godot/servers/physics/body_sw.cpp
Juan Linietsky b324ff7ea5 A bit of everything:
-IMA-ADPCM support for samples, this means that sound effects can be compressed and use 4 timess less RAM.
-New 3D import workflow based on Wavefront OBJ. Import single objects as mesh resources instead of full scenes. Many people prefers to work this way. Just like the rest of the imported resources, these are updated in realtime if modified externally.
-Mesh resources now support naming surfaces. This helps reimporting to identify which user-created materials must be kept.
-Several fixes and improvements to SurfaceTool.
-Anti Aliasing added to WorldEnvironment effects (using FXAA)
-2D Physics bodies (RigidBody, KinematicBody, etc), Raycasts, Tilemap, etc support collision layers. This makes easy to group which objects collide against which.
-2D Trigger shapes can now also trigger collision reporting in other 2D bodies (it used to be in Area2D before)
-Viewport render target textures can now be filtered.
-Few fixes in GDscript make it easier to work with static functions and class members.
-Several and many bugfixes.
2014-05-14 01:22:15 -03:00

658 lines
15 KiB
C++

/*************************************************************************/
/* body_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_sw.h"
#include "space_sw.h"
#include "area_sw.h"
void BodySW::_update_inertia() {
if (get_space() && !inertia_update_list.in_list())
get_space()->body_add_to_inertia_update_list(&inertia_update_list);
}
void BodySW::_update_inertia_tensor() {
Matrix3 tb = get_transform().basis;
tb.scale(_inv_inertia);
_inv_inertia_tensor = tb * get_transform().basis.transposed();
}
void BodySW::update_inertias() {
//update shapes and motions
switch(mode) {
case PhysicsServer::BODY_MODE_RIGID: {
//update tensor for allshapes, not the best way but should be somehow OK. (inspired from bullet)
float total_area=0;
for (int i=0;i<get_shape_count();i++) {
total_area+=get_shape_aabb(i).get_area();
}
Vector3 _inertia;
for (int i=0;i<get_shape_count();i++) {
const ShapeSW* shape=get_shape(i);
float area=get_shape_aabb(i).get_area();
float mass = area * this->mass / total_area;
_inertia += shape->get_moment_of_inertia(mass) + mass * get_shape_transform(i).get_origin();
}
if (_inertia!=Vector3())
_inv_inertia=_inertia.inverse();
else
_inv_inertia=Vector3();
if (mass)
_inv_mass=1.0/mass;
else
_inv_mass=0;
} break;
case PhysicsServer::BODY_MODE_KINEMATIC:
case PhysicsServer::BODY_MODE_STATIC: {
_inv_inertia=Vector3();
_inv_mass=0;
} break;
case PhysicsServer::BODY_MODE_CHARACTER: {
_inv_inertia=Vector3();
_inv_mass=1.0/mass;
} break;
}
_update_inertia_tensor();
//_update_shapes();
}
void BodySW::set_active(bool p_active) {
if (active==p_active)
return;
active=p_active;
if (!p_active) {
if (get_space())
get_space()->body_remove_from_active_list(&active_list);
} else {
if (mode==PhysicsServer::BODY_MODE_STATIC)
return; //static bodies can't become active
if (get_space())
get_space()->body_add_to_active_list(&active_list);
//still_time=0;
}
/*
if (!space)
return;
for(int i=0;i<get_shape_count();i++) {
Shape &s=shapes[i];
if (s.bpid>0) {
get_space()->get_broadphase()->set_active(s.bpid,active);
}
}
*/
}
void BodySW::set_param(PhysicsServer::BodyParameter p_param, float p_value) {
switch(p_param) {
case PhysicsServer::BODY_PARAM_BOUNCE: {
bounce=p_value;
} break;
case PhysicsServer::BODY_PARAM_FRICTION: {
friction=p_value;
} break;
case PhysicsServer::BODY_PARAM_MASS: {
ERR_FAIL_COND(p_value<=0);
mass=p_value;
_update_inertia();
} break;
default:{}
}
}
float BodySW::get_param(PhysicsServer::BodyParameter p_param) const {
switch(p_param) {
case PhysicsServer::BODY_PARAM_BOUNCE: {
return bounce;
} break;
case PhysicsServer::BODY_PARAM_FRICTION: {
return friction;
} break;
case PhysicsServer::BODY_PARAM_MASS: {
return mass;
} break;
default:{}
}
return 0;
}
void BodySW::set_mode(PhysicsServer::BodyMode p_mode) {
mode=p_mode;
switch(p_mode) {
//CLEAR UP EVERYTHING IN CASE IT NOT WORKS!
