mirror of
https://github.com/godotengine/godot.git
synced 2025-01-12 20:22:49 +08:00
d95794ec8a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see".
321 lines
11 KiB
C++
321 lines
11 KiB
C++
/**************************************************************************/
|
|
/* vector2.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef VECTOR2_H
|
|
#define VECTOR2_H
|
|
|
|
#include "core/error/error_macros.h"
|
|
#include "core/math/math_funcs.h"
|
|
|
|
class String;
|
|
struct Vector2i;
|
|
|
|
struct _NO_DISCARD_ Vector2 {
|
|
static const int AXIS_COUNT = 2;
|
|
|
|
enum Axis {
|
|
AXIS_X,
|
|
AXIS_Y,
|
|
};
|
|
|
|
union {
|
|
struct {
|
|
union {
|
|
real_t x;
|
|
real_t width;
|
|
};
|
|
union {
|
|
real_t y;
|
|
real_t height;
|
|
};
|
|
};
|
|
|
|
real_t coord[2] = { 0 };
|
|
};
|
|
|
|
_FORCE_INLINE_ real_t &operator[](int p_idx) {
|
|
DEV_ASSERT((unsigned int)p_idx < 2);
|
|
return coord[p_idx];
|
|
}
|
|
_FORCE_INLINE_ const real_t &operator[](int p_idx) const {
|
|
DEV_ASSERT((unsigned int)p_idx < 2);
|
|
return coord[p_idx];
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2::Axis min_axis_index() const {
|
|
return x < y ? Vector2::AXIS_X : Vector2::AXIS_Y;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2::Axis max_axis_index() const {
|
|
return x < y ? Vector2::AXIS_Y : Vector2::AXIS_X;
|
|
}
|
|
|
|
void normalize();
|
|
Vector2 normalized() const;
|
|
bool is_normalized() const;
|
|
|
|
real_t length() const;
|
|
real_t length_squared() const;
|
|
Vector2 limit_length(const real_t p_len = 1.0) const;
|
|
|
|
Vector2 min(const Vector2 &p_vector2) const {
|
|
return Vector2(MIN(x, p_vector2.x), MIN(y, p_vector2.y));
|
|
}
|
|
|
|
Vector2 max(const Vector2 &p_vector2) const {
|
|
return Vector2(MAX(x, p_vector2.x), MAX(y, p_vector2.y));
|
|
}
|
|
|
|
real_t distance_to(const Vector2 &p_vector2) const;
|
|
real_t distance_squared_to(const Vector2 &p_vector2) const;
|
|
real_t angle_to(const Vector2 &p_vector2) const;
|
|
real_t angle_to_point(const Vector2 &p_vector2) const;
|
|
_FORCE_INLINE_ Vector2 direction_to(const Vector2 &p_to) const;
|
|
|
|
real_t dot(const Vector2 &p_other) const;
|
|
real_t cross(const Vector2 &p_other) const;
|
|
Vector2 posmod(const real_t p_mod) const;
|
|
Vector2 posmodv(const Vector2 &p_modv) const;
|
|
Vector2 project(const Vector2 &p_to) const;
|
|
|
|
Vector2 plane_project(const real_t p_d, const Vector2 &p_vec) const;
|
|
|
|
_FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, const real_t p_weight) const;
|
|
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, const real_t p_weight) const;
|
|
_FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const;
|
|
_FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
|
|
_FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
|
|
_FORCE_INLINE_ Vector2 bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
|
|
|
|
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
|
|
|
|
Vector2 slide(const Vector2 &p_normal) const;
|
|
Vector2 bounce(const Vector2 &p_normal) const;
|
|
Vector2 reflect(const Vector2 &p_normal) const;
|
|
|
|
bool is_equal_approx(const Vector2 &p_v) const;
|
|
bool is_zero_approx() const;
|
|
bool is_finite() const;
|
|
|
|
Vector2 operator+(const Vector2 &p_v) const;
|
|
void operator+=(const Vector2 &p_v);
|
|
Vector2 operator-(const Vector2 &p_v) const;
|
|
void operator-=(const Vector2 &p_v);
|
|
Vector2 operator*(const Vector2 &p_v1) const;
|
|
|
|
Vector2 operator*(const real_t &rvalue) const;
|
|
void operator*=(const real_t &rvalue);
|
|
void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
|
|
|
|
Vector2 operator/(const Vector2 &p_v1) const;
|
|
|
|
Vector2 operator/(const real_t &rvalue) const;
|
|
|
|
void operator/=(const real_t &rvalue);
|
|
void operator/=(const Vector2 &rvalue) { *this = *this / rvalue; }
|
|
|
|
Vector2 operator-() const;
|
|
|
|
bool operator==(const Vector2 &p_vec2) const;
|
|
bool operator!=(const Vector2 &p_vec2) const;
|
|
|
|
bool operator<(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y < p_vec2.y) : (x < p_vec2.x); }
|
|
bool operator>(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y > p_vec2.y) : (x > p_vec2.x); }
|
|
bool operator<=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y <= p_vec2.y) : (x < p_vec2.x); }
|
|
bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); }
|
|
|
|
real_t angle() const;
|
|
static Vector2 from_angle(const real_t p_angle);
|
|
|
|
_FORCE_INLINE_ Vector2 abs() const {
|
|
return Vector2(Math::abs(x), Math::abs(y));
|
|
}
|
|
|
|
Vector2 rotated(const real_t p_by) const;
|
|
Vector2 orthogonal() const {
|
|
return Vector2(y, -x);
|
|
}
|
|
|
|
Vector2 sign() const;
|
|
Vector2 floor() const;
|
|
Vector2 ceil() const;
|
|
Vector2 round() const;
|
|
