mirror of
https://github.com/godotengine/godot.git
synced 2024-12-15 10:12:40 +08:00
a7f49ac9a1
Happy new year to the wonderful Godot community! We're starting a new decade with a well-established, non-profit, free and open source game engine, and tons of further improvements in the pipeline from hundreds of contributors. Godot will keep getting better, and we're looking forward to all the games that the community will keep developing and releasing with it.
476 lines
18 KiB
C++
476 lines
18 KiB
C++
/*************************************************************************/
|
|
/* body_sw.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#ifndef BODY_SW_H
|
|
#define BODY_SW_H
|
|
|
|
#include "area_sw.h"
|
|
#include "collision_object_sw.h"
|
|
#include "core/vset.h"
|
|
|
|
class ConstraintSW;
|
|
|
|
class BodySW : public CollisionObjectSW {
|
|
|
|
PhysicsServer::BodyMode mode;
|
|
|
|
Vector3 linear_velocity;
|
|
Vector3 angular_velocity;
|
|
|
|
Vector3 biased_linear_velocity;
|
|
Vector3 biased_angular_velocity;
|
|
real_t mass;
|
|
real_t bounce;
|
|
real_t friction;
|
|
|
|
real_t linear_damp;
|
|
real_t angular_damp;
|
|
real_t gravity_scale;
|
|
|
|
uint16_t locked_axis;
|
|
|
|
real_t kinematic_safe_margin;
|
|
real_t _inv_mass;
|
|
Vector3 _inv_inertia; // Relative to the principal axes of inertia
|
|
|
|
// Relative to the local frame of reference
|
|
Basis principal_inertia_axes_local;
|
|
Vector3 center_of_mass_local;
|
|
|
|
// In world orientation with local origin
|
|
Basis _inv_inertia_tensor;
|
|
Basis principal_inertia_axes;
|
|
Vector3 center_of_mass;
|
|
|
|
Vector3 gravity;
|
|
|
|
real_t still_time;
|
|
|
|
Vector3 applied_force;
|
|
Vector3 applied_torque;
|
|
|
|
real_t area_angular_damp;
|
|
real_t area_linear_damp;
|
|
|
|
SelfList<BodySW> active_list;
|
|
SelfList<BodySW> inertia_update_list;
|
|
SelfList<BodySW> direct_state_query_list;
|
|
|
|
VSet<RID> exceptions;
|
|
bool omit_force_integration;
|
|
bool active;
|
|
|
|
bool first_integration;
|
|
|
|
bool continuous_cd;
|
|
bool can_sleep;
|
|
bool first_time_kinematic;
|
|
void _update_inertia();
|
|
virtual void _shapes_changed();
|
|
Transform new_transform;
|
|
|
|
Map<ConstraintSW *, int> constraint_map;
|
|
|
|
struct AreaCMP {
|
|
|
|
AreaSW *area;
|
|
int refCount;
|
|
_FORCE_INLINE_ bool operator==(const AreaCMP &p_cmp) const { return area->get_self() == p_cmp.area->get_self(); }
|
|
_FORCE_INLINE_ bool operator<(const AreaCMP &p_cmp) const { return area->get_priority() < p_cmp.area->get_priority(); }
|
|
_FORCE_INLINE_ AreaCMP() {}
|
|
_FORCE_INLINE_ AreaCMP(AreaSW *p_area) {
|
|
area = p_area;
|
|
refCount = 1;
|
|
}
|
|
};
|
|
|
|
Vector<AreaCMP> areas;
|
|
|
|
struct Contact {
|
|
|
|
Vector3 local_pos;
|
|
Vector3 local_normal;
|
|
real_t depth;
|
|
int local_shape;
|
|
Vector3 collider_pos;
|
|
int collider_shape;
|
|
ObjectID collider_instance_id;
|
|
RID collider;
|
|
Vector3 collider_velocity_at_pos;
|
|
};
|
|
|
|
Vector<Contact> contacts; //no contacts by default
|
|
int contact_count;
|
|
|
|
struct ForceIntegrationCallback {
|
|
|
|
ObjectID id;
|
|
StringName method;
|
|
Variant udata;
|
|
};
|
|
|
|
ForceIntegrationCallback *fi_callback;
|
