mirror of
https://github.com/godotengine/godot.git
synced 2025-01-12 20:22:49 +08:00
394bb0ee2b
Finally do the childs -> children rename too.
478 lines
16 KiB
C++
478 lines
16 KiB
C++
/**************************************************************************/
|
|
/* dynamic_bvh.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef DYNAMIC_BVH_H
|
|
#define DYNAMIC_BVH_H
|
|
|
|
#include "core/math/aabb.h"
|
|
#include "core/templates/list.h"
|
|
#include "core/templates/local_vector.h"
|
|
#include "core/templates/paged_allocator.h"
|
|
#include "core/typedefs.h"
|
|
|
|
// Based on bullet Dbvh
|
|
|
|
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
///DynamicBVH implementation by Nathanael Presson
|
|
// The DynamicBVH class implements a fast dynamic bounding volume tree based on axis aligned bounding boxes (aabb tree).
|
|
|
|
class DynamicBVH {
|
|
struct Node;
|
|
|
|
public:
|
|
struct ID {
|
|
Node *node = nullptr;
|
|
|
|
public:
|
|
_FORCE_INLINE_ bool is_valid() const { return node != nullptr; }
|
|
};
|
|
|
|
private:
|
|
struct Volume {
|
|
Vector3 min, max;
|
|
|
|
_FORCE_INLINE_ Vector3 get_center() const { return ((min + max) / 2); }
|
|
_FORCE_INLINE_ Vector3 get_length() const { return (max - min); }
|
|
|
|
_FORCE_INLINE_ bool contains(const Volume &a) const {
|
|
return ((min.x <= a.min.x) &&
|
|
(min.y <= a.min.y) &&
|
|
(min.z <= a.min.z) &&
|
|
(max.x >= a.max.x) &&
|
|
(max.y >= a.max.y) &&
|
|
(max.z >= a.max.z));
|
|
}
|
|
|
|
_FORCE_INLINE_ Volume merge(const Volume &b) const {
|
|
Volume r;
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (min[i] < b.min[i]) {
|
|
r.min[i] = min[i];
|
|
} else {
|
|
r.min[i] = b.min[i];
|
|
}
|
|
if (max[i] > b.max[i]) {
|
|
r.max[i] = max[i];
|
|
} else {
|
|
r.max[i] = b.max[i];
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t get_size() const {
|
|
const Vector3 edges = get_length();
|
|
return (edges.x * edges.y * edges.z +
|
|
edges.x + edges.y + edges.z);
|
|
}
|
|
|
|
_FORCE_INLINE_ bool is_not_equal_to(const Volume &b) const {
|
|
return ((min.x != b.min.x) ||
|
|
(min.y != b.min.y) ||
|
|
(min.z != b.min.z) ||
|
|
(max.x != b.max.x) ||
|
|
(max.y != b.max.y) ||
|
|
(max.z != b.max.z));
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t get_proximity_to(const Volume &b) const {
|
|
const Vector3 d = (min + max) - (b.min + b.max);
|
|
return (Math::abs(d.x) + Math::abs(d.y) + Math::abs(d.z));
|
|
}
|
|
|
|
_FORCE_INLINE_ int select_by_proximity(const Volume &a, const Volume &b) const {
|
|
return (get_proximity_to(a) < get_proximity_to(b) ? 0 : 1);
|
|
}
|
|
|
|
//
|
|
_FORCE_INLINE_ bool intersects(const Volume &b) const {
|
|
return ((min.x <= b.max.x) &&
|
|
(max.x >= b.min.x) &&
|
|
(min.y <= b.max.y) &&
|
|
(max.y >= b.min.y) &&
|
|
(min.z <= b.max.z) &&
|
|
(max.z >= b.min.z));
|
|
}
|
|
|
|
_FORCE_INLINE_ bool intersects_convex(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
|
|
Vector3 half_extents = (max - min) * 0.5;
|
|
Vector3 ofs = min + half_extents;
|
|
|
|
for (int i = 0; i < p_plane_count; i++) {
|
|
const Plane &p = p_planes[i];
|
|
Vector3 point(
|
|
(p.normal.x > 0) ? -half_extents.x : half_extents.x,
|
|
(p.normal.y > 0) ? -half_extents.y : half_extents.y,
|
|
(p.normal.z > 0) ? -half_extents.z : half_extents.z);
|
|
point += ofs;
|
|
if (p.is_point_over(point)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Make sure all points in the shape aren't fully separated from the AABB on
|
|
// each axis.
