mirror of
https://github.com/godotengine/godot.git
synced 2024-12-27 11:24:59 +08:00
a00cf02241
Add support glTF KHR_texture_basisu extension
943 lines
62 KiB
C++
943 lines
62 KiB
C++
/*
|
|
Copyright (c) 2003-2010, Troy D. Hanson http://uthash.sourceforge.net All rights reserved.
|
|
SPDX-License-Identifier: BSD-1-Clause
|
|
*/
|
|
|
|
#ifndef UTHASH_H
|
|
#define UTHASH_H
|
|
|
|
#include <string.h> /* memcmp,strlen */
|
|
#include <stddef.h> /* ptrdiff_t */
|
|
|
|
/* These macros use decltype or the earlier __typeof GNU extension.
|
|
As decltype is only available in newer compilers (VS2010 or gcc 4.3+
|
|
when compiling c++ source) this code uses whatever method is needed
|
|
or, for VS2008 where neither is available, uses casting workarounds. */
|
|
#ifdef _MSC_VER /* MS compiler */
|
|
#if _MSC_VER >= 1600 && __cplusplus /* VS2010 or newer in C++ mode */
|
|
#define DECLTYPE(x) (decltype(x))
|
|
#else /* VS2008 or older (or VS2010 in C mode) */
|
|
#define NO_DECLTYPE
|
|
#define DECLTYPE(x)
|
|
#endif
|
|
#else /* GNU, Sun and other compilers */
|
|
#define DECLTYPE(x) (__typeof(x))
|
|
#endif
|
|
|
|
#ifdef NO_DECLTYPE
|
|
#define DECLTYPE_ASSIGN(dst,src) \
|
|
do { \
|
|
char **_da_dst = (char**)(&(dst)); \
|
|
*_da_dst = (char*)(src); \
|
|
} while(0)
|
|
#else
|
|
#define DECLTYPE_ASSIGN(dst,src) \
|
|
do { \
|
|
(dst) = DECLTYPE(dst)(src); \
|
|
} while(0)
|
|
#endif
|
|
|
|
/* a number of the hash function use uint32_t which isn't defined on win32 */
|
|
#ifdef _MSC_VER
|
|
typedef unsigned int uint32_t;
|
|
#else
|
|
#include <inttypes.h> /* uint32_t */
|
|
#endif
|
|
|
|
#define UTHASH_VERSION 1.9.1
|
|
|
|
#define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */
|
|
#define uthash_malloc(sz) malloc(sz) /* malloc fcn */
|
|
#define uthash_free(ptr) free(ptr) /* free fcn */
|
|
|
|
#define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */
|
|
#define uthash_expand_fyi(tbl) /* can be defined to log expands */
|
|
|
|
/* initial number of buckets */
|
|
#define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */
|
|
#define HASH_INITIAL_NUM_BUCKETS_LOG2 5 /* lg2 of initial number of buckets */
|
|
#define HASH_BKT_CAPACITY_THRESH 10 /* expand when bucket count reaches */
|
|
|
|
/* calculate the element whose hash handle address is hhe */
|
|
#define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho)))
|
|
|
|
#define HASH_FIND(hh,head,keyptr,keylen,out) \
|
|
do { \
|
|
unsigned _hf_bkt,_hf_hashv; \
|
|
out=NULL; \
|
|
if (head) { \
|
|
HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \
|
|
if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \
|
|
HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \
|
|
keyptr,keylen,out); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
#ifdef HASH_BLOOM
|
|
#define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM)
|
|
#define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0)
|
|
#define HASH_BLOOM_MAKE(tbl) \
|
|
do { \
|
|
(tbl)->bloom_nbits = HASH_BLOOM; \
|
|
(tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \
|
|
if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \
|
|
memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \
|
|
(tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \
|
|
} while (0);
|
|
|
|
#define HASH_BLOOM_FREE(tbl) \
|
|
do { \
|
|
uthash_free((tbl)->bloom_bv); \
|
|
} while (0);
|
|
|
|
#define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8)))
|
|
#define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8)))
|
|
|
|
#define HASH_BLOOM_ADD(tbl,hashv) \
|
|
HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
|
|
|
|
#define HASH_BLOOM_TEST(tbl,hashv) \
|
|
HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
|
|
|
|
#else
|
|
#define HASH_BLOOM_MAKE(tbl)
|
|
#define HASH_BLOOM_FREE(tbl)
|
|
#define HASH_BLOOM_ADD(tbl,hashv)
|
|
#define HASH_BLOOM_TEST(tbl,hashv) (1)
|
|
#endif
|
|
|
|
#define HASH_MAKE_TABLE(hh,head) \
|
|
do { \
|
|
(head)->hh.tbl = (UT_hash_table*)uthash_malloc( \
|
|
sizeof(UT_hash_table)); \
|
|
if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \
|
|
memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \
|
|
(head)->hh.tbl->tail = &((head)->hh); \
|
|
(head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \
|
|
