godot/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl
2020-12-04 18:39:46 -03:00

473 lines
13 KiB
GLSL

#[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#define MAX_CASCADES 8
layout(set = 0, binding = 1) uniform texture3D sdf_cascades[MAX_CASCADES];
layout(set = 0, binding = 2) uniform sampler linear_sampler;
layout(set = 0, binding = 3, std430) restrict readonly buffer DispatchData {
uint x;
uint y;
uint z;
uint total_count;
}
dispatch_data;
struct ProcessVoxel {
uint position; //xyz 7 bit packed, extra 11 bits for neigbours
uint albedo; //rgb bits 0-15 albedo, bits 16-21 are normal bits (set if geometry exists toward that side), extra 11 bits for neibhbours
uint light; //rgbe8985 encoded total saved light, extra 2 bits for neighbours
uint light_aniso; //55555 light anisotropy, extra 2 bits for neighbours
//total neighbours: 26
};
#ifdef MODE_PROCESS_STATIC
layout(set = 0, binding = 4, std430) restrict buffer ProcessVoxels {
#else
layout(set = 0, binding = 4, std430) restrict buffer readonly ProcessVoxels {
#endif
ProcessVoxel data[];
}
process_voxels;
layout(r32ui, set = 0, binding = 5) uniform restrict uimage3D dst_light;
layout(rgba8, set = 0, binding = 6) uniform restrict image3D dst_aniso0;
layout(rg8, set = 0, binding = 7) uniform restrict image3D dst_aniso1;
struct CascadeData {
vec3 offset; //offset of (0,0,0) in world coordinates
float to_cell; // 1/bounds * grid_size
ivec3 probe_world_offset;
uint pad;
};
layout(set = 0, binding = 8, std140) uniform Cascades {
CascadeData data[MAX_CASCADES];
}
cascades;
#define LIGHT_TYPE_DIRECTIONAL 0
#define LIGHT_TYPE_OMNI 1
#define LIGHT_TYPE_SPOT 2
struct Light {
vec3 color;
float energy;
vec3 direction;
bool has_shadow;
vec3 position;
float attenuation;
uint type;
float spot_angle;
float spot_attenuation;
float radius;
vec4 shadow_color;
};
layout(set = 0, binding = 9, std140) buffer restrict readonly Lights {
Light data[];
}
lights;
layout(set = 0, binding = 10) uniform texture2DArray lightprobe_texture;
layout(push_constant, binding = 0, std430) uniform Params {
vec3 grid_size;
uint max_cascades;
uint cascade;
uint light_count;
uint process_offset;
uint process_increment;
int probe_axis_size;
bool multibounce;
float y_mult;
uint pad;
}
params;
vec2 octahedron_wrap(vec2 v) {
vec2 signVal;
signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
return (1.0 - abs(v.yx)) * signVal;
}
vec2 octahedron_encode(vec3 n) {
// https://twitter.com/Stubbesaurus/status/937994790553227264
n /= (abs(n.x) + abs(n.y) + abs(n.z));
n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
n.xy = n.xy * 0.5 + 0.5;
return n.xy;
}
void main() {
uint voxel_index = uint(gl_GlobalInvocationID.x);
//used for skipping voxels every N frames
voxel_index = params.process_offset + voxel_index * params.process_increment;
if (voxel_index >= dispatch_data.total_count) {
return;
}
uint voxel_position = process_voxels.data[voxel_index].position;
//keep for storing to texture
ivec3 positioni = ivec3((uvec3(voxel_position, voxel_position, voxel_position) >> uvec3(0, 7, 14)) & uvec3(0x7F));