case PhysicsServer::BODY_MODE_STATIC:
case PhysicsServer::BODY_MODE_KINEMATIC: {
_set_inv_transform(get_transform().affine_inverse());
_inv_mass=0;
_set_static(p_mode==PhysicsServer::BODY_MODE_STATIC);
set_active(p_mode==PhysicsServer::BODY_MODE_KINEMATIC);
linear_velocity=Vector3();
angular_velocity=Vector3();
} break;
case PhysicsServer::BODY_MODE_RIGID: {
_inv_mass=mass>0?(1.0/mass):0;
_set_static(false);
simulated_motion=false; //jic
} break;
case PhysicsServer::BODY_MODE_CHARACTER: {
_inv_mass=mass>0?(1.0/mass):0;
_set_static(false);
simulated_motion=false; //jic
} break;
}
_update_inertia();
//if (get_space())
// _update_queries();
}
PhysicsServer::BodyMode BodySW::get_mode() const {
return mode;
}
void BodySW::_shapes_changed() {
_update_inertia();
}
void BodySW::set_state(PhysicsServer::BodyState p_state, const Variant& p_variant) {
switch(p_state) {
case PhysicsServer::BODY_STATE_TRANSFORM: {
if (mode==PhysicsServer::BODY_MODE_STATIC || mode==PhysicsServer::BODY_MODE_KINEMATIC) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
wakeup_neighbours();
} else {
Transform t = p_variant;
t.orthonormalize();
_set_transform(t);
_set_inv_transform(get_transform().inverse());
}
} break;
case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: {
//if (mode==PhysicsServer::BODY_MODE_STATIC)
// break;
linear_velocity=p_variant;
} break;
case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: {
//if (mode!=PhysicsServer::BODY_MODE_RIGID)
// break;
angular_velocity=p_variant;
} break;
case PhysicsServer::BODY_STATE_SLEEPING: {
//?
if (mode==PhysicsServer::BODY_MODE_STATIC || mode==PhysicsServer::BODY_MODE_KINEMATIC)
break;
bool do_sleep=p_variant;
if (do_sleep) {
linear_velocity=Vector3();
//biased_linear_velocity=Vector3();
angular_velocity=Vector3();
//biased_angular_velocity=Vector3();
set_active(false);
} else {
if (mode!=PhysicsServer::BODY_MODE_STATIC)
set_active(true);
}
} break;
case PhysicsServer::BODY_STATE_CAN_SLEEP: {
can_sleep=p_variant;
if (mode==PhysicsServer::BODY_MODE_RIGID && !active && !can_sleep)
set_active(true);
} break;
}
}
Variant BodySW::get_state(PhysicsServer::BodyState p_state) const {
switch(p_state) {
case PhysicsServer::BODY_STATE_TRANSFORM: {
return get_transform();
} break;
case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: {
return linear_velocity;
} break;
case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: {
return angular_velocity;
} break;
case PhysicsServer::BODY_STATE_SLEEPING: {
return !is_active();
} break;
case PhysicsServer::BODY_STATE_CAN_SLEEP: {
return can_sleep;
} break;
}
return Variant();
}
void BodySW::set_space(SpaceSW *p_space){
if (get_space()) {
if (inertia_update_list.in_list())
get_space()->body_remove_from_inertia_update_list(&inertia_update_list);
if (active_list.in_list())
get_space()->body_remove_from_active_list(&active_list);
if (direct_state_query_list.in_list())
get_space()->body_remove_from_state_query_list(&direct_state_query_list);
}
_set_space(p_space);
if (get_space()) {
_update_inertia();
if (active)
get_space()->body_add_to_active_list(&active_list);
// _update_queries();
//if (is_active()) {
// active=false;
// set_active(true);
//}
}
}
void BodySW::_compute_area_gravity(const AreaSW *p_area) {
if (p_area->is_gravity_point()) {