Vector2 snapped(const Vector2 &p_by) const;
|
|
Vector2 clamp(const Vector2 &p_min, const Vector2 &p_max) const;
|
|
real_t aspect() const { return width / height; }
|
|
|
|
operator String() const;
|
|
operator Vector2i() const;
|
|
|
|
_FORCE_INLINE_ Vector2() {}
|
|
_FORCE_INLINE_ Vector2(const real_t p_x, const real_t p_y) {
|
|
x = p_x;
|
|
y = p_y;
|
|
}
|
|
};
|
|
|
|
_FORCE_INLINE_ Vector2 Vector2::plane_project(const real_t p_d, const Vector2 &p_vec) const {
|
|
return p_vec - *this * (dot(p_vec) - p_d);
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 Vector2::operator+(const Vector2 &p_v) const {
|
|
return Vector2(x + p_v.x, y + p_v.y);
|
|
}
|
|
|
|
_FORCE_INLINE_ void Vector2::operator+=(const Vector2 &p_v) {
|
|
x += p_v.x;
|
|
y += p_v.y;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 Vector2::operator-(const Vector2 &p_v) const {
|
|
return Vector2(x - p_v.x, y - p_v.y);
|
|
}
|
|
|
|
_FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) {
|
|
x -= p_v.x;
|
|
y -= p_v.y;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const {
|
|
return Vector2(x * p_v1.x, y * p_v1.y);
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 Vector2::operator*(const real_t &rvalue) const {
|
|
return Vector2(x * rvalue, y * rvalue);
|
|
}
|
|
|
|
_FORCE_INLINE_ void Vector2::operator*=(const real_t &rvalue) {
|
|
x *= rvalue;
|
|
y *= rvalue;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const {
|
|
return Vector2(x / p_v1.x, y / p_v1.y);
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 Vector2::operator/(const real_t &rvalue) const {
|
|
return Vector2(x / rvalue, y / rvalue);
|
|
}
|
|
|
|
_FORCE_INLINE_ void Vector2::operator/=(const real_t &rvalue) {
|
|
x /= rvalue;
|
|
y /= rvalue;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 Vector2::operator-() const {
|
|
return Vector2(-x, -y);
|
|
}
|
|
|
|
_FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const {
|
|
return x == p_vec2.x && y == p_vec2.y;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const {
|
|
return x != p_vec2.x || y != p_vec2.y;
|
|
}
|
|
|
|
Vector2 Vector2::lerp(const Vector2 &p_to, const real_t p_weight) const {
|
|
Vector2 res = *this;
|
|
res.x = Math::lerp(res.x, p_to.x, p_weight);
|
|
res.y = Math::lerp(res.y, p_to.y, p_weight);
|
|
return res;
|
|
}
|
|
|
|
Vector2 Vector2::slerp(const Vector2 &p_to, const real_t p_weight) const {
|
|
real_t start_length_sq = length_squared();
|
|
real_t end_length_sq = p_to.length_squared();
|
|
if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
|
|
// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
|
|
return lerp(p_to, p_weight);
|
|
}
|
|
real_t start_length = Math::sqrt(start_length_sq);
|
|
real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
|
|
real_t angle = angle_to(p_to);
|
|
return rotated(angle * p_weight) * (result_length / start_length);
|
|
}
|
|
|
|
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const {
|
|
Vector2 res = *this;
|
|
res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
|
|
res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
|
|
return res;
|
|
}
|
|
|
|
Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
|
|
Vector2 res = *this;
|
|
res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
|
res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
|
return res;
|
|
}
|
|
|
|
Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const {
|
|
Vector2 res = *this;
|
|
res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
|
|
res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
|
|
return res;
|
|
}
|
|
|
|
Vector2 Vector2::bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const {
|
|
Vector2 res = *this;
|
|
res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
|
|
res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
|
|
return res;
|
|
}
|
|
|
|
Vector2 Vector2::direction_to(const Vector2 &p_to) const {
|
|
Vector2 ret(p_to.x - x, p_to.y - y);
|
|
ret.normalize();
|
|
return ret;
|
|
}
|
|
|
|
// Multiplication operators required to workaround issues with LLVM using implicit conversion
|
|
// to Vector2i instead for integers where it should not.
|
|
|
|
_FORCE_INLINE_ Vector2 operator*(const float p_scalar, const Vector2 &p_vec) {
|
|
return p_vec * p_scalar;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 operator*(const double p_scalar, const Vector2 &p_vec) {
|
|
return p_vec * p_scalar;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 operator*(const int32_t p_scalar, const Vector2 &p_vec) {
|
|
return p_vec * p_scalar;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector2 operator*(const int64_t p_scalar, const Vector2 &p_vec) {
|
|
return p_vec * p_scalar;
|
|
}
|
|
|
|
typedef Vector2 Size2;
|
|
typedef Vector2 Point2;
|
|
|
|
#endif // VECTOR2_H
|