_LIST) {
if (!draw_list_split) {
return nullptr;
}
uint64_t index = p_id & ((DrawListID(1) << DrawListID(ID_BASE_SHIFT)) - 1); // Mask.
if (index >= draw_list_count) {
return nullptr;
}
return &draw_list[index];
} else {
return nullptr;
}
}
void RenderingDevice::draw_list_set_blend_constants(DrawListID p_list, const Color &p_color) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
driver->command_render_set_blend_constants(dl->command_buffer, p_color);
}
void RenderingDevice::draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
const RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_render_pipeline);
ERR_FAIL_NULL(pipeline);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND(pipeline->validation.framebuffer_format != draw_list_framebuffer_format && pipeline->validation.render_pass != draw_list_current_subpass);
#endif
if (p_render_pipeline == dl->state.pipeline) {
return; // Redundant state, return.
}
dl->state.pipeline = p_render_pipeline;
driver->command_bind_render_pipeline(dl->command_buffer, pipeline->driver_id);
if (dl->state.pipeline_shader != pipeline->shader) {
// Shader changed, so descriptor sets may become incompatible.
uint32_t pcount = pipeline->set_formats.size(); // Formats count in this pipeline.
dl->state.set_count = MAX(dl->state.set_count, pcount);
const uint32_t *pformats = pipeline->set_formats.ptr(); // Pipeline set formats.
uint32_t first_invalid_set = UINT32_MAX; // All valid by default.
switch (driver->api_trait_get(RDD::API_TRAIT_SHADER_CHANGE_INVALIDATION)) {
case RDD::SHADER_CHANGE_INVALIDATION_ALL_BOUND_UNIFORM_SETS: {
first_invalid_set = 0;
} break;
case RDD::SHADER_CHANGE_INVALIDATION_INCOMPATIBLE_SETS_PLUS_CASCADE: {
for (uint32_t i = 0; i < pcount; i++) {
if (dl->state.sets[i].pipeline_expected_format != pformats[i]) {
first_invalid_set = i;
break;
}
}
} break;
case RDD::SHADER_CHANGE_INVALIDATION_ALL_OR_NONE_ACCORDING_TO_LAYOUT_HASH: {
if (dl->state.pipeline_shader_layout_hash != pipeline->shader_layout_hash) {
first_invalid_set = 0;
}
} break;
}
for (uint32_t i = 0; i < pcount; i++) {
dl->state.sets[i].bound = dl->state.sets[i].bound && i < first_invalid_set;
dl->state.sets[i].pipeline_expected_format = pformats[i];
}
for (uint32_t i = pcount; i < dl->state.set_count; i++) {
// Unbind the ones above (not used) if exist.
dl->state.sets[i].bound = false;
}
dl->state.set_count = pcount; // Update set count.
if (pipeline->push_constant_size) {
#ifdef DEBUG_ENABLED
dl->validation.pipeline_push_constant_supplied = false;
#endif
}
dl->state.pipeline_shader = pipeline->shader;
dl->state.pipeline_shader_driver_id = pipeline->shader_driver_id;
dl->state.pipeline_shader_layout_hash = pipeline->shader_layout_hash;
}
#ifdef DEBUG_ENABLED
// Update render pass pipeline info.
dl->validation.pipeline_active = true;
dl->validation.pipeline_dynamic_state = pipeline->validation.dynamic_state;
dl->validation.pipeline_vertex_format = pipeline->validation.vertex_format;
dl->validation.pipeline_uses_restart_indices = pipeline->validation.uses_restart_indices;
dl->validation.pipeline_primitive_divisor = pipeline->validation.primitive_divisor;
dl->validation.pipeline_primitive_minimum = pipeline->validation.primitive_minimum;
dl->validation.pipeline_push_constant_size = pipeline->push_constant_size;
#endif
}
void RenderingDevice::draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_index >= driver->limit_get(LIMIT_MAX_BOUND_UNIFORM_SETS) || p_index >= MAX_UNIFORM_SETS,
"Attempting to bind a descriptor set (" + itos(p_index) + ") greater than what the hardware supports (" + itos(driver->limit_get(LIMIT_MAX_BOUND_UNIFORM_SETS)) + ").");
#endif
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
const UniformSet *uniform_set = uniform_set_owner.get_or_null(p_uniform_set);
ERR_FAIL_NULL(uniform_set);
if (p_index > dl->state.set_count) {
dl->state.set_count = p_index;
}
dl->state.sets[p_index].uniform_set_driver_id = uniform_set->driver_id; // Update set pointer.
dl->state.sets[p_index].bound = false; // Needs rebind.
dl->state.sets[p_index].uniform_set_format = uniform_set->format;
dl->state.sets[p_index].uniform_set = p_uniform_set;
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
uint32_t mst_count = uniform_set->mutable_storage_textures.size();
if (mst_count) {
Texture **mst_textures = const_cast<UniformSet *>(uniform_set)->mutable_storage_textures.ptrw();
for (uint32_t i = 0; i < mst_count; i++) {
if (mst_textures[i]->used_in_frame != frames_drawn) {
mst_textures[i]->used_in_frame = frames_drawn;
mst_textures[i]->used_in_transfer = false;
mst_textures[i]->used_in_compute = false;
}
mst_textures[i]->used_in_raster = true;
}
}
}
#ifdef DEBUG_ENABLED
{ // Validate that textures bound are not attached as framebuffer bindings.
uint32_t attachable_count = uniform_set->attachable_textures.size();
const UniformSet::AttachableTexture *attachable_ptr = uniform_set->attachable_textures.ptr();
uint32_t bound_count = draw_list_bound_textures.size();
const RID *bound_ptr = draw_list_bound_textures.ptr();
for (uint32_t i = 0; i < attachable_count; i++) {
for (uint32_t j = 0; j < bound_count; j++) {
ERR_FAIL_COND_MSG(attachable_ptr[i].texture == bound_ptr[j],
"Attempted to use the same texture in framebuffer attachment and a uniform (set: " + itos(p_index) + ", binding: " + itos(attachable_ptr[i].bind) + "), this is not allowed.");
}
}
}
#endif
}
void RenderingDevice::draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
const VertexArray *vertex_array = vertex_array_owner.get_or_null(p_vertex_array);
ERR_FAIL_NULL(vertex_array);
if (dl->state.vertex_array == p_vertex_array) {
return; // Already set.
}
dl->state.vertex_array = p_vertex_array;
#ifdef DEBUG_ENABLED
dl->validation.vertex_format = vertex_array->description;
dl->validation.vertex_max_instances_allowed = vertex_array->max_instances_allowed;
#endif
dl->validation.vertex_array_size = vertex_array->vertex_count;
driver->command_render_bind_vertex_buffers(dl->command_buffer, vertex_array->buffers.size(), vertex_array->buffers.ptr(), vertex_array->offsets.ptr());
}
void RenderingDevice::draw_list_bind_index_array(DrawListID p_list, RID p_index_array) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
const IndexArray *index_array = index_array_owner.get_or_null(p_index_array);
ERR_FAIL_NULL(index_array);
if (dl->state.index_array == p_index_array) {
return; // Already set.
}
dl->state.index_array = p_index_array;
#ifdef DEBUG_ENABLED
dl->validation.index_array_max_index = index_array->max_index;
#endif
dl->validation.index_array_size = index_array->indices;
dl->validation.index_array_offset = index_array->offset;
driver->command_render_bind_index_buffer(dl->command_buffer, index_array->driver_id, index_array->format, index_array->offset);
}
void RenderingDevice::draw_list_set_line_width(DrawListID p_list, float p_width) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
driver->command_render_set_line_width(dl->command_buffer, p_width);
}
void RenderingDevice::draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_data_size != dl->validation.pipeline_push_constant_size,
"This render pipeline requires (" + itos(dl->validation.pipeline_push_constant_size) + ") bytes of push constant data, supplied: (" + itos(p_data_size) + ")");
#endif
driver->command_bind_push_constants(dl->command_buffer, dl->state.pipeline_shader_driver_id, 0, VectorView((const uint32_t *)p_data, p_data_size / sizeof(uint32_t)));
#ifdef DEBUG_ENABLED
dl->validation.pipeline_push_constant_supplied = true;
#endif
}
void RenderingDevice::draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances, uint32_t p_procedural_vertices) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.pipeline_active,
"No render pipeline was set before attempting to draw.");
if (dl->validation.pipeline_vertex_format != INVALID_ID) {
// Pipeline uses vertices, validate format.
ERR_FAIL_COND_MSG(dl->validation.vertex_format == INVALID_ID,
"No vertex array was bound, and render pipeline expects vertices.");
// Make sure format is right.
ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format != dl->validation.vertex_format,
"The vertex format used to create the pipeline does not match the vertex format bound.");
// Make sure number of instances is valid.
ERR_FAIL_COND_MSG(p_instances > dl->validation.vertex_max_instances_allowed,
"Number of instances requested (" + itos(p_instances) + " is larger than the maximum number supported by the bound vertex array (" + itos(dl->validation.vertex_max_instances_allowed) + ").");
}
if (dl->validation.pipeline_push_constant_size > 0) {
// Using push constants, check that they were supplied.
ERR_FAIL_COND_MSG(!dl->validation.pipeline_push_constant_supplied,
"The shader in this pipeline requires a push constant to be set before drawing, but it's not present.");
}
#endif
// Bind descriptor sets.
for (uint32_t i = 0; i < dl->state.set_count; i++) {
if (dl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
#ifdef DEBUG_ENABLED
if (dl->state.sets[i].pipeline_expected_format != dl->state.sets[i].uniform_set_format) {
if (dl->state.sets[i].uniform_set_format == 0) {
ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline");
} else if (uniform_set_owner.owns(dl->state.sets[i].uniform_set)) {
UniformSet *us = uniform_set_owner.get_or_null(dl->state.sets[i].uniform_set);
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(dl->state.pipeline_shader));
} else {
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(dl->state.pipeline_shader));
}
}
#endif
driver->command_uniform_set_prepare_for_use(dl->command_buffer, dl->state.sets[i].uniform_set_driver_id, dl->state.pipeline_shader_driver_id, i);
}
for (uint32_t i = 0; i < dl->state.set_count; i++) {
if (dl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
if (!dl->state.sets[i].bound) {
driver->command_bind_render_uniform_set(dl->command_buffer, dl->state.sets[i].uniform_set_driver_id, dl->state.pipeline_shader_driver_id, i);
dl->state.sets[i].bound = true;
}
}
if (p_use_indices) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_procedural_vertices > 0,
"Procedural vertices can't be used together with indices.");
ERR_FAIL_COND_MSG(!dl->validation.index_array_size,
"Draw command requested indices, but no index buffer was set.");
ERR_FAIL_COND_MSG(dl->validation.pipeline_uses_restart_indices != dl->validation.index_buffer_uses_restart_indices,
"The usage of restart indices in index buffer does not match the render primitive in the pipeline.");
#endif
uint32_t to_draw = dl->validation.index_array_size;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(to_draw < dl->validation.pipeline_primitive_minimum,
"Too few indices (" + itos(to_draw) + ") for the render primitive set in the render pipeline (" + itos(dl->validation.pipeline_primitive_minimum) + ").");
ERR_FAIL_COND_MSG((to_draw % dl->validation.pipeline_primitive_divisor) != 0,
"Index amount (" + itos(to_draw) + ") must be a multiple of the amount of indices required by the render primitive (" + itos(dl->validation.pipeline_primitive_divisor) + ").");
#endif
driver->command_render_draw_indexed(dl->command_buffer, to_draw, p_instances, dl->validation.index_array_offset, 0, 0);
} else {
uint32_t to_draw;
if (p_procedural_vertices > 0) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format != INVALID_ID,
"Procedural vertices requested, but pipeline expects a vertex array.");
#endif
to_draw = p_procedural_vertices;
} else {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format == INVALID_ID,
"Draw command lacks indices, but pipeline format does not use vertices.");
#endif
to_draw = dl->validation.vertex_array_size;
}
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(to_draw < dl->validation.pipeline_primitive_minimum,
"Too few vertices (" + itos(to_draw) + ") for the render primitive set in the render pipeline (" + itos(dl->validation.pipeline_primitive_minimum) + ").");
ERR_FAIL_COND_MSG((to_draw % dl->validation.pipeline_primitive_divisor) != 0,
"Vertex amount (" + itos(to_draw) + ") must be a multiple of the amount of vertices required by the render primitive (" + itos(dl->validation.pipeline_primitive_divisor) + ").");
#endif
driver->command_render_draw(dl->command_buffer, to_draw, p_instances, 0, 0);
}
}
void RenderingDevice::draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
Rect2i rect = p_rect;
rect.position += dl->viewport.position;
rect = dl->viewport.intersection(rect);
if (rect.get_area() == 0) {
return;
}
driver->command_render_set_scissor(dl->command_buffer, rect);
}
void RenderingDevice::draw_list_disable_scissor(DrawListID p_list) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
driver->command_render_set_scissor(dl->command_buffer, dl->viewport);
}
uint32_t RenderingDevice::draw_list_get_current_pass() {
return draw_list_current_subpass;
}
RenderingDevice::DrawListID RenderingDevice::draw_list_switch_to_next_pass() {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(draw_list == nullptr, INVALID_ID);
ERR_FAIL_COND_V(draw_list_current_subpass >= draw_list_subpass_count - 1, INVALID_FORMAT_ID);
draw_list_current_subpass++;
Rect2i viewport;
_draw_list_free(&viewport);
driver->command_next_render_subpass(frames[frame].draw_command_buffer, RDD::COMMAND_BUFFER_TYPE_PRIMARY);
_draw_list_allocate(viewport, 0, draw_list_current_subpass);
return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT;
}
Error RenderingDevice::draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(draw_list == nullptr, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(draw_list_current_subpass >= draw_list_subpass_count - 1, ERR_INVALID_PARAMETER);
draw_list_current_subpass++;
Rect2i viewport;
_draw_list_free(&viewport);
driver->command_next_render_subpass(frames[frame].draw_command_buffer, RDD::COMMAND_BUFFER_TYPE_PRIMARY);
_draw_list_allocate(viewport, p_splits, draw_list_current_subpass);
for (uint32_t i = 0; i < p_splits; i++) {
r_split_ids[i] = (int64_t(ID_TYPE_SPLIT_DRAW_LIST) << ID_BASE_SHIFT) + i;
}
return OK;
}
Error RenderingDevice::_draw_list_allocate(const Rect2i &p_viewport, uint32_t p_splits, uint32_t p_subpass) {
// Lock while draw_list is active.
_THREAD_SAFE_LOCK_
if (p_splits == 0) {
draw_list = memnew(DrawList);
draw_list->command_buffer = frames[frame].draw_command_buffer;
draw_list->viewport = p_viewport;
draw_list_count = 0;
draw_list_split = false;
} else {
if (p_splits > (uint32_t)split_draw_list_allocators.size()) {
uint32_t from = split_draw_list_allocators.size();
split_draw_list_allocators.resize(p_splits);
for (uint32_t i = from; i < p_splits; i++) {
RDD::CommandPoolID cmd_pool = driver->command_pool_create(RDD::COMMAND_BUFFER_TYPE_SECONDARY);
ERR_FAIL_COND_V(!cmd_pool, ERR_CANT_CREATE);
split_draw_list_allocators.write[i].command_pool = cmd_pool;
for (int j = 0; j < frame_count; j++) {
RDD::CommandBufferID cmd_buffer = driver->command_buffer_create(RDD::COMMAND_BUFFER_TYPE_SECONDARY, cmd_pool);
ERR_FAIL_COND_V(!cmd_buffer, ERR_CANT_CREATE);
split_draw_list_allocators.write[i].command_buffers.push_back(cmd_buffer);
}
}
}
draw_list = memnew_arr(DrawList, p_splits);
draw_list_count = p_splits;
draw_list_split = true;
for (uint32_t i = 0; i < p_splits; i++) {
// Take a command buffer and initialize it.
