mirror of
https://github.com/godotengine/godot.git
synced 2025-01-24 21:01:50 +08:00
04a530f91f
Fix thread-use causing navigation source geometry data corruption
1007 lines
42 KiB
C++
1007 lines
42 KiB
C++
/**************************************************************************/
|
|
/* nav_mesh_generator_3d.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef _3D_DISABLED
|
|
|
|
#include "nav_mesh_generator_3d.h"
|
|
|
|
#include "core/config/project_settings.h"
|
|
#include "core/math/convex_hull.h"
|
|
#include "core/os/thread.h"
|
|
#include "scene/3d/mesh_instance_3d.h"
|
|
#include "scene/3d/multimesh_instance_3d.h"
|
|
#include "scene/3d/navigation_obstacle_3d.h"
|
|
#include "scene/3d/physics/static_body_3d.h"
|
|
#include "scene/resources/3d/box_shape_3d.h"
|
|
#include "scene/resources/3d/capsule_shape_3d.h"
|
|
#include "scene/resources/3d/concave_polygon_shape_3d.h"
|
|
#include "scene/resources/3d/convex_polygon_shape_3d.h"
|
|
#include "scene/resources/3d/cylinder_shape_3d.h"
|
|
#include "scene/resources/3d/height_map_shape_3d.h"
|
|
#include "scene/resources/3d/navigation_mesh_source_geometry_data_3d.h"
|
|
#include "scene/resources/3d/primitive_meshes.h"
|
|
#include "scene/resources/3d/shape_3d.h"
|
|
#include "scene/resources/3d/sphere_shape_3d.h"
|
|
#include "scene/resources/3d/world_boundary_shape_3d.h"
|
|
#include "scene/resources/navigation_mesh.h"
|
|
|
|
#include "modules/modules_enabled.gen.h" // For csg, gridmap.
|
|
|
|
#ifdef MODULE_CSG_ENABLED
|
|
#include "modules/csg/csg_shape.h"
|
|
#endif
|
|
#ifdef MODULE_GRIDMAP_ENABLED
|
|
#include "modules/gridmap/grid_map.h"
|
|
#endif
|
|
|
|
#include <Recast.h>
|
|
|
|
NavMeshGenerator3D *NavMeshGenerator3D::singleton = nullptr;
|
|
Mutex NavMeshGenerator3D::baking_navmesh_mutex;
|
|
Mutex NavMeshGenerator3D::generator_task_mutex;
|
|
RWLock NavMeshGenerator3D::generator_rid_rwlock;
|
|
bool NavMeshGenerator3D::use_threads = true;
|
|
bool NavMeshGenerator3D::baking_use_multiple_threads = true;
|
|
bool NavMeshGenerator3D::baking_use_high_priority_threads = true;
|
|
HashSet<Ref<NavigationMesh>> NavMeshGenerator3D::baking_navmeshes;
|
|
HashMap<WorkerThreadPool::TaskID, NavMeshGenerator3D::NavMeshGeneratorTask3D *> NavMeshGenerator3D::generator_tasks;
|
|
RID_Owner<NavMeshGenerator3D::NavMeshGeometryParser3D> NavMeshGenerator3D::generator_parser_owner;
|
|
LocalVector<NavMeshGenerator3D::NavMeshGeometryParser3D *> NavMeshGenerator3D::generator_parsers;
|
|
|
|
NavMeshGenerator3D *NavMeshGenerator3D::get_singleton() {
|
|
return singleton;
|
|
}
|
|
|
|
NavMeshGenerator3D::NavMeshGenerator3D() {
|
|
ERR_FAIL_COND(singleton != nullptr);
|
|
singleton = this;
|
|
|
|
baking_use_multiple_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_multiple_threads");
|
|
baking_use_high_priority_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_high_priority_threads");
|
|
|
|
// Using threads might cause problems on certain exports or with the Editor on certain devices.
|
|
// This is the main switch to turn threaded navmesh baking off should the need arise.
|
|
use_threads = baking_use_multiple_threads;
|
|
}
|
|
|
|
NavMeshGenerator3D::~NavMeshGenerator3D() {
|
|
cleanup();
|
|
}
|
|
|
|
void NavMeshGenerator3D::sync() {
|
|
if (generator_tasks.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
baking_navmesh_mutex.lock();
|
|
generator_task_mutex.lock();
|
|
|
|
LocalVector<WorkerThreadPool::TaskID> finished_task_ids;
|
|
|
|
for (KeyValue<WorkerThreadPool::TaskID, NavMeshGeneratorTask3D *> &E : generator_tasks) {
|
|
if (WorkerThreadPool::get_singleton()->is_task_completed(E.key)) {
|
|
WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key);
|
|
finished_task_ids.push_back(E.key);
|
|
|
|
NavMeshGeneratorTask3D *generator_task = E.value;
|
|
DEV_ASSERT(generator_task->status == NavMeshGeneratorTask3D::TaskStatus::BAKING_FINISHED);
|
|
|
|
baking_navmeshes.erase(generator_task->navigation_mesh);
|
|
if (generator_task->callback.is_valid()) {
|
|
generator_emit_callback(generator_task->callback);
|
|
}
|
|
memdelete(generator_task);
|
|
}
|
|
}
|
|
|
|
for (WorkerThreadPool::TaskID finished_task_id : finished_task_ids) {
|
|
generator_tasks.erase(finished_task_id);
|
|
}
|
|
|
|
generator_task_mutex.unlock();
|
|
baking_navmesh_mutex.unlock();
|
|
}
|
|
|
|
void NavMeshGenerator3D::cleanup() {
|
|
baking_navmesh_mutex.lock();
|
|
generator_task_mutex.lock();
|
|
|
|
baking_navmeshes.clear();
|
|
|
|
for (KeyValue<WorkerThreadPool::TaskID, NavMeshGeneratorTask3D *> &E : generator_tasks) {
|
|
WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key);
|
|
NavMeshGeneratorTask3D *generator_task = E.value;
|
|
memdelete(generator_task);
|
|
}
|
|
generator_tasks.clear();
|
|
|
|
generator_rid_rwlock.write_lock();
|
|
for (NavMeshGeometryParser3D *parser : generator_parsers) {
|
|
generator_parser_owner.free(parser->self);
|
|
}
|
|
generator_parsers.clear();
|
|
generator_rid_rwlock.write_unlock();
|
|
|
|
generator_task_mutex.unlock();
|
|
baking_navmesh_mutex.unlock();
