mirror of
https://github.com/godotengine/godot.git
synced 2024-11-21 03:18:37 +08:00
379 lines
13 KiB
C++
379 lines
13 KiB
C++
/*************************************************************************/
|
|
/* Copyright (c) 2011-2021 Ivan Fratric and contributors. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#ifndef POLYPARTITION_H
|
|
#define POLYPARTITION_H
|
|
|
|
#include "core/math/vector2.h"
|
|
#include "core/templates/list.h"
|
|
#include "core/templates/rb_set.h"
|
|
|
|
typedef double tppl_float;
|
|
|
|
enum TPPLOrientation {
|
|
TPPL_ORIENTATION_CW = -1,
|
|
TPPL_ORIENTATION_NONE = 0,
|
|
TPPL_ORIENTATION_CCW = 1,
|
|
};
|
|
|
|
enum TPPLVertexType {
|
|
TPPL_VERTEXTYPE_REGULAR = 0,
|
|
TPPL_VERTEXTYPE_START = 1,
|
|
TPPL_VERTEXTYPE_END = 2,
|
|
TPPL_VERTEXTYPE_SPLIT = 3,
|
|
TPPL_VERTEXTYPE_MERGE = 4,
|
|
};
|
|
|
|
// 2D point structure.
|
|
typedef Vector2 TPPLPoint;
|
|
|
|
// Polygon implemented as an array of points with a "hole" flag.
|
|
class TPPLPoly {
|
|
protected:
|
|
TPPLPoint *points;
|
|
long numpoints;
|
|
bool hole;
|
|
|
|
public:
|
|
// Constructors and destructors.
|
|
TPPLPoly();
|
|
~TPPLPoly();
|
|
|
|
TPPLPoly(const TPPLPoly &src);
|
|
TPPLPoly &operator=(const TPPLPoly &src);
|
|
|
|
// Getters and setters.
|
|
long GetNumPoints() const {
|
|
return numpoints;
|
|
}
|
|
|
|
bool IsHole() const {
|
|
return hole;
|
|
}
|
|
|
|
void SetHole(bool p_hole) {
|
|
this->hole = p_hole;
|
|
}
|
|
|
|
TPPLPoint &GetPoint(long i) {
|
|
return points[i];
|
|
}
|
|
|
|
const TPPLPoint &GetPoint(long i) const {
|
|
return points[i];
|
|
}
|
|
|
|
TPPLPoint *GetPoints() {
|
|
return points;
|
|
}
|
|
|
|
TPPLPoint &operator[](int i) {
|
|
return points[i];
|
|
}
|
|
|
|
const TPPLPoint &operator[](int i) const {
|
|
return points[i];
|
|
}
|
|
|
|
// Clears the polygon points.
|
|
void Clear();
|
|
|
|
// Inits the polygon with numpoints vertices.
|
|
void Init(long numpoints);
|
|
|
|
// Creates a triangle with points p1, p2, and p3.
|
|
void Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
|
|
|
|
// Inverts the orfer of vertices.
|
|
void Invert();
|
|
|
|
// Returns the orientation of the polygon.
|
|
// Possible values:
|
|
// TPPL_ORIENTATION_CCW: Polygon vertices are in counter-clockwise order.
|
|
// TPPL_ORIENTATION_CW: Polygon vertices are in clockwise order.
|
|
// TPPL_ORIENTATION_NONE: The polygon has no (measurable) area.
|
|
TPPLOrientation GetOrientation() const;
|
|
|
|
// Sets the polygon orientation.
|
|
// Possible values:
|
|
// TPPL_ORIENTATION_CCW: Sets vertices in counter-clockwise order.
|
|
// TPPL_ORIENTATION_CW: Sets vertices in clockwise order.
|
|
// TPPL_ORIENTATION_NONE: Reverses the orientation of the vertices if there
|
|
// is one, otherwise does nothing (if orientation is already NONE).
|
|
void SetOrientation(TPPLOrientation orientation);
|
|
|
|
// Checks whether a polygon is valid or not.