gravity = (p_area->get_gravity_vector() - get_transform().get_origin()).normalized() * p_area->get_gravity();
} else {
gravity = p_area->get_gravity_vector() * p_area->get_gravity();
}
}
void BodySW::integrate_forces(real_t p_step) {
if (mode==PhysicsServer::BODY_MODE_STATIC || mode==PhysicsServer::BODY_MODE_KINEMATIC)
return;
AreaSW *current_area = get_space()->get_default_area();
ERR_FAIL_COND(!current_area);
int prio = current_area->get_priority();
int ac = areas.size();
if (ac) {
const AreaCMP *aa = &areas[0];
for(int i=0;i<ac;i++) {
if (aa[i].area->get_priority() > prio) {
current_area=aa[i].area;
prio=current_area->get_priority();
}
}
}
_compute_area_gravity(current_area);
density=current_area->get_density();
if (!omit_force_integration) {
//overriden by direct state query
Vector3 force=gravity*mass;
force+=applied_force;
Vector3 torque=applied_torque;
real_t damp = 1.0 - p_step * density;
if (damp<0) // reached zero in the given time
damp=0;
real_t angular_damp = 1.0 - p_step * density * get_space()->get_body_angular_velocity_damp_ratio();
if (angular_damp<0) // reached zero in the given time
angular_damp=0;
linear_velocity*=damp;
angular_velocity*=angular_damp;
linear_velocity+=_inv_mass * force * p_step;
angular_velocity+=_inv_inertia_tensor.xform(torque)*p_step;
}
applied_force=Vector3();
applied_torque=Vector3();
//motion=linear_velocity*p_step;
biased_angular_velocity=Vector3();
biased_linear_velocity=Vector3();
if (continuous_cd) //shapes temporarily extend for raycast
_update_shapes_with_motion(linear_velocity*p_step);
current_area=NULL; // clear the area, so it is set in the next frame
contact_count=0;
}
void BodySW::integrate_velocities(real_t p_step) {
if (mode==PhysicsServer::BODY_MODE_STATIC)
return;
if (mode==PhysicsServer::BODY_MODE_KINEMATIC) {
if (fi_callback)
get_space()->body_add_to_state_query_list(&direct_state_query_list);
return;
}
//apply axis lock
if (axis_lock!=PhysicsServer::BODY_AXIS_LOCK_DISABLED) {
int axis=axis_lock-1;
for(int i=0;i<3;i++) {
if (i==axis) {
linear_velocity[i]=0;
biased_linear_velocity[i]=0;
} else {
angular_velocity[i]=0;
biased_angular_velocity[i]=0;
}
}
}
Vector3 total_angular_velocity = angular_velocity+biased_angular_velocity;
float ang_vel = total_angular_velocity.length();
Transform transform = get_transform();
if (ang_vel!=0.0) {
Vector3 ang_vel_axis = total_angular_velocity / ang_vel;
Matrix3 rot( ang_vel_axis, -ang_vel*p_step );
transform.basis = rot * transform.basis;
transform.orthonormalize();
}
Vector3 total_linear_velocity=linear_velocity+biased_linear_velocity;
/*for(int i=0;i<3;i++) {
if (axis_lock&(1<<i)) {
transform.origin[i]=0.0;
}
}*/
transform.origin+=total_linear_velocity * p_step;
_set_transform(transform);
_set_inv_transform(get_transform().inverse());
_update_inertia_tensor();
if (fi_callback) {
get_space()->body_add_to_state_query_list(&direct_state_query_list);
}
}
void BodySW::simulate_motion(const Transform& p_xform,real_t p_step) {
Transform inv_xform = p_xform.affine_inverse();
if (!get_space()) {
_set_transform(p_xform);
_set_inv_transform(inv_xform);
return;
}
//compute a FAKE linear velocity - this is easy
linear_velocity=(p_xform.origin - get_transform().origin)/p_step;
//compute a FAKE angular velocity, not so easy
