godot/servers/physics_2d/body_2d_sw.cpp
PouleyKetchoupp 448c41a3e4 Godot Physics collisions and solver processed on threads
Use ThreadWorkPool to process physics step tasks in multiple threads. Collisions are all processed in parallel and solving impulses is
processed in parallel for rigid body islands.

Additional changes:
- Proper islands for soft bodies linked to active bodies
- All moving areas are on separate islands (can be parallelized)
- Fix inconsistencies with body islands (Kinematic bodies could link
bodies together or not depending on the processing order)
- Completely prevent static bodies to be active (it could cause islands
to be wrongly created and cause dangerous multi-threading operations as
well as inconsistencies in created islands)
- Apply impulses only on dynamic bodies to avoid unsafe multi-threaded
operations (static bodies can be on multiple islands)
- Removed inverted iterations when populating body islands, it's now
faster in regular order (maybe after fixing inconsistencies)
2021-04-26 18:26:00 -07:00

683 lines
19 KiB
C++

/*************************************************************************/
/* body_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_2d_sw.h"
#include "area_2d_sw.h"
#include "physics_server_2d_sw.h"
#include "space_2d_sw.h"
void Body2DSW::_update_inertia() {
if (!user_inertia && get_space() && !inertia_update_list.in_list()) {
get_space()->body_add_to_inertia_update_list(&inertia_update_list);
}
}
void Body2DSW::update_inertias() {
//update shapes and motions
switch (mode) {
case PhysicsServer2D::BODY_MODE_RIGID: {
if (user_inertia) {
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
break;
}
//update tensor for allshapes, not the best way but should be somehow OK. (inspired from bullet)
real_t total_area = 0;
for (int i = 0; i < get_shape_count(); i++) {
total_area += get_shape_aabb(i).get_area();
}
inertia = 0;
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
const Shape2DSW *shape = get_shape(i);
real_t area = get_shape_aabb(i).get_area();
real_t mass = area * this->mass / total_area;
Transform2D mtx = get_shape_transform(i);
Vector2 scale = mtx.get_scale();
inertia += shape->get_moment_of_inertia(mass, scale) + mass * mtx.get_origin().length_squared();
}
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
if (mass) {
_inv_mass = 1.0 / mass;
} else {
_inv_mass = 0;
}
} break;
case PhysicsServer2D::BODY_MODE_KINEMATIC:
case PhysicsServer2D::BODY_MODE_STATIC: {
_inv_inertia = 0;
_inv_mass = 0;
} break;
case PhysicsServer2D::BODY_MODE_CHARACTER: {
_inv_inertia = 0;
_inv_mass = 1.0 / mass;
} break;
}
//_update_inertia_tensor();
//_update_shapes();
}
void Body2DSW::set_active(bool p_active) {
if (active == p_active) {
return;
}
active = p_active;
if (active) {
if (mode == PhysicsServer2D::BODY_MODE_STATIC) {
// Static bodies can't be active.
active = false;
} else if (get_space()) {
get_space()->body_add_to_active_list(&active_list);
}
} else if (get_space()) {
get_space()->body_remove_from_active_list(&active_list);
}
}
void Body2DSW::set_param(PhysicsServer2D::BodyParameter p_param, real_t p_value) {
switch (p_param) {
case PhysicsServer2D::BODY_PARAM_BOUNCE: {
bounce = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_FRICTION: {
friction = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_MASS: {
ERR_FAIL_COND(p_value <= 0);
mass = p_value;
_update_inertia();
} break;
case PhysicsServer2D::BODY_PARAM_INERTIA: {
if (p_value <= 0) {
user_inertia = false;
_update_inertia();
} else {
user_inertia = true;
inertia = p_value;
_inv_inertia = 1.0 / p_value;
}
} break;
case PhysicsServer2D::BODY_PARAM_GRAVITY_SCALE: {
gravity_scale = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_LINEAR_DAMP: {
linear_damp = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_ANGULAR_DAMP: {
angular_damp = p_value;
} break;
default: {
}
}
}
real_t Body2DSW::get_param(PhysicsServer2D::BodyParameter p_param) const {
switch (p_param) {
case PhysicsServer2D::BODY_PARAM_BOUNCE: {
return bounce;
}
case PhysicsServer2D::BODY_PARAM_FRICTION: {
return friction;
}
case PhysicsServer2D::BODY_PARAM_MASS: {
return mass;
}
case PhysicsServer2D::BODY_PARAM_INERTIA: {
return inertia;
}
case PhysicsServer2D::BODY_PARAM_GRAVITY_SCALE: {
return gravity_scale;
}
case PhysicsServer2D::BODY_PARAM_LINEAR_DAMP: {
return linear_damp;
}
case PhysicsServer2D::BODY_PARAM_ANGULAR_DAMP: {
return angular_damp;
}
default: {
}
}
return 0;
}
void Body2DSW::set_mode(PhysicsServer2D::BodyMode p_mode) {
PhysicsServer2D::BodyMode prev = mode;
mode = p_mode;
switch (p_mode) {
//CLEAR UP EVERYTHING IN CASE IT NOT WORKS!