|
|
inline bool Valid() const { return this->numpoints >= 3; }
|
|
};
|
|
|
|
#ifdef TPPL_ALLOCATOR
|
|
typedef List<TPPLPoly, TPPL_ALLOCATOR(TPPLPoly)> TPPLPolyList;
|
|
#else
|
|
typedef List<TPPLPoly> TPPLPolyList;
|
|
#endif
|
|
|
|
class TPPLPartition {
|
|
protected:
|
|
struct PartitionVertex {
|
|
bool isActive;
|
|
bool isConvex;
|
|
bool isEar;
|
|
|
|
TPPLPoint p;
|
|
tppl_float angle;
|
|
PartitionVertex *previous;
|
|
PartitionVertex *next;
|
|
|
|
PartitionVertex();
|
|
};
|
|
|
|
struct MonotoneVertex {
|
|
TPPLPoint p;
|
|
long previous;
|
|
long next;
|
|
};
|
|
|
|
class VertexSorter {
|
|
MonotoneVertex *vertices;
|
|
|
|
public:
|
|
VertexSorter(MonotoneVertex *v) :
|
|
vertices(v) {}
|
|
bool operator()(long index1, long index2);
|
|
};
|
|
|
|
struct Diagonal {
|
|
long index1;
|
|
long index2;
|
|
};
|
|
|
|
#ifdef TPPL_ALLOCATOR
|
|
typedef List<Diagonal, TPPL_ALLOCATOR(Diagonal)> DiagonalList;
|
|
#else
|
|
typedef List<Diagonal> DiagonalList;
|
|
#endif
|
|
|
|
// Dynamic programming state for minimum-weight triangulation.
|
|
struct DPState {
|
|
bool visible;
|
|
tppl_float weight;
|
|
long bestvertex;
|
|
};
|
|
|
|
// Dynamic programming state for convex partitioning.
|
|
struct DPState2 {
|
|
bool visible;
|
|
long weight;
|
|
DiagonalList pairs;
|
|
};
|
|
|
|
// Edge that intersects the scanline.
|
|
struct ScanLineEdge {
|
|
mutable long index;
|
|
TPPLPoint p1;
|
|
TPPLPoint p2;
|
|
|
|
// Determines if the edge is to the left of another edge.
|
|
bool operator<(const ScanLineEdge &other) const;
|
|
|
|
bool IsConvex(const TPPLPoint &p1, const TPPLPoint &p2, const TPPLPoint &p3) const;
|
|
};
|
|
|
|
// Standard helper functions.
|
|
bool IsConvex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
|
|
bool IsReflex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
|
|
bool IsInside(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
|
|
|
|
bool InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
|
|
bool InCone(PartitionVertex *v, TPPLPoint &p);
|
|
|
|
int Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22);
|
|
|
|
TPPLPoint Normalize(const TPPLPoint &p);
|
|
tppl_float Distance(const TPPLPoint &p1, const TPPLPoint &p2);
|
|
|
|
// Helper functions for Triangulate_EC.
|
|
void UpdateVertexReflexity(PartitionVertex *v);
|
|
void UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices);
|
|
|
|
// Helper functions for ConvexPartition_OPT.
|
|
void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates);
|
|
void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
|
|
void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
|
|
|
|
// Helper functions for MonotonePartition.
|
|
bool Below(TPPLPoint &p1, TPPLPoint &p2);
|
|
void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
|
|
TPPLVertexType *vertextypes, RBSet<ScanLineEdge>::Element **edgeTreeIterators,
|
|
RBSet<ScanLineEdge> *edgeTree, long *helpers);
|
|
|
|
// Triangulates a monotone polygon, used in Triangulate_MONO.
|
|
int TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles);
|
|
|
|
public:
|
|
// Simple heuristic procedure for removing holes from a list of polygons.
|
|
// It works by creating a diagonal from the right-most hole vertex
|
|
// to some other visible vertex.
|
|
// Time complexity: O(h*(n^2)), h is the # of holes, n is the # of vertices.
|
|
// Space complexity: O(n)
|
|
// params:
|
|
// inpolys:
|
|
// A list of polygons that can contain holes.
|
|
// Vertices of all non-hole polys have to be in counter-clockwise order.
|
|
// Vertices of all hole polys have to be in clockwise order.
|
|
// outpolys:
|
|
// A list of polygons without holes.
|
|
// Returns 1 on success, 0 on failure.
|
|
int RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys);
|
|
|
|
// Triangulates a polygon by ear clipping.
|
|
// Time complexity: O(n^2), n is the number of vertices.
|
|
// Space complexity: O(n)
|
|
// params:
|
|
// poly:
|
|
// An input polygon to be triangulated.
|
|
// Vertices have to be in counter-clockwise order.
|
|
// triangles:
|
|
// A list of triangles (result).
|
|
// Returns 1 on success, 0 on failure.
|
|
int Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles);
|
|
|
|
// Triangulates a list of polygons that may contain holes by ear clipping
|
|
// algorithm. It first calls RemoveHoles to get rid of the holes, and then
|
|
// calls Triangulate_EC for each resulting polygon.
|
|
// Time complexity: O(h*(n^2)), h is the # of holes, n is the # of vertices.
|
|
// Space complexity: O(n)
|
|
// params:
|
|
// inpolys:
|
|
// A list of polygons to be triangulated (can contain holes).
|
|
// Vertices of all non-hole polys have to be in counter-clockwise order.
|
|
// Vertices of all hole polys have to be in clockwise order.