(head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \
|
|
(head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \
|
|
(head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \
|
|
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
|
|
if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \
|
|
memset((head)->hh.tbl->buckets, 0, \
|
|
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
|
|
HASH_BLOOM_MAKE((head)->hh.tbl); \
|
|
(head)->hh.tbl->signature = HASH_SIGNATURE; \
|
|
} while(0)
|
|
|
|
#define HASH_ADD(hh,head,fieldname,keylen_in,add) \
|
|
HASH_ADD_KEYPTR(hh,head,&add->fieldname,keylen_in,add)
|
|
|
|
#define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \
|
|
do { \
|
|
unsigned _ha_bkt; \
|
|
(add)->hh.next = NULL; \
|
|
(add)->hh.key = (char*)keyptr; \
|
|
(add)->hh.keylen = keylen_in; \
|
|
if (!(head)) { \
|
|
head = (add); \
|
|
(head)->hh.prev = NULL; \
|
|
HASH_MAKE_TABLE(hh,head); \
|
|
} else { \
|
|
(head)->hh.tbl->tail->next = (add); \
|
|
(add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \
|
|
(head)->hh.tbl->tail = &((add)->hh); \
|
|
} \
|
|
(head)->hh.tbl->num_items++; \
|
|
(add)->hh.tbl = (head)->hh.tbl; \
|
|
HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \
|
|
(add)->hh.hashv, _ha_bkt); \
|
|
HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \
|
|
HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \
|
|
HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \
|
|
HASH_FSCK(hh,head); \
|
|
} while(0)
|
|
|
|
#define HASH_TO_BKT( hashv, num_bkts, bkt ) \
|
|
do { \
|
|
bkt = ((hashv) & ((num_bkts) - 1)); \
|
|
} while(0)
|
|
|
|
/* delete "delptr" from the hash table.
|
|
* "the usual" patch-up process for the app-order doubly-linked-list.
|
|
* The use of _hd_hh_del below deserves special explanation.
|
|
* These used to be expressed using (delptr) but that led to a bug
|
|
* if someone used the same symbol for the head and deletee, like
|
|
* HASH_DELETE(hh,users,users);
|
|
* We want that to work, but by changing the head (users) below
|
|
* we were forfeiting our ability to further refer to the deletee (users)
|
|
* in the patch-up process. Solution: use scratch space to
|
|
* copy the deletee pointer, then the latter references are via that
|
|
* scratch pointer rather than through the repointed (users) symbol.
|
|
*/
|
|
#define HASH_DELETE(hh,head,delptr) \
|
|
do { \
|
|
unsigned _hd_bkt; \
|
|
struct UT_hash_handle *_hd_hh_del; \
|
|
if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \
|
|
uthash_free((head)->hh.tbl->buckets ); \
|
|
HASH_BLOOM_FREE((head)->hh.tbl); \
|
|
uthash_free((head)->hh.tbl); \
|
|
head = NULL; \
|
|
} else { \
|
|
_hd_hh_del = &((delptr)->hh); \
|
|
if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \
|
|
(head)->hh.tbl->tail = \
|
|
(UT_hash_handle*)((char*)((delptr)->hh.prev) + \
|
|
(head)->hh.tbl->hho); \
|
|
} \
|
|
if ((delptr)->hh.prev) { \
|
|
((UT_hash_handle*)((char*)((delptr)->hh.prev) + \
|
|
(head)->hh.tbl->hho))->next = (delptr)->hh.next; \
|
|
} else { \
|
|
DECLTYPE_ASSIGN(head,(delptr)->hh.next); \
|
|
} \
|
|
if (_hd_hh_del->next) { \
|
|
((UT_hash_handle*)((char*)_hd_hh_del->next + \
|
|
(head)->hh.tbl->hho))->prev = \
|
|
_hd_hh_del->prev; \
|
|
} \
|
|
HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \
|
|
HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \
|
|
(head)->hh.tbl->num_items--; \
|
|
} \
|
|
HASH_FSCK(hh,head); \
|
|
} while (0)
|
|
|
|
|
|
/* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */
|
|
#define HASH_FIND_STR(head,findstr,out) \
|
|
HASH_FIND(hh,head,findstr,strlen(findstr),out)
|
|
#define HASH_ADD_STR(head,strfield,add) \
|
|
HASH_ADD(hh,head,strfield,strlen(add->strfield),add)
|
|
#define HASH_FIND_INT(head,findint,out) \
|
|
HASH_FIND(hh,head,findint,sizeof(int),out)
|
|
#define HASH_ADD_INT(head,intfield,add) \
|
|
HASH_ADD(hh,head,intfield,sizeof(int),add)
|
|
#define HASH_FIND_PTR(head,findptr,out) \
|
|
HASH_FIND(hh,head,findptr,sizeof(void *),out)
|
|
#define HASH_ADD_PTR(head,ptrfield,add) \
|
|
HASH_ADD(hh,head,ptrfield,sizeof(void *),add)
|
|
#define HASH_DEL(head,delptr) \
|
|
HASH_DELETE(hh,head,delptr)
|
|
|
|
/* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined.
|
|
* This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined.