Matrix3 rot=get_transform().basis.orthonormalized().transposed() * p_xform.basis.orthonormalized();
Vector3 axis;
float angle;
rot.get_axis_and_angle(axis,angle);
axis.normalize();
angular_velocity=axis.normalized() * (angle/p_step);
linear_velocity = (p_xform.origin - get_transform().origin)/p_step;
if (!direct_state_query_list.in_list())// - callalways, so lv and av are cleared && (state_query || direct_state_query))
get_space()->body_add_to_state_query_list(&direct_state_query_list);
simulated_motion=true;
_set_transform(p_xform);
}
void BodySW::wakeup_neighbours() {
for(Map<ConstraintSW*,int>::Element *E=constraint_map.front();E;E=E->next()) {
const ConstraintSW *c=E->key();
BodySW **n = c->get_body_ptr();
int bc=c->get_body_count();
for(int i=0;i<bc;i++) {
if (i==E->get())
continue;
BodySW *b = n[i];
if (b->mode!=PhysicsServer::BODY_MODE_RIGID)
continue;
if (!b->is_active())
b->set_active(true);
}
}
}
void BodySW::call_queries() {
if (fi_callback) {
PhysicsDirectBodyStateSW *dbs = PhysicsDirectBodyStateSW::singleton;
dbs->body=this;
Variant v=dbs;
Object *obj = ObjectDB::get_instance(fi_callback->id);
if (!obj) {
set_force_integration_callback(0,StringName());
} else {
const Variant *vp[2]={&v,&fi_callback->udata};
Variant::CallError ce;
int argc=(fi_callback->udata.get_type()==Variant::NIL)?1:2;
obj->call(fi_callback->method,vp,argc,ce);
}
}
if (simulated_motion) {
// linear_velocity=Vector3();
// angular_velocity=0;
simulated_motion=false;
}
}
bool BodySW::sleep_test(real_t p_step) {
if (mode==PhysicsServer::BODY_MODE_STATIC || mode==PhysicsServer::BODY_MODE_KINEMATIC)
return true; //
else if (mode==PhysicsServer::BODY_MODE_CHARACTER)
return !active; // characters don't sleep unless asked to sleep
else if (!can_sleep)
return false;
if (Math::abs(angular_velocity.length())<get_space()->get_body_angular_velocity_sleep_treshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_treshold()*get_space()->get_body_linear_velocity_sleep_treshold()) {
still_time+=p_step;
return still_time > get_space()->get_body_time_to_sleep();
} else {
still_time=0; //maybe this should be set to 0 on set_active?
return false;
}
}
void BodySW::set_force_integration_callback(ObjectID p_id,const StringName& p_method,const Variant& p_udata) {
if (fi_callback) {
memdelete(fi_callback);
fi_callback=NULL;
}
if (p_id!=0) {
fi_callback=memnew(ForceIntegrationCallback);
fi_callback->id=p_id;
fi_callback->method=p_method;
fi_callback->udata=p_udata;
}
}
BodySW::BodySW() : CollisionObjectSW(TYPE_BODY), active_list(this), inertia_update_list(this), direct_state_query_list(this) {
mode=PhysicsServer::BODY_MODE_RIGID;
active=true;
mass=1;
// _inv_inertia=Transform();
_inv_mass=1;
bounce=0;
friction=1;
omit_force_integration=false;
// applied_torque=0;
island_step=0;
island_next=NULL;
island_list_next=NULL;
_set_static(false);
density=0;
contact_count=0;
simulated_motion=false;
still_time=0;
continuous_cd=false;
can_sleep=false;
fi_callback=NULL;
axis_lock=PhysicsServer::BODY_AXIS_LOCK_DISABLED;
}
BodySW::~BodySW() {
if (fi_callback)
memdelete(fi_callback);
}
PhysicsDirectBodyStateSW *PhysicsDirectBodyStateSW::singleton=NULL;
PhysicsDirectSpaceState* PhysicsDirectBodyStateSW::get_space_state() {
return body->get_space()->get_direct_state();
}