|
|
// triangles:
|
|
// A list of triangles (result).
|
|
// Returns 1 on success, 0 on failure.
|
|
int Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles);
|
|
|
|
// Creates an optimal polygon triangulation in terms of minimal edge length.
|
|
// Time complexity: O(n^3), n is the number of vertices
|
|
// Space complexity: O(n^2)
|
|
// params:
|
|
// poly:
|
|
// An input polygon to be triangulated.
|
|
// Vertices have to be in counter-clockwise order.
|
|
// triangles:
|
|
// A list of triangles (result).
|
|
// Returns 1 on success, 0 on failure.
|
|
int Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles);
|
|
|
|
// Triangulates a polygon by first partitioning it into monotone polygons.
|
|
// Time complexity: O(n*log(n)), n is the number of vertices.
|
|
// Space complexity: O(n)
|
|
// params:
|
|
// poly:
|
|
// An input polygon to be triangulated.
|
|
// Vertices have to be in counter-clockwise order.
|
|
// triangles:
|
|
// A list of triangles (result).
|
|
// Returns 1 on success, 0 on failure.
|
|
int Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles);
|
|
|
|
// Triangulates a list of polygons by first
|
|
// partitioning them into monotone polygons.
|
|
// Time complexity: O(n*log(n)), n is the number of vertices.
|
|
// Space complexity: O(n)
|
|
// params:
|
|
// inpolys:
|
|
// A list of polygons to be triangulated (can contain holes).
|
|
// Vertices of all non-hole polys have to be in counter-clockwise order.
|
|
// Vertices of all hole polys have to be in clockwise order.
|
|
// triangles:
|
|
// A list of triangles (result).
|
|
// Returns 1 on success, 0 on failure.
|
|
int Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles);
|
|
|
|
// Creates a monotone partition of a list of polygons that
|
|
// can contain holes. Triangulates a set of polygons by
|
|
// first partitioning them into monotone polygons.
|
|
// Time complexity: O(n*log(n)), n is the number of vertices.
|
|
// Space complexity: O(n)
|
|
// params:
|
|
// inpolys:
|
|
// A list of polygons to be triangulated (can contain holes).
|
|
// Vertices of all non-hole polys have to be in counter-clockwise order.
|
|
// Vertices of all hole polys have to be in clockwise order.
|
|
// monotonePolys:
|
|
// A list of monotone polygons (result).
|
|
// Returns 1 on success, 0 on failure.
|
|
int MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys);
|
|
|
|
// Partitions a polygon into convex polygons by using the
|
|
// Hertel-Mehlhorn algorithm. The algorithm gives at most four times
|
|
// the number of parts as the optimal algorithm, however, in practice
|
|
// it works much better than that and often gives optimal partition.
|
|
// It uses triangulation obtained by ear clipping as intermediate result.
|
|
// Time complexity O(n^2), n is the number of vertices.
|
|
// Space complexity: O(n)
|
|
// params:
|
|
// poly:
|
|
// An input polygon to be partitioned.
|
|
// Vertices have to be in counter-clockwise order.
|
|
// parts:
|
|
// Resulting list of convex polygons.
|
|
// Returns 1 on success, 0 on failure.
|
|
int ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts);
|
|
|
|
// Partitions a list of polygons into convex parts by using the
|
|
// Hertel-Mehlhorn algorithm. The algorithm gives at most four times
|
|
// the number of parts as the optimal algorithm, however, in practice
|
|
// it works much better than that and often gives optimal partition.
|
|
// It uses triangulation obtained by ear clipping as intermediate result.
|
|
// Time complexity O(n^2), n is the number of vertices.
|
|
// Space complexity: O(n)
|
|
// params:
|
|
// inpolys:
|
|
// An input list of polygons to be partitioned. Vertices of
|
|
// all non-hole polys have to be in counter-clockwise order.
|
|
// Vertices of all hole polys have to be in clockwise order.
|
|
// parts:
|
|
// Resulting list of convex polygons.
|
|
// Returns 1 on success, 0 on failure.
|
|
int ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts);
|
|
|
|
// Optimal convex partitioning (in terms of number of resulting
|
|
// convex polygons) using the Keil-Snoeyink algorithm.
|
|
// For reference, see M. Keil, J. Snoeyink, "On the time bound for
|
|
// convex decomposition of simple polygons", 1998.
|
|
// Time complexity O(n^3), n is the number of vertices.
|
|
// Space complexity: O(n^3)
|
|
// params:
|
|
// poly:
|
|
// An input polygon to be partitioned.
|
|
// Vertices have to be in counter-clockwise order.
|
|
// parts:
|
|
// Resulting list of convex polygons.
|
|
// Returns 1 on success, 0 on failure.
|
|
int ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts);
|
|
};
|
|
|
|
#endif
|