RDD::CommandBufferID cmd_buffer = split_draw_list_allocators[i].command_buffers[frame];
bool ok = driver->command_buffer_begin_secondary(cmd_buffer, draw_list_render_pass, p_subpass, draw_list_vkframebuffer);
if (!ok) {
memdelete_arr(draw_list);
draw_list = nullptr;
ERR_FAIL_V(ERR_CANT_CREATE);
}
draw_list[i].command_buffer = cmd_buffer;
draw_list[i].viewport = p_viewport;
}
}
return OK;
}
void RenderingDevice::_draw_list_free(Rect2i *r_last_viewport) {
if (draw_list_split) {
// Send all command buffers.
RDD::CommandBufferID *command_buffers = (RDD::CommandBufferID *)alloca(sizeof(RDD::CommandBufferID) * draw_list_count);
for (uint32_t i = 0; i < draw_list_count; i++) {
driver->command_buffer_end(draw_list[i].command_buffer);
command_buffers[i] = draw_list[i].command_buffer;
if (r_last_viewport) {
if (i == 0 || draw_list[i].viewport_set) {
*r_last_viewport = draw_list[i].viewport;
}
}
}
driver->command_buffer_execute_secondary(frames[frame].draw_command_buffer, VectorView(command_buffers, draw_list_count));
memdelete_arr(draw_list);
draw_list = nullptr;
} else {
if (r_last_viewport) {
*r_last_viewport = draw_list->viewport;
}
// Just end the list.
memdelete(draw_list);
draw_list = nullptr;
}
// Draw_list is no longer active.
_THREAD_SAFE_UNLOCK_
}
void RenderingDevice::draw_list_end(BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_MSG(!draw_list, "Immediate draw list is already inactive.");
_draw_list_free();
driver->command_end_render_pass(frames[frame].draw_command_buffer);
for (int i = 0; i < draw_list_bound_textures.size(); i++) {
Texture *texture = texture_owner.get_or_null(draw_list_bound_textures[i]);
ERR_CONTINUE(!texture); // Wtf.
if (draw_list_unbind_color_textures && (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
texture->bound = false;
}
if (draw_list_unbind_depth_textures && (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
texture->bound = false;
}
}
draw_list_bound_textures.clear();
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
BitField<RDD::PipelineStageBits> dst_stages;
BitField<RDD::BarrierAccessBits> dst_access;
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT).set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT); // RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT
dst_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_INDEX_READ_BIT).set_flag(RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT); // RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT); // RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT
dst_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT); // RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT
}
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_TRANSFER_READ_BIT);
}
if (dst_stages.is_empty()) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
}
RDD::TextureBarrier *texture_barriers = nullptr;
uint32_t texture_barrier_count = draw_list_storage_textures.size();
if (texture_barrier_count) {
texture_barriers = (RDD::TextureBarrier *)alloca(sizeof(RDD::TextureBarrier) * draw_list_storage_textures.size());
}
BitField<RDD::PipelineStageBits> src_stage(RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |
RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT);
BitField<RDD::BarrierAccessBits> src_access(
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT);
if (texture_barrier_count) {
src_stage.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT).set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
src_access.set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
for (uint32_t i = 0; i < texture_barrier_count; i++) {
Texture *texture = texture_owner.get_or_null(draw_list_storage_textures[i]);
RDD::TextureBarrier &tb = texture_barriers[i];
tb.texture = texture->driver_id;
tb.src_access = src_access;
tb.dst_access = dst_access;
tb.prev_layout = texture->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tb.subresources.aspect = texture->read_aspect_flags;
tb.subresources.base_mipmap = texture->base_mipmap;
tb.subresources.mipmap_count = texture->mipmaps;
tb.subresources.base_layer = texture->base_layer;
tb.subresources.layer_count = texture->layers;
texture->layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
// To ensure proper synchronization, we must make sure rendering is done before:
// * Some buffer is copied.
// * Another render pass happens (since we may be done).
RDD::MemoryBarrier mb;
mb.src_access = src_access;
mb.dst_access = dst_access;
if (texture_barrier_count > 0 || p_post_barrier != BARRIER_MASK_NO_BARRIER) {
driver->command_pipeline_barrier(frames[frame].draw_command_buffer, src_stage, dst_stages, mb, {}, VectorView(texture_barriers, texture_barrier_count));
}
}
draw_list_storage_textures.clear();
#ifdef FORCE_FULL_BARRIER
_full_barrier(true);
#endif
}
/***********************/
/**** COMPUTE LISTS ****/
/***********************/
RenderingDevice::ComputeListID RenderingDevice::compute_list_begin(bool p_allow_draw_overlap) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(!p_allow_draw_overlap && draw_list != nullptr, INVALID_ID, "Only one draw list can be active at the same time.");
ERR_FAIL_COND_V_MSG(compute_list != nullptr, INVALID_ID, "Only one draw/compute list can be active at the same time.");
// Lock while compute_list is active.
_THREAD_SAFE_LOCK_
compute_list = memnew(ComputeList);
compute_list->command_buffer = frames[frame].draw_command_buffer;
compute_list->state.allow_draw_overlap = p_allow_draw_overlap;
return ID_TYPE_COMPUTE_LIST;
}
void RenderingDevice::compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline) {
// Must be called within a compute list, the class mutex is locked during that time
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
const ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_compute_pipeline);
ERR_FAIL_NULL(pipeline);
if (p_compute_pipeline == cl->state.pipeline) {
return; // Redundant state, return.
}
cl->state.pipeline = p_compute_pipeline;
driver->command_bind_compute_pipeline(cl->command_buffer, pipeline->driver_id);
if (cl->state.pipeline_shader != pipeline->shader) {
// Shader changed, so descriptor sets may become incompatible.
uint32_t pcount = pipeline->set_formats.size(); // Formats count in this pipeline.
cl->state.set_count = MAX(cl->state.set_count, pcount);
const uint32_t *pformats = pipeline->set_formats.ptr(); // Pipeline set formats.
uint32_t first_invalid_set = UINT32_MAX; // All valid by default.
switch (driver->api_trait_get(RDD::API_TRAIT_SHADER_CHANGE_INVALIDATION)) {
case RDD::SHADER_CHANGE_INVALIDATION_ALL_BOUND_UNIFORM_SETS: {
first_invalid_set = 0;
} break;
case RDD::SHADER_CHANGE_INVALIDATION_INCOMPATIBLE_SETS_PLUS_CASCADE: {
for (uint32_t i = 0; i < pcount; i++) {
if (cl->state.sets[i].pipeline_expected_format != pformats[i]) {
first_invalid_set = i;
break;
}
}
} break;
case RDD::SHADER_CHANGE_INVALIDATION_ALL_OR_NONE_ACCORDING_TO_LAYOUT_HASH: {
if (cl->state.pipeline_shader_layout_hash != pipeline->shader_layout_hash) {
first_invalid_set = 0;
}
} break;
}
for (uint32_t i = 0; i < pcount; i++) {
cl->state.sets[i].bound = cl->state.sets[i].bound && i < first_invalid_set;
cl->state.sets[i].pipeline_expected_format = pformats[i];
}
for (uint32_t i = pcount; i < cl->state.set_count; i++) {
// Unbind the ones above (not used) if exist.
cl->state.sets[i].bound = false;
}
cl->state.set_count = pcount; // Update set count.
if (pipeline->push_constant_size) {
#ifdef DEBUG_ENABLED
cl->validation.pipeline_push_constant_supplied = false;
#endif
}
cl->state.pipeline_shader = pipeline->shader;
cl->state.pipeline_shader_driver_id = pipeline->shader_driver_id;
cl->state.pipeline_shader_layout_hash = pipeline->shader_layout_hash;
cl->state.local_group_size[0] = pipeline->local_group_size[0];
cl->state.local_group_size[1] = pipeline->local_group_size[1];
cl->state.local_group_size[2] = pipeline->local_group_size[2];
}
#ifdef DEBUG_ENABLED
// Update compute pass pipeline info.
cl->validation.pipeline_active = true;
cl->validation.pipeline_push_constant_size = pipeline->push_constant_size;
#endif
}
void RenderingDevice::compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index) {
// Must be called within a compute list, the class mutex is locked during that time
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_index >= driver->limit_get(LIMIT_MAX_BOUND_UNIFORM_SETS) || p_index >= MAX_UNIFORM_SETS,
"Attempting to bind a descriptor set (" + itos(p_index) + ") greater than what the hardware supports (" + itos(driver->limit_get(LIMIT_MAX_BOUND_UNIFORM_SETS)) + ").");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified.");
#endif
UniformSet *uniform_set = uniform_set_owner.get_or_null(p_uniform_set);
ERR_FAIL_NULL(uniform_set);
if (p_index > cl->state.set_count) {
cl->state.set_count = p_index;
}
cl->state.sets[p_index].uniform_set_driver_id = uniform_set->driver_id; // Update set pointer.
cl->state.sets[p_index].bound = false; // Needs rebind.
cl->state.sets[p_index].uniform_set_format = uniform_set->format;
cl->state.sets[p_index].uniform_set = p_uniform_set;
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
uint32_t textures_to_sampled_count = uniform_set->mutable_sampled_textures.size();
uint32_t textures_to_storage_count = uniform_set->mutable_storage_textures.size();
Texture **textures_to_sampled = uniform_set->mutable_sampled_textures.ptrw();
RDD::TextureBarrier *texture_barriers = nullptr;
if (textures_to_sampled_count + textures_to_storage_count) {
texture_barriers = (RDD::TextureBarrier *)alloca(sizeof(RDD::TextureBarrier) * (textures_to_sampled_count + textures_to_storage_count));
}
uint32_t texture_barrier_count = 0;
BitField<RDD::PipelineStageBits> src_stages;
for (uint32_t i = 0; i < textures_to_sampled_count; i++) {
if (textures_to_sampled[i]->layout != RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
src_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
RDD::TextureBarrier &tb = texture_barriers[texture_barrier_count++];
tb.texture = textures_to_sampled[i]->driver_id;
tb.src_access = (RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
tb.dst_access = (RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
tb.prev_layout = textures_to_sampled[i]->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tb.subresources.aspect = textures_to_sampled[i]->read_aspect_flags;
tb.subresources.base_mipmap = textures_to_sampled[i]->base_mipmap;
tb.subresources.mipmap_count = textures_to_sampled[i]->mipmaps;
tb.subresources.base_layer = textures_to_sampled[i]->base_layer;
tb.subresources.layer_count = textures_to_sampled[i]->layers;
textures_to_sampled[i]->layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
cl->state.textures_to_sampled_layout.erase(textures_to_sampled[i]);
}
if (textures_to_sampled[i]->used_in_frame != frames_drawn) {
textures_to_sampled[i]->used_in_frame = frames_drawn;
textures_to_sampled[i]->used_in_transfer = false;
textures_to_sampled[i]->used_in_raster = false;
}
textures_to_sampled[i]->used_in_compute = true;
}
Texture **textures_to_storage = uniform_set->mutable_storage_textures.ptrw();
for (uint32_t i = 0; i < textures_to_storage_count; i++) {
if (textures_to_storage[i]->layout != RDD::TEXTURE_LAYOUT_GENERAL) {
BitField<RDD::BarrierAccessBits> src_access;
if (textures_to_storage[i]->used_in_frame == frames_drawn) {
if (textures_to_storage[i]->used_in_compute) {
src_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
src_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (textures_to_storage[i]->used_in_raster) {
src_stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT).set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT);
src_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (textures_to_storage[i]->used_in_transfer) {
src_stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
src_access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_TRANSFER_READ_BIT);
}
textures_to_storage[i]->used_in_compute = false;
textures_to_storage[i]->used_in_raster = false;
textures_to_storage[i]->used_in_transfer = false;
} else {
src_access.clear();
textures_to_storage[i]->used_in_compute = false;
textures_to_storage[i]->used_in_raster = false;
textures_to_storage[i]->used_in_transfer = false;
textures_to_storage[i]->used_in_frame = frames_drawn;
}
RDD::TextureBarrier &tb = texture_barriers[texture_barrier_count++];
tb.texture = textures_to_storage[i]->driver_id;
tb.src_access = src_access;
tb.dst_access = (RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
tb.prev_layout = textures_to_storage[i]->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_GENERAL;
tb.subresources.aspect = textures_to_storage[i]->read_aspect_flags;
tb.subresources.base_mipmap = textures_to_storage[i]->base_mipmap;
tb.subresources.mipmap_count = textures_to_storage[i]->mipmaps;
tb.subresources.base_layer = textures_to_storage[i]->base_layer;
tb.subresources.layer_count = textures_to_storage[i]->layers;
textures_to_storage[i]->layout = RDD::TEXTURE_LAYOUT_GENERAL;
cl->state.textures_to_sampled_layout.insert(textures_to_storage[i]); // Needs to go back to sampled layout afterwards.
}
}
if (texture_barrier_count) {
if (src_stages.is_empty()) {
src_stages.set_flag(RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT);
}
driver->command_pipeline_barrier(cl->command_buffer, src_stages, RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, {}, {}, VectorView(texture_barriers, texture_barrier_count));
}
}
#if 0
{ // Validate that textures bound are not attached as framebuffer bindings.
uint32_t attachable_count = uniform_set->attachable_textures.size();
const RID *attachable_ptr = uniform_set->attachable_textures.ptr();
uint32_t bound_count = draw_list_bound_textures.size();
const RID *bound_ptr = draw_list_bound_textures.ptr();
for (uint32_t i = 0; i < attachable_count; i++) {
for (uint32_t j = 0; j < bound_count; j++) {
ERR_FAIL_COND_MSG(attachable_ptr[i] == bound_ptr[j],
"Attempted to use the same texture in framebuffer attachment and a uniform set, this is not allowed.");
}
}
}
#endif
}
void RenderingDevice::compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size) {
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_data_size != cl->validation.pipeline_push_constant_size,
"This compute pipeline requires (" + itos(cl->validation.pipeline_push_constant_size) + ") bytes of push constant data, supplied: (" + itos(p_data_size) + ")");
#endif
driver->command_bind_push_constants(cl->command_buffer, cl->state.pipeline_shader_driver_id, 0, VectorView((const uint32_t *)p_data, p_data_size / sizeof(uint32_t)));
#ifdef DEBUG_ENABLED
cl->validation.pipeline_push_constant_supplied = true;
#endif
}
void RenderingDevice::compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) {
// Must be called within a compute list, the class mutex is locked during that time
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_x_groups == 0, "Dispatch amount of X compute groups (" + itos(p_x_groups) + ") is zero.");
ERR_FAIL_COND_MSG(p_z_groups == 0, "Dispatch amount of Z compute groups (" + itos(p_z_groups) + ") is zero.");
ERR_FAIL_COND_MSG(p_y_groups == 0, "Dispatch amount of Y compute groups (" + itos(p_y_groups) + ") is zero.");
ERR_FAIL_COND_MSG(p_x_groups > driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X),
"Dispatch amount of X compute groups (" + itos(p_x_groups) + ") is larger than device limit (" + itos(driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X)) + ")");
ERR_FAIL_COND_MSG(p_y_groups > driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y),
"Dispatch amount of Y compute groups (" + itos(p_y_groups) + ") is larger than device limit (" + itos(driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y)) + ")");
ERR_FAIL_COND_MSG(p_z_groups > driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z),
"Dispatch amount of Z compute groups (" + itos(p_z_groups) + ") is larger than device limit (" + itos(driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z)) + ")");
ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw.");
if (cl->validation.pipeline_push_constant_size > 0) {
// Using push constants, check that they were supplied.
ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied,
"The shader in this pipeline requires a push constant to be set before drawing, but it's not present.");
}
#endif
// Bind descriptor sets.
for (uint32_t i = 0; i < cl->state.set_count; i++) {
if (cl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
#ifdef DEBUG_ENABLED
if (cl->state.sets[i].pipeline_expected_format != cl->state.sets[i].uniform_set_format) {
if (cl->state.sets[i].uniform_set_format == 0) {
ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline");
} else if (uniform_set_owner.owns(cl->state.sets[i].uniform_set)) {
UniformSet *us = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set);
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader));
} else {
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader));
}
}
#endif
driver->command_uniform_set_prepare_for_use(cl->command_buffer, cl->state.sets[i].uniform_set_driver_id, cl->state.pipeline_shader_driver_id, i);
}
for (uint32_t i = 0; i < cl->state.set_count; i++) {
if (cl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
if (!cl->state.sets[i].bound) {
driver->command_bind_compute_uniform_set(cl->command_buffer, cl->state.sets[i].uniform_set_driver_id, cl->state.pipeline_shader_driver_id, i);
cl->state.sets[i].bound = true;
}
}
driver->command_compute_dispatch(cl->command_buffer, p_x_groups, p_y_groups, p_z_groups);
}
void RenderingDevice::compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads) {
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_x_threads == 0, "Dispatch amount of X compute threads (" + itos(p_x_threads) + ") is zero.");
ERR_FAIL_COND_MSG(p_y_threads == 0, "Dispatch amount of Y compute threads (" + itos(p_y_threads) + ") is zero.");
ERR_FAIL_COND_MSG(p_z_threads == 0, "Dispatch amount of Z compute threads (" + itos(p_z_threads) + ") is zero.");
#endif
ComputeList *cl = compute_list;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw.");
if (cl->validation.pipeline_push_constant_size > 0) {
// Using push constants, check that they were supplied.
ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied,
"The shader in this pipeline requires a push constant to be set before drawing, but it's not present.");
}
#endif
compute_list_dispatch(p_list, Math::division_round_up(p_x_threads, cl->state.local_group_size[0]), Math::division_round_up(p_y_threads, cl->state.local_group_size[1]), Math::division_round_up(p_z_threads, cl->state.local_group_size[2]));
}
void RenderingDevice::compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset) {
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
Buffer *buffer = storage_buffer_owner.get_or_null(p_buffer);
ERR_FAIL_COND(!buffer);
ERR_FAIL_COND_MSG(!buffer->usage.has_flag(RDD::BUFFER_USAGE_INDIRECT_BIT), "Buffer provided was not created to do indirect dispatch.");
ERR_FAIL_COND_MSG(p_offset + 12 > buffer->size, "Offset provided (+12) is past the end of buffer.");
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw.");
if (cl->validation.pipeline_push_constant_size > 0) {
// Using push constants, check that they were supplied.
ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied,
"The shader in this pipeline requires a push constant to be set before drawing, but it's not present.");
}
#endif
// Bind descriptor sets.
for (uint32_t i = 0; i < cl->state.set_count; i++) {
if (cl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
#ifdef DEBUG_ENABLED
if (cl->state.sets[i].pipeline_expected_format != cl->state.sets[i].uniform_set_format) {
if (cl->state.sets[i].uniform_set_format == 0) {
ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline");
} else if (uniform_set_owner.owns(cl->state.sets[i].uniform_set)) {
UniformSet *us = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set);
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader));
} else {
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader));
}
}
#endif
driver->command_uniform_set_prepare_for_use(cl->command_buffer, cl->state.sets[i].uniform_set_driver_id, cl->state.pipeline_shader_driver_id, i);
}
for (uint32_t i = 0; i < cl->state.set_count; i++) {
if (cl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
if (!cl->state.sets[i].bound) {
driver->command_bind_compute_uniform_set(cl->command_buffer, cl->state.sets[i].uniform_set_driver_id, cl->state.pipeline_shader_driver_id, i);
cl->state.sets[i].bound = true;
}
}
driver->command_compute_dispatch_indirect(cl->command_buffer, buffer->driver_id, p_offset);
}
void RenderingDevice::compute_list_add_barrier(ComputeListID p_list) {
// Must be called within a compute list, the class mutex is locked during that time
BitField<RDD::PipelineStageBits> stages(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
BitField<RDD::BarrierAccessBits> access(RDD::BARRIER_ACCESS_SHADER_READ_BIT);
_compute_list_add_barrier(BARRIER_MASK_COMPUTE, stages, access);
}
void RenderingDevice::_compute_list_add_barrier(BitField<BarrierMask> p_post_barrier, BitField<RDD::PipelineStageBits> p_stages, BitField<RDD::BarrierAccessBits> p_access) {
ERR_FAIL_NULL(compute_list);
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::TextureBarrier *texture_barriers = nullptr;
uint32_t texture_barrier_count = compute_list->state.textures_to_sampled_layout.size();
if (texture_barrier_count) {
texture_barriers = (RDD::TextureBarrier *)alloca(sizeof(RDD::TextureBarrier) * texture_barrier_count);
}
texture_barrier_count = 0; // We'll count how many we end up issuing.
for (Texture *E : compute_list->state.textures_to_sampled_layout) {
if (E->layout != RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
RDD::TextureBarrier &tb = texture_barriers[texture_barrier_count++];
tb.texture = E->driver_id;
tb.src_access = RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT;
tb.dst_access = p_access;
tb.prev_layout = E->layout;
tb.next_layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tb.subresources.aspect = E->read_aspect_flags;
tb.subresources.base_mipmap = E->base_mipmap;
tb.subresources.mipmap_count = E->mipmaps;
tb.subresources.base_layer = E->base_layer;
tb.subresources.layer_count = E->layers;
E->layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
if (E->used_in_frame != frames_drawn) {
E->used_in_transfer = false;
E->used_in_raster = false;
E->used_in_compute = false;
E->used_in_frame = frames_drawn;
}
}
if (p_stages) {
RDD::MemoryBarrier mb;
mb.src_access = RDD::BARRIER_ACCESS_SHADER_WRITE_BIT;
mb.dst_access = p_access;
driver->command_pipeline_barrier(compute_list->command_buffer, RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, p_stages, mb, {}, VectorView(texture_barriers, texture_barrier_count));
} else if (texture_barrier_count) {
driver->command_pipeline_barrier(compute_list->command_buffer, RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, {}, {}, VectorView(texture_barriers, texture_barrier_count));
}
}
#ifdef FORCE_FULL_BARRIER
_full_barrier(true);
#endif
}
void RenderingDevice::compute_list_end(BitField<BarrierMask> p_post_barrier) {
ERR_FAIL_NULL(compute_list);
BitField<RDD::PipelineStageBits> stages;
BitField<RDD::BarrierAccessBits> access;
if (p_post_barrier.has_flag(BARRIER_MASK_COMPUTE)) {
stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_VERTEX)) {
stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT).set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT).set_flag(RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_INDEX_READ_BIT).set_flag(RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT).set_flag(RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_FRAGMENT)) {
stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT).set_flag(RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT);
access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT);
}
if (p_post_barrier.has_flag(BARRIER_MASK_TRANSFER)) {
stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_TRANSFER_READ_BIT);
}
_compute_list_add_barrier(p_post_barrier, stages, access);
memdelete(compute_list);
compute_list = nullptr;
// Compute_list is no longer active.
_THREAD_SAFE_UNLOCK_
}
void RenderingDevice::barrier(BitField<BarrierMask> p_from, BitField<BarrierMask> p_to) {
if (!driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
return;
}
BitField<RDD::PipelineStageBits> src_stages;
BitField<RDD::BarrierAccessBits> src_access;
if (p_from == 0) {
src_stages.set_flag(RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT);
} else {
if (p_from.has_flag(BARRIER_MASK_COMPUTE)) {
src_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
src_access.set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_from.has_flag(BARRIER_MASK_FRAGMENT)) {
src_stages.set_flag(RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT).set_flag(RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT).set_flag(RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT);
src_access.set_flag(RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT);
}
if (p_from.has_flag(BARRIER_MASK_TRANSFER)) {
src_stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
src_access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT);
}
}
BitField<RDD::PipelineStageBits> dst_stages;
BitField<RDD::BarrierAccessBits> dst_access;
if (p_to == 0) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
} else {
if (p_to.has_flag(BARRIER_MASK_COMPUTE)) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
}
if (p_to.has_flag(BARRIER_MASK_VERTEX)) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT).set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT).set_flag(RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_INDEX_READ_BIT).set_flag(RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT).set_flag(RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT);
}
if (p_to.has_flag(BARRIER_MASK_FRAGMENT)) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT).set_flag(RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_SHADER_READ_BIT).set_flag(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT);
}
if (p_to.has_flag(BARRIER_MASK_TRANSFER)) {
dst_stages.set_flag(RDD::PIPELINE_STAGE_TRANSFER_BIT);
dst_access.set_flag(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT).set_flag(RDD::BARRIER_ACCESS_TRANSFER_READ_BIT);
}
}
RDD::MemoryBarrier mb;
mb.src_access = src_access;
mb.dst_access = dst_access;
driver->command_pipeline_barrier(frames[frame].draw_command_buffer, src_stages, dst_stages, mb, {}, {});
}
void RenderingDevice::full_barrier() {
#ifndef DEBUG_ENABLED
ERR_PRINT("Full barrier is debug-only, should not be used in production");
#endif
_full_barrier(true);
}
/**************************/
/**** FRAME MANAGEMENT ****/
/**************************/
void RenderingDevice::free(RID p_id) {
_THREAD_SAFE_METHOD_
_free_dependencies(p_id); // Recursively erase dependencies first, to avoid potential API problems.
_free_internal(p_id);
}
void RenderingDevice::_free_internal(RID p_id) {
#ifdef DEV_ENABLED
String resource_name;
if (resource_names.has(p_id)) {
resource_name = resource_names[p_id];
resource_names.erase(p_id);
}
#endif
// Push everything so it's disposed of next time this frame index is processed (means, it's safe to do it).
if (texture_owner.owns(p_id)) {
Texture *texture = texture_owner.get_or_null(p_id);
frames[frame].textures_to_dispose_of.push_back(*texture);
texture_owner.free(p_id);
} else if (framebuffer_owner.owns(p_id)) {
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_id);
frames[frame].framebuffers_to_dispose_of.push_back(*framebuffer);
if (framebuffer->invalidated_callback != nullptr) {
framebuffer->invalidated_callback(framebuffer->invalidated_callback_userdata);
}
framebuffer_owner.free(p_id);
} else if (sampler_owner.owns(p_id)) {
RDD::SamplerID sampler_driver_id = *sampler_owner.get_or_null(p_id);
frames[frame].samplers_to_dispose_of.push_back(sampler_driver_id);
sampler_owner.free(p_id);
} else if (vertex_buffer_owner.owns(p_id)) {
Buffer *vertex_buffer = vertex_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*vertex_buffer);
vertex_buffer_owner.free(p_id);
} else if (vertex_array_owner.owns(p_id)) {
vertex_array_owner.free(p_id);
} else if (index_buffer_owner.owns(p_id)) {
IndexBuffer *index_buffer = index_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*index_buffer);
index_buffer_owner.free(p_id);
} else if (index_array_owner.owns(p_id)) {
index_array_owner.free(p_id);
} else if (shader_owner.owns(p_id)) {
Shader *shader = shader_owner.get_or_null(p_id);
if (shader->driver_id) { // Not placeholder?
frames[frame].shaders_to_dispose_of.push_back(*shader);
}
shader_owner.free(p_id);
} else if (uniform_buffer_owner.owns(p_id)) {
Buffer *uniform_buffer = uniform_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*uniform_buffer);
uniform_buffer_owner.free(p_id);
} else if (texture_buffer_owner.owns(p_id)) {
Buffer *texture_buffer = texture_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*texture_buffer);
texture_buffer_owner.free(p_id);
} else if (storage_buffer_owner.owns(p_id)) {
Buffer *storage_buffer = storage_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*storage_buffer);
storage_buffer_owner.free(p_id);
} else if (uniform_set_owner.owns(p_id)) {
UniformSet *uniform_set = uniform_set_owner.get_or_null(p_id);
frames[frame].uniform_sets_to_dispose_of.push_back(*uniform_set);
uniform_set_owner.free(p_id);
if (uniform_set->invalidated_callback != nullptr) {
uniform_set->invalidated_callback(uniform_set->invalidated_callback_userdata);
}
} else if (render_pipeline_owner.owns(p_id)) {
RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_id);
frames[frame].render_pipelines_to_dispose_of.push_back(*pipeline);
render_pipeline_owner.free(p_id);
} else if (compute_pipeline_owner.owns(p_id)) {
ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_id);
frames[frame].compute_pipelines_to_dispose_of.push_back(*pipeline);
compute_pipeline_owner.free(p_id);
} else {
#ifdef DEV_ENABLED
ERR_PRINT("Attempted to free invalid ID: " + itos(p_id.get_id()) + " " + resource_name);
#else
ERR_PRINT("Attempted to free invalid ID: " + itos(p_id.get_id()));
#endif
}
}
// The full list of resources that can be named is in the VkObjectType enum.
// We just expose the resources that are owned and can be accessed easily.
void RenderingDevice::set_resource_name(RID p_id, const String &p_name) {
if (texture_owner.owns(p_id)) {
Texture *texture = texture_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_TEXTURE, texture->driver_id, p_name);
} else if (framebuffer_owner.owns(p_id)) {
//Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_id);
// Not implemented for now as the relationship between Framebuffer and RenderPass is very complex.
} else if (sampler_owner.owns(p_id)) {
RDD::SamplerID sampler_driver_id = *sampler_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_SAMPLER, sampler_driver_id, p_name);
} else if (vertex_buffer_owner.owns(p_id)) {
Buffer *vertex_buffer = vertex_buffer_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, vertex_buffer->driver_id, p_name);
} else if (index_buffer_owner.owns(p_id)) {
IndexBuffer *index_buffer = index_buffer_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, index_buffer->driver_id, p_name);
} else if (shader_owner.owns(p_id)) {
Shader *shader = shader_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_SHADER, shader->driver_id, p_name);
} else if (uniform_buffer_owner.owns(p_id)) {
Buffer *uniform_buffer = uniform_buffer_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, uniform_buffer->driver_id, p_name);
} else if (texture_buffer_owner.owns(p_id)) {
Buffer *texture_buffer = texture_buffer_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, texture_buffer->driver_id, p_name);
} else if (storage_buffer_owner.owns(p_id)) {
Buffer *storage_buffer = storage_buffer_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, storage_buffer->driver_id, p_name);
} else if (uniform_set_owner.owns(p_id)) {
UniformSet *uniform_set = uniform_set_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_UNIFORM_SET, uniform_set->driver_id, p_name);
} else if (render_pipeline_owner.owns(p_id)) {
RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_PIPELINE, pipeline->driver_id, p_name);
} else if (compute_pipeline_owner.owns(p_id)) {
ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_id);
driver->set_object_name(RDD::OBJECT_TYPE_PIPELINE, pipeline->driver_id, p_name);
} else {
ERR_PRINT("Attempted to name invalid ID: " + itos(p_id.get_id()));
return;
}
#ifdef DEV_ENABLED
resource_names[p_id] = p_name;
#endif
}
void RenderingDevice::draw_command_begin_label(String p_label_name, const Color &p_color) {
_THREAD_SAFE_METHOD_
context->command_begin_label(frames[frame].draw_command_buffer, p_label_name, p_color);
}
void RenderingDevice::draw_command_insert_label(String p_label_name, const Color &p_color) {
_THREAD_SAFE_METHOD_
context->command_insert_label(frames[frame].draw_command_buffer, p_label_name, p_color);
}
void RenderingDevice::draw_command_end_label() {
_THREAD_SAFE_METHOD_
context->command_end_label(frames[frame].draw_command_buffer);
}
String RenderingDevice::get_device_vendor_name() const {
return context->get_device_vendor_name();
}
String RenderingDevice::get_device_name() const {
return context->get_device_name();
}
RenderingDevice::DeviceType RenderingDevice::get_device_type() const {
return context->get_device_type();
}
String RenderingDevice::get_device_api_version() const {
return context->get_device_api_version();
}
String RenderingDevice::get_device_pipeline_cache_uuid() const {
return context->get_device_pipeline_cache_uuid();
}
void RenderingDevice::_finalize_command_bufers() {
if (draw_list) {
ERR_PRINT("Found open draw list at the end of the frame, this should never happen (further drawing will likely not work).");
}
if (compute_list) {
ERR_PRINT("Found open compute list at the end of the frame, this should never happen (further compute will likely not work).");
}
{
driver->end_segment();
driver->command_buffer_end(frames[frame].setup_command_buffer);
driver->command_buffer_end(frames[frame].draw_command_buffer);
}
}
void RenderingDevice::_begin_frame() {
// Erase pending resources.