vec3 position = vec3(positioni) + vec3(0.5);
position /= cascades.data[params.cascade].to_cell;
position += cascades.data[params.cascade].offset;
uint voxel_albedo = process_voxels.data[voxel_index].albedo;
vec3 albedo = vec3(uvec3(voxel_albedo >> 10, voxel_albedo >> 5, voxel_albedo) & uvec3(0x1F)) / float(0x1F);
vec3 light_accum[6];
uint valid_aniso = (voxel_albedo >> 15) & 0x3F;
{
uint rgbe = process_voxels.data[voxel_index].light;
//read rgbe8985
float r = float((rgbe & 0xff) << 1);
float g = float((rgbe >> 8) & 0x1ff);
float b = float(((rgbe >> 17) & 0xff) << 1);
float e = float((rgbe >> 25) & 0x1F);
float m = pow(2.0, e - 15.0 - 9.0);
vec3 l = vec3(r, g, b) * m;
uint aniso = process_voxels.data[voxel_index].light_aniso;
for (uint i = 0; i < 6; i++) {
float strength = ((aniso >> (i * 5)) & 0x1F) / float(0x1F);
light_accum[i] = l * strength;
}
}
const vec3 aniso_dir[6] = vec3[](
vec3(1, 0, 0),
vec3(0, 1, 0),
vec3(0, 0, 1),
vec3(-1, 0, 0),
vec3(0, -1, 0),
vec3(0, 0, -1));
// Raytrace light
vec3 pos_to_uvw = 1.0 / params.grid_size;
vec3 uvw_ofs = pos_to_uvw * 0.5;
for (uint i = 0; i < params.light_count; i++) {
float attenuation = 1.0;
vec3 direction;
float light_distance = 1e20;
switch (lights.data[i].type) {
case LIGHT_TYPE_DIRECTIONAL: {
direction = -lights.data[i].direction;
} break;
case LIGHT_TYPE_OMNI: {
vec3 rel_vec = lights.data[i].position - position;
direction = normalize(rel_vec);
light_distance = length(rel_vec);
rel_vec.y /= params.y_mult;
attenuation = pow(clamp(1.0 - length(rel_vec) / lights.data[i].radius, 0.0, 1.0), lights.data[i].attenuation);
} break;
case LIGHT_TYPE_SPOT: {
vec3 rel_vec = lights.data[i].position - position;
direction = normalize(rel_vec);
light_distance = length(rel_vec);
rel_vec.y /= params.y_mult;
attenuation = pow(clamp(1.0 - length(rel_vec) / lights.data[i].radius, 0.0, 1.0), lights.data[i].attenuation);
float angle = acos(dot(normalize(rel_vec), -lights.data[i].direction));
if (angle > lights.data[i].spot_angle) {
attenuation = 0.0;
} else {
float d = clamp(angle / lights.data[i].spot_angle, 0, 1);
attenuation *= pow(1.0 - d, lights.data[i].spot_attenuation);
}
} break;
}
if (attenuation < 0.001) {
continue;
}
bool hit = false;
vec3 ray_pos = position;
vec3 ray_dir = direction;
vec3 inv_dir = 1.0 / ray_dir;
//this is how to properly bias outgoing rays
float cell_size = 1.0 / cascades.data[params.cascade].to_cell;
ray_pos += sign(direction) * cell_size * 0.48; // go almost to the box edge but remain inside
ray_pos += ray_dir * 0.4 * cell_size; //apply a small bias from there
for (uint j = params.cascade; j < params.max_cascades; j++) {
//convert to local bounds
vec3 pos = ray_pos - cascades.data[j].offset;
pos *= cascades.data[j].to_cell;
float local_distance = light_distance * cascades.data[j].to_cell;
if (any(lessThan(pos, vec3(0.0))) || any(greaterThanEqual(pos, params.grid_size))) {
continue; //already past bounds for this cascade, goto next
}
//find maximum advance distance (until reaching bounds)
vec3 t0 = -pos * inv_dir;
vec3 t1 = (params.grid_size - pos) * inv_dir;