|
|
}
|
|
|
|
void NavMeshGenerator3D::finish() {
|
|
cleanup();
|
|
}
|
|
|
|
void NavMeshGenerator3D::parse_source_geometry_data(Ref<NavigationMesh> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_root_node, const Callable &p_callback) {
|
|
ERR_FAIL_COND(!Thread::is_main_thread());
|
|
ERR_FAIL_COND(!p_navigation_mesh.is_valid());
|
|
ERR_FAIL_NULL(p_root_node);
|
|
ERR_FAIL_COND(!p_root_node->is_inside_tree());
|
|
ERR_FAIL_COND(!p_source_geometry_data.is_valid());
|
|
|
|
generator_parse_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_root_node);
|
|
|
|
if (p_callback.is_valid()) {
|
|
generator_emit_callback(p_callback);
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator3D::bake_from_source_geometry_data(Ref<NavigationMesh> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, const Callable &p_callback) {
|
|
ERR_FAIL_COND(!p_navigation_mesh.is_valid());
|
|
ERR_FAIL_COND(!p_source_geometry_data.is_valid());
|
|
|
|
if (!p_source_geometry_data->has_data()) {
|
|
p_navigation_mesh->clear();
|
|
if (p_callback.is_valid()) {
|
|
generator_emit_callback(p_callback);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (is_baking(p_navigation_mesh)) {
|
|
ERR_FAIL_MSG("NavigationMesh is already baking. Wait for current bake to finish.");
|
|
}
|
|
baking_navmesh_mutex.lock();
|
|
baking_navmeshes.insert(p_navigation_mesh);
|
|
baking_navmesh_mutex.unlock();
|
|
|
|
generator_bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data);
|
|
|
|
baking_navmesh_mutex.lock();
|
|
baking_navmeshes.erase(p_navigation_mesh);
|
|
baking_navmesh_mutex.unlock();
|
|
|
|
if (p_callback.is_valid()) {
|
|
generator_emit_callback(p_callback);
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator3D::bake_from_source_geometry_data_async(Ref<NavigationMesh> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, const Callable &p_callback) {
|
|
ERR_FAIL_COND(!p_navigation_mesh.is_valid());
|
|
ERR_FAIL_COND(!p_source_geometry_data.is_valid());
|
|
|
|
if (!p_source_geometry_data->has_data()) {
|
|
p_navigation_mesh->clear();
|
|
if (p_callback.is_valid()) {
|
|
generator_emit_callback(p_callback);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!use_threads) {
|
|
bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_callback);
|
|
return;
|
|
}
|
|
|
|
if (is_baking(p_navigation_mesh)) {
|
|
ERR_FAIL_MSG("NavigationMesh is already baking. Wait for current bake to finish.");
|
|
return;
|
|
}
|
|
baking_navmesh_mutex.lock();
|
|
baking_navmeshes.insert(p_navigation_mesh);
|
|
baking_navmesh_mutex.unlock();
|
|
|
|
generator_task_mutex.lock();
|
|
NavMeshGeneratorTask3D *generator_task = memnew(NavMeshGeneratorTask3D);
|
|
generator_task->navigation_mesh = p_navigation_mesh;
|
|
generator_task->source_geometry_data = p_source_geometry_data;
|
|
generator_task->callback = p_callback;
|
|
generator_task->status = NavMeshGeneratorTask3D::TaskStatus::BAKING_STARTED;
|
|
generator_task->thread_task_id = WorkerThreadPool::get_singleton()->add_native_task(&NavMeshGenerator3D::generator_thread_bake, generator_task, NavMeshGenerator3D::baking_use_high_priority_threads, SNAME("NavMeshGeneratorBake3D"));
|
|
generator_tasks.insert(generator_task->thread_task_id, generator_task);
|
|
generator_task_mutex.unlock();
|
|
}
|
|
|
|
bool NavMeshGenerator3D::is_baking(Ref<NavigationMesh> p_navigation_mesh) {
|
|
baking_navmesh_mutex.lock();
|
|
bool baking = baking_navmeshes.has(p_navigation_mesh);
|
|
baking_navmesh_mutex.unlock();
|
|
return baking;
|
|
}
|
|
|
|
void NavMeshGenerator3D::generator_thread_bake(void *p_arg) {
|
|
NavMeshGeneratorTask3D *generator_task = static_cast<NavMeshGeneratorTask3D *>(p_arg);
|
|
|
|
generator_bake_from_source_geometry_data(generator_task->navigation_mesh, generator_task->source_geometry_data);
|
|
|
|
generator_task->status = NavMeshGeneratorTask3D::TaskStatus::BAKING_FINISHED;
|
|
}
|
|
|
|
void NavMeshGenerator3D::generator_parse_geometry_node(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_node, bool p_recurse_children) {
|
|
generator_parse_meshinstance3d_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
generator_parse_multimeshinstance3d_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
generator_parse_staticbody3d_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
#ifdef MODULE_CSG_ENABLED
|
|
generator_parse_csgshape3d_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
#endif
|
|
#ifdef MODULE_GRIDMAP_ENABLED
|
|
generator_parse_gridmap_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
#endif
|
|
generator_parse_navigationobstacle_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
|
|
generator_rid_rwlock.read_lock();
|
|
for (const NavMeshGeometryParser3D *parser : generator_parsers) {
|
|
if (!parser->callback.is_valid()) {
|
|
continue;
|
|
}
|
|
parser->callback.call(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
}
|
|
generator_rid_rwlock.read_unlock();
|
|
|
|
if (p_recurse_children) {
|
|
for (int i = 0; i < p_node->get_child_count(); i++) {
|
|
generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, p_node->get_child(i), p_recurse_children);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator3D::generator_parse_meshinstance3d_node(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_node) {
|
|
MeshInstance3D *mesh_instance = Object::cast_to<MeshInstance3D>(p_node);
|
|
|
|
if (mesh_instance) {
|
|
NavigationMesh::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
|
|
if (parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_BOTH) {
|
|
Ref<Mesh> mesh = mesh_instance->get_mesh();
|
|
if (mesh.is_valid()) {
|
|
p_source_geometry_data->add_mesh(mesh, mesh_instance->get_global_transform());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator3D::generator_parse_multimeshinstance3d_node(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_node) {
|
|
MultiMeshInstance3D *multimesh_instance = Object::cast_to<MultiMeshInstance3D>(p_node);
|
|
|
|
if (multimesh_instance) {
|
|
NavigationMesh::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
|
|
if (parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_BOTH) {
|
|
Ref<MultiMesh> multimesh = multimesh_instance->get_multimesh();
|
|
if (multimesh.is_valid()) {
|
|
Ref<Mesh> mesh = multimesh->get_mesh();
|
|
if (mesh.is_valid()) {
|
|
int n = multimesh->get_visible_instance_count();
|
|
if (n == -1) {
|
|
n = multimesh->get_instance_count();
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
p_source_geometry_data->add_mesh(mesh, multimesh_instance->get_global_transform() * multimesh->get_instance_transform(i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator3D::generator_parse_staticbody3d_node(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_node) {
|
|
StaticBody3D *static_body = Object::cast_to<StaticBody3D>(p_node);
|
|
|
|
if (static_body) {
|
|
NavigationMesh::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
uint32_t parsed_collision_mask = p_navigation_mesh->get_collision_mask();
|
|
|
|
if ((parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS || parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_BOTH) && (static_body->get_collision_layer() & parsed_collision_mask)) {
|
|
List<uint32_t> shape_owners;
|
|
static_body->get_shape_owners(&shape_owners);
|
|
for (uint32_t shape_owner : shape_owners) {
|
|
if (static_body->is_shape_owner_disabled(shape_owner)) {
|
|
continue;
|
|
}
|
|
const int shape_count = static_body->shape_owner_get_shape_count(shape_owner);
|
|
for (int shape_index = 0; shape_index < shape_count; shape_index++) {
|
|
Ref<Shape3D> s = static_body->shape_owner_get_shape(shape_owner, shape_index);
|
|
if (s.is_null()) {
|
|
continue;
|
|
}
|
|
|
|
const Transform3D transform = static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner);
|
|
|
|
BoxShape3D *box = Object::cast_to<BoxShape3D>(*s);
|
|
if (box) {
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
BoxMesh::create_mesh_array(arr, box->get_size());
|
|
p_source_geometry_data->add_mesh_array(arr, transform);
|
|
}
|
|
|
|
CapsuleShape3D *capsule = Object::cast_to<CapsuleShape3D>(*s);
|
|
if (capsule) {
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
CapsuleMesh::create_mesh_array(arr, capsule->get_radius(), capsule->get_height());
|
|
p_source_geometry_data->add_mesh_array(arr, transform);
|
|
}
|
|
|
|
CylinderShape3D *cylinder = Object::cast_to<CylinderShape3D>(*s);
|
|
if (cylinder) {
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
CylinderMesh::create_mesh_array(arr, cylinder->get_radius(), cylinder->get_radius(), cylinder->get_height());
|
|
p_source_geometry_data->add_mesh_array(arr, transform);
|
|
}
|
|
|
|
SphereShape3D *sphere = Object::cast_to<SphereShape3D>(*s);
|
|
if (sphere) {
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
SphereMesh::create_mesh_array(arr, sphere->get_radius(), sphere->get_radius() * 2.0);
|
|
p_source_geometry_data->add_mesh_array(arr, transform);
|
|
}
|
|
|
|
ConcavePolygonShape3D *concave_polygon = Object::cast_to<ConcavePolygonShape3D>(*s);
|
|
if (concave_polygon) {
|
|
p_source_geometry_data->add_faces(concave_polygon->get_faces(), transform);
|
|
}
|
|
|
|
ConvexPolygonShape3D *convex_polygon = Object::cast_to<ConvexPolygonShape3D>(*s);
|
|
if (convex_polygon) {
|
|
Vector<Vector3> varr = Variant(convex_polygon->get_points());
|
|
Geometry3D::MeshData md;
|
|
|
|
Error err = ConvexHullComputer::convex_hull(varr, md);
|
|
|
|
if (err == OK) {
|
|
PackedVector3Array faces;
|
|
|
|
for (const Geometry3D::MeshData::Face &face : md.faces) {
|
|
for (uint32_t k = 2; k < face.indices.size(); ++k) {
|
|
faces.push_back(md.vertices[face.indices[0]]);
|
|
faces.push_back(md.vertices[face.indices[k - 1]]);
|
|
faces.push_back(md.vertices[face.indices[k]]);
|
|
}
|
|
}
|
|
|
|
p_source_geometry_data->add_faces(faces, transform);
|
|
}
|
|
}
|
|
|
|
HeightMapShape3D *heightmap_shape = Object::cast_to<HeightMapShape3D>(*s);
|
|
if (heightmap_shape) {
|
|
int heightmap_depth = heightmap_shape->get_map_depth();
|
|
int heightmap_width = heightmap_shape->get_map_width();
