godot/thirdparty/basis_universal/transcoder/basisu.h
2024-10-12 18:02:44 +02:00

572 lines
16 KiB
C++

// basisu.h
// Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved.
// Important: If compiling with gcc, be sure strict aliasing is disabled: -fno-strict-aliasing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef _MSC_VER
#pragma warning (disable : 4201)
#pragma warning (disable : 4127) // warning C4127: conditional expression is constant
#pragma warning (disable : 4530) // C++ exception handler used, but unwind semantics are not enabled.
// Slamming this off always for v1.16 because we've gotten rid of most std containers.
#ifndef BASISU_NO_ITERATOR_DEBUG_LEVEL
#define BASISU_NO_ITERATOR_DEBUG_LEVEL (1)
#endif
#ifndef BASISU_NO_ITERATOR_DEBUG_LEVEL
//#define _HAS_ITERATOR_DEBUGGING 0
#if defined(_DEBUG) || defined(DEBUG)
// This is madness, but we need to disable iterator debugging in debug builds or the encoder is unsable because MSVC's iterator debugging implementation is totally broken.
#ifndef _ITERATOR_DEBUG_LEVEL
#define _ITERATOR_DEBUG_LEVEL 1
#endif
#ifndef _SECURE_SCL
#define _SECURE_SCL 1
#endif
#else // defined(_DEBUG) || defined(DEBUG)
#ifndef _SECURE_SCL
#define _SECURE_SCL 0
#endif
#ifndef _ITERATOR_DEBUG_LEVEL
#define _ITERATOR_DEBUG_LEVEL 0
#endif
#endif // defined(_DEBUG) || defined(DEBUG)
#endif // BASISU_NO_ITERATOR_DEBUG_LEVEL
#endif // _MSC_VER
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>
#include <string.h>
#include <memory.h>
#include <limits.h>
#include <stdint.h>
#include <algorithm>
#include <limits>
#include <functional>
#include <iterator>
#include <type_traits>
#include <assert.h>
#include <random>
#include "basisu_containers.h"
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
#ifdef _WIN32
#define strcasecmp _stricmp
#endif
// Set to one to enable debug printf()'s when any errors occur, for development/debugging. Especially useful for WebGL development.
#ifndef BASISU_FORCE_DEVEL_MESSAGES
#define BASISU_FORCE_DEVEL_MESSAGES 0
#endif
#define BASISU_NOTE_UNUSED(x) (void)(x)
#define BASISU_ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
#define BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(x) x(const x &) = delete; x& operator= (const x &) = delete;
#define BASISU_ASSUME(x) static_assert(x, #x);
#define BASISU_OFFSETOF(s, m) offsetof(s, m)
#define BASISU_STRINGIZE(x) #x
#define BASISU_STRINGIZE2(x) BASISU_STRINGIZE(x)
#if BASISU_FORCE_DEVEL_MESSAGES
#define BASISU_DEVEL_ERROR(...) do { basisu::debug_printf(__VA_ARGS__); } while(0)
#else
#define BASISU_DEVEL_ERROR(...)