_free_pending_resources(frame);
// Create setup command buffer and set as the setup buffer.
{
bool ok = driver->command_buffer_begin(frames[frame].setup_command_buffer);
ERR_FAIL_COND(!ok);
ok = driver->command_buffer_begin(frames[frame].draw_command_buffer);
ERR_FAIL_COND(!ok);
if (local_device.is_null()) {
context->append_command_buffer(frames[frame].draw_command_buffer);
context->set_setup_buffer(frames[frame].setup_command_buffer); // Append now so it's added before everything else.
}
driver->begin_segment(frames[frame].draw_command_buffer, frame, frames_drawn);
}
// Advance current frame.
frames_drawn++;
// Advance staging buffer if used.
if (staging_buffer_used) {
staging_buffer_current = (staging_buffer_current + 1) % staging_buffer_blocks.size();
staging_buffer_used = false;
}
if (frames[frame].timestamp_count) {
driver->timestamp_query_pool_get_results(frames[frame].timestamp_pool, frames[frame].timestamp_count, frames[frame].timestamp_result_values.ptr());
driver->command_timestamp_query_pool_reset(frames[frame].setup_command_buffer, frames[frame].timestamp_pool, frames[frame].timestamp_count);
SWAP(frames[frame].timestamp_names, frames[frame].timestamp_result_names);
SWAP(frames[frame].timestamp_cpu_values, frames[frame].timestamp_cpu_result_values);
}
frames[frame].timestamp_result_count = frames[frame].timestamp_count;
frames[frame].timestamp_count = 0;
frames[frame].index = Engine::get_singleton()->get_frames_drawn();
}
void RenderingDevice::swap_buffers() {
ERR_FAIL_COND_MSG(local_device.is_valid(), "Local devices can't swap buffers.");
_THREAD_SAFE_METHOD_
context->postpare_buffers(frames[frame].draw_command_buffer);
_finalize_command_bufers();
screen_prepared = false;
// Swap buffers.
context->swap_buffers();
frame = (frame + 1) % frame_count;
_begin_frame();
}
void RenderingDevice::submit() {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_MSG(local_device.is_null(), "Only local devices can submit and sync.");
ERR_FAIL_COND_MSG(local_device_processing, "device already submitted, call sync to wait until done.");
_finalize_command_bufers();
RDD::CommandBufferID command_buffers[2] = { frames[frame].setup_command_buffer, frames[frame].draw_command_buffer };
context->local_device_push_command_buffers(local_device, command_buffers, 2);
local_device_processing = true;
}
void RenderingDevice::sync() {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_MSG(local_device.is_null(), "Only local devices can submit and sync.");
ERR_FAIL_COND_MSG(!local_device_processing, "sync can only be called after a submit");
context->local_device_sync(local_device);
_begin_frame();
local_device_processing = false;
}
void RenderingDevice::_free_pending_resources(int p_frame) {
// Free in dependency usage order, so nothing weird happens.
// Pipelines.
while (frames[p_frame].render_pipelines_to_dispose_of.front()) {
RenderPipeline *pipeline = &frames[p_frame].render_pipelines_to_dispose_of.front()->get();
driver->pipeline_free(pipeline->driver_id);
frames[p_frame].render_pipelines_to_dispose_of.pop_front();
}
while (frames[p_frame].compute_pipelines_to_dispose_of.front()) {
ComputePipeline *pipeline = &frames[p_frame].compute_pipelines_to_dispose_of.front()->get();
driver->pipeline_free(pipeline->driver_id);
frames[p_frame].compute_pipelines_to_dispose_of.pop_front();
}
// Uniform sets.
while (frames[p_frame].uniform_sets_to_dispose_of.front()) {
UniformSet *uniform_set = &frames[p_frame].uniform_sets_to_dispose_of.front()->get();
driver->uniform_set_free(uniform_set->driver_id);
frames[p_frame].uniform_sets_to_dispose_of.pop_front();
}
// Shaders.
while (frames[p_frame].shaders_to_dispose_of.front()) {
Shader *shader = &frames[p_frame].shaders_to_dispose_of.front()->get();
driver->shader_free(shader->driver_id);
frames[p_frame].shaders_to_dispose_of.pop_front();
}
// Samplers.
while (frames[p_frame].samplers_to_dispose_of.front()) {
RDD::SamplerID sampler = frames[p_frame].samplers_to_dispose_of.front()->get();
driver->sampler_free(sampler);
frames[p_frame].samplers_to_dispose_of.pop_front();
}
// Framebuffers.
while (frames[p_frame].framebuffers_to_dispose_of.front()) {
Framebuffer *framebuffer = &frames[p_frame].framebuffers_to_dispose_of.front()->get();
for (const KeyValue<Framebuffer::VersionKey, Framebuffer::Version> &E : framebuffer->framebuffers) {
// First framebuffer, then render pass because it depends on it.
driver->framebuffer_free(E.value.framebuffer);
driver->render_pass_free(E.value.render_pass);
}
frames[p_frame].framebuffers_to_dispose_of.pop_front();
}
// Textures.
while (frames[p_frame].textures_to_dispose_of.front()) {
Texture *texture = &frames[p_frame].textures_to_dispose_of.front()->get();
if (texture->bound) {
WARN_PRINT("Deleted a texture while it was bound.");
}
texture_memory -= driver->texture_get_allocation_size(texture->driver_id);
driver->texture_free(texture->driver_id);
frames[p_frame].textures_to_dispose_of.pop_front();
}
// Buffers.
while (frames[p_frame].buffers_to_dispose_of.front()) {
Buffer &buffer = frames[p_frame].buffers_to_dispose_of.front()->get();
driver->buffer_free(buffer.driver_id);
buffer_memory -= buffer.size;
frames[p_frame].buffers_to_dispose_of.pop_front();
}
}
void RenderingDevice::prepare_screen_for_drawing() {
_THREAD_SAFE_METHOD_
context->prepare_buffers(frames[frame].draw_command_buffer);
screen_prepared = true;
}
uint32_t RenderingDevice::get_frame_delay() const {
return frame_count;
}
uint64_t RenderingDevice::get_memory_usage(MemoryType p_type) const {
switch (p_type) {
case MEMORY_BUFFERS: {
return buffer_memory;
}
case MEMORY_TEXTURES: {
return texture_memory;
}
case MEMORY_TOTAL: {
return driver->get_total_memory_used();
}
default: {
DEV_ASSERT(false);
return 0;
}
}
}
void RenderingDevice::_flush(bool p_current_frame) {
if (local_device.is_valid() && !p_current_frame) {
return; // Flushing previous frames has no effect with local device.
}
// Not doing this crashes RADV (undefined behavior).
if (p_current_frame) {
driver->end_segment();
driver->command_buffer_end(frames[frame].setup_command_buffer);
driver->command_buffer_end(frames[frame].draw_command_buffer);
}
if (local_device.is_valid()) {
RDD::CommandBufferID command_buffers[2] = { frames[frame].setup_command_buffer, frames[frame].draw_command_buffer };
context->local_device_push_command_buffers(local_device, command_buffers, 2);
context->local_device_sync(local_device);
bool ok = driver->command_buffer_begin(frames[frame].setup_command_buffer);
ERR_FAIL_COND(!ok);
ok = driver->command_buffer_begin(frames[frame].draw_command_buffer);
ERR_FAIL_COND(!ok);
driver->begin_segment(frames[frame].draw_command_buffer, frame, frames_drawn);
} else {
context->flush(p_current_frame, p_current_frame);
// Re-create the setup command.
if (p_current_frame) {
bool ok = driver->command_buffer_begin(frames[frame].setup_command_buffer);
ERR_FAIL_COND(!ok);
context->set_setup_buffer(frames[frame].setup_command_buffer); // Append now so it's added before everything else.
ok = driver->command_buffer_begin(frames[frame].draw_command_buffer);
ERR_FAIL_COND(!ok);
context->append_command_buffer(frames[frame].draw_command_buffer);
driver->begin_segment(frames[frame].draw_command_buffer, frame, frames_drawn);
}
}
}
void RenderingDevice::initialize(ApiContextRD *p_context, bool p_local_device) {
context = p_context;
device_capabilities = p_context->get_device_capabilities();
if (p_local_device) {
frame_count = 1;
local_device = context->local_device_create();
} else {
frame_count = context->get_swapchain_image_count() + 1; // Always need one extra to ensure it's unused at any time, without having to use a fence for this.
}
driver = context->get_driver(local_device);
max_timestamp_query_elements = 256;
frames.resize(frame_count);
frame = 0;
// Create setup and frame buffers.
for (int i = 0; i < frame_count; i++) {
frames[i].index = 0;
// Create command pool, one per frame is recommended.
frames[i].command_pool = driver->command_pool_create(RDD::COMMAND_BUFFER_TYPE_PRIMARY);
ERR_FAIL_COND(!frames[i].command_pool);
// Create command buffers.
frames[i].setup_command_buffer = driver->command_buffer_create(RDD::COMMAND_BUFFER_TYPE_PRIMARY, frames[i].command_pool);
ERR_CONTINUE(!frames[i].setup_command_buffer);
frames[i].draw_command_buffer = driver->command_buffer_create(RDD::COMMAND_BUFFER_TYPE_PRIMARY, frames[i].command_pool);
ERR_CONTINUE(!frames[i].draw_command_buffer);
{
// Create query pool.
frames[i].timestamp_pool = driver->timestamp_query_pool_create(max_timestamp_query_elements);
frames[i].timestamp_names.resize(max_timestamp_query_elements);
frames[i].timestamp_cpu_values.resize(max_timestamp_query_elements);
frames[i].timestamp_count = 0;
frames[i].timestamp_result_names.resize(max_timestamp_query_elements);
frames[i].timestamp_cpu_result_values.resize(max_timestamp_query_elements);
frames[i].timestamp_result_values.resize(max_timestamp_query_elements);
frames[i].timestamp_result_count = 0;
}
}
{
// Begin the first command buffer for the first frame, so
// setting up things can be done in the meantime until swap_buffers(), which is called before advance.
bool ok = driver->command_buffer_begin(frames[0].setup_command_buffer);
ERR_FAIL_COND(!ok);
ok = driver->command_buffer_begin(frames[0].draw_command_buffer);
ERR_FAIL_COND(!ok);
if (local_device.is_null()) {
context->set_setup_buffer(frames[0].setup_command_buffer); // Append now so it's added before everything else.
context->append_command_buffer(frames[0].draw_command_buffer);
}
}
for (int i = 0; i < frame_count; i++) {
// Reset all queries in a query pool before doing any operations with them.
driver->command_timestamp_query_pool_reset(frames[0].setup_command_buffer, frames[i].timestamp_pool, max_timestamp_query_elements);
}
staging_buffer_block_size = GLOBAL_GET("rendering/rendering_device/staging_buffer/block_size_kb");
staging_buffer_block_size = MAX(4u, staging_buffer_block_size);
staging_buffer_block_size *= 1024; // Kb -> bytes.
staging_buffer_max_size = GLOBAL_GET("rendering/rendering_device/staging_buffer/max_size_mb");
staging_buffer_max_size = MAX(1u, staging_buffer_max_size);
staging_buffer_max_size *= 1024 * 1024;
if (staging_buffer_max_size < staging_buffer_block_size * 4) {
// Validate enough blocks.
staging_buffer_max_size = staging_buffer_block_size * 4;
}
texture_upload_region_size_px = GLOBAL_GET("rendering/rendering_device/staging_buffer/texture_upload_region_size_px");
texture_upload_region_size_px = nearest_power_of_2_templated(texture_upload_region_size_px);
frames_drawn = frame_count; // Start from frame count, so everything else is immediately old.
// Ensure current staging block is valid and at least one per frame exists.
staging_buffer_current = 0;
staging_buffer_used = false;
for (int i = 0; i < frame_count; i++) {
// Staging was never used, create a block.