|
|
|
|
if (heightmap_depth >= 2 && heightmap_width >= 2) {
|
|
const Vector<real_t> &map_data = heightmap_shape->get_map_data();
|
|
|
|
Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1);
|
|
Vector3 start = Vector3(heightmap_gridsize.x, 0, heightmap_gridsize.y) * -0.5;
|
|
|
|
Vector<Vector3> vertex_array;
|
|
vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6);
|
|
Vector3 *vertex_array_ptrw = vertex_array.ptrw();
|
|
const real_t *map_data_ptr = map_data.ptr();
|
|
int vertex_index = 0;
|
|
|
|
for (int d = 0; d < heightmap_depth - 1; d++) {
|
|
for (int w = 0; w < heightmap_width - 1; w++) {
|
|
vertex_array_ptrw[vertex_index] = start + Vector3(w, map_data_ptr[(heightmap_width * d) + w], d);
|
|
vertex_array_ptrw[vertex_index + 1] = start + Vector3(w + 1, map_data_ptr[(heightmap_width * d) + w + 1], d);
|
|
vertex_array_ptrw[vertex_index + 2] = start + Vector3(w, map_data_ptr[(heightmap_width * d) + heightmap_width + w], d + 1);
|
|
vertex_array_ptrw[vertex_index + 3] = start + Vector3(w + 1, map_data_ptr[(heightmap_width * d) + w + 1], d);
|
|
vertex_array_ptrw[vertex_index + 4] = start + Vector3(w + 1, map_data_ptr[(heightmap_width * d) + heightmap_width + w + 1], d + 1);
|
|
vertex_array_ptrw[vertex_index + 5] = start + Vector3(w, map_data_ptr[(heightmap_width * d) + heightmap_width + w], d + 1);
|
|
vertex_index += 6;
|
|
}
|
|
}
|
|
if (vertex_array.size() > 0) {
|
|
p_source_geometry_data->add_faces(vertex_array, transform);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MODULE_CSG_ENABLED
|
|
void NavMeshGenerator3D::generator_parse_csgshape3d_node(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_node) {
|
|
CSGShape3D *csgshape3d = Object::cast_to<CSGShape3D>(p_node);
|
|
|
|
if (csgshape3d) {
|
|
NavigationMesh::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
uint32_t parsed_collision_mask = p_navigation_mesh->get_collision_mask();
|
|
|
|
if (parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES || (parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS && csgshape3d->is_using_collision() && (csgshape3d->get_collision_layer() & parsed_collision_mask)) || parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_BOTH) {
|
|
CSGShape3D *csg_shape = Object::cast_to<CSGShape3D>(p_node);
|
|
Array meshes = csg_shape->get_meshes();
|
|
if (!meshes.is_empty()) {
|
|
Ref<Mesh> mesh = meshes[1];
|
|
if (mesh.is_valid()) {
|
|
p_source_geometry_data->add_mesh(mesh, csg_shape->get_global_transform());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // MODULE_CSG_ENABLED
|
|
|
|
#ifdef MODULE_GRIDMAP_ENABLED
|
|
void NavMeshGenerator3D::generator_parse_gridmap_node(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_node) {
|
|
GridMap *gridmap = Object::cast_to<GridMap>(p_node);
|
|
|
|
if (gridmap) {
|
|
NavigationMesh::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
uint32_t parsed_collision_mask = p_navigation_mesh->get_collision_mask();
|
|
|
|
if (parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_BOTH) {
|
|
Array meshes = gridmap->get_meshes();
|
|
Transform3D xform = gridmap->get_global_transform();
|
|
for (int i = 0; i < meshes.size(); i += 2) {
|
|
Ref<Mesh> mesh = meshes[i + 1];
|
|
if (mesh.is_valid()) {
|
|
p_source_geometry_data->add_mesh(mesh, xform * (Transform3D)meshes[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
else if ((parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS || parsed_geometry_type == NavigationMesh::PARSED_GEOMETRY_BOTH) && (gridmap->get_collision_layer() & parsed_collision_mask)) {
|
|
Array shapes = gridmap->get_collision_shapes();
|
|
for (int i = 0; i < shapes.size(); i += 2) {
|
|
RID shape = shapes[i + 1];
|
|
PhysicsServer3D::ShapeType type = PhysicsServer3D::get_singleton()->shape_get_type(shape);
|
|
Variant data = PhysicsServer3D::get_singleton()->shape_get_data(shape);
|
|
|
|
switch (type) {
|
|
case PhysicsServer3D::SHAPE_SPHERE: {
|
|
real_t radius = data;
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
SphereMesh::create_mesh_array(arr, radius, radius * 2.0);
|
|
p_source_geometry_data->add_mesh_array(arr, shapes[i]);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_BOX: {
|
|
Vector3 extents = data;
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
BoxMesh::create_mesh_array(arr, extents * 2.0);
|
|
p_source_geometry_data->add_mesh_array(arr, shapes[i]);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_CAPSULE: {
|
|
Dictionary dict = data;
|
|
real_t radius = dict["radius"];
|
|
real_t height = dict["height"];
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
CapsuleMesh::create_mesh_array(arr, radius, height);
|
|
p_source_geometry_data->add_mesh_array(arr, shapes[i]);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_CYLINDER: {
|
|
Dictionary dict = data;
|
|
real_t radius = dict["radius"];
|
|
real_t height = dict["height"];
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
CylinderMesh::create_mesh_array(arr, radius, radius, height);
|
|