case PhysicsServer2D::BODY_MODE_STATIC:
case PhysicsServer2D::BODY_MODE_KINEMATIC: {
_set_inv_transform(get_transform().affine_inverse());
_inv_mass = 0;
_inv_inertia = 0;
_set_static(p_mode == PhysicsServer2D::BODY_MODE_STATIC);
set_active(p_mode == PhysicsServer2D::BODY_MODE_KINEMATIC && contacts.size());
linear_velocity = Vector2();
angular_velocity = 0;
if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC && prev != mode) {
first_time_kinematic = true;
}
} break;
case PhysicsServer2D::BODY_MODE_RIGID: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
_set_static(false);
set_active(true);
} break;
case PhysicsServer2D::BODY_MODE_CHARACTER: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
_inv_inertia = 0;
_set_static(false);
set_active(true);
angular_velocity = 0;
} break;
}
if (p_mode == PhysicsServer2D::BODY_MODE_RIGID && _inv_inertia == 0) {
_update_inertia();
}
/*
if (get_space())
_update_queries();
*/
}
PhysicsServer2D::BodyMode Body2DSW::get_mode() const {
return mode;
}
void Body2DSW::_shapes_changed() {
_update_inertia();
wakeup_neighbours();
}
void Body2DSW::set_state(PhysicsServer2D::BodyState p_state, const Variant &p_variant) {
switch (p_state) {
case PhysicsServer2D::BODY_STATE_TRANSFORM: {
if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
new_transform = p_variant;
//wakeup_neighbours();
set_active(true);
if (first_time_kinematic) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
first_time_kinematic = false;
}
} else if (mode == PhysicsServer2D::BODY_MODE_STATIC) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
wakeup_neighbours();
} else {
Transform2D t = p_variant;
t.orthonormalize();
new_transform = get_transform(); //used as old to compute motion
if (t == new_transform) {
break;
}
_set_transform(t);
_set_inv_transform(get_transform().inverse());
}
wakeup();
} break;
case PhysicsServer2D::BODY_STATE_LINEAR_VELOCITY: {
/*
if (mode==PhysicsServer2D::BODY_MODE_STATIC)
break;
*/
linear_velocity = p_variant;
wakeup();
} break;
case PhysicsServer2D::BODY_STATE_ANGULAR_VELOCITY: {
/*
if (mode!=PhysicsServer2D::BODY_MODE_RIGID)
break;
*/
angular_velocity = p_variant;
wakeup();
} break;
case PhysicsServer2D::BODY_STATE_SLEEPING: {
//?
if (mode == PhysicsServer2D::BODY_MODE_STATIC || mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
break;
}
bool do_sleep = p_variant;
if (do_sleep) {
linear_velocity = Vector2();
//biased_linear_velocity=Vector3();
angular_velocity = 0;
//biased_angular_velocity=Vector3();
set_active(false);
} else {
if (mode != PhysicsServer2D::BODY_MODE_STATIC) {
set_active(true);
}
}
} break;
case PhysicsServer2D::BODY_STATE_CAN_SLEEP: {
can_sleep = p_variant;
if (mode == PhysicsServer2D::BODY_MODE_RIGID && !active && !can_sleep) {
set_active(true);
}
} break;
}
}
Variant Body2DSW::get_state(PhysicsServer2D::BodyState p_state) const {
switch (p_state) {
case PhysicsServer2D::BODY_STATE_TRANSFORM: {
return get_transform();
}
case PhysicsServer2D::BODY_STATE_LINEAR_VELOCITY: {
return linear_velocity;
}
case PhysicsServer2D::BODY_STATE_ANGULAR_VELOCITY: {
return angular_velocity;
}
case PhysicsServer2D::BODY_STATE_SLEEPING: {
return !is_active();
}
case PhysicsServer2D::BODY_STATE_CAN_SLEEP: {
return can_sleep;
}
}
return Variant();
}
void Body2DSW::set_space(Space2DSW *p_space) {
if (get_space()) {
wakeup_neighbours();
if (inertia_update_list.in_list()) {
get_space()->body_remove_from_inertia_update_list(&inertia_update_list);
}
if (active_list.in_list()) {
get_space()->body_remove_from_active_list(&active_list);
}
if (direct_state_query_list.in_list()) {
get_space()->body_remove_from_state_query_list(&direct_state_query_list);
}
}
_set_space(p_space);
if (get_space()) {
_update_inertia();
if (active) {
get_space()->body_add_to_active_list(&active_list);
}
}
first_integration = false;
}
void Body2DSW::_compute_area_gravity_and_dampenings(const Area2DSW *p_area) {
if (p_area->is_gravity_point()) {
if (p_area->get_gravity_distance_scale() > 0) {
Vector2 v = p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin();