|
|
*/
|
|
#ifdef HASH_DEBUG
|
|
#define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0)
|
|
#define HASH_FSCK(hh,head) \
|
|
do { \
|
|
unsigned _bkt_i; \
|
|
unsigned _count, _bkt_count; \
|
|
char *_prev; \
|
|
struct UT_hash_handle *_thh; \
|
|
if (head) { \
|
|
_count = 0; \
|
|
for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \
|
|
_bkt_count = 0; \
|
|
_thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \
|
|
_prev = NULL; \
|
|
while (_thh) { \
|
|
if (_prev != (char*)(_thh->hh_prev)) { \
|
|
HASH_OOPS("invalid hh_prev %p, actual %p\n", \
|
|
_thh->hh_prev, _prev ); \
|
|
} \
|
|
_bkt_count++; \
|
|
_prev = (char*)(_thh); \
|
|
_thh = _thh->hh_next; \
|
|
} \
|
|
_count += _bkt_count; \
|
|
if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \
|
|
HASH_OOPS("invalid bucket count %d, actual %d\n", \
|
|
(head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \
|
|
} \
|
|
} \
|
|
if (_count != (head)->hh.tbl->num_items) { \
|
|
HASH_OOPS("invalid hh item count %d, actual %d\n", \
|
|
(head)->hh.tbl->num_items, _count ); \
|
|
} \
|
|
/* traverse hh in app order; check next/prev integrity, count */ \
|
|
_count = 0; \
|
|
_prev = NULL; \
|
|
_thh = &(head)->hh; \
|
|
while (_thh) { \
|
|
_count++; \
|
|
if (_prev !=(char*)(_thh->prev)) { \
|
|
HASH_OOPS("invalid prev %p, actual %p\n", \
|
|
_thh->prev, _prev ); \
|
|
} \
|
|
_prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \
|
|
_thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \
|
|
(head)->hh.tbl->hho) : NULL ); \
|
|
} \
|
|
if (_count != (head)->hh.tbl->num_items) { \
|
|
HASH_OOPS("invalid app item count %d, actual %d\n", \
|
|
(head)->hh.tbl->num_items, _count ); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define HASH_FSCK(hh,head)
|
|
#endif
|
|
|
|
/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
|
|
* the descriptor to which this macro is defined for tuning the hash function.
|
|
* The app can #include <unistd.h> to get the prototype for write(2). */
|
|
#ifdef HASH_EMIT_KEYS
|
|
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \
|
|
do { \
|
|
unsigned _klen = fieldlen; \
|
|
write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \
|
|
write(HASH_EMIT_KEYS, keyptr, fieldlen); \
|
|
} while (0)
|
|
#else
|
|
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
|
|
#endif
|
|
|
|
/* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */
|
|
#ifdef HASH_FUNCTION
|
|
#define HASH_FCN HASH_FUNCTION
|
|
#else
|
|
#define HASH_FCN HASH_JEN
|
|
#endif
|
|
|
|
/* The Bernstein hash function, used in Perl prior to v5.6 */
|
|
#define HASH_BER(key,keylen,num_bkts,hashv,bkt) \
|
|
do { \
|
|
unsigned _hb_keylen=keylen; \
|
|
char *_hb_key=(char*)key; \
|
|
(hashv) = 0; \
|
|
while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \
|
|
bkt = (hashv) & (num_bkts-1); \
|
|
} while (0)
|
|
|
|
|
|
/* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at
|
|
* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */
|
|
#define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \
|
|
do { \
|
|
unsigned _sx_i; \
|
|
char *_hs_key=(char*)key; \
|
|
hashv = 0; \
|
|
for(_sx_i=0; _sx_i < keylen; _sx_i++) \
|
|
hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \
|
|
bkt = hashv & (num_bkts-1); \
|
|
} while (0)
|
|
|
|
#define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \
|
|
do { \
|
|
unsigned _fn_i; \
|
|
char *_hf_key=(char*)key; \
|
|
hashv = 2166136261UL; \
|
|
for(_fn_i=0; _fn_i < keylen; _fn_i++) \
|
|
hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \
|
|
bkt = hashv & (num_bkts-1); \
|
|
} while(0);
|
|
|
|
#define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \
|
|
do { \
|
|
unsigned _ho_i; \
|
|
char *_ho_key=(char*)key; \
|
|
hashv = 0; \
|
|
for(_ho_i=0; _ho_i < keylen; _ho_i++) { \
|
|
hashv += _ho_key[_ho_i]; \
|
|
hashv += (hashv << 10); \
|
|
hashv ^= (hashv >> 6); \
|
|
} \
|
|
hashv += (hashv << 3); \
|
|
hashv ^= (hashv >> 11); \
|
|
hashv += (hashv << 15); \
|
|
bkt = hashv & (num_bkts-1); \
|
|
