godot/thirdparty/msdfgen/core/Vector2.hpp
2024-03-13 09:12:50 +02:00

168 lines
4.0 KiB
C++

#pragma once
#include <cmath>
#include "base.h"
namespace msdfgen {
/**
* A 2-dimensional euclidean floating-point vector.
* @author Viktor Chlumsky
*/
struct Vector2 {
double x, y;
inline Vector2(double val = 0) : x(val), y(val) { }
inline Vector2(double x, double y) : x(x), y(y) { }
/// Sets the vector to zero.
inline void reset() {
x = 0, y = 0;
}
/// Sets individual elements of the vector.
inline void set(double x, double y) {
this->x = x, this->y = y;
}
/// Returns the vector's squared length.
inline double squaredLength() const {
return x*x+y*y;
}
/// Returns the vector's length.
inline double length() const {
return sqrt(x*x+y*y);
}
/// Returns the normalized vector - one that has the same direction but unit length.
inline Vector2 normalize(bool allowZero = false) const {
if (double len = length())
return Vector2(x/len, y/len);
return Vector2(0, !allowZero);
}
/// Returns a vector with the same length that is orthogonal to this one.
inline Vector2 getOrthogonal(bool polarity = true) const {
return polarity ? Vector2(-y, x) : Vector2(y, -x);
}
/// Returns a vector with unit length that is orthogonal to this one.
inline Vector2 getOrthonormal(bool polarity = true, bool allowZero = false) const {
if (double len = length())
return polarity ? Vector2(-y/len, x/len) : Vector2(y/len, -x/len);
return polarity ? Vector2(0, !allowZero) : Vector2(0, -!allowZero);
}
#ifdef MSDFGEN_USE_CPP11
inline explicit operator bool() const {
return x || y;
}
#else
inline operator const void *() const {
return x || y ? this : NULL;
}
#endif
inline Vector2 &operator+=(const Vector2 other) {
x += other.x, y += other.y;
return *this;
}
inline Vector2 &operator-=(const Vector2 other) {
x -= other.x, y -= other.y;
return *this;
}
inline Vector2 &operator*=(const Vector2 other) {
x *= other.x, y *= other.y;
return *this;
}
inline Vector2 &operator/=(const Vector2 other) {
x /= other.x, y /= other.y;
return *this;
}
inline Vector2 &operator*=(double value) {
x *= value, y *= value;
return *this;
}
inline Vector2 &operator/=(double value) {
x /= value, y /= value;
return *this;
}
};
/// A vector may also represent a point, which shall be differentiated semantically using the alias Point2.
typedef Vector2 Point2;
/// Dot product of two vectors.
inline double dotProduct(const Vector2 a, const Vector2 b) {
return a.x*b.x+a.y*b.y;
}
/// A special version of the cross product for 2D vectors (returns scalar value).
inline double crossProduct(const Vector2 a, const Vector2 b) {
return a.x*b.y-a.y*b.x;
}
inline bool operator==(const Vector2 a, const Vector2 b) {
return a.x == b.x && a.y == b.y;
}
inline bool operator!=(const Vector2 a, const Vector2 b) {
return a.x != b.x || a.y != b.y;
}
inline Vector2 operator+(const Vector2 v) {
return v;
}
inline Vector2 operator-(const Vector2 v) {
return Vector2(-v.x, -v.y);
}
inline bool operator!(const Vector2 v) {
return !v.x && !v.y;
}
inline Vector2 operator+(const Vector2 a, const Vector2 b) {
return Vector2(a.x+b.x, a.y+b.y);
}
inline Vector2 operator-(const Vector2 a, const Vector2 b) {
return Vector2(a.x-b.x, a.y-b.y);
}
inline Vector2 operator*(const Vector2 a, const Vector2 b) {
return Vector2(a.x*b.x, a.y*b.y);
}
inline Vector2 operator/(const Vector2 a, const Vector2 b) {
return Vector2(a.x/b.x, a.y/b.y);
}
inline Vector2 operator*(double a, const Vector2 b) {
return Vector2(a*b.x, a*b.y);
}
inline Vector2 operator/(double a, const Vector2 b) {
return Vector2(a/b.x, a/b.y);
}
inline Vector2 operator*(const Vector2 a, double b) {
return Vector2(a.x*b, a.y*b);
}
inline Vector2 operator/(const Vector2 a, double b) {
return Vector2(a.x/b, a.y/b);
}
}