Error err = _insert_staging_block();
ERR_CONTINUE(err != OK);
}
draw_list = nullptr;
draw_list_count = 0;
draw_list_split = false;
compute_list = nullptr;
pipelines_cache_file_path = "user://vulkan/pipelines";
pipelines_cache_file_path += "." + context->get_device_name().validate_filename().replace(" ", "_").to_lower();
if (Engine::get_singleton()->is_editor_hint()) {
pipelines_cache_file_path += ".editor";
}
pipelines_cache_file_path += ".cache";
Vector<uint8_t> cache_data = _load_pipeline_cache();
pipelines_cache_enabled = driver->pipeline_cache_create(cache_data);
if (pipelines_cache_enabled) {
pipelines_cache_size = driver->pipeline_cache_query_size();
print_verbose(vformat("Startup PSO cache (%.1f MiB)", pipelines_cache_size / (1024.0f * 1024.0f)));
}
}
Vector<uint8_t> RenderingDevice::_load_pipeline_cache() {
DirAccess::make_dir_recursive_absolute(pipelines_cache_file_path.get_base_dir());
if (FileAccess::exists(pipelines_cache_file_path)) {
Error file_error;
Vector<uint8_t> file_data = FileAccess::get_file_as_bytes(pipelines_cache_file_path, &file_error);
return file_data;
} else {
return Vector<uint8_t>();
}
}
void RenderingDevice::_update_pipeline_cache(bool p_closing) {
{
bool still_saving = pipelines_cache_save_task != WorkerThreadPool::INVALID_TASK_ID && !WorkerThreadPool::get_singleton()->is_task_completed(pipelines_cache_save_task);
if (still_saving) {
if (p_closing) {
WorkerThreadPool::get_singleton()->wait_for_task_completion(pipelines_cache_save_task);
pipelines_cache_save_task = WorkerThreadPool::INVALID_TASK_ID;
} else {
// We can't save until the currently running save is done. We'll retry next time; worst case, we'll save when exiting.
return;
}
}
}
{
size_t new_pipelines_cache_size = driver->pipeline_cache_query_size();
ERR_FAIL_COND(!new_pipelines_cache_size);
size_t difference = new_pipelines_cache_size - pipelines_cache_size;
bool must_save = false;
if (p_closing) {
must_save = difference > 0;
} else {
float save_interval = GLOBAL_GET("rendering/rendering_device/pipeline_cache/save_chunk_size_mb");
must_save = difference > 0 && difference / (1024.0f * 1024.0f) >= save_interval;
}
if (must_save) {
pipelines_cache_size = new_pipelines_cache_size;
} else {
return;
}
}
if (p_closing) {
_save_pipeline_cache(this);
} else {
pipelines_cache_save_task = WorkerThreadPool::get_singleton()->add_native_task(&_save_pipeline_cache, this, false, "PipelineCacheSave");
}
}
void RenderingDevice::_save_pipeline_cache(void *p_data) {
RenderingDevice *self = static_cast<RenderingDevice *>(p_data);
self->_thread_safe_.lock();
Vector<uint8_t> cache_blob = self->driver->pipeline_cache_serialize();
self->_thread_safe_.unlock();
if (cache_blob.size() == 0) {
return;
}
print_verbose(vformat("Updated PSO cache (%.1f MiB)", cache_blob.size() / (1024.0f * 1024.0f)));
Ref<FileAccess> f = FileAccess::open(self->pipelines_cache_file_path, FileAccess::WRITE, nullptr);
if (f.is_valid()) {
f->store_buffer(cache_blob);
}
}
template <class T>
void RenderingDevice::_free_rids(T &p_owner, const char *p_type) {
List<RID> owned;
p_owner.get_owned_list(&owned);
if (owned.size()) {
if (owned.size() == 1) {
WARN_PRINT(vformat("1 RID of type \"%s\" was leaked.", p_type));
} else {
WARN_PRINT(vformat("%d RIDs of type \"%s\" were leaked.", owned.size(), p_type));
}
for (const RID &E : owned) {
#ifdef DEV_ENABLED
if (resource_names.has(E)) {
print_line(String(" - ") + resource_names[E]);
}
#endif
free(E);
}
}
}
void RenderingDevice::capture_timestamp(const String &p_name) {
ERR_FAIL_COND_MSG(draw_list != nullptr, "Capturing timestamps during draw list creation is not allowed. Offending timestamp was: " + p_name);
ERR_FAIL_COND(frames[frame].timestamp_count >= max_timestamp_query_elements);
// This should be optional for profiling, else it will slow things down.
if (driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) {
RDD::MemoryBarrier mb;
mb.src_access = (RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT |
RDD::BARRIER_ACCESS_INDEX_READ_BIT |
RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
RDD::BARRIER_ACCESS_UNIFORM_READ_BIT |
RDD::BARRIER_ACCESS_INPUT_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_SHADER_READ_BIT |
RDD::BARRIER_ACCESS_SHADER_WRITE_BIT |
RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
RDD::BARRIER_ACCESS_TRANSFER_READ_BIT |
RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT |
RDD::BARRIER_ACCESS_HOST_READ_BIT |
RDD::BARRIER_ACCESS_HOST_WRITE_BIT);
mb.dst_access = (RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT |
RDD::BARRIER_ACCESS_INDEX_READ_BIT |
RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
RDD::BARRIER_ACCESS_UNIFORM_READ_BIT |
RDD::BARRIER_ACCESS_INPUT_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_SHADER_READ_BIT |
RDD::BARRIER_ACCESS_SHADER_WRITE_BIT |
RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
RDD::BARRIER_ACCESS_TRANSFER_READ_BIT |
RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT |
RDD::BARRIER_ACCESS_HOST_READ_BIT |
RDD::BARRIER_ACCESS_HOST_WRITE_BIT);
driver->command_pipeline_barrier(frames[frame].draw_command_buffer, RDD::PIPELINE_STAGE_ALL_COMMANDS_BIT, RDD::PIPELINE_STAGE_ALL_COMMANDS_BIT, mb, {}, {});
}
driver->command_timestamp_write(frames[frame].draw_command_buffer, frames[frame].timestamp_pool, frames[frame].timestamp_count);
frames[frame].timestamp_names[frames[frame].timestamp_count] = p_name;
frames[frame].timestamp_cpu_values[frames[frame].timestamp_count] = OS::get_singleton()->get_ticks_usec();
frames[frame].timestamp_count++;
}
uint64_t RenderingDevice::get_driver_resource(DriverResource p_resource, RID p_rid, uint64_t p_index) {
_THREAD_SAFE_METHOD_
uint64_t driver_id = 0;
switch (p_resource) {
case DRIVER_RESOURCE_LOGICAL_DEVICE:
case DRIVER_RESOURCE_PHYSICAL_DEVICE:
case DRIVER_RESOURCE_TOPMOST_OBJECT:
case DRIVER_RESOURCE_COMMAND_QUEUE:
case DRIVER_RESOURCE_QUEUE_FAMILY:
break;
case DRIVER_RESOURCE_TEXTURE:
case DRIVER_RESOURCE_TEXTURE_VIEW:
case DRIVER_RESOURCE_TEXTURE_DATA_FORMAT: {
Texture *tex = texture_owner.get_or_null(p_rid);
ERR_FAIL_NULL_V(tex, 0);
driver_id = tex->driver_id;
} break;
case DRIVER_RESOURCE_SAMPLER: {
RDD::SamplerID *sampler_driver_id = sampler_owner.get_or_null(p_rid);
ERR_FAIL_NULL_V(sampler_driver_id, 0);
driver_id = *sampler_driver_id;
} break;
case DRIVER_RESOURCE_UNIFORM_SET: {
UniformSet *uniform_set = uniform_set_owner.get_or_null(p_rid);
ERR_FAIL_NULL_V(uniform_set, 0);
driver_id = uniform_set->driver_id;
} break;
case DRIVER_RESOURCE_BUFFER: {
Buffer *buffer = nullptr;
if (vertex_buffer_owner.owns(p_rid)) {
buffer = vertex_buffer_owner.get_or_null(p_rid);
} else if (index_buffer_owner.owns(p_rid)) {
buffer = index_buffer_owner.get_or_null(p_rid);
} else if (uniform_buffer_owner.owns(p_rid)) {
buffer = uniform_buffer_owner.get_or_null(p_rid);
} else if (texture_buffer_owner.owns(p_rid)) {
buffer = texture_buffer_owner.get_or_null(p_rid);
} else if (storage_buffer_owner.owns(p_rid)) {
buffer = storage_buffer_owner.get_or_null(p_rid);
}
ERR_FAIL_NULL_V(buffer, 0);
driver_id = buffer->driver_id;
} break;
case DRIVER_RESOURCE_COMPUTE_PIPELINE: {
ComputePipeline *compute_pipeline = compute_pipeline_owner.get_or_null(p_rid);
ERR_FAIL_NULL_V(compute_pipeline, 0);
driver_id = compute_pipeline->driver_id;
} break;
case DRIVER_RESOURCE_RENDER_PIPELINE: {
RenderPipeline *render_pipeline = render_pipeline_owner.get_or_null(p_rid);
ERR_FAIL_NULL_V(render_pipeline, 0);
driver_id = render_pipeline->driver_id;
} break;
default: {
ERR_FAIL_V(0);
} break;
}
return driver->get_resource_native_handle(p_resource, driver_id);
}
uint32_t RenderingDevice::get_captured_timestamps_count() const {
return frames[frame].timestamp_result_count;
}
uint64_t RenderingDevice::get_captured_timestamps_frame() const {
return frames[frame].index;
}
uint64_t RenderingDevice::get_captured_timestamp_gpu_time(uint32_t p_index) const {
ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, 0);
return driver->timestamp_query_result_to_time(frames[frame].timestamp_result_values[p_index]);
}
uint64_t RenderingDevice::get_captured_timestamp_cpu_time(uint32_t p_index) const {
ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, 0);
return frames[frame].timestamp_cpu_result_values[p_index];
}
String RenderingDevice::get_captured_timestamp_name(uint32_t p_index) const {
ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, String());
return frames[frame].timestamp_result_names[p_index];
}
uint64_t RenderingDevice::limit_get(Limit p_limit) const {
return driver->limit_get(p_limit);
}
void RenderingDevice::finalize() {
// Free all resources.
_flush(false);
_free_rids(render_pipeline_owner, "Pipeline");
_free_rids(compute_pipeline_owner, "Compute");
_free_rids(uniform_set_owner, "UniformSet");
_free_rids(texture_buffer_owner, "TextureBuffer");
_free_rids(storage_buffer_owner, "StorageBuffer");
_free_rids(uniform_buffer_owner, "UniformBuffer");
_free_rids(shader_owner, "Shader");
_free_rids(index_array_owner, "IndexArray");
_free_rids(index_buffer_owner, "IndexBuffer");
_free_rids(vertex_array_owner, "VertexArray");
_free_rids(vertex_buffer_owner, "VertexBuffer");
_free_rids(framebuffer_owner, "Framebuffer");
_free_rids(sampler_owner, "Sampler");
{
// For textures it's a bit more difficult because they may be shared.
List<RID> owned;
texture_owner.get_owned_list(&owned);
if (owned.size()) {
if (owned.size() == 1) {
WARN_PRINT("1 RID of type \"Texture\" was leaked.");
} else {
WARN_PRINT(vformat("%d RIDs of type \"Texture\" were leaked.", owned.size()));
}
// Free shared first.
for (List<RID>::Element *E = owned.front(); E;) {
List<RID>::Element *N = E->next();
if (texture_is_shared(E->get())) {
#ifdef DEV_ENABLED
if (resource_names.has(E->get())) {
print_line(String(" - ") + resource_names[E->get()]);
}
#endif
free(E->get());
owned.erase(E);
}
E = N;
}
// Free non shared second, this will avoid an error trying to free unexisting textures due to dependencies.
for (const RID &E : owned) {
#ifdef DEV_ENABLED
if (resource_names.has(E)) {
print_line(String(" - ") + resource_names[E]);
}
#endif
free(E);
}
}
}
// Free everything pending.
for (uint32_t i = 0; i < frames.size(); i++) {
int f = (frame + i) % frames.size();
_free_pending_resources(f);
driver->command_pool_free(frames[i].command_pool);
driver->timestamp_query_pool_free(frames[i].timestamp_pool);
}
if (pipelines_cache_enabled) {
_update_pipeline_cache(true);
driver->pipeline_cache_free();
}
for (int i = 0; i < split_draw_list_allocators.size(); i++) {
driver->command_pool_free(split_draw_list_allocators[i].command_pool);
}
frames.clear();
for (int i = 0; i < staging_buffer_blocks.size(); i++) {
driver->buffer_free(staging_buffer_blocks[i].driver_id);
}
while (vertex_formats.size()) {
HashMap<VertexFormatID, VertexDescriptionCache>::Iterator temp = vertex_formats.begin();
driver->vertex_format_free(temp->value.driver_id);
vertex_formats.remove(temp);
}
for (KeyValue<FramebufferFormatID, FramebufferFormat> &E : framebuffer_formats) {
driver->render_pass_free(E.value.render_pass);
}
framebuffer_formats.clear();
// All these should be clear at this point.
ERR_FAIL_COND(dependency_map.size());
ERR_FAIL_COND(reverse_dependency_map.size());
}
RenderingDevice *RenderingDevice::create_local_device() {
RenderingDevice *rd = memnew(RenderingDevice);
rd->initialize(context, true);
return rd;
}
bool RenderingDevice::has_feature(const Features p_feature) const {
return driver->has_feature(p_feature);
}
void RenderingDevice::_bind_methods() {
ClassDB::bind_method(D_METHOD("texture_create", "format", "view", "data"), &RenderingDevice::_texture_create, DEFVAL(Array()));
ClassDB::bind_method(D_METHOD("texture_create_shared", "view", "with_texture"), &RenderingDevice::_texture_create_shared);
ClassDB::bind_method(D_METHOD("texture_create_shared_from_slice", "view", "with_texture", "layer", "mipmap", "mipmaps", "slice_type"), &RenderingDevice::_texture_create_shared_from_slice, DEFVAL(1), DEFVAL(TEXTURE_SLICE_2D));
ClassDB::bind_method(D_METHOD("texture_create_from_extension", "type", "format", "samples", "usage_flags", "image", "width", "height", "depth", "layers"), &RenderingDevice::texture_create_from_extension);
ClassDB::bind_method(D_METHOD("texture_update", "texture", "layer", "data", "post_barrier"), &RenderingDevice::texture_update, DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("texture_get_data", "texture", "layer"), &RenderingDevice::texture_get_data);
ClassDB::bind_method(D_METHOD("texture_is_format_supported_for_usage", "format", "usage_flags"), &RenderingDevice::texture_is_format_supported_for_usage);
ClassDB::bind_method(D_METHOD("texture_is_shared", "texture"), &RenderingDevice::texture_is_shared);
ClassDB::bind_method(D_METHOD("texture_is_valid", "texture"), &RenderingDevice::texture_is_valid);
ClassDB::bind_method(D_METHOD("texture_copy", "from_texture", "to_texture", "from_pos", "to_pos", "size", "src_mipmap", "dst_mipmap", "src_layer", "dst_layer", "post_barrier"), &RenderingDevice::texture_copy, DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("texture_clear", "texture", "color", "base_mipmap", "mipmap_count", "base_layer", "layer_count", "post_barrier"), &RenderingDevice::texture_clear, DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("texture_resolve_multisample", "from_texture", "to_texture", "post_barrier"), &RenderingDevice::texture_resolve_multisample, DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("texture_get_format", "texture"), &RenderingDevice::_texture_get_format);
#ifndef DISABLE_DEPRECATED
ClassDB::bind_method(D_METHOD("texture_get_native_handle", "texture"), &RenderingDevice::texture_get_native_handle);
#endif
ClassDB::bind_method(D_METHOD("framebuffer_format_create", "attachments", "view_count"), &RenderingDevice::_framebuffer_format_create, DEFVAL(1));
ClassDB::bind_method(D_METHOD("framebuffer_format_create_multipass", "attachments", "passes", "view_count"), &RenderingDevice::_framebuffer_format_create_multipass, DEFVAL(1));
ClassDB::bind_method(D_METHOD("framebuffer_format_create_empty", "samples"), &RenderingDevice::framebuffer_format_create_empty, DEFVAL(TEXTURE_SAMPLES_1));
ClassDB::bind_method(D_METHOD("framebuffer_format_get_texture_samples", "format", "render_pass"), &RenderingDevice::framebuffer_format_get_texture_samples, DEFVAL(0));
ClassDB::bind_method(D_METHOD("framebuffer_create", "textures", "validate_with_format", "view_count"), &RenderingDevice::_framebuffer_create, DEFVAL(INVALID_FORMAT_ID), DEFVAL(1));
ClassDB::bind_method(D_METHOD("framebuffer_create_multipass", "textures", "passes", "validate_with_format", "view_count"), &RenderingDevice::_framebuffer_create_multipass, DEFVAL(INVALID_FORMAT_ID), DEFVAL(1));
ClassDB::bind_method(D_METHOD("framebuffer_create_empty", "size", "samples", "validate_with_format"), &RenderingDevice::framebuffer_create_empty, DEFVAL(TEXTURE_SAMPLES_1), DEFVAL(INVALID_FORMAT_ID));
ClassDB::bind_method(D_METHOD("framebuffer_get_format", "framebuffer"), &RenderingDevice::framebuffer_get_format);