} while(0)
|
|
|
|
#define HASH_JEN_MIX(a,b,c) \
|
|
do { \
|
|
a -= b; a -= c; a ^= ( c >> 13 ); \
|
|
b -= c; b -= a; b ^= ( a << 8 ); \
|
|
c -= a; c -= b; c ^= ( b >> 13 ); \
|
|
a -= b; a -= c; a ^= ( c >> 12 ); \
|
|
b -= c; b -= a; b ^= ( a << 16 ); \
|
|
c -= a; c -= b; c ^= ( b >> 5 ); \
|
|
a -= b; a -= c; a ^= ( c >> 3 ); \
|
|
b -= c; b -= a; b ^= ( a << 10 ); \
|
|
c -= a; c -= b; c ^= ( b >> 15 ); \
|
|
} while (0)
|
|
|
|
#define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \
|
|
do { \
|
|
unsigned _hj_i,_hj_j,_hj_k; \
|
|
char *_hj_key=(char*)key; \
|
|
hashv = 0xfeedbeef; \
|
|
_hj_i = _hj_j = 0x9e3779b9; \
|
|
_hj_k = keylen; \
|
|
while (_hj_k >= 12) { \
|
|
_hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \
|
|
+ ( (unsigned)_hj_key[2] << 16 ) \
|
|
+ ( (unsigned)_hj_key[3] << 24 ) ); \
|
|
_hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \
|
|
+ ( (unsigned)_hj_key[6] << 16 ) \
|
|
+ ( (unsigned)_hj_key[7] << 24 ) ); \
|
|
hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \
|
|
+ ( (unsigned)_hj_key[10] << 16 ) \
|
|
+ ( (unsigned)_hj_key[11] << 24 ) ); \
|
|
\
|
|
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
|
|
\
|
|
_hj_key += 12; \
|
|
_hj_k -= 12; \
|
|
} \
|
|
hashv += keylen; \
|
|
switch ( _hj_k ) { \
|
|
case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \
|
|
case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \
|
|
case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \
|
|
case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \
|
|
case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \
|
|
case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \
|
|
case 5: _hj_j += _hj_key[4]; \
|
|
case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \
|
|
case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \
|
|
case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \
|
|
case 1: _hj_i += _hj_key[0]; \
|
|
} \
|
|
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
|
|
bkt = hashv & (num_bkts-1); \
|
|
} while(0)
|
|
|
|
/* The Paul Hsieh hash function */
|
|
#undef get16bits
|
|
#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
|
|
|| defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
|
|
#define get16bits(d) (*((const uint16_t *) (d)))
|
|
#endif
|
|
|
|
#if !defined (get16bits)
|
|
#define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \
|
|
+(uint32_t)(((const uint8_t *)(d))[0]) )
|
|
#endif
|
|
#define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \
|
|
do { \
|
|
char *_sfh_key=(char*)key; \
|
|
uint32_t _sfh_tmp, _sfh_len = keylen; \
|
|
\
|
|
int _sfh_rem = _sfh_len & 3; \
|
|
_sfh_len >>= 2; \
|
|
hashv = 0xcafebabe; \
|
|
\
|
|
/* Main loop */ \
|
|
for (;_sfh_len > 0; _sfh_len--) { \
|
|
hashv += get16bits (_sfh_key); \
|
|
_sfh_tmp = (get16bits (_sfh_key+2) << 11) ^ hashv; \
|
|
hashv = (hashv << 16) ^ _sfh_tmp; \
|
|
_sfh_key += 2*sizeof (uint16_t); \
|
|
hashv += hashv >> 11; \
|
|
} \
|
|
\
|
|
/* Handle end cases */ \
|
|
switch (_sfh_rem) { \
|
|
case 3: hashv += get16bits (_sfh_key); \
|
|
hashv ^= hashv << 16; \
|
|
hashv ^= _sfh_key[sizeof (uint16_t)] << 18; \
|
|
hashv += hashv >> 11; \
|
|
break; \
|
|
case 2: hashv += get16bits (_sfh_key); \
|
|
hashv ^= hashv << 11; \
|
|
hashv += hashv >> 17; \
|
|
break; \
|
|
case 1: hashv += *_sfh_key; \
|
|
hashv ^= hashv << 10; \
|
|
hashv += hashv >> 1; \
|
|
} \
|
|
\
|
|
/* Force "avalanching" of final 127 bits */ \
|
|
hashv ^= hashv << 3; \
|
|
hashv += hashv >> 5; \
|
|
hashv ^= hashv << 4; \
|
|
hashv += hashv >> 17; \
|
|
hashv ^= hashv << 25; \
|
|
hashv += hashv >> 6; \
|
|
bkt = hashv & (num_bkts-1); \
|
|
} while(0);
|
|
|
|
#ifdef HASH_USING_NO_STRICT_ALIASING
|
|
/* The MurmurHash exploits some CPU's (e.g. x86) tolerance for unaligned reads.
|
|
* For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error.
|
|
* So MurmurHash comes in two versions, the faster unaligned one and the slower
|
|
* aligned one. We only use the faster one on CPU's where we know it's safe.