p_source_geometry_data->add_mesh_array(arr, shapes[i]);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_CONVEX_POLYGON: {
|
|
PackedVector3Array vertices = data;
|
|
Geometry3D::MeshData md;
|
|
|
|
Error err = ConvexHullComputer::convex_hull(vertices, md);
|
|
|
|
if (err == OK) {
|
|
PackedVector3Array faces;
|
|
|
|
for (const Geometry3D::MeshData::Face &face : md.faces) {
|
|
for (uint32_t k = 2; k < face.indices.size(); ++k) {
|
|
faces.push_back(md.vertices[face.indices[0]]);
|
|
faces.push_back(md.vertices[face.indices[k - 1]]);
|
|
faces.push_back(md.vertices[face.indices[k]]);
|
|
}
|
|
}
|
|
|
|
p_source_geometry_data->add_faces(faces, shapes[i]);
|
|
}
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_CONCAVE_POLYGON: {
|
|
Dictionary dict = data;
|
|
PackedVector3Array faces = Variant(dict["faces"]);
|
|
p_source_geometry_data->add_faces(faces, shapes[i]);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_HEIGHTMAP: {
|
|
Dictionary dict = data;
|
|
///< dict( int:"width", int:"depth",float:"cell_size", float_array:"heights"
|
|
int heightmap_depth = dict["depth"];
|
|
int heightmap_width = dict["width"];
|
|
|
|
if (heightmap_depth >= 2 && heightmap_width >= 2) {
|
|
const Vector<real_t> &map_data = dict["heights"];
|
|
|
|
Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1);
|
|
Vector3 start = Vector3(heightmap_gridsize.x, 0, heightmap_gridsize.y) * -0.5;
|
|
|
|
Vector<Vector3> vertex_array;
|
|
vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6);
|
|
Vector3 *vertex_array_ptrw = vertex_array.ptrw();
|
|
const real_t *map_data_ptr = map_data.ptr();
|
|
int vertex_index = 0;
|
|
|
|
for (int d = 0; d < heightmap_depth - 1; d++) {
|
|
for (int w = 0; w < heightmap_width - 1; w++) {
|
|
vertex_array_ptrw[vertex_index] = start + Vector3(w, map_data_ptr[(heightmap_width * d) + w], d);
|
|
vertex_array_ptrw[vertex_index + 1] = start + Vector3(w + 1, map_data_ptr[(heightmap_width * d) + w + 1], d);
|
|
vertex_array_ptrw[vertex_index + 2] = start + Vector3(w, map_data_ptr[(heightmap_width * d) + heightmap_width + w], d + 1);
|
|
vertex_array_ptrw[vertex_index + 3] = start + Vector3(w + 1, map_data_ptr[(heightmap_width * d) + w + 1], d);
|
|
vertex_array_ptrw[vertex_index + 4] = start + Vector3(w + 1, map_data_ptr[(heightmap_width * d) + heightmap_width + w + 1], d + 1);
|
|
vertex_array_ptrw[vertex_index + 5] = start + Vector3(w, map_data_ptr[(heightmap_width * d) + heightmap_width + w], d + 1);
|
|
vertex_index += 6;
|
|
}
|
|
}
|
|
if (vertex_array.size() > 0) {
|
|
p_source_geometry_data->add_faces(vertex_array, shapes[i]);
|
|
}
|
|
}
|
|
} break;
|
|
default: {
|
|
WARN_PRINT("Unsupported collision shape type.");
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // MODULE_GRIDMAP_ENABLED
|
|
|
|
void NavMeshGenerator3D::generator_parse_navigationobstacle_node(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_node) {
|
|
NavigationObstacle3D *obstacle = Object::cast_to<NavigationObstacle3D>(p_node);
|
|
if (obstacle == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (!obstacle->get_affect_navigation_mesh()) {
|
|
return;
|
|
}
|
|
|
|
const Transform3D node_xform = p_source_geometry_data->root_node_transform * Transform3D(Basis(), obstacle->get_global_position());
|
|
|
|
const float obstacle_radius = obstacle->get_radius();
|
|
|
|
if (obstacle_radius > 0.0) {
|
|
Vector<Vector3> obstruction_circle_vertices;
|
|
|
|
// The point of this is that the moving obstacle can make a simple hole in the navigation mesh and affect the pathfinding.
|
|
// Without, navigation paths can go directly through the middle of the obstacle and conflict with the avoidance to get agents stuck.
|
|
// No place for excessive "round" detail here. Every additional edge adds a high cost for something that needs to be quick, not pretty.
|
|
static const int circle_points = 12;
|
|
|
|
obstruction_circle_vertices.resize(circle_points);
|
|
Vector3 *circle_vertices_ptrw = obstruction_circle_vertices.ptrw();
|
|
const real_t circle_point_step = Math_TAU / circle_points;
|
|
|
|
for (int i = 0; i < circle_points; i++) {
|
|
const float angle = i * circle_point_step;
|
|
circle_vertices_ptrw[i] = node_xform.xform(Vector3(Math::cos(angle) * obstacle_radius, 0.0, Math::sin(angle) * obstacle_radius));
|
|
}
|
|
|
|
p_source_geometry_data->add_projected_obstruction(obstruction_circle_vertices, obstacle->get_global_position().y + p_source_geometry_data->root_node_transform.origin.y - obstacle_radius, obstacle_radius, obstacle->get_carve_navigation_mesh());
|
|
}
|
|
|
|
const Vector<Vector3> &obstacle_vertices = obstacle->get_vertices();
|
|
|
|
if (obstacle_vertices.is_empty()) {
|
|
return;
|
|
}
|
|
|
|
Vector<Vector3> obstruction_shape_vertices;
|
|
obstruction_shape_vertices.resize(obstacle_vertices.size());
|
|
|
|
const Vector3 *obstacle_vertices_ptr = obstacle_vertices.ptr();
|
|
Vector3 *obstruction_shape_vertices_ptrw = obstruction_shape_vertices.ptrw();
|
|
|
|
for (int i = 0; i < obstacle_vertices.size(); i++) {
|
|
