godot/thirdparty/oidn/core/network.cpp
jfons dd79d1ce78 Upgrade OpenImageDenoise to v1.1.0
Upgrade OIDN to 1.1.0, the latest stable version that doesn't need
the ISPC compiler.

Documented the changes made during the removal of TBB and added a patch
file for them.
2020-06-06 19:03:16 +02:00

437 lines
15 KiB
C++

// ======================================================================== //
// Copyright 2009-2019 Intel Corporation //
// //
// Licensed under the Apache License, Version 2.0 (the "License"); //
// you may not use this file except in compliance with the License. //
// You may obtain a copy of the License at //
// //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
// Unless required by applicable law or agreed to in writing, software //
// distributed under the License is distributed on an "AS IS" BASIS, //
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. //
// See the License for the specific language governing permissions and //
// limitations under the License. //
// ======================================================================== //
#include "upsample.h"
#include "weights_reorder.h"
#include "network.h"
// -- GODOT start --
#include <cstring>
// -- GODOT end --
namespace oidn {
template<int K>
Network<K>::Network(const Ref<Device>& device, const std::map<std::string, Tensor>& weightMap)
: device(device),
eng(engine::cpu, 0),
sm(eng),
weightMap(weightMap)
{
}
template<int K>
void Network<K>::execute(const Progress& progress, int taskIndex)
{
if (progress.func)
{
const double value = double(taskIndex) / double(progress.taskCount);
if (!progress.func(progress.userPtr, value))
throw Exception(Error::Cancelled, "execution was cancelled");
}
for (size_t i = 0; i < nodes.size(); ++i)
{
nodes[i]->execute(sm);
if (progress.func)
{
const double value = (double(taskIndex) + double(i+1) / double(nodes.size())) / double(progress.taskCount);
if (!progress.func(progress.userPtr, value))
throw Exception(Error::Cancelled, "execution was cancelled");
}
}
}
template<int K>
std::shared_ptr<memory> Network<K>::allocTensor(const memory::dims& dims,
memory::format_tag format,
void* data)
{
if (format == memory::format_tag::any)
{
if (dims.size() == 4)
format = BlockedFormat<K>::nChwKc;
else if (dims.size() == 1)
format = memory::format_tag::x;
else
assert(0);
}
memory::desc desc(dims, memory::data_type::f32, format);
if (data == nullptr)
{
const size_t bytes = getTensorSize(dims) * sizeof(float);
if (format == BlockedFormat<K>::nChwKc)
activationAllocBytes += bytes;
totalAllocBytes += bytes;
return std::make_shared<memory>(desc, eng);
}
else
{
return std::make_shared<memory>(desc, eng, data);
}
}
template<int K>
std::shared_ptr<memory> Network<K>::castTensor(const memory::dims& dims,
const std::shared_ptr<memory>& src,
size_t srcOffset,
memory::format_tag format)
{
const mkldnn_memory_desc_t& srcDesc = src->get_desc().data;
MAYBE_UNUSED(srcDesc);
assert(srcDesc.data_type == memory::data_type::f32);
assert(getTensorSize(src) >= srcOffset + getTensorSize(dims));
if (format == memory::format_tag::any)
{
if (dims.size() == 4)
format = BlockedFormat<K>::nChwKc;
else if (dims.size() == 1)
format = memory::format_tag::x;
else
assert(0);
}
memory::desc desc(dims, memory::data_type::f32, format);
float* srcPtr = (float*)src->get_data_handle() + srcOffset;
return std::make_shared<memory>(desc, eng, srcPtr);
}
template<int K>
std::shared_ptr<memory> Network<K>::castTensor(const memory::dims& dims,
const std::shared_ptr<memory>& src,
const memory::dims& srcOffset)
{
return castTensor(dims, src, getTensorSize(srcOffset));
}
template<int K>
void Network<K>::zeroTensor(const std::shared_ptr<memory>& dst)
{
assert(getTensorType(dst) == memory::data_type::f32);
memset(dst->get_data_handle(), 0, getTensorSize(dst)*sizeof(float));
}
template<int K>
memory::dims Network<K>::getInputReorderDims(const memory::dims& srcDims, int alignment)
{
memory::dims dstDims = srcDims;
dstDims[1] = getPadded<K>(srcDims[1]); // round up C
dstDims[2] = roundUp(srcDims[2], memory::dim(alignment)); // round up H
dstDims[3] = roundUp(srcDims[3], memory::dim(alignment)); // round up W
return dstDims;
}
template<int K>
std::shared_ptr<Node> Network<K>::addInputReorder(const Image& color,
const Image& albedo,
const Image& normal,
const std::shared_ptr<TransferFunction>& transferFunc,
int alignment,
const std::shared_ptr<memory>& userDst)
{
