mirror of
https://github.com/godotengine/godot.git
synced 2025-01-06 17:37:18 +08:00
291 lines
9.2 KiB
C++
291 lines
9.2 KiB
C++
/**************************************************************************/
|
|
/* transform_2d.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#include "transform_2d.h"
|
|
|
|
#include "core/string/ustring.h"
|
|
|
|
void Transform2D::invert() {
|
|
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
|
|
// Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
|
|
SWAP(columns[0][1], columns[1][0]);
|
|
columns[2] = basis_xform(-columns[2]);
|
|
}
|
|
|
|
Transform2D Transform2D::inverse() const {
|
|
Transform2D inv = *this;
|
|
inv.invert();
|
|
return inv;
|
|
}
|
|
|
|
void Transform2D::affine_invert() {
|
|
real_t det = determinant();
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND(det == 0);
|
|
#endif
|
|
real_t idet = 1.0f / det;
|
|
|
|
SWAP(columns[0][0], columns[1][1]);
|
|
columns[0] *= Vector2(idet, -idet);
|
|
columns[1] *= Vector2(-idet, idet);
|
|
|
|
columns[2] = basis_xform(-columns[2]);
|
|
}
|
|
|
|
Transform2D Transform2D::affine_inverse() const {
|
|
Transform2D inv = *this;
|
|
inv.affine_invert();
|
|
return inv;
|
|
}
|
|
|
|
void Transform2D::rotate(const real_t p_angle) {
|
|
*this = Transform2D(p_angle, Vector2()) * (*this);
|
|
}
|
|
|
|
real_t Transform2D::get_skew() const {
|
|
real_t det = determinant();
|
|
return Math::acos(columns[0].normalized().dot(SIGN(det) * columns[1].normalized())) - (real_t)Math_PI * 0.5f;
|
|
}
|
|
|
|
void Transform2D::set_skew(const real_t p_angle) {
|
|
real_t det = determinant();
|
|
columns[1] = SIGN(det) * columns[0].rotated(((real_t)Math_PI * 0.5f + p_angle)).normalized() * columns[1].length();
|
|
}
|
|
|
|
real_t Transform2D::get_rotation() const {
|
|
return Math::atan2(columns[0].y, columns[0].x);
|
|
}
|
|
|
|
void Transform2D::set_rotation(const real_t p_rot) {
|
|
Size2 scale = get_scale();
|
|
real_t cr = Math::cos(p_rot);
|
|
real_t sr = Math::sin(p_rot);
|
|
columns[0][0] = cr;
|
|
columns[0][1] = sr;
|
|
columns[1][0] = -sr;
|
|
columns[1][1] = cr;
|
|
set_scale(scale);
|
|
}
|
|
|
|
Transform2D::Transform2D(const real_t p_rot, const Vector2 &p_pos) {
|
|
real_t cr = Math::cos(p_rot);
|
|
real_t sr = Math::sin(p_rot);
|
|
columns[0][0] = cr;
|
|
columns[0][1] = sr;
|
|
columns[1][0] = -sr;
|
|
columns[1][1] = cr;
|
|
columns[2] = p_pos;
|
|
}
|
|
|
|
Transform2D::Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos) {
|
|
columns[0][0] = Math::cos(p_rot) * p_scale.x;
|
|
columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y;
|
|
columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y;
|
|
columns[0][1] = Math::sin(p_rot) * p_scale.x;
|
|
columns[2] = p_pos;
|
|
}
|
|
|
|
Size2 Transform2D::get_scale() const {
|
|
real_t det_sign = SIGN(determinant());
|
|
return Size2(columns[0].length(), det_sign * columns[1].length());
|
|
}
|
|
|
|
void Transform2D::set_scale(const Size2 &p_scale) {
|
|
columns[0].normalize();
|
|
columns[1].normalize();
|
|
columns[0] *= p_scale.x;
|
|
columns[1] *= p_scale.y;
|
|
}
|
|
|
|
void Transform2D::scale(const Size2 &p_scale) {
|
|
scale_basis(p_scale);
|
|
columns[2] *= p_scale;
|
|
}
|
|
|
|
void Transform2D::scale_basis(const Size2 &p_scale) {
|
|
columns[0][0] *= p_scale.x;
|
|
columns[0][1] *= p_scale.y;
|
|
columns[1][0] *= p_scale.x;
|
|
columns[1][1] *= p_scale.y;
|
|
}
|
|
|
|
void Transform2D::translate_local(const real_t p_tx, const real_t p_ty) {
|
|
translate_local(Vector2(p_tx, p_ty));
|
|
}
|
|
|
|
void Transform2D::translate_local(const Vector2 &p_translation) {
|
|
columns[2] += basis_xform(p_translation);
|
|
}
|
|
|
|
void Transform2D::orthonormalize() {
|
|
// Gram-Schmidt Process
|
|
|
|
Vector2 x = columns[0];
|
|
Vector2 y = columns[1];
|
|
|
|
x.normalize();
|
|
y = y - x * x.dot(y);
|
|
y.normalize();
|
|
|
|
columns[0] = x;
|
|
columns[1] = y;
|
|
}
|
|
|
|
Transform2D Transform2D::orthonormalized() const {
|
|
Transform2D ortho = *this;
|
|
ortho.orthonormalize();
|
|