ClassDB::bind_method(D_METHOD("framebuffer_is_valid", "framebuffer"), &RenderingDevice::framebuffer_is_valid);
ClassDB::bind_method(D_METHOD("sampler_create", "state"), &RenderingDevice::_sampler_create);
ClassDB::bind_method(D_METHOD("sampler_is_format_supported_for_filter", "format", "sampler_filter"), &RenderingDevice::sampler_is_format_supported_for_filter);
ClassDB::bind_method(D_METHOD("vertex_buffer_create", "size_bytes", "data", "use_as_storage"), &RenderingDevice::vertex_buffer_create, DEFVAL(Vector<uint8_t>()), DEFVAL(false));
ClassDB::bind_method(D_METHOD("vertex_format_create", "vertex_descriptions"), &RenderingDevice::_vertex_format_create);
ClassDB::bind_method(D_METHOD("vertex_array_create", "vertex_count", "vertex_format", "src_buffers", "offsets"), &RenderingDevice::_vertex_array_create, DEFVAL(Vector<int64_t>()));
ClassDB::bind_method(D_METHOD("index_buffer_create", "size_indices", "format", "data", "use_restart_indices"), &RenderingDevice::index_buffer_create, DEFVAL(Vector<uint8_t>()), DEFVAL(false));
ClassDB::bind_method(D_METHOD("index_array_create", "index_buffer", "index_offset", "index_count"), &RenderingDevice::index_array_create);
ClassDB::bind_method(D_METHOD("shader_compile_spirv_from_source", "shader_source", "allow_cache"), &RenderingDevice::_shader_compile_spirv_from_source, DEFVAL(true));
ClassDB::bind_method(D_METHOD("shader_compile_binary_from_spirv", "spirv_data", "name"), &RenderingDevice::_shader_compile_binary_from_spirv, DEFVAL(""));
ClassDB::bind_method(D_METHOD("shader_create_from_spirv", "spirv_data", "name"), &RenderingDevice::_shader_create_from_spirv, DEFVAL(""));
ClassDB::bind_method(D_METHOD("shader_create_from_bytecode", "binary_data", "placeholder_rid"), &RenderingDevice::shader_create_from_bytecode, DEFVAL(RID()));
ClassDB::bind_method(D_METHOD("shader_create_placeholder"), &RenderingDevice::shader_create_placeholder);
ClassDB::bind_method(D_METHOD("shader_get_vertex_input_attribute_mask", "shader"), &RenderingDevice::shader_get_vertex_input_attribute_mask);
ClassDB::bind_method(D_METHOD("uniform_buffer_create", "size_bytes", "data"), &RenderingDevice::uniform_buffer_create, DEFVAL(Vector<uint8_t>()));
ClassDB::bind_method(D_METHOD("storage_buffer_create", "size_bytes", "data", "usage"), &RenderingDevice::storage_buffer_create, DEFVAL(Vector<uint8_t>()), DEFVAL(0));
ClassDB::bind_method(D_METHOD("texture_buffer_create", "size_bytes", "format", "data"), &RenderingDevice::texture_buffer_create, DEFVAL(Vector<uint8_t>()));
ClassDB::bind_method(D_METHOD("uniform_set_create", "uniforms", "shader", "shader_set"), &RenderingDevice::_uniform_set_create);
ClassDB::bind_method(D_METHOD("uniform_set_is_valid", "uniform_set"), &RenderingDevice::uniform_set_is_valid);
ClassDB::bind_method(D_METHOD("buffer_update", "buffer", "offset", "size_bytes", "data", "post_barrier"), &RenderingDevice::_buffer_update_bind, DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("buffer_clear", "buffer", "offset", "size_bytes", "post_barrier"), &RenderingDevice::buffer_clear, DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("buffer_get_data", "buffer", "offset_bytes", "size_bytes"), &RenderingDevice::buffer_get_data, DEFVAL(0), DEFVAL(0));
ClassDB::bind_method(D_METHOD("render_pipeline_create", "shader", "framebuffer_format", "vertex_format", "primitive", "rasterization_state", "multisample_state", "stencil_state", "color_blend_state", "dynamic_state_flags", "for_render_pass", "specialization_constants"), &RenderingDevice::_render_pipeline_create, DEFVAL(0), DEFVAL(0), DEFVAL(TypedArray<RDPipelineSpecializationConstant>()));
ClassDB::bind_method(D_METHOD("render_pipeline_is_valid", "render_pipeline"), &RenderingDevice::render_pipeline_is_valid);
ClassDB::bind_method(D_METHOD("compute_pipeline_create", "shader", "specialization_constants"), &RenderingDevice::_compute_pipeline_create, DEFVAL(TypedArray<RDPipelineSpecializationConstant>()));
ClassDB::bind_method(D_METHOD("compute_pipeline_is_valid", "compute_pipeline"), &RenderingDevice::compute_pipeline_is_valid);
ClassDB::bind_method(D_METHOD("screen_get_width", "screen"), &RenderingDevice::screen_get_width, DEFVAL(DisplayServer::MAIN_WINDOW_ID));
ClassDB::bind_method(D_METHOD("screen_get_height", "screen"), &RenderingDevice::screen_get_height, DEFVAL(DisplayServer::MAIN_WINDOW_ID));
ClassDB::bind_method(D_METHOD("screen_get_framebuffer_format"), &RenderingDevice::screen_get_framebuffer_format);
ClassDB::bind_method(D_METHOD("draw_list_begin_for_screen", "screen", "clear_color"), &RenderingDevice::draw_list_begin_for_screen, DEFVAL(DisplayServer::MAIN_WINDOW_ID), DEFVAL(Color()));
ClassDB::bind_method(D_METHOD("draw_list_begin", "framebuffer", "initial_color_action", "final_color_action", "initial_depth_action", "final_depth_action", "clear_color_values", "clear_depth", "clear_stencil", "region", "storage_textures"), &RenderingDevice::_draw_list_begin, DEFVAL(Vector<Color>()), DEFVAL(1.0), DEFVAL(0), DEFVAL(Rect2()), DEFVAL(TypedArray<RID>()));
ClassDB::bind_method(D_METHOD("draw_list_begin_split", "framebuffer", "splits", "initial_color_action", "final_color_action", "initial_depth_action", "final_depth_action", "clear_color_values", "clear_depth", "clear_stencil", "region", "storage_textures"), &RenderingDevice::_draw_list_begin_split, DEFVAL(Vector<Color>()), DEFVAL(1.0), DEFVAL(0), DEFVAL(Rect2()), DEFVAL(TypedArray<RID>()));
ClassDB::bind_method(D_METHOD("draw_list_set_blend_constants", "draw_list", "color"), &RenderingDevice::draw_list_set_blend_constants);
ClassDB::bind_method(D_METHOD("draw_list_bind_render_pipeline", "draw_list", "render_pipeline"), &RenderingDevice::draw_list_bind_render_pipeline);
ClassDB::bind_method(D_METHOD("draw_list_bind_uniform_set", "draw_list", "uniform_set", "set_index"), &RenderingDevice::draw_list_bind_uniform_set);
ClassDB::bind_method(D_METHOD("draw_list_bind_vertex_array", "draw_list", "vertex_array"), &RenderingDevice::draw_list_bind_vertex_array);
ClassDB::bind_method(D_METHOD("draw_list_bind_index_array", "draw_list", "index_array"), &RenderingDevice::draw_list_bind_index_array);
ClassDB::bind_method(D_METHOD("draw_list_set_push_constant", "draw_list", "buffer", "size_bytes"), &RenderingDevice::_draw_list_set_push_constant);
ClassDB::bind_method(D_METHOD("draw_list_draw", "draw_list", "use_indices", "instances", "procedural_vertex_count"), &RenderingDevice::draw_list_draw, DEFVAL(0));
ClassDB::bind_method(D_METHOD("draw_list_enable_scissor", "draw_list", "rect"), &RenderingDevice::draw_list_enable_scissor, DEFVAL(Rect2()));
ClassDB::bind_method(D_METHOD("draw_list_disable_scissor", "draw_list"), &RenderingDevice::draw_list_disable_scissor);
ClassDB::bind_method(D_METHOD("draw_list_switch_to_next_pass"), &RenderingDevice::draw_list_switch_to_next_pass);
ClassDB::bind_method(D_METHOD("draw_list_switch_to_next_pass_split", "splits"), &RenderingDevice::_draw_list_switch_to_next_pass_split);
ClassDB::bind_method(D_METHOD("draw_list_end", "post_barrier"), &RenderingDevice::draw_list_end, DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("compute_list_begin", "allow_draw_overlap"), &RenderingDevice::compute_list_begin, DEFVAL(false));
ClassDB::bind_method(D_METHOD("compute_list_bind_compute_pipeline", "compute_list", "compute_pipeline"), &RenderingDevice::compute_list_bind_compute_pipeline);
ClassDB::bind_method(D_METHOD("compute_list_set_push_constant", "compute_list", "buffer", "size_bytes"), &RenderingDevice::_compute_list_set_push_constant);
ClassDB::bind_method(D_METHOD("compute_list_bind_uniform_set", "compute_list", "uniform_set", "set_index"), &RenderingDevice::compute_list_bind_uniform_set);
ClassDB::bind_method(D_METHOD("compute_list_dispatch", "compute_list", "x_groups", "y_groups", "z_groups"), &RenderingDevice::compute_list_dispatch);
ClassDB::bind_method(D_METHOD("compute_list_add_barrier", "compute_list"), &RenderingDevice::compute_list_add_barrier);
ClassDB::bind_method(D_METHOD("compute_list_end", "post_barrier"), &RenderingDevice::compute_list_end, DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("free_rid", "rid"), &RenderingDevice::free);
ClassDB::bind_method(D_METHOD("capture_timestamp", "name"), &RenderingDevice::capture_timestamp);
ClassDB::bind_method(D_METHOD("get_captured_timestamps_count"), &RenderingDevice::get_captured_timestamps_count);
ClassDB::bind_method(D_METHOD("get_captured_timestamps_frame"), &RenderingDevice::get_captured_timestamps_frame);
ClassDB::bind_method(D_METHOD("get_captured_timestamp_gpu_time", "index"), &RenderingDevice::get_captured_timestamp_gpu_time);
ClassDB::bind_method(D_METHOD("get_captured_timestamp_cpu_time", "index"), &RenderingDevice::get_captured_timestamp_cpu_time);
ClassDB::bind_method(D_METHOD("get_captured_timestamp_name", "index"), &RenderingDevice::get_captured_timestamp_name);
ClassDB::bind_method(D_METHOD("limit_get", "limit"), &RenderingDevice::limit_get);
ClassDB::bind_method(D_METHOD("get_frame_delay"), &RenderingDevice::get_frame_delay);
ClassDB::bind_method(D_METHOD("submit"), &RenderingDevice::submit);
ClassDB::bind_method(D_METHOD("sync"), &RenderingDevice::sync);
ClassDB::bind_method(D_METHOD("barrier", "from", "to"), &RenderingDevice::barrier, DEFVAL(BARRIER_MASK_ALL_BARRIERS), DEFVAL(BARRIER_MASK_ALL_BARRIERS));
ClassDB::bind_method(D_METHOD("full_barrier"), &RenderingDevice::full_barrier);
ClassDB::bind_method(D_METHOD("create_local_device"), &RenderingDevice::create_local_device);
ClassDB::bind_method(D_METHOD("set_resource_name", "id", "name"), &RenderingDevice::set_resource_name);
ClassDB::bind_method(D_METHOD("draw_command_begin_label", "name", "color"), &RenderingDevice::draw_command_begin_label);
ClassDB::bind_method(D_METHOD("draw_command_insert_label", "name", "color"), &RenderingDevice::draw_command_insert_label);
ClassDB::bind_method(D_METHOD("draw_command_end_label"), &RenderingDevice::draw_command_end_label);
ClassDB::bind_method(D_METHOD("get_device_vendor_name"), &RenderingDevice::get_device_vendor_name);
ClassDB::bind_method(D_METHOD("get_device_name"), &RenderingDevice::get_device_name);
ClassDB::bind_method(D_METHOD("get_device_pipeline_cache_uuid"), &RenderingDevice::get_device_pipeline_cache_uuid);
ClassDB::bind_method(D_METHOD("get_memory_usage", "type"), &RenderingDevice::get_memory_usage);
ClassDB::bind_method(D_METHOD("get_driver_resource", "resource", "rid", "index"), &RenderingDevice::get_driver_resource);
BIND_ENUM_CONSTANT(DEVICE_TYPE_OTHER);
BIND_ENUM_CONSTANT(DEVICE_TYPE_INTEGRATED_GPU);
BIND_ENUM_CONSTANT(DEVICE_TYPE_DISCRETE_GPU);
BIND_ENUM_CONSTANT(DEVICE_TYPE_VIRTUAL_GPU);
BIND_ENUM_CONSTANT(DEVICE_TYPE_CPU);
BIND_ENUM_CONSTANT(DEVICE_TYPE_MAX);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_LOGICAL_DEVICE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_PHYSICAL_DEVICE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_TOPMOST_OBJECT);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_COMMAND_QUEUE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_QUEUE_FAMILY);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_TEXTURE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_TEXTURE_VIEW);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_TEXTURE_DATA_FORMAT);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_SAMPLER);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_UNIFORM_SET);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_BUFFER);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_COMPUTE_PIPELINE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_RENDER_PIPELINE);
#ifndef DISABLE_DEPRECATED
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_DEVICE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_PHYSICAL_DEVICE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_INSTANCE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_QUEUE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_QUEUE_FAMILY_INDEX);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_IMAGE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_IMAGE_VIEW);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_IMAGE_NATIVE_TEXTURE_FORMAT);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_SAMPLER);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_DESCRIPTOR_SET);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_BUFFER);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_COMPUTE_PIPELINE);
BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_RENDER_PIPELINE);
#endif
BIND_ENUM_CONSTANT(DATA_FORMAT_R4G4_UNORM_PACK8);
BIND_ENUM_CONSTANT(DATA_FORMAT_R4G4B4A4_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_B4G4R4A4_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_R5G6B5_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_B5G6R5_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_R5G5B5A1_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_B5G5R5A1_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_A1R5G5B5_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8_SRGB);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_SRGB);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_SRGB);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_SRGB);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_SRGB);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_SRGB);
BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_UNORM_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_SNORM_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_USCALED_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_SSCALED_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_UINT_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_SINT_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_SRGB_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_UNORM_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_SNORM_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_USCALED_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_SSCALED_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_UINT_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_SINT_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_UNORM_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_SNORM_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_USCALED_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_SSCALED_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_UINT_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_SINT_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_SNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_USCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_SSCALED);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32A32_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32A32_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32A32_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64A64_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64A64_SINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64A64_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_B10G11R11_UFLOAT_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_D16_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_X8_D24_UNORM_PACK32);