#endif
namespace basisu
{
// Types/utilities
#ifdef _WIN32
const char BASISU_PATH_SEPERATOR_CHAR = '\\';
#else
const char BASISU_PATH_SEPERATOR_CHAR = '/';
#endif
typedef basisu::vector<uint8_t> uint8_vec;
typedef basisu::vector<int16_t> int16_vec;
typedef basisu::vector<uint16_t> uint16_vec;
typedef basisu::vector<uint32_t> uint_vec;
typedef basisu::vector<uint64_t> uint64_vec;
typedef basisu::vector<int> int_vec;
typedef basisu::vector<bool> bool_vec;
typedef basisu::vector<float> float_vec;
void enable_debug_printf(bool enabled);
void debug_printf(const char *pFmt, ...);
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wclass-memaccess"
#endif
#endif
template <typename T> inline void clear_obj(T& obj) { memset(&obj, 0, sizeof(obj)); }
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#endif
template <typename T0, typename T1> inline T0 lerp(T0 a, T0 b, T1 c) { return a + (b - a) * c; }
template <typename S> inline S maximum(S a, S b) { return (a > b) ? a : b; }
template <typename S> inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); }
template <typename S> inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); }
template <typename S> inline S minimum(S a, S b) { return (a < b) ? a : b; }
template <typename S> inline S minimum(S a, S b, S c) { return minimum(minimum(a, b), c); }
template <typename S> inline S minimum(S a, S b, S c, S d) { return minimum(minimum(minimum(a, b), c), d); }
inline float clampf(float value, float low, float high) { if (value < low) value = low; else if (value > high) value = high; return value; }
inline float saturate(float value) { return clampf(value, 0, 1.0f); }
inline uint8_t minimumub(uint8_t a, uint8_t b) { return (a < b) ? a : b; }
inline uint32_t minimumu(uint32_t a, uint32_t b) { return (a < b) ? a : b; }
inline int32_t minimumi(int32_t a, int32_t b) { return (a < b) ? a : b; }
inline float minimumf(float a, float b) { return (a < b) ? a : b; }
inline uint8_t maximumub(uint8_t a, uint8_t b) { return (a > b) ? a : b; }
inline uint32_t maximumu(uint32_t a, uint32_t b) { return (a > b) ? a : b; }
inline int32_t maximumi(int32_t a, int32_t b) { return (a > b) ? a : b; }
inline float maximumf(float a, float b) { return (a > b) ? a : b; }
inline int squarei(int i) { return i * i; }
inline float squaref(float i) { return i * i; }
template<typename T> inline T square(T a) { return a * a; }
template <typename S> inline S clamp(S value, S low, S high) { return (value < low) ? low : ((value > high) ? high : value); }
inline uint32_t iabs(int32_t i) { return (i < 0) ? static_cast<uint32_t>(-i) : static_cast<uint32_t>(i); }
inline uint64_t iabs64(int64_t i) { return (i < 0) ? static_cast<uint64_t>(-i) : static_cast<uint64_t>(i); }
template<typename T> inline void clear_vector(T &vec) { vec.erase(vec.begin(), vec.end()); }
template<typename T> inline typename T::value_type *enlarge_vector(T &vec, size_t n) { size_t cs = vec.size(); vec.resize(cs + n); return &vec[cs]; }
inline bool is_pow2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); }
inline bool is_pow2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); }