|
|
int bad_point_counts_positive[3] = { 0 };
|
|
int bad_point_counts_negative[3] = { 0 };
|
|
|
|
for (int k = 0; k < 3; k++) {
|
|
for (int i = 0; i < p_point_count; i++) {
|
|
if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) {
|
|
bad_point_counts_positive[k]++;
|
|
}
|
|
if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) {
|
|
bad_point_counts_negative[k]++;
|
|
}
|
|
}
|
|
|
|
if (bad_point_counts_negative[k] == p_point_count) {
|
|
return false;
|
|
}
|
|
if (bad_point_counts_positive[k] == p_point_count) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
struct Node {
|
|
Volume volume;
|
|
Node *parent = nullptr;
|
|
union {
|
|
Node *children[2];
|
|
void *data;
|
|
};
|
|
|
|
_FORCE_INLINE_ bool is_leaf() const { return children[1] == nullptr; }
|
|
_FORCE_INLINE_ bool is_internal() const { return (!is_leaf()); }
|
|
|
|
_FORCE_INLINE_ int get_index_in_parent() const {
|
|
ERR_FAIL_COND_V(!parent, 0);
|
|
return (parent->children[1] == this) ? 1 : 0;
|
|
}
|
|
void get_max_depth(int depth, int &maxdepth) {
|
|
if (is_internal()) {
|
|
children[0]->get_max_depth(depth + 1, maxdepth);
|
|
children[1]->get_max_depth(depth + 1, maxdepth);
|
|
} else {
|
|
maxdepth = MAX(maxdepth, depth);
|
|
}
|
|
}
|
|
|
|
//
|
|
int count_leaves() const {
|
|
if (is_internal()) {
|
|
return children[0]->count_leaves() + children[1]->count_leaves();
|
|
} else {
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
bool is_left_of_axis(const Vector3 &org, const Vector3 &axis) const {
|
|
return axis.dot(volume.get_center() - org) <= 0;
|
|
}
|
|
|
|
Node() {
|
|
children[0] = nullptr;
|
|
children[1] = nullptr;
|
|
}
|
|
};
|
|
|
|
PagedAllocator<Node> node_allocator;
|
|
// Fields
|
|
Node *bvh_root = nullptr;
|
|
int lkhd = -1;
|
|
int total_leaves = 0;
|
|
uint32_t opath = 0;
|
|
uint32_t index = 0;
|
|
|
|
enum {
|
|
ALLOCA_STACK_SIZE = 128
|
|
};
|
|
|
|
_FORCE_INLINE_ void _delete_node(Node *p_node);
|
|
void _recurse_delete_node(Node *p_node);
|
|
_FORCE_INLINE_ Node *_create_node(Node *p_parent, void *p_data);
|
|
_FORCE_INLINE_ DynamicBVH::Node *_create_node_with_volume(Node *p_parent, const Volume &p_volume, void *p_data);
|
|
_FORCE_INLINE_ void _insert_leaf(Node *p_root, Node *p_leaf);
|
|
_FORCE_INLINE_ Node *_remove_leaf(Node *leaf);
|
|
void _fetch_leaves(Node *p_root, LocalVector<Node *> &r_leaves, int p_depth = -1);
|
|
static int _split(Node **leaves, int p_count, const Vector3 &p_org, const Vector3 &p_axis);
|
|
static Volume _bounds(Node **leaves, int p_count);
|
|
void _bottom_up(Node **leaves, int p_count);
|
|
Node *_top_down(Node **leaves, int p_count, int p_bu_threshold);
|
|
Node *_node_sort(Node *n, Node *&r);
|
|
|
|
_FORCE_INLINE_ void _update(Node *leaf, int lookahead = -1);
|
|
|
|