BIND_ENUM_CONSTANT(DATA_FORMAT_D32_SFLOAT);
BIND_ENUM_CONSTANT(DATA_FORMAT_S8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_D16_UNORM_S8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_D24_UNORM_S8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_D32_SFLOAT_S8_UINT);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC1_RGB_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC1_RGB_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC1_RGBA_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC1_RGBA_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC2_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC2_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC3_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC3_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC4_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC4_SNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC5_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC5_SNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC6H_UFLOAT_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC6H_SFLOAT_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC7_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_BC7_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_EAC_R11_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_EAC_R11_SNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_EAC_R11G11_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_EAC_R11G11_SNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_4x4_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_4x4_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_5x4_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_5x4_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_5x5_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_5x5_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_6x5_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_6x5_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_6x6_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_6x6_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x5_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x5_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x6_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x6_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x8_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x8_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x5_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x5_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x6_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x6_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x8_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x8_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x10_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x10_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_12x10_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_12x10_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_12x12_UNORM_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_12x12_SRGB_BLOCK);
BIND_ENUM_CONSTANT(DATA_FORMAT_G8B8G8R8_422_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8G8_422_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8_R8_3PLANE_420_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8R8_2PLANE_420_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8_R8_3PLANE_422_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8R8_2PLANE_422_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8_R8_3PLANE_444_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_R10X6_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_R10X6G10X6_UNORM_2PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_R12X4_UNORM_PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_R12X4G12X4_UNORM_2PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16);
BIND_ENUM_CONSTANT(DATA_FORMAT_G16B16G16R16_422_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_B16G16R16G16_422_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16_R16_3PLANE_420_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16R16_2PLANE_420_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16_R16_3PLANE_422_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16R16_2PLANE_422_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16_R16_3PLANE_444_UNORM);
BIND_ENUM_CONSTANT(DATA_FORMAT_MAX);
BIND_BITFIELD_FLAG(BARRIER_MASK_VERTEX);
BIND_BITFIELD_FLAG(BARRIER_MASK_FRAGMENT);
BIND_BITFIELD_FLAG(BARRIER_MASK_COMPUTE);
BIND_BITFIELD_FLAG(BARRIER_MASK_TRANSFER);
BIND_BITFIELD_FLAG(BARRIER_MASK_RASTER);
BIND_BITFIELD_FLAG(BARRIER_MASK_ALL_BARRIERS);
BIND_BITFIELD_FLAG(BARRIER_MASK_NO_BARRIER);
BIND_ENUM_CONSTANT(TEXTURE_TYPE_1D);
BIND_ENUM_CONSTANT(TEXTURE_TYPE_2D);
BIND_ENUM_CONSTANT(TEXTURE_TYPE_3D);
BIND_ENUM_CONSTANT(TEXTURE_TYPE_CUBE);
BIND_ENUM_CONSTANT(TEXTURE_TYPE_1D_ARRAY);
BIND_ENUM_CONSTANT(TEXTURE_TYPE_2D_ARRAY);
BIND_ENUM_CONSTANT(TEXTURE_TYPE_CUBE_ARRAY);
BIND_ENUM_CONSTANT(TEXTURE_TYPE_MAX);
BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_1);
BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_2);
BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_4);
BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_8);
BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_16);
BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_32);
BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_64);
BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_MAX);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_SAMPLING_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_COLOR_ATTACHMENT_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_STORAGE_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_STORAGE_ATOMIC_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_CPU_READ_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_CAN_UPDATE_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_CAN_COPY_FROM_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_CAN_COPY_TO_BIT);
BIND_BITFIELD_FLAG(TEXTURE_USAGE_INPUT_ATTACHMENT_BIT);
BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_IDENTITY);
BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_ZERO);
BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_ONE);
BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_R);
BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_G);
BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_B);
BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_A);
BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_MAX);
BIND_ENUM_CONSTANT(TEXTURE_SLICE_2D);
BIND_ENUM_CONSTANT(TEXTURE_SLICE_CUBEMAP);
BIND_ENUM_CONSTANT(TEXTURE_SLICE_3D);
BIND_ENUM_CONSTANT(SAMPLER_FILTER_NEAREST);
BIND_ENUM_CONSTANT(SAMPLER_FILTER_LINEAR);
BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_REPEAT);
BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_MIRRORED_REPEAT);
BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE);
BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_CLAMP_TO_BORDER);
BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_MIRROR_CLAMP_TO_EDGE);
BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_MAX);
BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK);
BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_INT_TRANSPARENT_BLACK);
BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_FLOAT_OPAQUE_BLACK);
BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_INT_OPAQUE_BLACK);
BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_FLOAT_OPAQUE_WHITE);
BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_INT_OPAQUE_WHITE);
BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_MAX);
BIND_ENUM_CONSTANT(VERTEX_FREQUENCY_VERTEX);
BIND_ENUM_CONSTANT(VERTEX_FREQUENCY_INSTANCE);
BIND_ENUM_CONSTANT(INDEX_BUFFER_FORMAT_UINT16);
BIND_ENUM_CONSTANT(INDEX_BUFFER_FORMAT_UINT32);
BIND_BITFIELD_FLAG(STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
BIND_ENUM_CONSTANT(UNIFORM_TYPE_SAMPLER); //for sampling only (sampler GLSL type)
BIND_ENUM_CONSTANT(UNIFORM_TYPE_SAMPLER_WITH_TEXTURE); // for sampling only); but includes a texture); (samplerXX GLSL type)); first a sampler then a texture
BIND_ENUM_CONSTANT(UNIFORM_TYPE_TEXTURE); //only texture); (textureXX GLSL type)
BIND_ENUM_CONSTANT(UNIFORM_TYPE_IMAGE); // storage image (imageXX GLSL type)); for compute mostly
BIND_ENUM_CONSTANT(UNIFORM_TYPE_TEXTURE_BUFFER); // buffer texture (or TBO); textureBuffer type)
BIND_ENUM_CONSTANT(UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER); // buffer texture with a sampler(or TBO); samplerBuffer type)
BIND_ENUM_CONSTANT(UNIFORM_TYPE_IMAGE_BUFFER); //texel buffer); (imageBuffer type)); for compute mostly
BIND_ENUM_CONSTANT(UNIFORM_TYPE_UNIFORM_BUFFER); //regular uniform buffer (or UBO).
BIND_ENUM_CONSTANT(UNIFORM_TYPE_STORAGE_BUFFER); //storage buffer ("buffer" qualifier) like UBO); but supports storage); for compute mostly
BIND_ENUM_CONSTANT(UNIFORM_TYPE_INPUT_ATTACHMENT); //used for sub-pass read/write); for mobile mostly
BIND_ENUM_CONSTANT(UNIFORM_TYPE_MAX);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_POINTS);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_LINES);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_LINES_WITH_ADJACENCY);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_LINESTRIPS);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_LINESTRIPS_WITH_ADJACENCY);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLES);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLES_WITH_ADJACENCY);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLE_STRIPS);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_AJACENCY);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_RESTART_INDEX);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TESSELATION_PATCH);
BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_MAX);
BIND_ENUM_CONSTANT(POLYGON_CULL_DISABLED);
BIND_ENUM_CONSTANT(POLYGON_CULL_FRONT);
BIND_ENUM_CONSTANT(POLYGON_CULL_BACK);
BIND_ENUM_CONSTANT(POLYGON_FRONT_FACE_CLOCKWISE);
BIND_ENUM_CONSTANT(POLYGON_FRONT_FACE_COUNTER_CLOCKWISE);
BIND_ENUM_CONSTANT(STENCIL_OP_KEEP);
BIND_ENUM_CONSTANT(STENCIL_OP_ZERO);
BIND_ENUM_CONSTANT(STENCIL_OP_REPLACE);
BIND_ENUM_CONSTANT(STENCIL_OP_INCREMENT_AND_CLAMP);
BIND_ENUM_CONSTANT(STENCIL_OP_DECREMENT_AND_CLAMP);
BIND_ENUM_CONSTANT(STENCIL_OP_INVERT);
BIND_ENUM_CONSTANT(STENCIL_OP_INCREMENT_AND_WRAP);
BIND_ENUM_CONSTANT(STENCIL_OP_DECREMENT_AND_WRAP);
BIND_ENUM_CONSTANT(STENCIL_OP_MAX); //not an actual operator); just the amount of operators :D
BIND_ENUM_CONSTANT(COMPARE_OP_NEVER);
BIND_ENUM_CONSTANT(COMPARE_OP_LESS);
BIND_ENUM_CONSTANT(COMPARE_OP_EQUAL);
BIND_ENUM_CONSTANT(COMPARE_OP_LESS_OR_EQUAL);
BIND_ENUM_CONSTANT(COMPARE_OP_GREATER);
BIND_ENUM_CONSTANT(COMPARE_OP_NOT_EQUAL);
BIND_ENUM_CONSTANT(COMPARE_OP_GREATER_OR_EQUAL);
BIND_ENUM_CONSTANT(COMPARE_OP_ALWAYS);
BIND_ENUM_CONSTANT(COMPARE_OP_MAX);
BIND_ENUM_CONSTANT(LOGIC_OP_CLEAR);
BIND_ENUM_CONSTANT(LOGIC_OP_AND);
BIND_ENUM_CONSTANT(LOGIC_OP_AND_REVERSE);
BIND_ENUM_CONSTANT(LOGIC_OP_COPY);
BIND_ENUM_CONSTANT(LOGIC_OP_AND_INVERTED);
BIND_ENUM_CONSTANT(LOGIC_OP_NO_OP);
BIND_ENUM_CONSTANT(LOGIC_OP_XOR);
BIND_ENUM_CONSTANT(LOGIC_OP_OR);
BIND_ENUM_CONSTANT(LOGIC_OP_NOR);
BIND_ENUM_CONSTANT(LOGIC_OP_EQUIVALENT);
BIND_ENUM_CONSTANT(LOGIC_OP_INVERT);
BIND_ENUM_CONSTANT(LOGIC_OP_OR_REVERSE);
BIND_ENUM_CONSTANT(LOGIC_OP_COPY_INVERTED);
BIND_ENUM_CONSTANT(LOGIC_OP_OR_INVERTED);
BIND_ENUM_CONSTANT(LOGIC_OP_NAND);
BIND_ENUM_CONSTANT(LOGIC_OP_SET);
BIND_ENUM_CONSTANT(LOGIC_OP_MAX); //not an actual operator); just the amount of operators :D
BIND_ENUM_CONSTANT(BLEND_FACTOR_ZERO);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE);
BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC_COLOR);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_SRC_COLOR);
BIND_ENUM_CONSTANT(BLEND_FACTOR_DST_COLOR);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_DST_COLOR);
BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC_ALPHA);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_SRC_ALPHA);
BIND_ENUM_CONSTANT(BLEND_FACTOR_DST_ALPHA);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_DST_ALPHA);
BIND_ENUM_CONSTANT(BLEND_FACTOR_CONSTANT_COLOR);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR);
BIND_ENUM_CONSTANT(BLEND_FACTOR_CONSTANT_ALPHA);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA);
BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC_ALPHA_SATURATE);
BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC1_COLOR);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_SRC1_COLOR);
BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC1_ALPHA);
BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA);
BIND_ENUM_CONSTANT(BLEND_FACTOR_MAX);
BIND_ENUM_CONSTANT(BLEND_OP_ADD);
BIND_ENUM_CONSTANT(BLEND_OP_SUBTRACT);
BIND_ENUM_CONSTANT(BLEND_OP_REVERSE_SUBTRACT);
BIND_ENUM_CONSTANT(BLEND_OP_MINIMUM);
BIND_ENUM_CONSTANT(BLEND_OP_MAXIMUM);
BIND_ENUM_CONSTANT(BLEND_OP_MAX);
BIND_BITFIELD_FLAG(DYNAMIC_STATE_LINE_WIDTH);
BIND_BITFIELD_FLAG(DYNAMIC_STATE_DEPTH_BIAS);
BIND_BITFIELD_FLAG(DYNAMIC_STATE_BLEND_CONSTANTS);
BIND_BITFIELD_FLAG(DYNAMIC_STATE_DEPTH_BOUNDS);
BIND_BITFIELD_FLAG(DYNAMIC_STATE_STENCIL_COMPARE_MASK);
BIND_BITFIELD_FLAG(DYNAMIC_STATE_STENCIL_WRITE_MASK);
BIND_BITFIELD_FLAG(DYNAMIC_STATE_STENCIL_REFERENCE);
BIND_ENUM_CONSTANT(INITIAL_ACTION_CLEAR); //start rendering and clear the framebuffer (supply params)
BIND_ENUM_CONSTANT(INITIAL_ACTION_CLEAR_REGION); //start rendering and clear the framebuffer (supply params)
BIND_ENUM_CONSTANT(INITIAL_ACTION_CLEAR_REGION_CONTINUE); //continue rendering and clear the framebuffer (supply params)
BIND_ENUM_CONSTANT(INITIAL_ACTION_KEEP); //start rendering); but keep attached color texture contents (depth will be cleared)
BIND_ENUM_CONSTANT(INITIAL_ACTION_DROP); //start rendering); ignore what is there); just write above it
BIND_ENUM_CONSTANT(INITIAL_ACTION_CONTINUE); //continue rendering (framebuffer must have been left in "continue" state as final action previously)
BIND_ENUM_CONSTANT(INITIAL_ACTION_MAX);
BIND_ENUM_CONSTANT(FINAL_ACTION_READ); //will no longer render to it); allows attached textures to be read again); but depth buffer contents will be dropped (Can't be read from)
BIND_ENUM_CONSTANT(FINAL_ACTION_DISCARD); // discard contents after rendering
BIND_ENUM_CONSTANT(FINAL_ACTION_CONTINUE); //will continue rendering later); attached textures can't be read until re-bound with "finish"
BIND_ENUM_CONSTANT(FINAL_ACTION_MAX);
BIND_ENUM_CONSTANT(SHADER_STAGE_VERTEX);
BIND_ENUM_CONSTANT(SHADER_STAGE_FRAGMENT);
BIND_ENUM_CONSTANT(SHADER_STAGE_TESSELATION_CONTROL);
BIND_ENUM_CONSTANT(SHADER_STAGE_TESSELATION_EVALUATION);
BIND_ENUM_CONSTANT(SHADER_STAGE_COMPUTE);