assert(color);
int inputC = 3;
if (albedo) inputC += 3;
if (normal) inputC += 3;
memory::dims srcDims = {1, inputC, color.height, color.width};
memory::dims dstDims = getInputReorderDims(srcDims, alignment);
// Allocate padded memory
auto dst = userDst;
if (!dst)
dst = allocTensor(dstDims);
// Push node
std::shared_ptr<Node> node;
if (auto tf = std::dynamic_pointer_cast<LinearTransferFunction>(transferFunc))
node = std::make_shared<InputReorderNode<K, LinearTransferFunction>>(color, albedo, normal, dst, tf);
else if (auto tf = std::dynamic_pointer_cast<GammaTransferFunction>(transferFunc))
node = std::make_shared<InputReorderNode<K, GammaTransferFunction>>(color, albedo, normal, dst, tf);
else if (auto tf = std::dynamic_pointer_cast<LogTransferFunction>(transferFunc))
node = std::make_shared<InputReorderNode<K, LogTransferFunction>>(color, albedo, normal, dst, tf);
else if (auto tf = std::dynamic_pointer_cast<PQXTransferFunction>(transferFunc))
node = std::make_shared<InputReorderNode<K, PQXTransferFunction>>(color, albedo, normal, dst, tf);
else
assert(0);
nodes.push_back(node);
return node;
}
template<int K>
std::shared_ptr<Node> Network<K>::addOutputReorder(const std::shared_ptr<memory>& src,
const std::shared_ptr<TransferFunction>& transferFunc,
const Image& output)
{
memory::dims srcDims = getTensorDims(src);
assert(srcDims[1] == K);
// Push node
std::shared_ptr<Node> node;
if (auto tf = std::dynamic_pointer_cast<LinearTransferFunction>(transferFunc))
node = std::make_shared<OutputReorderNode<K, LinearTransferFunction>>(src, output, tf);
else if (auto tf = std::dynamic_pointer_cast<GammaTransferFunction>(transferFunc))
node = std::make_shared<OutputReorderNode<K, GammaTransferFunction>>(src, output, tf);
else if (auto tf = std::dynamic_pointer_cast<LogTransferFunction>(transferFunc))
node = std::make_shared<OutputReorderNode<K, LogTransferFunction>>(src, output, tf);
else if (auto tf = std::dynamic_pointer_cast<PQXTransferFunction>(transferFunc))
node = std::make_shared<OutputReorderNode<K, PQXTransferFunction>>(src, output, tf);
else
assert(0);
nodes.push_back(node);
return node;
}
template<int K>
memory::dims Network<K>::getConvDims(const std::string& name, const memory::dims& srcDims)
{
auto b = weightMap[name + "/b"];
memory::dims dstDims = srcDims;
dstDims[1] = getPadded<K>(b.dims[0]); // dstDims[C] = getPadded(OC)
return dstDims;
}
template<int K>
std::shared_ptr<Node> Network<K>::addConv(const std::string& name,
const std::shared_ptr<memory>& src,
const std::shared_ptr<memory>& userDst,
bool relu)
{
const memory::dims strides = {1, 1};
const memory::dims padding = {1, 1};
memory::dims srcDims = getTensorDims(src);
// Get the weights
const auto& W = weightMap[name + "/W"];
if (W.ndims() != 4 || W.format != "oihw")
throw Exception(Error::InvalidOperation, "invalid convolution weights");
memory::dims weightsDims = W.dims;
auto userWeights = allocTensor(weightsDims, memory::format_tag::oihw, W.data);
// Pad the weights
memory::dims weightsPadDims = weightsDims;
weightsPadDims[1] = getPadded<K>(weightsDims[1]); // IC
weightsPadDims[0] = getPadded<K>(weightsDims[0]); // OC
assert(srcDims[1] == weightsPadDims[1]); // srcDims[C] == weightsPadDims[IC]
auto weightsPad = allocTensor(weightsPadDims, memory::format_tag::oihw);
WeightsReorderNode<K>(userWeights, weightsPad).execute(sm);
// Get the biases
const auto& b = weightMap[name + "/b"];
if (b.ndims() != 1)
throw Exception(Error::InvalidOperation, "invalid convolution biases");
memory::dims biasDims = b.dims;
// Copy/pad the biases
memory::dims biasPadDims = {getPadded<K>(biasDims[0])};
auto bias = allocTensor(biasPadDims);
if (biasDims[0] != biasPadDims[0])
memset(bias->get_data_handle(), 0, biasPadDims[0]*sizeof(float));
memcpy(bias->get_data_handle(), b.data, biasDims[0]*sizeof(float));
// Allocate memory for destination
memory::dims dstDims = srcDims;
dstDims[1] = weightsPadDims[0]; // dstDims[C] = weightsPadDims[OC]
std::shared_ptr<memory> dst;
if (!userDst)
dst = allocTensor(dstDims);
else if (getTensorDims(userDst) == dstDims)
dst = userDst;
else
dst = castTensor(dstDims, userDst);
// Create a convolution
// Let the convolution primitive choose the weights format
auto weightsDesc = memory::desc({ weightsPadDims }, memory::data_type::f32, memory::format_tag::any);
auto convAlgo = (K == 16) ? convolution_winograd : convolution_direct;