void _extract_leaves(Node *p_node, List<ID> *r_elements);
|
|
|
|
_FORCE_INLINE_ bool _ray_aabb(const Vector3 &rayFrom, const Vector3 &rayInvDirection, const unsigned int raySign[3], const Vector3 bounds[2], real_t &tmin, real_t lambda_min, real_t lambda_max) {
|
|
real_t tmax, tymin, tymax, tzmin, tzmax;
|
|
tmin = (bounds[raySign[0]].x - rayFrom.x) * rayInvDirection.x;
|
|
tmax = (bounds[1 - raySign[0]].x - rayFrom.x) * rayInvDirection.x;
|
|
tymin = (bounds[raySign[1]].y - rayFrom.y) * rayInvDirection.y;
|
|
tymax = (bounds[1 - raySign[1]].y - rayFrom.y) * rayInvDirection.y;
|
|
|
|
if ((tmin > tymax) || (tymin > tmax)) {
|
|
return false;
|
|
}
|
|
|
|
if (tymin > tmin) {
|
|
tmin = tymin;
|
|
}
|
|
|
|
if (tymax < tmax) {
|
|
tmax = tymax;
|
|
}
|
|
|
|
tzmin = (bounds[raySign[2]].z - rayFrom.z) * rayInvDirection.z;
|
|
tzmax = (bounds[1 - raySign[2]].z - rayFrom.z) * rayInvDirection.z;
|
|
|
|
if ((tmin > tzmax) || (tzmin > tmax)) {
|
|
return false;
|
|
}
|
|
if (tzmin > tmin) {
|
|
tmin = tzmin;
|
|
}
|
|
if (tzmax < tmax) {
|
|
tmax = tzmax;
|
|
}
|
|
return ((tmin < lambda_max) && (tmax > lambda_min));
|
|
}
|
|
|
|
public:
|
|
// Methods
|
|
void clear();
|
|
bool is_empty() const { return (nullptr == bvh_root); }
|
|
void optimize_bottom_up();
|
|
void optimize_top_down(int bu_threshold = 128);
|
|
void optimize_incremental(int passes);
|
|
ID insert(const AABB &p_box, void *p_userdata);
|
|
bool update(const ID &p_id, const AABB &p_box);
|
|
void remove(const ID &p_id);
|
|
void get_elements(List<ID> *r_elements);
|
|
|
|
int get_leaf_count() const;
|
|
int get_max_depth() const;
|
|
|
|
/* Discouraged, but works as a reference on how it must be used */
|
|
struct DefaultQueryResult {
|
|
virtual bool operator()(void *p_data) = 0; //return true whether you want to continue the query
|
|
virtual ~DefaultQueryResult() {}
|
|
};
|
|
|
|
template <class QueryResult>
|
|
_FORCE_INLINE_ void aabb_query(const AABB &p_aabb, QueryResult &r_result);
|
|
template <class QueryResult>
|
|
_FORCE_INLINE_ void convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result);
|
|
template <class QueryResult>
|
|
_FORCE_INLINE_ void ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result);
|
|
|
|
void set_index(uint32_t p_index);
|
|
uint32_t get_index() const;
|
|
|
|
~DynamicBVH();
|
|
};
|
|
|
|
template <class QueryResult>
|
|
void DynamicBVH::aabb_query(const AABB &p_box, QueryResult &r_result) {
|
|
if (!bvh_root) {
|
|
return;
|
|
}
|
|
|
|
Volume volume;
|
|
volume.min = p_box.position;
|
|
volume.max = p_box.position + p_box.size;
|
|
|
|
const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
|
|
stack[0] = bvh_root;
|
|
int32_t depth = 1;
|
|
int32_t threshold = ALLOCA_STACK_SIZE - 2;
|
|
|
|
LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.