|
|
*
|
|
* Note the preprocessor built-in defines can be emitted using:
|
|
*
|
|
* gcc -m64 -dM -E - < /dev/null (on gcc)
|
|
* cc -## a.c (where a.c is a simple test file) (Sun Studio)
|
|
*/
|
|
#if (defined(__i386__) || defined(__x86_64__))
|
|
#define HASH_MUR HASH_MUR_UNALIGNED
|
|
#else
|
|
#define HASH_MUR HASH_MUR_ALIGNED
|
|
#endif
|
|
|
|
/* Appleby's MurmurHash fast version for unaligned-tolerant archs like i386 */
|
|
#define HASH_MUR_UNALIGNED(key,keylen,num_bkts,hashv,bkt) \
|
|
do { \
|
|
const unsigned int _mur_m = 0x5bd1e995; \
|
|
const int _mur_r = 24; \
|
|
hashv = 0xcafebabe ^ keylen; \
|
|
char *_mur_key = (char *)key; \
|
|
uint32_t _mur_tmp, _mur_len = keylen; \
|
|
\
|
|
for (;_mur_len >= 4; _mur_len-=4) { \
|
|
_mur_tmp = *(uint32_t *)_mur_key; \
|
|
_mur_tmp *= _mur_m; \
|
|
_mur_tmp ^= _mur_tmp >> _mur_r; \
|
|
_mur_tmp *= _mur_m; \
|
|
hashv *= _mur_m; \
|
|
hashv ^= _mur_tmp; \
|
|
_mur_key += 4; \
|
|
} \
|
|
\
|
|
switch(_mur_len) \
|
|
{ \
|
|
case 3: hashv ^= _mur_key[2] << 16; \
|
|
case 2: hashv ^= _mur_key[1] << 8; \
|
|
case 1: hashv ^= _mur_key[0]; \
|
|
hashv *= _mur_m; \
|
|
}; \
|
|
\
|
|
hashv ^= hashv >> 13; \
|
|
hashv *= _mur_m; \
|
|
hashv ^= hashv >> 15; \
|
|
\
|
|
bkt = hashv & (num_bkts-1); \
|
|
} while(0)
|
|
|
|
/* Appleby's MurmurHash version for alignment-sensitive archs like Sparc */
|
|
#define HASH_MUR_ALIGNED(key,keylen,num_bkts,hashv,bkt) \
|
|
do { \
|
|
const unsigned int _mur_m = 0x5bd1e995; \
|
|
const int _mur_r = 24; \
|
|
hashv = 0xcafebabe ^ keylen; \
|
|
char *_mur_key = (char *)key; \
|
|
uint32_t _mur_len = keylen; \
|
|
int _mur_align = (int)_mur_key & 3; \
|
|
\
|
|
if (_mur_align && (_mur_len >= 4)) { \
|
|
unsigned _mur_t = 0, _mur_d = 0; \
|
|
switch(_mur_align) { \
|
|
case 1: _mur_t |= _mur_key[2] << 16; \
|
|
case 2: _mur_t |= _mur_key[1] << 8; \
|
|
case 3: _mur_t |= _mur_key[0]; \
|
|
} \
|
|
_mur_t <<= (8 * _mur_align); \
|
|
_mur_key += 4-_mur_align; \
|
|
_mur_len -= 4-_mur_align; \
|
|
int _mur_sl = 8 * (4-_mur_align); \
|
|
int _mur_sr = 8 * _mur_align; \
|
|
\
|
|
for (;_mur_len >= 4; _mur_len-=4) { \
|
|
_mur_d = *(unsigned *)_mur_key; \
|
|
_mur_t = (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \
|
|
unsigned _mur_k = _mur_t; \
|
|
_mur_k *= _mur_m; \
|
|
_mur_k ^= _mur_k >> _mur_r; \
|
|
_mur_k *= _mur_m; \
|
|
hashv *= _mur_m; \
|
|
hashv ^= _mur_k; \
|
|
_mur_t = _mur_d; \
|
|
_mur_key += 4; \
|
|
} \
|
|
_mur_d = 0; \
|
|
if(_mur_len >= _mur_align) { \
|
|
switch(_mur_align) { \
|
|
case 3: _mur_d |= _mur_key[2] << 16; \
|
|
case 2: _mur_d |= _mur_key[1] << 8; \
|
|
case 1: _mur_d |= _mur_key[0]; \
|
|
} \
|
|
unsigned _mur_k = (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \
|
|
_mur_k *= _mur_m; \
|
|
_mur_k ^= _mur_k >> _mur_r; \
|
|
_mur_k *= _mur_m; \
|
|
hashv *= _mur_m; \
|
|
hashv ^= _mur_k; \
|
|
_mur_k += _mur_align; \
|
|
_mur_len -= _mur_align; \
|
|
\
|
|
switch(_mur_len) \
|
|
{ \
|
|
case 3: hashv ^= _mur_key[2] << 16; \
|
|
case 2: hashv ^= _mur_key[1] << 8; \
|
|
case 1: hashv ^= _mur_key[0]; \
|
|
hashv *= _mur_m; \
|
|
} \
|
|
} else { \
|
|
switch(_mur_len) \
|
|
{ \
|
|
case 3: _mur_d ^= _mur_key[2] << 16; \
|
|
case 2: _mur_d ^= _mur_key[1] << 8; \
|
|
case 1: _mur_d ^= _mur_key[0]; \
|
|
case 0: hashv ^= (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \
|
|
hashv *= _mur_m; \
|
|
} \
|
|
} \
|