vec3 tmax = max(t0, t1);
float max_advance = min(tmax.x, min(tmax.y, tmax.z));
max_advance = min(local_distance, max_advance);
float advance = 0.0;
float occlusion = 1.0;
while (advance < max_advance) {
//read how much to advance from SDF
vec3 uvw = (pos + ray_dir * advance) * pos_to_uvw;
float distance = texture(sampler3D(sdf_cascades[j], linear_sampler), uvw).r * 255.0 - 1.0;
if (distance < 0.001) {
//consider hit
hit = true;
break;
}
occlusion = min(occlusion, distance);
advance += distance;
}
if (hit) {
attenuation *= occlusion;
break;
}
if (advance >= local_distance) {
break; //past light distance, abandon search
}
//change ray origin to collision with bounds
pos += ray_dir * max_advance;
pos /= cascades.data[j].to_cell;
pos += cascades.data[j].offset;
light_distance -= max_advance / cascades.data[j].to_cell;
ray_pos = pos;
}
if (!hit) {
vec3 light = albedo * lights.data[i].color.rgb * lights.data[i].energy * attenuation;
for (int j = 0; j < 6; j++) {
if (bool(valid_aniso & (1 << j))) {
light_accum[j] += max(0.0, dot(aniso_dir[j], direction)) * light;
}
}
}
}
// Add indirect light
if (params.multibounce) {
vec3 pos = (vec3(positioni) + vec3(0.5)) * float(params.probe_axis_size - 1) / params.grid_size;
ivec3 probe_base_pos = ivec3(pos);
vec4 probe_accum[6] = vec4[](vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0));
float weight_accum[6] = float[](0, 0, 0, 0, 0, 0);
ivec3 tex_pos = ivec3(probe_base_pos.xy, int(params.cascade));
tex_pos.x += probe_base_pos.z * int(params.probe_axis_size);
tex_pos.xy = tex_pos.xy * (OCT_SIZE + 2) + ivec2(1);
vec3 base_tex_posf = vec3(tex_pos);
vec2 tex_pixel_size = 1.0 / vec2(ivec2((OCT_SIZE + 2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE + 2) * params.probe_axis_size));
vec3 probe_uv_offset = (ivec3(OCT_SIZE + 2, OCT_SIZE + 2, (OCT_SIZE + 2) * params.probe_axis_size)) * tex_pixel_size.xyx;
for (uint j = 0; j < 8; j++) {
ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
ivec3 probe_posi = probe_base_pos;
probe_posi += offset;
// Compute weight
vec3 probe_pos = vec3(probe_posi);
vec3 probe_to_pos = pos - probe_pos;
vec3 probe_dir = normalize(-probe_to_pos);
// Compute lightprobe texture position
vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
for (uint k = 0; k < 6; k++) {
if (bool(valid_aniso & (1 << k))) {
vec3 n = aniso_dir[k];
float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(n, probe_dir));
vec3 tex_posf = base_tex_posf + vec3(octahedron_encode(n) * float(OCT_SIZE), 0.0);
tex_posf.xy *= tex_pixel_size;
vec3 pos_uvw = tex_posf;
pos_uvw.xy += vec2(offset.xy) * probe_uv_offset.xy;
pos_uvw.x += float(offset.z) * probe_uv_offset.z;
vec4 indirect_light = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0);
probe_accum[k] += indirect_light * weight;
weight_accum[k] += weight;
}
}
}
for (uint k = 0; k < 6; k++) {
if (weight_accum[k] > 0.0) {
light_accum[k] += probe_accum[k].rgb * albedo / weight_accum[k];
}
}
}
// Store the light in the light texture
float lumas[6];
vec3 light_total = vec3(0);
for (int i = 0; i < 6; i++) {
light_total += light_accum[i];