obstruction_shape_vertices_ptrw[i] = node_xform.xform(obstacle_vertices_ptr[i]);
|
|
obstruction_shape_vertices_ptrw[i].y = 0.0;
|
|
}
|
|
p_source_geometry_data->add_projected_obstruction(obstruction_shape_vertices, obstacle->get_global_position().y + p_source_geometry_data->root_node_transform.origin.y, obstacle->get_height(), obstacle->get_carve_navigation_mesh());
|
|
}
|
|
|
|
void NavMeshGenerator3D::generator_parse_source_geometry_data(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_root_node) {
|
|
List<Node *> parse_nodes;
|
|
|
|
if (p_navigation_mesh->get_source_geometry_mode() == NavigationMesh::SOURCE_GEOMETRY_ROOT_NODE_CHILDREN) {
|
|
parse_nodes.push_back(p_root_node);
|
|
} else {
|
|
p_root_node->get_tree()->get_nodes_in_group(p_navigation_mesh->get_source_group_name(), &parse_nodes);
|
|
}
|
|
|
|
Transform3D root_node_transform = Transform3D();
|
|
if (Object::cast_to<Node3D>(p_root_node)) {
|
|
root_node_transform = Object::cast_to<Node3D>(p_root_node)->get_global_transform().affine_inverse();
|
|
}
|
|
|
|
p_source_geometry_data->clear();
|
|
p_source_geometry_data->root_node_transform = root_node_transform;
|
|
|
|
bool recurse_children = p_navigation_mesh->get_source_geometry_mode() != NavigationMesh::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
|
|
|
|
for (Node *parse_node : parse_nodes) {
|
|
generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, parse_node, recurse_children);
|
|
}
|
|
};
|
|
|
|
void NavMeshGenerator3D::generator_bake_from_source_geometry_data(Ref<NavigationMesh> p_navigation_mesh, const Ref<NavigationMeshSourceGeometryData3D> &p_source_geometry_data) {
|
|
if (p_navigation_mesh.is_null() || p_source_geometry_data.is_null()) {
|
|
return;
|
|
}
|
|
|
|
Vector<float> source_geometry_vertices;
|
|
Vector<int> source_geometry_indices;
|
|
Vector<NavigationMeshSourceGeometryData3D::ProjectedObstruction> projected_obstructions;
|
|
|
|
p_source_geometry_data->get_data(
|
|
source_geometry_vertices,
|
|
source_geometry_indices,
|
|
projected_obstructions);
|
|
|
|
if (source_geometry_vertices.size() < 3 || source_geometry_indices.size() < 3) {
|
|
return;
|
|
}
|
|
|
|
rcHeightfield *hf = nullptr;
|
|
rcCompactHeightfield *chf = nullptr;
|
|
rcContourSet *cset = nullptr;
|
|
rcPolyMesh *poly_mesh = nullptr;
|
|
rcPolyMeshDetail *detail_mesh = nullptr;
|
|
rcContext ctx;
|
|
|
|
// added to keep track of steps, no functionality right now
|
|
String bake_state = "";
|
|
|
|
bake_state = "Setting up Configuration..."; // step #1
|
|
|
|
const float *verts = source_geometry_vertices.ptr();
|
|
const int nverts = source_geometry_vertices.size() / 3;
|
|
const int *tris = source_geometry_indices.ptr();
|
|
const int ntris = source_geometry_indices.size() / 3;
|
|
|
|
float bmin[3], bmax[3];
|
|
rcCalcBounds(verts, nverts, bmin, bmax);
|
|
|
|
rcConfig cfg;
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
|
|
cfg.cs = p_navigation_mesh->get_cell_size();
|
|
cfg.ch = p_navigation_mesh->get_cell_height();
|
|
if (p_navigation_mesh->get_border_size() > 0.0) {
|
|
cfg.borderSize = (int)Math::ceil(p_navigation_mesh->get_border_size() / cfg.cs);
|
|
}
|
|
cfg.walkableSlopeAngle = p_navigation_mesh->get_agent_max_slope();
|
|
cfg.walkableHeight = (int)Math::ceil(p_navigation_mesh->get_agent_height() / cfg.ch);
|
|
cfg.walkableClimb = (int)Math::floor(p_navigation_mesh->get_agent_max_climb() / cfg.ch);
|
|
cfg.walkableRadius = (int)Math::ceil(p_navigation_mesh->get_agent_radius() / cfg.cs);
|
|
cfg.maxEdgeLen = (int)(p_navigation_mesh->get_edge_max_length() / p_navigation_mesh->get_cell_size());
|
|
cfg.maxSimplificationError = p_navigation_mesh->get_edge_max_error();
|
|
cfg.minRegionArea = (int)(p_navigation_mesh->get_region_min_size() * p_navigation_mesh->get_region_min_size());
|
|
cfg.mergeRegionArea = (int)(p_navigation_mesh->get_region_merge_size() * p_navigation_mesh->get_region_merge_size());
|
|
cfg.maxVertsPerPoly = (int)p_navigation_mesh->get_vertices_per_polygon();
|
|
cfg.detailSampleDist = MAX(p_navigation_mesh->get_cell_size() * p_navigation_mesh->get_detail_sample_distance(), 0.1f);
|
|
cfg.detailSampleMaxError = p_navigation_mesh->get_cell_height() * p_navigation_mesh->get_detail_sample_max_error();
|
|
|
|
if (p_navigation_mesh->get_border_size() > 0.0 && Math::fmod(p_navigation_mesh->get_border_size(), p_navigation_mesh->get_cell_size()) != 0.0) {
|
|
WARN_PRINT("Property border_size is ceiled to cell_size voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.walkableHeight * cfg.ch, p_navigation_mesh->get_agent_height())) {
|
|
WARN_PRINT("Property agent_height is ceiled to cell_height voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.walkableClimb * cfg.ch, p_navigation_mesh->get_agent_max_climb())) {
|
|
WARN_PRINT("Property agent_max_climb is floored to cell_height voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.walkableRadius * cfg.cs, p_navigation_mesh->get_agent_radius())) {
|
|
WARN_PRINT("Property agent_radius is ceiled to cell_size voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.maxEdgeLen * cfg.cs, p_navigation_mesh->get_edge_max_length())) {