|
\
|
|
hashv ^= hashv >> 13; \
|
|
hashv *= _mur_m; \
|
|
hashv ^= hashv >> 15; \
|
|
} else { \
|
|
for (;_mur_len >= 4; _mur_len-=4) { \
|
|
unsigned _mur_k = *(unsigned*)_mur_key; \
|
|
_mur_k *= _mur_m; \
|
|
_mur_k ^= _mur_k >> _mur_r; \
|
|
_mur_k *= _mur_m; \
|
|
hashv *= _mur_m; \
|
|
hashv ^= _mur_k; \
|
|
_mur_key += 4; \
|
|
} \
|
|
switch(_mur_len) \
|
|
{ \
|
|
case 3: hashv ^= _mur_key[2] << 16; \
|
|
case 2: hashv ^= _mur_key[1] << 8; \
|
|
case 1: hashv ^= _mur_key[0]; \
|
|
hashv *= _mur_m; \
|
|
} \
|
|
\
|
|
hashv ^= hashv >> 13; \
|
|
hashv *= _mur_m; \
|
|
hashv ^= hashv >> 15; \
|
|
} \
|
|
bkt = hashv & (num_bkts-1); \
|
|
} while(0)
|
|
#endif /* HASH_USING_NO_STRICT_ALIASING */
|
|
|
|
/* key comparison function; return 0 if keys equal */
|
|
#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
|
|
|
|
/* iterate over items in a known bucket to find desired item */
|
|
#define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \
|
|
do { \
|
|
if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \
|
|
else out=NULL; \
|
|
while (out) { \
|
|
if (out->hh.keylen == keylen_in) { \
|
|
if ((HASH_KEYCMP(out->hh.key,keyptr,keylen_in)) == 0) break; \
|
|
} \
|
|
if (out->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,out->hh.hh_next)); \
|
|
else out = NULL; \
|
|
} \
|
|
} while(0)
|
|
|
|
/* add an item to a bucket */
|
|
#define HASH_ADD_TO_BKT(head,addhh) \
|
|
do { \
|
|
head.count++; \
|
|
(addhh)->hh_next = head.hh_head; \
|
|
(addhh)->hh_prev = NULL; \
|
|
if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \
|
|
(head).hh_head=addhh; \
|
|
if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \
|
|
&& (addhh)->tbl->noexpand != 1) { \
|
|
HASH_EXPAND_BUCKETS((addhh)->tbl); \
|
|
} \
|
|
} while(0)
|
|
|
|
/* remove an item from a given bucket */
|
|
#define HASH_DEL_IN_BKT(hh,head,hh_del) \
|
|
(head).count--; \
|
|
if ((head).hh_head == hh_del) { \
|
|
(head).hh_head = hh_del->hh_next; \
|
|
} \
|
|
if (hh_del->hh_prev) { \
|
|
hh_del->hh_prev->hh_next = hh_del->hh_next; \
|
|
} \
|
|
if (hh_del->hh_next) { \
|
|
hh_del->hh_next->hh_prev = hh_del->hh_prev; \
|
|
}
|
|
|
|
/* Bucket expansion has the effect of doubling the number of buckets
|
|
* and redistributing the items into the new buckets. Ideally the
|
|
* items will distribute more or less evenly into the new buckets
|
|
* (the extent to which this is true is a measure of the quality of
|
|
* the hash function as it applies to the key domain).
|
|
*
|
|
* With the items distributed into more buckets, the chain length
|
|
* (item count) in each bucket is reduced. Thus by expanding buckets
|
|
* the hash keeps a bound on the chain length. This bounded chain
|
|
* length is the essence of how a hash provides constant time lookup.
|
|
*
|
|
* The calculation of tbl->ideal_chain_maxlen below deserves some
|
|
* explanation. First, keep in mind that we're calculating the ideal
|
|
* maximum chain length based on the *new* (doubled) bucket count.
|
|
* In fractions this is just n/b (n=number of items,b=new num buckets).
|
|
* Since the ideal chain length is an integer, we want to calculate
|
|
* ceil(n/b). We don't depend on floating point arithmetic in this
|
|
* hash, so to calculate ceil(n/b) with integers we could write
|
|
*
|
|
* ceil(n/b) = (n/b) + ((n%b)?1:0)
|
|
*
|
|
* and in fact a previous version of this hash did just that.