BIND_ENUM_CONSTANT(SHADER_STAGE_MAX);
BIND_ENUM_CONSTANT(SHADER_STAGE_VERTEX_BIT);
BIND_ENUM_CONSTANT(SHADER_STAGE_FRAGMENT_BIT);
BIND_ENUM_CONSTANT(SHADER_STAGE_TESSELATION_CONTROL_BIT);
BIND_ENUM_CONSTANT(SHADER_STAGE_TESSELATION_EVALUATION_BIT);
BIND_ENUM_CONSTANT(SHADER_STAGE_COMPUTE_BIT);
BIND_ENUM_CONSTANT(SHADER_LANGUAGE_GLSL);
BIND_ENUM_CONSTANT(SHADER_LANGUAGE_HLSL);
BIND_ENUM_CONSTANT(PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL);
BIND_ENUM_CONSTANT(PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT);
BIND_ENUM_CONSTANT(PIPELINE_SPECIALIZATION_CONSTANT_TYPE_FLOAT);
BIND_ENUM_CONSTANT(LIMIT_MAX_BOUND_UNIFORM_SETS);
BIND_ENUM_CONSTANT(LIMIT_MAX_FRAMEBUFFER_COLOR_ATTACHMENTS);
BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURES_PER_UNIFORM_SET);
BIND_ENUM_CONSTANT(LIMIT_MAX_SAMPLERS_PER_UNIFORM_SET);
BIND_ENUM_CONSTANT(LIMIT_MAX_STORAGE_BUFFERS_PER_UNIFORM_SET);
BIND_ENUM_CONSTANT(LIMIT_MAX_STORAGE_IMAGES_PER_UNIFORM_SET);
BIND_ENUM_CONSTANT(LIMIT_MAX_UNIFORM_BUFFERS_PER_UNIFORM_SET);
BIND_ENUM_CONSTANT(LIMIT_MAX_DRAW_INDEXED_INDEX);
BIND_ENUM_CONSTANT(LIMIT_MAX_FRAMEBUFFER_HEIGHT);
BIND_ENUM_CONSTANT(LIMIT_MAX_FRAMEBUFFER_WIDTH);
BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_ARRAY_LAYERS);
BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_SIZE_1D);
BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_SIZE_2D);
BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_SIZE_3D);
BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_SIZE_CUBE);
BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
BIND_ENUM_CONSTANT(LIMIT_MAX_SAMPLERS_PER_SHADER_STAGE);
BIND_ENUM_CONSTANT(LIMIT_MAX_STORAGE_BUFFERS_PER_SHADER_STAGE);
BIND_ENUM_CONSTANT(LIMIT_MAX_STORAGE_IMAGES_PER_SHADER_STAGE);
BIND_ENUM_CONSTANT(LIMIT_MAX_UNIFORM_BUFFERS_PER_SHADER_STAGE);
BIND_ENUM_CONSTANT(LIMIT_MAX_PUSH_CONSTANT_SIZE);
BIND_ENUM_CONSTANT(LIMIT_MAX_UNIFORM_BUFFER_SIZE);
BIND_ENUM_CONSTANT(LIMIT_MAX_VERTEX_INPUT_ATTRIBUTE_OFFSET);
BIND_ENUM_CONSTANT(LIMIT_MAX_VERTEX_INPUT_ATTRIBUTES);
BIND_ENUM_CONSTANT(LIMIT_MAX_VERTEX_INPUT_BINDINGS);
BIND_ENUM_CONSTANT(LIMIT_MAX_VERTEX_INPUT_BINDING_STRIDE);
BIND_ENUM_CONSTANT(LIMIT_MIN_UNIFORM_BUFFER_OFFSET_ALIGNMENT);
BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_SHARED_MEMORY_SIZE);
BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y);
BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z);
BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_INVOCATIONS);
BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_X);
BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Y);
BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Z);
BIND_ENUM_CONSTANT(LIMIT_MAX_VIEWPORT_DIMENSIONS_X);
BIND_ENUM_CONSTANT(LIMIT_MAX_VIEWPORT_DIMENSIONS_Y);
BIND_ENUM_CONSTANT(MEMORY_TEXTURES);
BIND_ENUM_CONSTANT(MEMORY_BUFFERS);
BIND_ENUM_CONSTANT(MEMORY_TOTAL);
BIND_CONSTANT(INVALID_ID);
BIND_CONSTANT(INVALID_FORMAT_ID);
}
RenderingDevice::~RenderingDevice() {
if (local_device.is_valid()) {
finalize();
context->local_device_free(local_device);
}
if (singleton == this) {
singleton = nullptr;
}
}
RenderingDevice::RenderingDevice() {
if (singleton == nullptr) { // there may be more rendering devices later
singleton = this;
}
}
/*****************/
/**** BINDERS ****/
/*****************/
RID RenderingDevice::_texture_create(const Ref<RDTextureFormat> &p_format, const Ref<RDTextureView> &p_view, const TypedArray<PackedByteArray> &p_data) {
ERR_FAIL_COND_V(p_format.is_null(), RID());
ERR_FAIL_COND_V(p_view.is_null(), RID());
Vector<Vector<uint8_t>> data;
for (int i = 0; i < p_data.size(); i++) {
Vector<uint8_t> byte_slice = p_data[i];
ERR_FAIL_COND_V(byte_slice.is_empty(), RID());
data.push_back(byte_slice);
}
return texture_create(p_format->base, p_view->base, data);
}
RID RenderingDevice::_texture_create_shared(const Ref<RDTextureView> &p_view, RID p_with_texture) {
ERR_FAIL_COND_V(p_view.is_null(), RID());
return texture_create_shared(p_view->base, p_with_texture);
}
RID RenderingDevice::_texture_create_shared_from_slice(const Ref<RDTextureView> &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps, TextureSliceType p_slice_type) {
ERR_FAIL_COND_V(p_view.is_null(), RID());
return texture_create_shared_from_slice(p_view->base, p_with_texture, p_layer, p_mipmap, p_mipmaps, p_slice_type);
}
Ref<RDTextureFormat> RenderingDevice::_texture_get_format(RID p_rd_texture) {
Ref<RDTextureFormat> rtf;
rtf.instantiate();
rtf->base = texture_get_format(p_rd_texture);
return rtf;
}
RenderingDevice::FramebufferFormatID RenderingDevice::_framebuffer_format_create(const TypedArray<RDAttachmentFormat> &p_attachments, uint32_t p_view_count) {
Vector<AttachmentFormat> attachments;
attachments.resize(p_attachments.size());
for (int i = 0; i < p_attachments.size(); i++) {
Ref<RDAttachmentFormat> af = p_attachments[i];
ERR_FAIL_COND_V(af.is_null(), INVALID_FORMAT_ID);
attachments.write[i] = af->base;
}
return framebuffer_format_create(attachments, p_view_count);
}
RenderingDevice::FramebufferFormatID RenderingDevice::_framebuffer_format_create_multipass(const TypedArray<RDAttachmentFormat> &p_attachments, const TypedArray<RDFramebufferPass> &p_passes, uint32_t p_view_count) {
Vector<AttachmentFormat> attachments;
attachments.resize(p_attachments.size());
for (int i = 0; i < p_attachments.size(); i++) {
Ref<RDAttachmentFormat> af = p_attachments[i];
ERR_FAIL_COND_V(af.is_null(), INVALID_FORMAT_ID);
attachments.write[i] = af->base;
}
Vector<FramebufferPass> passes;
for (int i = 0; i < p_passes.size(); i++) {
Ref<RDFramebufferPass> pass = p_passes[i];
ERR_CONTINUE(pass.is_null());
passes.push_back(pass->base);
}
return framebuffer_format_create_multipass(attachments, passes, p_view_count);
}
RID RenderingDevice::_framebuffer_create(const TypedArray<RID> &p_textures, FramebufferFormatID p_format_check, uint32_t p_view_count) {
Vector<RID> textures = Variant(p_textures);
return framebuffer_create(textures, p_format_check, p_view_count);
}
RID RenderingDevice::_framebuffer_create_multipass(const TypedArray<RID> &p_textures, const TypedArray<RDFramebufferPass> &p_passes, FramebufferFormatID p_format_check, uint32_t p_view_count) {
Vector<RID> textures = Variant(p_textures);
Vector<FramebufferPass> passes;
for (int i = 0; i < p_passes.size(); i++) {
Ref<RDFramebufferPass> pass = p_passes[i];
ERR_CONTINUE(pass.is_null());
passes.push_back(pass->base);
}
return framebuffer_create_multipass(textures, passes, p_format_check, p_view_count);
}
RID RenderingDevice::_sampler_create(const Ref<RDSamplerState> &p_state) {
ERR_FAIL_COND_V(p_state.is_null(), RID());
return sampler_create(p_state->base);
}
RenderingDevice::VertexFormatID RenderingDevice::_vertex_format_create(const TypedArray<RDVertexAttribute> &p_vertex_formats) {
Vector<VertexAttribute> descriptions;
descriptions.resize(p_vertex_formats.size());
for (int i = 0; i < p_vertex_formats.size(); i++) {
Ref<RDVertexAttribute> af = p_vertex_formats[i];
ERR_FAIL_COND_V(af.is_null(), INVALID_FORMAT_ID);
descriptions.write[i] = af->base;
}
return vertex_format_create(descriptions);
}
RID RenderingDevice::_vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const TypedArray<RID> &p_src_buffers, const Vector<int64_t> &p_offsets) {
Vector<RID> buffers = Variant(p_src_buffers);
Vector<uint64_t> offsets;
offsets.resize(p_offsets.size());
for (int i = 0; i < p_offsets.size(); i++) {
offsets.write[i] = p_offsets[i];
}
return vertex_array_create(p_vertex_count, p_vertex_format, buffers, offsets);
}
Ref<RDShaderSPIRV> RenderingDevice::_shader_compile_spirv_from_source(const Ref<RDShaderSource> &p_source, bool p_allow_cache) {
ERR_FAIL_COND_V(p_source.is_null(), Ref<RDShaderSPIRV>());
Ref<RDShaderSPIRV> bytecode;
bytecode.instantiate();
for (int i = 0; i < RD::SHADER_STAGE_MAX; i++) {
String error;
ShaderStage stage = ShaderStage(i);
String source = p_source->get_stage_source(stage);
if (!source.is_empty()) {
Vector<uint8_t> spirv = shader_compile_spirv_from_source(stage, source, p_source->get_language(), &error, p_allow_cache);
bytecode->set_stage_bytecode(stage, spirv);
bytecode->set_stage_compile_error(stage, error);
}
}
return bytecode;
}
Vector<uint8_t> RenderingDevice::_shader_compile_binary_from_spirv(const Ref<RDShaderSPIRV> &p_spirv, const String &p_shader_name) {
ERR_FAIL_COND_V(p_spirv.is_null(), Vector<uint8_t>());
Vector<ShaderStageSPIRVData> stage_data;
for (int i = 0; i < RD::SHADER_STAGE_MAX; i++) {
ShaderStage stage = ShaderStage(i);
ShaderStageSPIRVData sd;
sd.shader_stage = stage;
String error = p_spirv->get_stage_compile_error(stage);
ERR_FAIL_COND_V_MSG(!error.is_empty(), Vector<uint8_t>(), "Can't create a shader from an errored bytecode. Check errors in source bytecode.");
sd.spirv = p_spirv->get_stage_bytecode(stage);
if (sd.spirv.is_empty()) {
continue;
}
stage_data.push_back(sd);
}
return shader_compile_binary_from_spirv(stage_data, p_shader_name);
}
RID RenderingDevice::_shader_create_from_spirv(const Ref<RDShaderSPIRV> &p_spirv, const String &p_shader_name) {
ERR_FAIL_COND_V(p_spirv.is_null(), RID());
Vector<ShaderStageSPIRVData> stage_data;
for (int i = 0; i < RD::SHADER_STAGE_MAX; i++) {
ShaderStage stage = ShaderStage(i);
ShaderStageSPIRVData sd;
sd.shader_stage = stage;
String error = p_spirv->get_stage_compile_error(stage);
ERR_FAIL_COND_V_MSG(!error.is_empty(), RID(), "Can't create a shader from an errored bytecode. Check errors in source bytecode.");
sd.spirv = p_spirv->get_stage_bytecode(stage);
if (sd.spirv.is_empty()) {
continue;
}
stage_data.push_back(sd);
}
return shader_create_from_spirv(stage_data);
}
RID RenderingDevice::_uniform_set_create(const TypedArray<RDUniform> &p_uniforms, RID p_shader, uint32_t p_shader_set) {
Vector<Uniform> uniforms;
uniforms.resize(p_uniforms.size());
for (int i = 0; i < p_uniforms.size(); i++) {
Ref<RDUniform> uniform = p_uniforms[i];
ERR_FAIL_COND_V(!uniform.is_valid(), RID());
uniforms.write[i] = uniform->base;
}
return uniform_set_create(uniforms, p_shader, p_shader_set);
}
Error RenderingDevice::_buffer_update_bind(RID p_buffer, uint32_t p_offset, uint32_t p_size, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier) {
return buffer_update(p_buffer, p_offset, p_size, p_data.ptr(), p_post_barrier);
}
static Vector<RenderingDevice::PipelineSpecializationConstant> _get_spec_constants(const TypedArray<RDPipelineSpecializationConstant> &p_constants) {
Vector<RenderingDevice::PipelineSpecializationConstant> ret;
ret.resize(p_constants.size());
for (int i = 0; i < p_constants.size(); i++) {
Ref<RDPipelineSpecializationConstant> c = p_constants[i];
ERR_CONTINUE(c.is_null());
RenderingDevice::PipelineSpecializationConstant &sc = ret.write[i];
Variant value = c->get_value();
switch (value.get_type()) {
case Variant::BOOL: {
sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
sc.bool_value = value;
} break;
case Variant::INT: {
sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT;
sc.int_value = value;
} break;
case Variant::FLOAT: {
sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_FLOAT;
sc.float_value = value;
} break;
default: {
}
}
sc.constant_id = c->get_constant_id();
}
return ret;
}
RID RenderingDevice::_render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const Ref<RDPipelineRasterizationState> &p_rasterization_state, const Ref<RDPipelineMultisampleState> &p_multisample_state, const Ref<RDPipelineDepthStencilState> &p_depth_stencil_state, const Ref<RDPipelineColorBlendState> &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags, uint32_t p_for_render_pass, const TypedArray<RDPipelineSpecializationConstant> &p_specialization_constants) {
PipelineRasterizationState rasterization_state;
if (p_rasterization_state.is_valid()) {
rasterization_state = p_rasterization_state->base;
}
PipelineMultisampleState multisample_state;
if (p_multisample_state.is_valid()) {
multisample_state = p_multisample_state->base;
for (int i = 0; i < p_multisample_state->sample_masks.size(); i++) {
int64_t mask = p_multisample_state->sample_masks[i];
multisample_state.sample_mask.push_back(mask);
}
}
PipelineDepthStencilState depth_stencil_state;
if (p_depth_stencil_state.is_valid()) {
depth_stencil_state = p_depth_stencil_state->base;
}
PipelineColorBlendState color_blend_state;
if (p_blend_state.is_valid()) {
color_blend_state = p_blend_state->base;
for (int i = 0; i < p_blend_state->attachments.size(); i++) {
Ref<RDPipelineColorBlendStateAttachment> attachment = p_blend_state->attachments[i];
if (attachment.is_valid()) {
color_blend_state.attachments.push_back(attachment->base);
}
}
}
return render_pipeline_create(p_shader, p_framebuffer_format, p_vertex_format, p_render_primitive, rasterization_state, multisample_state, depth_stencil_state, color_blend_state, p_dynamic_state_flags, p_for_render_pass, _get_spec_constants(p_specialization_constants));
}
RID RenderingDevice::_compute_pipeline_create(RID p_shader, const TypedArray<RDPipelineSpecializationConstant> &p_specialization_constants = TypedArray<RDPipelineSpecializationConstant>()) {
return compute_pipeline_create(p_shader, _get_spec_constants(p_specialization_constants));
}
RenderingDevice::DrawListID RenderingDevice::_draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const TypedArray<RID> &p_storage_textures) {
Vector<RID> stextures;
for (int i = 0; i < p_storage_textures.size(); i++) {
stextures.push_back(p_storage_textures[i]);
}
return draw_list_begin(p_framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, p_region, stextures);
}
Vector<int64_t> RenderingDevice::_draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const TypedArray<RID> &p_storage_textures) {
Vector<DrawListID> splits;
splits.resize(p_splits);
Vector<RID> stextures;
for (int i = 0; i < p_storage_textures.size(); i++) {
stextures.push_back(p_storage_textures[i]);
}
draw_list_begin_split(p_framebuffer, p_splits, splits.ptrw(), p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, p_region, stextures);
Vector<int64_t> split_ids;
split_ids.resize(splits.size());
for (int i = 0; i < splits.size(); i++) {
split_ids.write[i] = splits[i];
}
return split_ids;
}
Vector<int64_t> RenderingDevice::_draw_list_switch_to_next_pass_split(uint32_t p_splits) {
Vector<DrawListID> splits;
splits.resize(p_splits);
Error err = draw_list_switch_to_next_pass_split(p_splits, splits.ptrw());
ERR_FAIL_COND_V(err != OK, Vector<int64_t>());
Vector<int64_t> split_ids;
split_ids.resize(splits.size());
for (int i = 0; i < splits.size(); i++) {
split_ids.write[i] = splits[i];
}
return split_ids;
}
void RenderingDevice::_draw_list_set_push_constant(DrawListID p_list, const Vector<uint8_t> &p_data, uint32_t p_data_size) {
ERR_FAIL_COND((uint32_t)p_data.size() > p_data_size);
draw_list_set_push_constant(p_list, p_data.ptr(), p_data_size);
}
void RenderingDevice::_compute_list_set_push_constant(ComputeListID p_list, const Vector<uint8_t> &p_data, uint32_t p_data_size) {
ERR_FAIL_COND((uint32_t)p_data.size() > p_data_size);
compute_list_set_push_constant(p_list, p_data.ptr(), p_data_size);
}