godot/thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid.h
Dario 057367bf4f Add FidelityFX Super Resolution 2.2 (FSR 2.2.1) support.
Introduces support for FSR2 as a new upscaler option available from the project settings. Also introduces an specific render list for surfaces that require motion and the ability to derive motion vectors from depth buffer and camera motion.
2023-09-25 10:37:47 -03:00

189 lines
5.9 KiB
C++

// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FFX_GROUPSHARED FfxUInt32 spdCounter;
#ifndef SPD_PACKED_ONLY
FFX_GROUPSHARED FfxFloat32 spdIntermediateR[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateG[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateB[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateA[16][16];
FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 tex, FfxUInt32 slice)
{
FfxFloat32x2 fUv = (tex + 0.5f + Jitter()) / RenderSize();
fUv = ClampUv(fUv, RenderSize(), InputColorResourceDimensions());
FfxFloat32x3 fRgb = SampleInputColor(fUv);
fRgb /= PreExposure();
//compute log luma
const FfxFloat32 fLogLuma = log(ffxMax(FSR2_EPSILON, RGBToLuma(fRgb)));
// Make sure out of screen pixels contribute no value to the end result
const FfxFloat32 result = all(FFX_LESS_THAN(tex, RenderSize())) ? fLogLuma : 0.0f;
return FfxFloat32x4(result, 0, 0, 0);
}
FfxFloat32x4 SpdLoad(FfxInt32x2 tex, FfxUInt32 slice)
{
return SPD_LoadMipmap5(tex);
}
void SpdStore(FfxInt32x2 pix, FfxFloat32x4 outValue, FfxUInt32 index, FfxUInt32 slice)
{
if (index == LumaMipLevelToUse() || index == 5)
{
SPD_SetMipmap(pix, index, outValue.r);
}
if (index == MipCount() - 1) { //accumulate on 1x1 level
if (all(FFX_EQUAL(pix, FfxInt32x2(0, 0))))
{
FfxFloat32 prev = SPD_LoadExposureBuffer().y;
FfxFloat32 result = outValue.r;
if (prev < resetAutoExposureAverageSmoothing) // Compare Lavg, so small or negative values
{
FfxFloat32 rate = 1.0f;
result = prev + (result - prev) * (1 - exp(-DeltaTime() * rate));
}
FfxFloat32x2 spdOutput = FfxFloat32x2(ComputeAutoExposureFromLavg(result), result);
SPD_SetExposureBuffer(spdOutput);
}
}
}
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
SPD_IncreaseAtomicCounter(spdCounter);
}
FfxUInt32 SpdGetAtomicCounter()
{
return spdCounter;
}
void SpdResetAtomicCounter(FfxUInt32 slice)
{
SPD_ResetAtomicCounter();
}
FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat32x4(
spdIntermediateR[x][y],
spdIntermediateG[x][y],
spdIntermediateB[x][y],
spdIntermediateA[x][y]);
}
void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
{
spdIntermediateR[x][y] = value.x;
spdIntermediateG[x][y] = value.y;
spdIntermediateB[x][y] = value.z;
spdIntermediateA[x][y] = value.w;
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return (v0 + v1 + v2 + v3) * 0.25f;
}
#endif
// define fetch and store functions Packed
#if FFX_HALF
#error Callback must be implemented
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateRG[16][16];
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateBA[16][16];
FfxFloat16x4 SpdLoadSourceImageH(FfxFloat32x2 tex, FfxUInt32 slice)
{
return FfxFloat16x4(imgDst[0][FfxFloat32x3(tex, slice)]);
}
FfxFloat16x4 SpdLoadH(FfxInt32x2 p, FfxUInt32 slice)
{
return FfxFloat16x4(imgDst6[FfxUInt32x3(p, slice)]);
}
void SpdStoreH(FfxInt32x2 p, FfxFloat16x4 value, FfxUInt32 mip, FfxUInt32 slice)
{
if (index == LumaMipLevelToUse() || index == 5)
{
imgDst6[FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
return;
}
imgDst[mip + 1][FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
}
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
InterlockedAdd(rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice], 1, spdCounter);
}
FfxUInt32 SpdGetAtomicCounter()
{
return spdCounter;
}
void SpdResetAtomicCounter(FfxUInt32 slice)
{
rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice] = 0;
}
FfxFloat16x4 SpdLoadIntermediateH(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat16x4(
spdIntermediateRG[x][y].x,
spdIntermediateRG[x][y].y,
spdIntermediateBA[x][y].x,
spdIntermediateBA[x][y].y);
}
void SpdStoreIntermediateH(FfxUInt32 x, FfxUInt32 y, FfxFloat16x4 value)
{
spdIntermediateRG[x][y] = value.xy;
spdIntermediateBA[x][y] = value.zw;
}
FfxFloat16x4 SpdReduce4H(FfxFloat16x4 v0, FfxFloat16x4 v1, FfxFloat16x4 v2, FfxFloat16x4 v3)
{
return (v0 + v1 + v2 + v3) * FfxFloat16(0.25);
}
#endif
#include "ffx_spd.h"
void ComputeAutoExposure(FfxUInt32x3 WorkGroupId, FfxUInt32 LocalThreadIndex)
{
#if FFX_HALF
SpdDownsampleH(
FfxUInt32x2(WorkGroupId.xy),
FfxUInt32(LocalThreadIndex),
FfxUInt32(MipCount()),
FfxUInt32(NumWorkGroups()),
FfxUInt32(WorkGroupId.z),
FfxUInt32x2(WorkGroupOffset()));
#else
SpdDownsample(
FfxUInt32x2(WorkGroupId.xy),
FfxUInt32(LocalThreadIndex),
FfxUInt32(MipCount()),
FfxUInt32(NumWorkGroups()),
FfxUInt32(WorkGroupId.z),
FfxUInt32x2(WorkGroupOffset()));
#endif
}