lumas[i] = max(light_accum[i].r, max(light_accum[i].g, light_accum[i].b));
}
float luma_total = max(light_total.r, max(light_total.g, light_total.b));
uint light_total_rgbe;
{
//compress to RGBE9995 to save space
const float pow2to9 = 512.0f;
const float B = 15.0f;
const float N = 9.0f;
const float LN2 = 0.6931471805599453094172321215;
float cRed = clamp(light_total.r, 0.0, 65408.0);
float cGreen = clamp(light_total.g, 0.0, 65408.0);
float cBlue = clamp(light_total.b, 0.0, 65408.0);
float cMax = max(cRed, max(cGreen, cBlue));
float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
float exps = expp + 1.0f;
if (0.0 <= sMax && sMax < pow2to9) {
exps = expp;
}
float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
#ifdef MODE_PROCESS_STATIC
//since its self-save, use RGBE8985
light_total_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
#else
light_total_rgbe = (uint(sRed) & 0x1FF) | ((uint(sGreen) & 0x1FF) << 9) | ((uint(sBlue) & 0x1FF) << 18) | ((uint(exps) & 0x1F) << 27);
#endif
}
#ifdef MODE_PROCESS_DYNAMIC
vec4 aniso0;
aniso0.r = lumas[0] / luma_total;
aniso0.g = lumas[1] / luma_total;
aniso0.b = lumas[2] / luma_total;
aniso0.a = lumas[3] / luma_total;
vec2 aniso1;
aniso1.r = lumas[4] / luma_total;
aniso1.g = lumas[5] / luma_total;
//save to 3D textures
imageStore(dst_aniso0, positioni, aniso0);
imageStore(dst_aniso1, positioni, vec4(aniso1, 0.0, 0.0));
imageStore(dst_light, positioni, uvec4(light_total_rgbe));
//also fill neighbours, so light interpolation during the indirect pass works
//recover the neighbour list from the leftover bits
uint neighbours = (voxel_albedo >> 21) | ((voxel_position >> 21) << 11) | ((process_voxels.data[voxel_index].light >> 30) << 22) | ((process_voxels.data[voxel_index].light_aniso >> 30) << 24);
const uint max_neighbours = 26;
const ivec3 neighbour_positions[max_neighbours] = ivec3[](
ivec3(-1, -1, -1),
ivec3(-1, -1, 0),
ivec3(-1, -1, 1),
ivec3(-1, 0, -1),
ivec3(-1, 0, 0),
ivec3(-1, 0, 1),
ivec3(-1, 1, -1),
ivec3(-1, 1, 0),
ivec3(-1, 1, 1),
ivec3(0, -1, -1),
ivec3(0, -1, 0),
ivec3(0, -1, 1),
ivec3(0, 0, -1),
ivec3(0, 0, 1),
ivec3(0, 1, -1),
ivec3(0, 1, 0),
ivec3(0, 1, 1),
ivec3(1, -1, -1),
ivec3(1, -1, 0),
ivec3(1, -1, 1),
ivec3(1, 0, -1),
ivec3(1, 0, 0),
ivec3(1, 0, 1),
ivec3(1, 1, -1),
ivec3(1, 1, 0),
ivec3(1, 1, 1));
for (uint i = 0; i < max_neighbours; i++) {
if (bool(neighbours & (1 << i))) {
ivec3 neighbour_pos = positioni + neighbour_positions[i];
imageStore(dst_light, neighbour_pos, uvec4(light_total_rgbe));
imageStore(dst_aniso0, neighbour_pos, aniso0);
imageStore(dst_aniso1, neighbour_pos, vec4(aniso1, 0.0, 0.0));
}
}
#endif
#ifdef MODE_PROCESS_STATIC
//save back the anisotropic
uint light = process_voxels.data[voxel_index].light & (3 << 30);
light |= light_total_rgbe;
process_voxels.data[voxel_index].light = light; //replace
uint light_aniso = process_voxels.data[voxel_index].light_aniso & (3 << 30);
for (int i = 0; i < 6; i++) {
light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
}
process_voxels.data[voxel_index].light_aniso = light_aniso;
#endif
}