gravity += v.normalized() * (p_area->get_gravity() / Math::pow(v.length() * p_area->get_gravity_distance_scale() + 1, 2));
} else {
gravity += (p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin()).normalized() * p_area->get_gravity();
}
} else {
gravity += p_area->get_gravity_vector() * p_area->get_gravity();
}
area_linear_damp += p_area->get_linear_damp();
area_angular_damp += p_area->get_angular_damp();
}
void Body2DSW::integrate_forces(real_t p_step) {
if (mode == PhysicsServer2D::BODY_MODE_STATIC) {
return;
}
Area2DSW *def_area = get_space()->get_default_area();
// Area2DSW *damp_area = def_area;
ERR_FAIL_COND(!def_area);
int ac = areas.size();
bool stopped = false;
gravity = Vector2(0, 0);
area_angular_damp = 0;
area_linear_damp = 0;
if (ac) {
areas.sort();
const AreaCMP *aa = &areas[0];
// damp_area = aa[ac-1].area;
for (int i = ac - 1; i >= 0 && !stopped; i--) {
PhysicsServer2D::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode();
switch (mode) {
case PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE:
case PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: {
_compute_area_gravity_and_dampenings(aa[i].area);
stopped = mode == PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE;
} break;
case PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE:
case PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: {
gravity = Vector2(0, 0);
area_angular_damp = 0;
area_linear_damp = 0;
_compute_area_gravity_and_dampenings(aa[i].area);
stopped = mode == PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE;
} break;
default: {
}
}
}
}
if (!stopped) {
_compute_area_gravity_and_dampenings(def_area);
}
gravity *= gravity_scale;
// If less than 0, override dampenings with that of the Body2D
if (angular_damp >= 0) {
area_angular_damp = angular_damp;
}
/*
else
area_angular_damp=damp_area->get_angular_damp();
*/
if (linear_damp >= 0) {
area_linear_damp = linear_damp;
}
/*
else
area_linear_damp=damp_area->get_linear_damp();
*/
Vector2 motion;
bool do_motion = false;
if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
//compute motion, angular and etc. velocities from prev transform
motion = new_transform.get_origin() - get_transform().get_origin();
linear_velocity = motion / p_step;
real_t rot = new_transform.get_rotation() - get_transform().get_rotation();
angular_velocity = remainder(rot, 2.0 * Math_PI) / p_step;
do_motion = true;
/*
for(int i=0;i<get_shape_count();i++) {
set_shape_kinematic_advance(i,Vector2());
set_shape_kinematic_retreat(i,0);
}
*/
} else {
if (!omit_force_integration && !first_integration) {
//overridden by direct state query
Vector2 force = gravity * mass;
force += applied_force;
real_t torque = applied_torque;
real_t damp = 1.0 - p_step * area_linear_damp;
if (damp < 0) { // reached zero in the given time
damp = 0;
}
real_t angular_damp = 1.0 - p_step * area_angular_damp;
if (angular_damp < 0) { // reached zero in the given time
angular_damp = 0;
}
linear_velocity *= damp;
angular_velocity *= angular_damp;
linear_velocity += _inv_mass * force * p_step;
angular_velocity += _inv_inertia * torque * p_step;
}
if (continuous_cd_mode != PhysicsServer2D::CCD_MODE_DISABLED) {
motion = linear_velocity * p_step;
do_motion = true;
}
}
//motion=linear_velocity*p_step;
first_integration = false;
biased_angular_velocity = 0;
biased_linear_velocity = Vector2();
if (do_motion) { //shapes temporarily extend for raycast
_update_shapes_with_motion(motion);
}
// damp_area=nullptr; // clear the area, so it is set in the next frame
def_area = nullptr; // clear the area, so it is set in the next frame
contact_count = 0;
}
void Body2DSW::integrate_velocities(real_t p_step) {
if (mode == PhysicsServer2D::BODY_MODE_STATIC) {
return;
}
if (fi_callback) {
get_space()->body_add_to_state_query_list(&direct_state_query_list);
}
if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
_set_transform(new_transform, false);
_set_inv_transform(new_transform.affine_inverse());
if (contacts.size() == 0 && linear_velocity == Vector2() && angular_velocity == 0) {
set_active(false); //stopped moving, deactivate
}