|
|
WARN_PRINT("Property edge_max_length is rounded to cell_size voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.minRegionArea, p_navigation_mesh->get_region_min_size() * p_navigation_mesh->get_region_min_size())) {
|
|
WARN_PRINT("Property region_min_size is converted to int and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.mergeRegionArea, p_navigation_mesh->get_region_merge_size() * p_navigation_mesh->get_region_merge_size())) {
|
|
WARN_PRINT("Property region_merge_size is converted to int and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.maxVertsPerPoly, p_navigation_mesh->get_vertices_per_polygon())) {
|
|
WARN_PRINT("Property vertices_per_polygon is converted to int and loses precision.");
|
|
}
|
|
if (p_navigation_mesh->get_cell_size() * p_navigation_mesh->get_detail_sample_distance() < 0.1f) {
|
|
WARN_PRINT("Property detail_sample_distance is clamped to 0.1 world units as the resulting value from multiplying with cell_size is too low.");
|
|
}
|
|
|
|
cfg.bmin[0] = bmin[0];
|
|
cfg.bmin[1] = bmin[1];
|
|
cfg.bmin[2] = bmin[2];
|
|
cfg.bmax[0] = bmax[0];
|
|
cfg.bmax[1] = bmax[1];
|
|
cfg.bmax[2] = bmax[2];
|
|
|
|
AABB baking_aabb = p_navigation_mesh->get_filter_baking_aabb();
|
|
if (baking_aabb.has_volume()) {
|
|
Vector3 baking_aabb_offset = p_navigation_mesh->get_filter_baking_aabb_offset();
|
|
cfg.bmin[0] = baking_aabb.position[0] + baking_aabb_offset.x;
|
|
cfg.bmin[1] = baking_aabb.position[1] + baking_aabb_offset.y;
|
|
cfg.bmin[2] = baking_aabb.position[2] + baking_aabb_offset.z;
|
|
cfg.bmax[0] = cfg.bmin[0] + baking_aabb.size[0];
|
|
cfg.bmax[1] = cfg.bmin[1] + baking_aabb.size[1];
|
|
cfg.bmax[2] = cfg.bmin[2] + baking_aabb.size[2];
|
|
}
|
|
|
|
bake_state = "Calculating grid size..."; // step #2
|
|
rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
|
|
|
|
// ~30000000 seems to be around sweetspot where Editor baking breaks
|
|
if ((cfg.width * cfg.height) > 30000000 && GLOBAL_GET("navigation/baking/use_crash_prevention_checks")) {
|
|
ERR_FAIL_MSG("Baking interrupted."
|
|
"\nNavigationMesh baking process would likely crash the engine."
|
|
"\nSource geometry is suspiciously big for the current Cell Size and Cell Height in the NavMesh Resource bake settings."
|
|
"\nIf baking does not crash the engine or fail, the resulting NavigationMesh will create serious pathfinding performance issues."
|
|
"\nIt is advised to increase Cell Size and/or Cell Height in the NavMesh Resource bake settings or reduce the size / scale of the source geometry."
|
|
"\nIf you would like to try baking anyway, disable the 'navigation/baking/use_crash_prevention_checks' project setting.");
|
|
return;
|
|
}
|
|
|
|
bake_state = "Creating heightfield..."; // step #3
|
|
hf = rcAllocHeightfield();
|
|
|
|
ERR_FAIL_NULL(hf);
|
|
ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch));
|
|
|
|
bake_state = "Marking walkable triangles..."; // step #4
|
|
{
|
|
Vector<unsigned char> tri_areas;
|
|
tri_areas.resize(ntris);
|
|
|
|
ERR_FAIL_COND(tri_areas.is_empty());
|
|
|
|
memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char));
|
|
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw());
|
|
|
|
ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb));
|
|
}
|
|
|
|
if (p_navigation_mesh->get_filter_low_hanging_obstacles()) {
|
|
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
|
|
}
|
|
if (p_navigation_mesh->get_filter_ledge_spans()) {
|
|
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
|
|
}
|
|
if (p_navigation_mesh->get_filter_walkable_low_height_spans()) {
|
|
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
|
|
}
|
|
|
|
bake_state = "Constructing compact heightfield..."; // step #5
|
|
|
|
chf = rcAllocCompactHeightfield();
|
|
|
|
ERR_FAIL_NULL(chf);
|
|
ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf));
|
|
|
|
rcFreeHeightField(hf);
|
|
hf = nullptr;
|
|
|
|
// Add obstacles to the source geometry. Those will be affected by e.g. agent_radius.
|
|
if (!projected_obstructions.is_empty()) {
|
|
for (const NavigationMeshSourceGeometryData3D::ProjectedObstruction &projected_obstruction : projected_obstructions) {
|
|
if (projected_obstruction.carve) {
|
|
continue;
|
|
}
|
|
if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 3 != 0) {
|
|
continue;
|
|
}
|
|
|
|
const float *projected_obstruction_verts = projected_obstruction.vertices.ptr();
|
|
const int projected_obstruction_nverts = projected_obstruction.vertices.size() / 3;
|
|
|
|
rcMarkConvexPolyArea(&ctx, projected_obstruction_verts, projected_obstruction_nverts, projected_obstruction.elevation, projected_obstruction.elevation + projected_obstruction.height, RC_NULL_AREA, *chf);
|
|
}
|
|
}
|
|
|
|
bake_state = "Eroding walkable area..."; // step #6
|
|
|
|
ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf));
|
|
|
|
// Carve obstacles to the eroded geometry. Those will NOT be affected by e.g. agent_radius because that step is already done.