|
|
* But now we have improved things a bit by recognizing that b is
|
|
* always a power of two. We keep its base 2 log handy (call it lb),
|
|
* so now we can write this with a bit shift and logical AND:
|
|
*
|
|
* ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0)
|
|
*
|
|
*/
|
|
#define HASH_EXPAND_BUCKETS(tbl) \
|
|
do { \
|
|
unsigned _he_bkt; \
|
|
unsigned _he_bkt_i; \
|
|
struct UT_hash_handle *_he_thh, *_he_hh_nxt; \
|
|
UT_hash_bucket *_he_new_buckets, *_he_newbkt; \
|
|
_he_new_buckets = (UT_hash_bucket*)uthash_malloc( \
|
|
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
|
|
if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \
|
|
memset(_he_new_buckets, 0, \
|
|
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
|
|
tbl->ideal_chain_maxlen = \
|
|
(tbl->num_items >> (tbl->log2_num_buckets+1)) + \
|
|
((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \
|
|
tbl->nonideal_items = 0; \
|
|
for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \
|
|
{ \
|
|
_he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \
|
|
while (_he_thh) { \
|
|
_he_hh_nxt = _he_thh->hh_next; \
|
|
HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \
|
|
_he_newbkt = &(_he_new_buckets[ _he_bkt ]); \
|
|
if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \
|
|
tbl->nonideal_items++; \
|
|
_he_newbkt->expand_mult = _he_newbkt->count / \
|
|
tbl->ideal_chain_maxlen; \
|
|
} \
|
|
_he_thh->hh_prev = NULL; \
|
|
_he_thh->hh_next = _he_newbkt->hh_head; \
|
|
if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \
|
|
_he_thh; \
|
|
_he_newbkt->hh_head = _he_thh; \
|
|
_he_thh = _he_hh_nxt; \
|
|
} \
|
|
} \
|
|
tbl->num_buckets *= 2; \
|
|
tbl->log2_num_buckets++; \
|
|
uthash_free( tbl->buckets ); \
|
|
tbl->buckets = _he_new_buckets; \
|
|
tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \
|
|
(tbl->ineff_expands+1) : 0; \
|
|
if (tbl->ineff_expands > 1) { \
|
|
tbl->noexpand=1; \
|
|
uthash_noexpand_fyi(tbl); \
|
|
} \
|
|
uthash_expand_fyi(tbl); \
|
|
} while(0)
|
|
|
|
|
|
/* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */
|
|
/* Note that HASH_SORT assumes the hash handle name to be hh.
|
|
* HASH_SRT was added to allow the hash handle name to be passed in. */
|
|
#define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn)
|
|
#define HASH_SRT(hh,head,cmpfcn) \
|
|
do { \
|
|
unsigned _hs_i; \
|
|
unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \
|
|
struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \
|
|
if (head) { \
|
|
_hs_insize = 1; \
|
|
_hs_looping = 1; \
|
|
_hs_list = &((head)->hh); \
|
|
while (_hs_looping) { \
|
|
_hs_p = _hs_list; \
|
|
_hs_list = NULL; \
|
|
_hs_tail = NULL; \
|
|
_hs_nmerges = 0; \
|
|
while (_hs_p) { \
|
|
_hs_nmerges++; \
|
|
_hs_q = _hs_p; \
|
|
_hs_psize = 0; \
|
|
for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \
|
|
_hs_psize++; \
|
|
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
|
|
((void*)((char*)(_hs_q->next) + \
|
|
(head)->hh.tbl->hho)) : NULL); \
|
|
if (! (_hs_q) ) break; \
|
|
} \
|
|
_hs_qsize = _hs_insize; \
|
|
while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \
|
|
if (_hs_psize == 0) { \
|
|
_hs_e = _hs_q; \
|
|
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
|
|
((void*)((char*)(_hs_q->next) + \
|
|
(head)->hh.tbl->hho)) : NULL); \
|
|
_hs_qsize--; \
|
|
} else if ( (_hs_qsize == 0) || !(_hs_q) ) { \
|
|
_hs_e = _hs_p; \
|
|
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
|
|
((void*)((char*)(_hs_p->next) + \
|
|
(head)->hh.tbl->hho)) : NULL); \
|
|
_hs_psize--; \
|
|
} else if (( \
|
|
cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \
|
|
DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \
|
|
) <= 0) { \
|
|
_hs_e = _hs_p; \
|
|
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
|
|
((void*)((char*)(_hs_p->next) + \
|
|
(head)->hh.tbl->hho)) : NULL); \
|
|
_hs_psize--; \
|
|
} else { \
|
|
_hs_e = _hs_q; \
|
|
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
|
|
((void*)((char*)(_hs_q->next) + \
|
|
(head)->hh.tbl->hho)) : NULL); \
|
|
_hs_qsize--; \
|
|
} \
|
|
if ( _hs_tail ) { \
|
|
_hs_tail->next = ((_hs_e) ? \
|
|
ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \
|
|
} else { \
|
|
_hs_list = _hs_e; \
|
|
} \
|
|
_hs_e->prev = ((_hs_tail) ? \
|
|
ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \
|
|
_hs_tail = _hs_e; \
|
|
} \
|
|
_hs_p = _hs_q; \
|
|
} \
|
|
_hs_tail->next = NULL; \
|
|
if ( _hs_nmerges <= 1 ) { \
|
|
_hs_looping=0; \
|
|
(head)->hh.tbl->tail = _hs_tail; \
|
|
DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \
|
|
} \
|
|
_hs_insize *= 2; \
|
|
} \
|
|
HASH_FSCK(hh,head); \
|
|
} \
|
|
} while (0)
|
|
|
|
/* This function selects items from one hash into another hash.