|
|
|
|
do {
|
|
depth--;
|
|
const Node *n = stack[depth];
|
|
if (n->volume.intersects(volume)) {
|
|
if (n->is_internal()) {
|
|
if (depth > threshold) {
|
|
if (aux_stack.is_empty()) {
|
|
aux_stack.resize(ALLOCA_STACK_SIZE * 2);
|
|
memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
|
|
} else {
|
|
aux_stack.resize(aux_stack.size() * 2);
|
|
}
|
|
stack = aux_stack.ptr();
|
|
threshold = aux_stack.size() - 2;
|
|
}
|
|
stack[depth++] = n->children[0];
|
|
stack[depth++] = n->children[1];
|
|
} else {
|
|
if (r_result(n->data)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} while (depth > 0);
|
|
}
|
|
|
|
template <class QueryResult>
|
|
void DynamicBVH::convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result) {
|
|
if (!bvh_root) {
|
|
return;
|
|
}
|
|
|
|
//generate a volume anyway to improve pre-testing
|
|
Volume volume;
|
|
for (int i = 0; i < p_point_count; i++) {
|
|
if (i == 0) {
|
|
volume.min = p_points[0];
|
|
volume.max = p_points[0];
|
|
} else {
|
|
volume.min.x = MIN(volume.min.x, p_points[i].x);
|
|
volume.min.y = MIN(volume.min.y, p_points[i].y);
|
|
volume.min.z = MIN(volume.min.z, p_points[i].z);
|
|
|
|
volume.max.x = MAX(volume.max.x, p_points[i].x);
|
|
volume.max.y = MAX(volume.max.y, p_points[i].y);
|
|
volume.max.z = MAX(volume.max.z, p_points[i].z);
|
|
}
|
|
}
|
|
|
|
const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
|
|
stack[0] = bvh_root;
|
|
int32_t depth = 1;
|
|
int32_t threshold = ALLOCA_STACK_SIZE - 2;
|
|
|
|
LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.
|
|
|
|
do {
|
|
depth--;
|
|
const Node *n = stack[depth];
|
|
if (n->volume.intersects(volume) && n->volume.intersects_convex(p_planes, p_plane_count, p_points, p_point_count)) {
|
|
if (n->is_internal()) {
|
|
if (depth > threshold) {
|
|
if (aux_stack.is_empty()) {
|
|
aux_stack.resize(ALLOCA_STACK_SIZE * 2);
|
|
memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
|
|
} else {
|
|
aux_stack.resize(aux_stack.size() * 2);
|
|
}
|
|
stack = aux_stack.ptr();
|
|
threshold = aux_stack.size() - 2;
|
|
}
|
|
stack[depth++] = n->children[0];
|
|
stack[depth++] = n->children[1];
|
|
} else {
|
|
if (r_result(n->data)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} while (depth > 0);
|
|
}
|
|
template <class QueryResult>
|
|
void DynamicBVH::ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result) {
|
|
if (!bvh_root) {
|
|
return;
|
|
}
|
|
|
|
Vector3 ray_dir = (p_to - p_from);
|
|
ray_dir.normalize();
|
|
|
|
///what about division by zero? --> just set rayDirection[i] to INF/B3_LARGE_FLOAT
|
|
Vector3 inv_dir;
|
|
inv_dir[0] = ray_dir[0] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[0];
|
|
inv_dir[1] = ray_dir[1] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[1];
|
|
inv_dir[2] = ray_dir[2] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[2];
|
|
unsigned int signs[3] = { inv_dir[0] < 0.0, inv_dir[1] < 0.0, inv_dir[2] < 0.0 };
|
|
|
|
real_t lambda_max = ray_dir.dot(p_to - p_from);
|
|
|
|
Vector3 bounds[2];
|
|
|
|
const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
|
|
stack[0] = bvh_root;
|
|
int32_t depth = 1;
|
|
int32_t threshold = ALLOCA_STACK_SIZE - 2;
|
|
|
|
LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.
|
|
|
|
do {
|
|
depth--;
|
|
const Node *node = stack[depth];
|
|
bounds[0] = node->volume.min;
|
|
bounds[1] = node->volume.max;
|
|
real_t tmin = 1.f, lambda_min = 0.f;
|
|
unsigned int result1 = false;
|
|
result1 = _ray_aabb(p_from, inv_dir, signs, bounds, tmin, lambda_min, lambda_max);
|
|
if (result1) {
|
|
if (node->is_internal()) {
|
|
if (depth > threshold) {
|
|
if (aux_stack.is_empty()) {
|
|
aux_stack.resize(ALLOCA_STACK_SIZE * 2);
|
|
memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
|
|
} else {
|
|
aux_stack.resize(aux_stack.size() * 2);
|
|
}
|
|
stack = aux_stack.ptr();
|
|
threshold = aux_stack.size() - 2;
|
|
}
|
|
stack[depth++] = node->children[0];
|
|
stack[depth++] = node->children[1];
|
|
} else {
|
|
if (r_result(node->data)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} while (depth > 0);
|
|
}
|
|
|
|
#endif // DYNAMIC_BVH_H
|