template<typename T> inline T open_range_check(T v, T minv, T maxv) { assert(v >= minv && v < maxv); BASISU_NOTE_UNUSED(minv); BASISU_NOTE_UNUSED(maxv); return v; }
template<typename T> inline T open_range_check(T v, T maxv) { assert(v < maxv); BASISU_NOTE_UNUSED(maxv); return v; }
// Open interval
inline bool in_bounds(int v, int l, int h)
{
return (v >= l) && (v < h);
}
// Closed interval
inline bool in_range(int v, int l, int h)
{
return (v >= l) && (v <= h);
}
inline uint32_t total_bits(uint32_t v) { uint32_t l = 0; for ( ; v > 0U; ++l) v >>= 1; return l; }
template<typename T> inline T saturate(T val) { return clamp(val, 0.0f, 1.0f); }
inline uint32_t get_bit(uint32_t src, int ndx)
{
assert(in_bounds(ndx, 0, 32));
return (src >> ndx) & 1;
}
inline bool is_bit_set(uint32_t src, int ndx)
{
return get_bit(src, ndx) != 0;
}
inline uint32_t get_bits(uint32_t val, int low, int high)
{
const int num_bits = (high - low) + 1;
assert(in_range(num_bits, 1, 32));
val >>= low;
if (num_bits != 32)
val &= ((1u << num_bits) - 1);
return val;
}
template<typename T, typename R> inline void append_vector(T &vec, const R *pObjs, size_t n)
{
if (n)
{
if (vec.size())
{
assert((pObjs + n) <= vec.begin() || (pObjs >= vec.end()));
}
const size_t cur_s = vec.size();
vec.resize(cur_s + n);
memcpy(&vec[cur_s], pObjs, sizeof(R) * n);
}
}
template<typename T> inline void append_vector(T &vec, const T &other_vec)
{
assert(&vec != &other_vec);
if (other_vec.size())
append_vector(vec, &other_vec[0], other_vec.size());
}
template<typename T> inline void vector_ensure_element_is_valid(T &vec, size_t idx)
{
if (idx >= vec.size())
vec.resize(idx + 1);
}
template<typename T> inline void vector_sort(T &vec)
{
if (vec.size())
std::sort(vec.begin(), vec.end());
}
template<typename T, typename U> inline bool unordered_set_contains(T& set, const U&obj)
{
return set.find(obj) != set.end();
}
template<typename T> int vector_find(const T &vec, const typename T::value_type &obj)
{
assert(vec.size() <= INT_MAX);
for (size_t i = 0; i < vec.size(); i++)
if (vec[i] == obj)
return static_cast<int>(i);
return -1;
}
template<typename T> void vector_set_all(T &vec, const typename T::value_type &obj)
{
for (size_t i = 0; i < vec.size(); i++)
vec[i] = obj;
}
inline uint64_t read_be64(const void *p)
{
uint64_t val = 0;
for (uint32_t i = 0; i < 8; i++)
val |= (static_cast<uint64_t>(static_cast<const uint8_t *>(p)[7 - i]) << (i * 8));
return val;
}
inline void write_be64(void *p, uint64_t x)
{
for (uint32_t i = 0; i < 8; i++)
static_cast<uint8_t *>(p)[7 - i] = static_cast<uint8_t>(x >> (i * 8));
}
static inline uint16_t byteswap16(uint16_t x) { return static_cast<uint16_t>((x << 8) | (x >> 8)); }
static inline uint32_t byteswap32(uint32_t x) { return ((x << 24) | ((x << 8) & 0x00FF0000) | ((x >> 8) & 0x0000FF00) | (x >> 24)); }
inline uint32_t floor_log2i(uint32_t v)
{
uint32_t b = 0;
for (; v > 1U; ++b)
v >>= 1;
return b;
}
inline uint32_t ceil_log2i(uint32_t v)
{
uint32_t b = floor_log2i(v);
if ((b != 32) && (v > (1U << b)))
++b;
return b;
}
inline int posmod(int x, int y)
{
if (x >= 0)
return (x < y) ? x : (x % y);
int m = (-x) % y;
return (m != 0) ? (y - m) : m;
}