|
|
* The end result is that the selected items have dual presence
|
|
* in both hashes. There is no copy of the items made; rather
|
|
* they are added into the new hash through a secondary hash
|
|
* hash handle that must be present in the structure. */
|
|
#define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \
|
|
do { \
|
|
unsigned _src_bkt, _dst_bkt; \
|
|
void *_last_elt=NULL, *_elt; \
|
|
UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \
|
|
ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \
|
|
if (src) { \
|
|
for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \
|
|
for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \
|
|
_src_hh; \
|
|
_src_hh = _src_hh->hh_next) { \
|
|
_elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \
|
|
if (cond(_elt)) { \
|
|
_dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \
|
|
_dst_hh->key = _src_hh->key; \
|
|
_dst_hh->keylen = _src_hh->keylen; \
|
|
_dst_hh->hashv = _src_hh->hashv; \
|
|
_dst_hh->prev = _last_elt; \
|
|
_dst_hh->next = NULL; \
|
|
if (_last_elt_hh) { _last_elt_hh->next = _elt; } \
|
|
if (!dst) { \
|
|
DECLTYPE_ASSIGN(dst,_elt); \
|
|
HASH_MAKE_TABLE(hh_dst,dst); \
|
|
} else { \
|
|
_dst_hh->tbl = (dst)->hh_dst.tbl; \
|
|
} \
|
|
HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \
|
|
HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \
|
|
(dst)->hh_dst.tbl->num_items++; \
|
|
_last_elt = _elt; \
|
|
_last_elt_hh = _dst_hh; \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
HASH_FSCK(hh_dst,dst); \
|
|
} while (0)
|
|
|
|
#define HASH_CLEAR(hh,head) \
|
|
do { \
|
|
if (head) { \
|
|
uthash_free((head)->hh.tbl->buckets ); \
|
|
uthash_free((head)->hh.tbl); \
|
|
(head)=NULL; \
|
|
} \
|
|
} while(0)
|
|
|
|
/* obtain a count of items in the hash */
|
|
#define HASH_COUNT(head) HASH_CNT(hh,head)
|
|
#define HASH_CNT(hh,head) (head?(head->hh.tbl->num_items):0)
|
|
|
|
typedef struct UT_hash_bucket {
|
|
struct UT_hash_handle *hh_head;
|
|
unsigned count;
|
|
|
|
/* expand_mult is normally set to 0. In this situation, the max chain length
|
|
* threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If
|
|
* the bucket's chain exceeds this length, bucket expansion is triggered).
|
|
* However, setting expand_mult to a non-zero value delays bucket expansion
|
|
* (that would be triggered by additions to this particular bucket)
|
|
* until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH.
|
|
* (The multiplier is simply expand_mult+1). The whole idea of this
|
|
* multiplier is to reduce bucket expansions, since they are expensive, in
|
|
* situations where we know that a particular bucket tends to be overused.
|
|
* It is better to let its chain length grow to a longer yet-still-bounded
|
|
* value, than to do an O(n) bucket expansion too often.
|
|
*/
|
|
unsigned expand_mult;
|
|
|
|
} UT_hash_bucket;
|
|
|
|
/* random signature used only to find hash tables in external analysis */
|
|
#define HASH_SIGNATURE 0xa0111fe1
|
|
#define HASH_BLOOM_SIGNATURE 0xb12220f2
|
|
|
|
typedef struct UT_hash_table {
|
|
UT_hash_bucket *buckets;
|
|
unsigned num_buckets, log2_num_buckets;
|
|
unsigned num_items;
|
|
struct UT_hash_handle *tail; /* tail hh in app order, for fast append */
|
|
ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */
|
|
|
|
/* in an ideal situation (all buckets used equally), no bucket would have
|
|
* more than ceil(#items/#buckets) items. that's the ideal chain length. */
|
|
unsigned ideal_chain_maxlen;
|
|
|
|
/* nonideal_items is the number of items in the hash whose chain position
|
|
* exceeds the ideal chain maxlen. these items pay the penalty for an uneven
|
|
* hash distribution; reaching them in a chain traversal takes >ideal steps */
|
|
unsigned nonideal_items;
|
|
|
|
/* ineffective expands occur when a bucket doubling was performed, but
|
|
* afterward, more than half the items in the hash had nonideal chain
|
|
* positions. If this happens on two consecutive expansions we inhibit any
|
|
* further expansion, as it's not helping; this happens when the hash
|
|
* function isn't a good fit for the key domain. When expansion is inhibited
|
|
* the hash will still work, albeit no longer in constant time. */
|
|
unsigned ineff_expands, noexpand;
|
|
|
|
uint32_t signature; /* used only to find hash tables in external analysis */
|
|
#ifdef HASH_BLOOM
|
|
uint32_t bloom_sig; /* used only to test bloom exists in external analysis */
|
|
uint8_t *bloom_bv;
|
|
char bloom_nbits;
|
|
#endif
|
|
|
|
} UT_hash_table;
|
|
|
|
typedef struct UT_hash_handle {
|
|
struct UT_hash_table *tbl;
|
|
void *prev; /* prev element in app order */
|
|
void *next; /* next element in app order */
|
|
struct UT_hash_handle *hh_prev; /* previous hh in bucket order */
|
|
struct UT_hash_handle *hh_next; /* next hh in bucket order */
|
|
void *key; /* ptr to enclosing struct's key */
|
|
unsigned keylen; /* enclosing struct's key len */
|
|
unsigned hashv; /* result of hash-fcn(key) */
|
|
} UT_hash_handle;
|
|
|
|
#endif /* UTHASH_H */
|