|
|
|
uint64_t island_step;
|
|
BodySW *island_next;
|
|
BodySW *island_list_next;
|
|
|
|
_FORCE_INLINE_ void _compute_area_gravity_and_dampenings(const AreaSW *p_area);
|
|
|
|
_FORCE_INLINE_ void _update_transform_dependant();
|
|
|
|
friend class PhysicsDirectBodyStateSW; // i give up, too many functions to expose
|
|
|
|
public:
|
|
void set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata = Variant());
|
|
|
|
void set_kinematic_margin(real_t p_margin);
|
|
_FORCE_INLINE_ real_t get_kinematic_margin() { return kinematic_safe_margin; }
|
|
|
|
_FORCE_INLINE_ void add_area(AreaSW *p_area) {
|
|
int index = areas.find(AreaCMP(p_area));
|
|
if (index > -1) {
|
|
areas.write[index].refCount += 1;
|
|
} else {
|
|
areas.ordered_insert(AreaCMP(p_area));
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ void remove_area(AreaSW *p_area) {
|
|
int index = areas.find(AreaCMP(p_area));
|
|
if (index > -1) {
|
|
areas.write[index].refCount -= 1;
|
|
if (areas[index].refCount < 1)
|
|
areas.remove(index);
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ void set_max_contacts_reported(int p_size) {
|
|
contacts.resize(p_size);
|
|
contact_count = 0;
|
|
if (mode == PhysicsServer::BODY_MODE_KINEMATIC && p_size) set_active(true);
|
|
}
|
|
_FORCE_INLINE_ int get_max_contacts_reported() const { return contacts.size(); }
|
|
|
|
_FORCE_INLINE_ bool can_report_contacts() const { return !contacts.empty(); }
|
|
_FORCE_INLINE_ void add_contact(const Vector3 &p_local_pos, const Vector3 &p_local_normal, real_t p_depth, int p_local_shape, const Vector3 &p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID &p_collider, const Vector3 &p_collider_velocity_at_pos);
|
|
|
|
_FORCE_INLINE_ void add_exception(const RID &p_exception) { exceptions.insert(p_exception); }
|
|
_FORCE_INLINE_ void remove_exception(const RID &p_exception) { exceptions.erase(p_exception); }
|
|
_FORCE_INLINE_ bool has_exception(const RID &p_exception) const { return exceptions.has(p_exception); }
|
|
_FORCE_INLINE_ const VSet<RID> &get_exceptions() const { return exceptions; }
|
|
|
|
_FORCE_INLINE_ uint64_t get_island_step() const { return island_step; }
|
|
_FORCE_INLINE_ void set_island_step(uint64_t p_step) { island_step = p_step; }
|
|
|
|
_FORCE_INLINE_ BodySW *get_island_next() const { return island_next; }
|
|
_FORCE_INLINE_ void set_island_next(BodySW *p_next) { island_next = p_next; }
|
|
|
|
_FORCE_INLINE_ BodySW *get_island_list_next() const { return island_list_next; }
|
|
_FORCE_INLINE_ void set_island_list_next(BodySW *p_next) { island_list_next = p_next; }
|
|
|
|
_FORCE_INLINE_ void add_constraint(ConstraintSW *p_constraint, int p_pos) { constraint_map[p_constraint] = p_pos; }
|
|
_FORCE_INLINE_ void remove_constraint(ConstraintSW *p_constraint) { constraint_map.erase(p_constraint); }
|
|
const Map<ConstraintSW *, int> &get_constraint_map() const { return constraint_map; }
|
|
_FORCE_INLINE_ void clear_constraint_map() { constraint_map.clear(); }
|
|
|
|
_FORCE_INLINE_ void set_omit_force_integration(bool p_omit_force_integration) { omit_force_integration = p_omit_force_integration; }
|
|
_FORCE_INLINE_ bool get_omit_force_integration() const { return omit_force_integration; }