auto convDesc = convolution_forward::desc(
prop_kind::forward_inference, convAlgo,
src->get_desc(),
weightsDesc,
bias->get_desc(),
dst->get_desc(),
strides, padding, padding, padding_kind::zero);
// Incorporate relu
mkldnn::primitive_attr convAttr;
if (relu)
{
mkldnn::post_ops ops;
ops.append_eltwise(
1.f, // scale factor, not used
algorithm::eltwise_relu,
0.f, // max with
0.f // unused
);
convAttr.set_post_ops(ops);
}
convAttr.set_scratchpad_mode(scratchpad_mode_user);
auto convPrimDesc = convolution_forward::primitive_desc(convDesc, convAttr, eng);
// Reorder the weights to the final format, if necessary
auto weights = weightsPad;
if (convPrimDesc.weights_desc() != weightsPad->get_desc())
{
weights = std::make_shared<memory>(convPrimDesc.weights_desc(), eng);
ReorderNode(weightsPad, weights).execute(sm);
}
// Create convolution node and add it to the net
auto node = std::make_shared<ConvNode>(convPrimDesc, src, weights, bias, dst);
nodes.push_back(node);
return node;
}
template<int K>
memory::dims Network<K>::getPoolDims(const memory::dims& srcDims)
{
memory::dims dstDims = srcDims;
dstDims[2] /= 2; // H/2
dstDims[3] /= 2; // W/2
return dstDims;
}
template<int K>
std::shared_ptr<Node> Network<K>::addPool(const std::shared_ptr<memory>& src,
const std::shared_ptr<memory>& userDst)
{
const memory::dims kernel = {2, 2};
const memory::dims strides = {2, 2};
const memory::dims padding = {0, 0};
memory::dims srcDims = getTensorDims(src);
memory::dims dstDims = getPoolDims(srcDims);
std::shared_ptr<memory> dst;
if (!userDst)
dst = allocTensor(dstDims);
else if (getTensorDims(userDst) == dstDims)
dst = userDst;
else
dst = castTensor(dstDims, userDst);
auto poolDesc = pooling_forward::desc(
prop_kind::forward_inference, pooling_max,
src->get_desc(),
dst->get_desc(),
strides, kernel, padding, padding, padding_kind::zero);
mkldnn::primitive_attr poolAttr;
poolAttr.set_scratchpad_mode(scratchpad_mode_user);
auto poolPrimDesc = pooling_forward::primitive_desc(poolDesc, poolAttr, eng);
auto node = std::make_shared<PoolNode>(poolPrimDesc, src, dst);
nodes.push_back(node);
return node;
}
template<int K>
memory::dims Network<K>::getUpsampleDims(const memory::dims& srcDims)
{
memory::dims dstDims = srcDims;
dstDims[2] *= 2; // H*2
dstDims[3] *= 2; // W*2
return dstDims;
}
template<int K>
std::shared_ptr<Node> Network<K>::addUpsample(const std::shared_ptr<memory>& src,
const std::shared_ptr<memory>& userDst)
{
memory::dims srcDims = getTensorDims(src);
memory::dims dstDims = getUpsampleDims(srcDims);
std::shared_ptr<memory> dst;
if (!userDst)
dst = allocTensor(dstDims);
else if (getTensorDims(userDst) == dstDims)
dst = userDst;
else
dst = castTensor(dstDims, userDst);
// Create upsampling node and add it to net
auto node = std::make_shared<UpsampleNode<K>>(src, dst);
nodes.push_back(node);
return node;
}
template<int K>
memory::dims Network<K>::getConcatDims(const memory::dims& src1Dims, const memory::dims& src2Dims)
{
assert(src1Dims[0] == src2Dims[0]); // N
assert(src1Dims[2] == src2Dims[2]); // H
assert(src1Dims[3] == src2Dims[3]); // W
memory::dims dstDims = src1Dims;
dstDims[1] += src2Dims[1]; // C
return dstDims;
}
template<int K>
std::shared_ptr<Node> Network<K>::addAutoexposure(const Image& color,
const std::shared_ptr<HDRTransferFunction>& transferFunc)
{
auto node = std::make_shared<AutoexposureNode>(color, transferFunc);
nodes.push_back(node);
return node;
}
template <int K>
void Network<K>::finalize()
{
// Compute the size of the scratchpad
size_t scratchpadSize = 0;
for (const auto& node : nodes)
scratchpadSize = max(scratchpadSize, node->getScratchpadSize());
// Allocate the scratchpad
memory::dims scratchpadDims = { memory::dim(scratchpadSize) };
memory::desc scratchpadDesc(scratchpadDims, memory::data_type::u8, memory::format_tag::x);
auto scratchpad = std::make_shared<memory>(scratchpadDesc, eng);
activationAllocBytes += scratchpadSize;
totalAllocBytes += scratchpadSize;
// Set the scratchpad for the nodes
for (auto& node : nodes)
node->setScratchpad(scratchpad);
// Free the weights
weightMap.clear();
// Print statistics
if (device->isVerbose(2))
{
std::cout << "Activation bytes: " << activationAllocBytes << std::endl;
std::cout << "Scratchpad bytes: " << scratchpadSize << std::endl;
std::cout << "Total bytes : " << totalAllocBytes << std::endl;
}
}
template class Network<8>;
template class Network<16>;
} // namespace oidn