|
|
if (!projected_obstructions.is_empty()) {
|
|
for (const NavigationMeshSourceGeometryData3D::ProjectedObstruction &projected_obstruction : projected_obstructions) {
|
|
if (!projected_obstruction.carve) {
|
|
continue;
|
|
}
|
|
if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 3 != 0) {
|
|
continue;
|
|
}
|
|
|
|
const float *projected_obstruction_verts = projected_obstruction.vertices.ptr();
|
|
const int projected_obstruction_nverts = projected_obstruction.vertices.size() / 3;
|
|
|
|
rcMarkConvexPolyArea(&ctx, projected_obstruction_verts, projected_obstruction_nverts, projected_obstruction.elevation, projected_obstruction.elevation + projected_obstruction.height, RC_NULL_AREA, *chf);
|
|
}
|
|
}
|
|
|
|
bake_state = "Partitioning..."; // step #7
|
|
|
|
if (p_navigation_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) {
|
|
ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf));
|
|
ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea));
|
|
} else if (p_navigation_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) {
|
|
ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea));
|
|
} else {
|
|
ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, cfg.borderSize, cfg.minRegionArea));
|
|
}
|
|
|
|
bake_state = "Creating contours..."; // step #8
|
|
|
|
cset = rcAllocContourSet();
|
|
|
|
ERR_FAIL_NULL(cset);
|
|
ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset));
|
|
|
|
bake_state = "Creating polymesh..."; // step #9
|
|
|
|
poly_mesh = rcAllocPolyMesh();
|
|
ERR_FAIL_NULL(poly_mesh);
|
|
ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh));
|
|
|
|
detail_mesh = rcAllocPolyMeshDetail();
|
|
ERR_FAIL_NULL(detail_mesh);
|
|
ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh));
|
|
|
|
rcFreeCompactHeightfield(chf);
|
|
chf = nullptr;
|
|
rcFreeContourSet(cset);
|
|
cset = nullptr;
|
|
|
|
bake_state = "Converting to native navigation mesh..."; // step #10
|
|
|
|
Vector<Vector3> nav_vertices;
|
|
Vector<Vector<int>> nav_polygons;
|
|
|
|
HashMap<Vector3, int> recast_vertex_to_native_index;
|
|
LocalVector<int> recast_index_to_native_index;
|
|
recast_index_to_native_index.resize(detail_mesh->nverts);
|
|
|
|
for (int i = 0; i < detail_mesh->nverts; i++) {
|
|
const float *v = &detail_mesh->verts[i * 3];
|
|
const Vector3 vertex = Vector3(v[0], v[1], v[2]);
|
|
int *existing_index_ptr = recast_vertex_to_native_index.getptr(vertex);
|
|
if (!existing_index_ptr) {
|
|
int new_index = recast_vertex_to_native_index.size();
|
|
recast_index_to_native_index[i] = new_index;
|
|
recast_vertex_to_native_index[vertex] = new_index;
|
|
nav_vertices.push_back(vertex);
|
|
} else {
|
|
recast_index_to_native_index[i] = *existing_index_ptr;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < detail_mesh->nmeshes; i++) {
|
|
const unsigned int *detail_mesh_m = &detail_mesh->meshes[i * 4];
|
|
const unsigned int detail_mesh_bverts = detail_mesh_m[0];
|
|
const unsigned int detail_mesh_m_btris = detail_mesh_m[2];
|
|
const unsigned int detail_mesh_ntris = detail_mesh_m[3];
|
|
const unsigned char *detail_mesh_tris = &detail_mesh->tris[detail_mesh_m_btris * 4];
|
|
for (unsigned int j = 0; j < detail_mesh_ntris; j++) {
|
|
Vector<int> nav_indices;
|
|
nav_indices.resize(3);
|
|
// Polygon order in recast is opposite than godot's
|
|
int index1 = ((int)(detail_mesh_bverts + detail_mesh_tris[j * 4 + 0]));
|
|
int index2 = ((int)(detail_mesh_bverts + detail_mesh_tris[j * 4 + 2]));
|
|
int index3 = ((int)(detail_mesh_bverts + detail_mesh_tris[j * 4 + 1]));
|
|
|
|
nav_indices.write[0] = recast_index_to_native_index[index1];
|
|
nav_indices.write[1] = recast_index_to_native_index[index2];
|
|
nav_indices.write[2] = recast_index_to_native_index[index3];
|
|
|
|
nav_polygons.push_back(nav_indices);
|
|
}
|
|
}
|
|
|
|
p_navigation_mesh->set_data(nav_vertices, nav_polygons);
|
|
|
|
bake_state = "Cleanup..."; // step #11
|
|
|
|
rcFreePolyMesh(poly_mesh);
|
|
poly_mesh = nullptr;
|
|
rcFreePolyMeshDetail(detail_mesh);
|
|
detail_mesh = nullptr;
|
|
|
|
bake_state = "Baking finished."; // step #12
|
|
}
|
|
|
|
bool NavMeshGenerator3D::generator_emit_callback(const Callable &p_callback) {
|
|
ERR_FAIL_COND_V(!p_callback.is_valid(), false);
|
|
|
|
Callable::CallError ce;
|
|
Variant result;
|
|
p_callback.callp(nullptr, 0, result, ce);
|
|
|
|
return ce.error == Callable::CallError::CALL_OK;
|
|
}
|
|
|
|
RID NavMeshGenerator3D::source_geometry_parser_create() {
|
|
RWLockWrite write_lock(generator_rid_rwlock);
|
|
|
|
RID rid = generator_parser_owner.make_rid();
|
|
|
|
NavMeshGeometryParser3D *parser = generator_parser_owner.get_or_null(rid);
|
|
parser->self = rid;
|
|
|
|
generator_parsers.push_back(parser);
|
|
|
|
return rid;
|
|
}
|
|
|
|
void NavMeshGenerator3D::source_geometry_parser_set_callback(RID p_parser, const Callable &p_callback) {
|
|
RWLockWrite write_lock(generator_rid_rwlock);
|
|
|
|
NavMeshGeometryParser3D *parser = generator_parser_owner.get_or_null(p_parser);
|
|
ERR_FAIL_NULL(parser);
|
|
|
|
parser->callback = p_callback;
|
|
}
|
|
|
|
bool NavMeshGenerator3D::owns(RID p_object) {
|
|
RWLockRead read_lock(generator_rid_rwlock);
|
|
return generator_parser_owner.owns(p_object);
|
|
}
|
|
|
|
void NavMeshGenerator3D::free(RID p_object) {
|
|
RWLockWrite write_lock(generator_rid_rwlock);
|
|
|
|
if (generator_parser_owner.owns(p_object)) {
|
|
NavMeshGeometryParser3D *parser = generator_parser_owner.get_or_null(p_object);
|
|
|
|
generator_parsers.erase(parser);
|
|
|
|
generator_parser_owner.free(p_object);
|
|
} else {
|
|
ERR_PRINT("Attempted to free a NavMeshGenerator3D RID that did not exist (or was already freed).");
|
|
}
|
|
}
|
|
|
|
#endif // _3D_DISABLED
|