|
|
|
|
_FORCE_INLINE_ Basis get_principal_inertia_axes() const { return principal_inertia_axes; }
|
|
_FORCE_INLINE_ Vector3 get_center_of_mass() const { return center_of_mass; }
|
|
_FORCE_INLINE_ Vector3 xform_local_to_principal(const Vector3 &p_pos) const { return principal_inertia_axes_local.xform(p_pos - center_of_mass_local); }
|
|
|
|
_FORCE_INLINE_ void set_linear_velocity(const Vector3 &p_velocity) { linear_velocity = p_velocity; }
|
|
_FORCE_INLINE_ Vector3 get_linear_velocity() const { return linear_velocity; }
|
|
|
|
_FORCE_INLINE_ void set_angular_velocity(const Vector3 &p_velocity) { angular_velocity = p_velocity; }
|
|
_FORCE_INLINE_ Vector3 get_angular_velocity() const { return angular_velocity; }
|
|
|
|
_FORCE_INLINE_ const Vector3 &get_biased_linear_velocity() const { return biased_linear_velocity; }
|
|
_FORCE_INLINE_ const Vector3 &get_biased_angular_velocity() const { return biased_angular_velocity; }
|
|
|
|
_FORCE_INLINE_ void apply_central_impulse(const Vector3 &p_j) {
|
|
linear_velocity += p_j * _inv_mass;
|
|
}
|
|
|
|
_FORCE_INLINE_ void apply_impulse(const Vector3 &p_pos, const Vector3 &p_j) {
|
|
|
|
linear_velocity += p_j * _inv_mass;
|
|
angular_velocity += _inv_inertia_tensor.xform((p_pos - center_of_mass).cross(p_j));
|
|
}
|
|
|
|
_FORCE_INLINE_ void apply_torque_impulse(const Vector3 &p_j) {
|
|
|
|
angular_velocity += _inv_inertia_tensor.xform(p_j);
|
|
}
|
|
|
|
_FORCE_INLINE_ void apply_bias_impulse(const Vector3 &p_pos, const Vector3 &p_j, real_t p_max_delta_av = -1.0) {
|
|
|
|
biased_linear_velocity += p_j * _inv_mass;
|
|
if (p_max_delta_av != 0.0) {
|
|
Vector3 delta_av = _inv_inertia_tensor.xform((p_pos - center_of_mass).cross(p_j));
|
|
if (p_max_delta_av > 0 && delta_av.length() > p_max_delta_av) {
|
|
delta_av = delta_av.normalized() * p_max_delta_av;
|
|
}
|
|
biased_angular_velocity += delta_av;
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ void apply_bias_torque_impulse(const Vector3 &p_j) {
|
|
|
|
biased_angular_velocity += _inv_inertia_tensor.xform(p_j);
|
|
}
|
|
|
|
_FORCE_INLINE_ void add_central_force(const Vector3 &p_force) {
|
|
|
|
applied_force += p_force;
|
|
}
|
|
|
|
_FORCE_INLINE_ void add_force(const Vector3 &p_force, const Vector3 &p_pos) {
|
|
|
|
applied_force += p_force;
|
|
applied_torque += p_pos.cross(p_force);
|
|
}
|
|
|
|
_FORCE_INLINE_ void add_torque(const Vector3 &p_torque) {
|
|
applied_torque += p_torque;
|
|
}
|
|
|
|
void set_active(bool p_active);
|
|
_FORCE_INLINE_ bool is_active() const { return active; }
|
|
|
|
_FORCE_INLINE_ void wakeup() {
|
|
if ((!get_space()) || mode == PhysicsServer::BODY_MODE_STATIC || mode == PhysicsServer::BODY_MODE_KINEMATIC)
|
|
return;
|
|
set_active(true);
|
|
}
|
|
|
|
void set_param(PhysicsServer::BodyParameter p_param, real_t);
|
|
real_t get_param(PhysicsServer::BodyParameter p_param) const;
|
|
|
|
void set_mode(PhysicsServer::BodyMode p_mode);
|
|
PhysicsServer::BodyMode get_mode() const;
|
|
|
|
void set_state(PhysicsServer::BodyState p_state, const Variant &p_variant);
|
|
Variant get_state(PhysicsServer::BodyState p_state) const;
|
|
|
|
void set_applied_force(const Vector3 &p_force) { applied_force = p_force; }