inline bool do_excl_ranges_overlap(int la, int ha, int lb, int hb)
{
assert(la < ha && lb < hb);
if ((ha <= lb) || (la >= hb)) return false;
return true;
}
static inline uint32_t read_le_word(const uint8_t* pBytes)
{
return (pBytes[1] << 8U) | (pBytes[0]);
}
static inline uint32_t read_le_dword(const uint8_t *pBytes)
{
return (pBytes[3] << 24U) | (pBytes[2] << 16U) | (pBytes[1] << 8U) | (pBytes[0]);
}
static inline void write_le_dword(uint8_t* pBytes, uint32_t val)
{
pBytes[0] = (uint8_t)val;
pBytes[1] = (uint8_t)(val >> 8U);
pBytes[2] = (uint8_t)(val >> 16U);
pBytes[3] = (uint8_t)(val >> 24U);
}
// Always little endian 1-8 byte unsigned int
template<uint32_t NumBytes>
struct packed_uint
{
uint8_t m_bytes[NumBytes];
inline packed_uint() { static_assert(NumBytes <= sizeof(uint64_t), "Invalid NumBytes"); }
inline packed_uint(uint64_t v) { *this = v; }
inline packed_uint(const packed_uint& other) { *this = other; }
inline packed_uint& operator= (uint64_t v)
{
for (uint32_t i = 0; i < NumBytes; i++)
m_bytes[i] = static_cast<uint8_t>(v >> (i * 8));
return *this;
}
inline packed_uint& operator= (const packed_uint& rhs)
{
memcpy(m_bytes, rhs.m_bytes, sizeof(m_bytes));
return *this;
}
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
inline operator uint32_t() const
{
switch (NumBytes)
{
case 1:
{
return m_bytes[0];
}
case 2:
{
return (m_bytes[1] << 8U) | m_bytes[0];
}
case 3:
{
return (m_bytes[2] << 16U) | (m_bytes[1] << 8U) | m_bytes[0];
}
case 4:
{
return read_le_dword(m_bytes);
}
case 5:
{
uint32_t l = read_le_dword(m_bytes);
uint32_t h = m_bytes[4];
return static_cast<uint64_t>(l) | (static_cast<uint64_t>(h) << 32U);
}
case 6:
{
uint32_t l = read_le_dword(m_bytes);
uint32_t h = (m_bytes[5] << 8U) | m_bytes[4];
return static_cast<uint64_t>(l) | (static_cast<uint64_t>(h) << 32U);
}
case 7:
{
uint32_t l = read_le_dword(m_bytes);
uint32_t h = (m_bytes[6] << 16U) | (m_bytes[5] << 8U) | m_bytes[4];
return static_cast<uint64_t>(l) | (static_cast<uint64_t>(h) << 32U);
}
case 8:
{
uint32_t l = read_le_dword(m_bytes);
uint32_t h = read_le_dword(m_bytes + 4);
return static_cast<uint64_t>(l) | (static_cast<uint64_t>(h) << 32U);
}
default:
{
assert(0);
return 0;
}
}
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
};
enum eZero { cZero };
enum eNoClamp { cNoClamp };
// Rice/Huffman entropy coding
// This is basically Deflate-style canonical Huffman, except we allow for a lot more symbols.
enum
{
cHuffmanMaxSupportedCodeSize = 16, cHuffmanMaxSupportedInternalCodeSize = 31,
cHuffmanFastLookupBits = 10,
cHuffmanMaxSymsLog2 = 14, cHuffmanMaxSyms = 1 << cHuffmanMaxSymsLog2,
// Small zero runs
cHuffmanSmallZeroRunSizeMin = 3, cHuffmanSmallZeroRunSizeMax = 10, cHuffmanSmallZeroRunExtraBits = 3,
// Big zero run
cHuffmanBigZeroRunSizeMin = 11, cHuffmanBigZeroRunSizeMax = 138, cHuffmanBigZeroRunExtraBits = 7,
// Small non-zero run
cHuffmanSmallRepeatSizeMin = 3, cHuffmanSmallRepeatSizeMax = 6, cHuffmanSmallRepeatExtraBits = 2,
// Big non-zero run
cHuffmanBigRepeatSizeMin = 7, cHuffmanBigRepeatSizeMax = 134, cHuffmanBigRepeatExtraBits = 7,
cHuffmanTotalCodelengthCodes = 21, cHuffmanSmallZeroRunCode = 17, cHuffmanBigZeroRunCode = 18, cHuffmanSmallRepeatCode = 19, cHuffmanBigRepeatCode = 20