return ortho;
|
|
}
|
|
|
|
bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
|
|
return columns[0].is_equal_approx(p_transform.columns[0]) && columns[1].is_equal_approx(p_transform.columns[1]) && columns[2].is_equal_approx(p_transform.columns[2]);
|
|
}
|
|
|
|
bool Transform2D::is_finite() const {
|
|
return columns[0].is_finite() && columns[1].is_finite() && columns[2].is_finite();
|
|
}
|
|
|
|
Transform2D Transform2D::looking_at(const Vector2 &p_target) const {
|
|
Transform2D return_trans = Transform2D(get_rotation(), get_origin());
|
|
Vector2 target_position = affine_inverse().xform(p_target);
|
|
return_trans.set_rotation(return_trans.get_rotation() + (target_position * get_scale()).angle());
|
|
return return_trans;
|
|
}
|
|
|
|
bool Transform2D::operator==(const Transform2D &p_transform) const {
|
|
for (int i = 0; i < 3; i++) {
|
|
if (columns[i] != p_transform.columns[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Transform2D::operator!=(const Transform2D &p_transform) const {
|
|
for (int i = 0; i < 3; i++) {
|
|
if (columns[i] != p_transform.columns[i]) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Transform2D::operator*=(const Transform2D &p_transform) {
|
|
columns[2] = xform(p_transform.columns[2]);
|
|
|
|
real_t x0, x1, y0, y1;
|
|
|
|
x0 = tdotx(p_transform.columns[0]);
|
|
x1 = tdoty(p_transform.columns[0]);
|
|
y0 = tdotx(p_transform.columns[1]);
|
|
y1 = tdoty(p_transform.columns[1]);
|
|
|
|
columns[0][0] = x0;
|
|
columns[0][1] = x1;
|
|
columns[1][0] = y0;
|
|
columns[1][1] = y1;
|
|
}
|
|
|
|
Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
|
|
Transform2D t = *this;
|
|
t *= p_transform;
|
|
return t;
|
|
}
|
|
|
|
Transform2D Transform2D::scaled(const Size2 &p_scale) const {
|
|
// Equivalent to left multiplication
|
|
Transform2D copy = *this;
|
|
copy.scale(p_scale);
|
|
return copy;
|
|
}
|
|
|
|
Transform2D Transform2D::scaled_local(const Size2 &p_scale) const {
|
|
// Equivalent to right multiplication
|
|
return Transform2D(columns[0] * p_scale.x, columns[1] * p_scale.y, columns[2]);
|
|
}
|
|
|
|
Transform2D Transform2D::untranslated() const {
|
|
Transform2D copy = *this;
|
|
copy.columns[2] = Vector2();
|
|
return copy;
|
|
}
|
|
|
|
Transform2D Transform2D::translated(const Vector2 &p_offset) const {
|
|
// Equivalent to left multiplication
|
|
return Transform2D(columns[0], columns[1], columns[2] + p_offset);
|
|
}
|
|
|
|
Transform2D Transform2D::translated_local(const Vector2 &p_offset) const {
|
|
// Equivalent to right multiplication
|
|
return Transform2D(columns[0], columns[1], columns[2] + basis_xform(p_offset));
|
|
}
|
|
|
|
Transform2D Transform2D::rotated(const real_t p_angle) const {
|
|
// Equivalent to left multiplication
|
|
return Transform2D(p_angle, Vector2()) * (*this);
|
|
}
|
|
|
|
Transform2D Transform2D::rotated_local(const real_t p_angle) const {
|
|
// Equivalent to right multiplication
|
|
return (*this) * Transform2D(p_angle, Vector2()); // Could be optimized, because origin transform can be skipped.
|
|
}
|
|
|
|
real_t Transform2D::determinant() const {
|
|
return columns[0].x * columns[1].y - columns[0].y * columns[1].x;
|
|
}
|
|
|
|
Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const real_t p_weight) const {
|
|
return Transform2D(
|
|
Math::lerp_angle(get_rotation(), p_transform.get_rotation(), p_weight),
|
|
get_scale().lerp(p_transform.get_scale(), p_weight),
|
|
Math::lerp_angle(get_skew(), p_transform.get_skew(), p_weight),
|
|
get_origin().lerp(p_transform.get_origin(), p_weight));
|
|
}
|
|
|
|
void Transform2D::operator*=(const real_t p_val) {
|
|
columns[0] *= p_val;
|
|
columns[1] *= p_val;
|
|
columns[2] *= p_val;
|
|
}
|
|
|
|
Transform2D Transform2D::operator*(const real_t p_val) const {
|
|
Transform2D ret(*this);
|
|
ret *= p_val;
|
|
return ret;
|
|
}
|
|
|
|
Transform2D::operator String() const {
|
|
return "[X: " + columns[0].operator String() +
|
|
", Y: " + columns[1].operator String() +
|
|
", O: " + columns[2].operator String() + "]";
|
|
}
|