return;
}
real_t total_angular_velocity = angular_velocity + biased_angular_velocity;
Vector2 total_linear_velocity = linear_velocity + biased_linear_velocity;
real_t angle = get_transform().get_rotation() + total_angular_velocity * p_step;
Vector2 pos = get_transform().get_origin() + total_linear_velocity * p_step;
_set_transform(Transform2D(angle, pos), continuous_cd_mode == PhysicsServer2D::CCD_MODE_DISABLED);
_set_inv_transform(get_transform().inverse());
if (continuous_cd_mode != PhysicsServer2D::CCD_MODE_DISABLED) {
new_transform = get_transform();
}
//_update_inertia_tensor();
}
void Body2DSW::wakeup_neighbours() {
for (List<Pair<Constraint2DSW *, int>>::Element *E = constraint_list.front(); E; E = E->next()) {
const Constraint2DSW *c = E->get().first;
Body2DSW **n = c->get_body_ptr();
int bc = c->get_body_count();
for (int i = 0; i < bc; i++) {
if (i == E->get().second) {
continue;
}
Body2DSW *b = n[i];
if (b->mode != PhysicsServer2D::BODY_MODE_RIGID) {
continue;
}
if (!b->is_active()) {
b->set_active(true);
}
}
}
}
void Body2DSW::call_queries() {
if (fi_callback) {
PhysicsDirectBodyState2DSW *dbs = PhysicsDirectBodyState2DSW::singleton;
dbs->body = this;
Variant v = dbs;
const Variant *vp[2] = { &v, &fi_callback->callback_udata };
Object *obj = fi_callback->callable.get_object();
if (!obj) {
set_force_integration_callback(Callable());
} else {
Callable::CallError ce;
Variant rv;
if (fi_callback->callback_udata.get_type() != Variant::NIL) {
fi_callback->callable.call(vp, 2, rv, ce);
} else {
fi_callback->callable.call(vp, 1, rv, ce);
}
}
}
}
bool Body2DSW::sleep_test(real_t p_step) {
if (mode == PhysicsServer2D::BODY_MODE_STATIC || mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
return true; //
} else if (mode == PhysicsServer2D::BODY_MODE_CHARACTER) {
return !active; // characters and kinematic bodies don't sleep unless asked to sleep
} else if (!can_sleep) {
return false;
}
if (Math::abs(angular_velocity) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) {
still_time += p_step;
return still_time > get_space()->get_body_time_to_sleep();
} else {
still_time = 0; //maybe this should be set to 0 on set_active?
return false;
}
}
void Body2DSW::set_force_integration_callback(const Callable &p_callable, const Variant &p_udata) {
if (fi_callback) {
memdelete(fi_callback);
fi_callback = nullptr;
}
if (p_callable.get_object()) {
fi_callback = memnew(ForceIntegrationCallback);
fi_callback->callable = p_callable;
fi_callback->callback_udata = p_udata;
}
}
Body2DSW::Body2DSW() :
CollisionObject2DSW(TYPE_BODY),
active_list(this),
inertia_update_list(this),
direct_state_query_list(this) {
mode = PhysicsServer2D::BODY_MODE_RIGID;
active = true;
angular_velocity = 0;
biased_angular_velocity = 0;
mass = 1;
inertia = 0;
user_inertia = false;
_inv_inertia = 0;
_inv_mass = 1;
bounce = 0;
friction = 1;
omit_force_integration = false;
applied_torque = 0;
island_step = 0;
_set_static(false);
first_time_kinematic = false;
linear_damp = -1;
angular_damp = -1;
area_angular_damp = 0;
area_linear_damp = 0;
contact_count = 0;
gravity_scale = 1.0;
first_integration = false;
still_time = 0;
continuous_cd_mode = PhysicsServer2D::CCD_MODE_DISABLED;
can_sleep = true;
fi_callback = nullptr;
}
Body2DSW::~Body2DSW() {
if (fi_callback) {
memdelete(fi_callback);
}
}
PhysicsDirectBodyState2DSW *PhysicsDirectBodyState2DSW::singleton = nullptr;
PhysicsDirectSpaceState2D *PhysicsDirectBodyState2DSW::get_space_state() {
return body->get_space()->get_direct_state();
}
Variant PhysicsDirectBodyState2DSW::get_contact_collider_shape_metadata(int p_contact_idx) const {
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, Variant());
if (!PhysicsServer2DSW::singletonsw->body_owner.owns(body->contacts[p_contact_idx].collider)) {
return Variant();
}
Body2DSW *other = PhysicsServer2DSW::singletonsw->body_owner.getornull(body->contacts[p_contact_idx].collider);
int sidx = body->contacts[p_contact_idx].collider_shape;
if (sidx < 0 || sidx >= other->get_shape_count()) {
return Variant();
}
return other->get_shape_metadata(sidx);
}