};
static const uint8_t g_huffman_sorted_codelength_codes[] = { cHuffmanSmallZeroRunCode, cHuffmanBigZeroRunCode, cHuffmanSmallRepeatCode, cHuffmanBigRepeatCode, 0, 8, 7, 9, 6, 0xA, 5, 0xB, 4, 0xC, 3, 0xD, 2, 0xE, 1, 0xF, 0x10 };
const uint32_t cHuffmanTotalSortedCodelengthCodes = sizeof(g_huffman_sorted_codelength_codes) / sizeof(g_huffman_sorted_codelength_codes[0]);
// GPU texture formats
enum class texture_format
{
cInvalidTextureFormat = -1,
// Block-based formats
cETC1, // ETC1
cETC1S, // ETC1 (subset: diff colors only, no subblocks)
cETC2_RGB, // ETC2 color block (basisu doesn't support ETC2 planar/T/H modes - just basic ETC1)
cETC2_RGBA, // ETC2 EAC alpha block followed by ETC2 color block
cETC2_ALPHA, // ETC2 EAC alpha block
cBC1, // DXT1
cBC3, // DXT5 (BC4/DXT5A block followed by a BC1/DXT1 block)
cBC4, // DXT5A
cBC5, // 3DC/DXN (two BC4/DXT5A blocks)
cBC6HSigned, // HDR
cBC6HUnsigned, // HDR
cBC7,
cASTC_LDR_4x4, // ASTC 4x4 LDR only
cASTC_HDR_4x4, // ASTC 4x4 HDR only (but may use LDR ASTC blocks internally)
cPVRTC1_4_RGB,
cPVRTC1_4_RGBA,
cATC_RGB,
cATC_RGBA_INTERPOLATED_ALPHA,
cFXT1_RGB,
cPVRTC2_4_RGBA,
cETC2_R11_EAC,
cETC2_RG11_EAC,
cUASTC4x4,
cUASTC_HDR_4x4,
cBC1_NV,
cBC1_AMD,
// Uncompressed/raw pixels
cRGBA32,
cRGB565,
cBGR565,
cRGBA4444,
cABGR4444,
cRGBA_HALF,
cRGB_HALF,
cRGB_9E5
};
// This is bytes per block for GPU formats, or bytes per texel for uncompressed formats.
inline uint32_t get_bytes_per_block(texture_format fmt)
{
switch (fmt)
{
case texture_format::cETC1:
case texture_format::cETC1S:
case texture_format::cETC2_RGB:
case texture_format::cETC2_ALPHA:
case texture_format::cBC1:
case texture_format::cBC1_NV:
case texture_format::cBC1_AMD:
case texture_format::cBC4:
case texture_format::cPVRTC1_4_RGB:
case texture_format::cPVRTC1_4_RGBA:
case texture_format::cATC_RGB:
case texture_format::cPVRTC2_4_RGBA:
case texture_format::cETC2_R11_EAC:
return 8;
case texture_format::cRGBA32:
case texture_format::cRGB_9E5:
return sizeof(uint32_t);
case texture_format::cRGB_HALF:
return sizeof(uint16_t) * 3;
case texture_format::cRGBA_HALF:
return sizeof(uint16_t) * 4;
case texture_format::cRGB565:
case texture_format::cBGR565:
case texture_format::cRGBA4444:
case texture_format::cABGR4444:
return sizeof(uint16_t);
default:
break;
}
// Everything else is 16 bytes/block.
return 16;
}
// This is qwords per block for GPU formats, or not valid for uncompressed formats.
inline uint32_t get_qwords_per_block(texture_format fmt)
{
return get_bytes_per_block(fmt) >> 3;
}
inline uint32_t get_block_width(texture_format fmt)
{
BASISU_NOTE_UNUSED(fmt);
switch (fmt)
{
case texture_format::cFXT1_RGB:
return 8;
default:
break;
}
return 4;
}
inline uint32_t get_block_height(texture_format fmt)
{
BASISU_NOTE_UNUSED(fmt);
return 4;
}
inline bool is_hdr_texture_format(texture_format fmt)
{
if (fmt == texture_format::cASTC_HDR_4x4)
return true;
if (fmt == texture_format::cUASTC_HDR_4x4)
return true;
if ((fmt == texture_format::cBC6HSigned) || (fmt == texture_format::cBC6HUnsigned))
return true;
return false;
}
} // namespace basisu