|
|
Vector3 get_applied_force() const { return applied_force; }
|
|
|
|
void set_applied_torque(const Vector3 &p_torque) { applied_torque = p_torque; }
|
|
Vector3 get_applied_torque() const { return applied_torque; }
|
|
|
|
_FORCE_INLINE_ void set_continuous_collision_detection(bool p_enable) { continuous_cd = p_enable; }
|
|
_FORCE_INLINE_ bool is_continuous_collision_detection_enabled() const { return continuous_cd; }
|
|
|
|
void set_space(SpaceSW *p_space);
|
|
|
|
void update_inertias();
|
|
|
|
_FORCE_INLINE_ real_t get_inv_mass() const { return _inv_mass; }
|
|
_FORCE_INLINE_ Vector3 get_inv_inertia() const { return _inv_inertia; }
|
|
_FORCE_INLINE_ Basis get_inv_inertia_tensor() const { return _inv_inertia_tensor; }
|
|
_FORCE_INLINE_ real_t get_friction() const { return friction; }
|
|
_FORCE_INLINE_ Vector3 get_gravity() const { return gravity; }
|
|
_FORCE_INLINE_ real_t get_bounce() const { return bounce; }
|
|
|
|
void set_axis_lock(PhysicsServer::BodyAxis p_axis, bool lock);
|
|
bool is_axis_locked(PhysicsServer::BodyAxis p_axis) const;
|
|
|
|
void integrate_forces(real_t p_step);
|
|
void integrate_velocities(real_t p_step);
|
|
|
|
_FORCE_INLINE_ Vector3 get_velocity_in_local_point(const Vector3 &rel_pos) const {
|
|
|
|
return linear_velocity + angular_velocity.cross(rel_pos - center_of_mass);
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t compute_impulse_denominator(const Vector3 &p_pos, const Vector3 &p_normal) const {
|
|
|
|
Vector3 r0 = p_pos - get_transform().origin - center_of_mass;
|
|
|
|
Vector3 c0 = (r0).cross(p_normal);
|
|
|
|
Vector3 vec = (_inv_inertia_tensor.xform_inv(c0)).cross(r0);
|
|
|
|
return _inv_mass + p_normal.dot(vec);
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t compute_angular_impulse_denominator(const Vector3 &p_axis) const {
|
|
|
|
return p_axis.dot(_inv_inertia_tensor.xform_inv(p_axis));
|
|
}
|
|
|
|
//void simulate_motion(const Transform& p_xform,real_t p_step);
|
|
void call_queries();
|
|
void wakeup_neighbours();
|
|
|
|
bool sleep_test(real_t p_step);
|
|
|
|
BodySW();
|
|
~BodySW();
|
|
};
|
|
|
|
//add contact inline
|
|
|
|
void BodySW::add_contact(const Vector3 &p_local_pos, const Vector3 &p_local_normal, real_t p_depth, int p_local_shape, const Vector3 &p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID &p_collider, const Vector3 &p_collider_velocity_at_pos) {
|
|
|
|
int c_max = contacts.size();
|
|
|
|
if (c_max == 0)
|
|
return;
|
|
|
|
Contact *c = contacts.ptrw();
|
|
|
|
int idx = -1;
|
|
|
|
if (contact_count < c_max) {
|
|
idx = contact_count++;
|
|
} else {
|
|
|
|
real_t least_depth = 1e20;
|
|
int least_deep = -1;
|
|
for (int i = 0; i < c_max; i++) {
|
|
|
|
if (i == 0 || c[i].depth < least_depth) {
|
|
least_deep = i;
|
|
least_depth = c[i].depth;
|
|
}
|
|
}
|
|
|
|
if (least_deep >= 0 && least_depth < p_depth) {
|
|
|
|
idx = least_deep;
|
|
}
|
|
if (idx == -1)
|
|
return; //none least deepe than this
|
|
}
|
|
|
|
c[idx].local_pos = p_local_pos;
|
|
c[idx].local_normal = p_local_normal;
|
|
c[idx].depth = p_depth;
|
|
c[idx].local_shape = p_local_shape;
|
|
c[idx].collider_pos = p_collider_pos;
|
|
c[idx].collider_shape = p_collider_shape;
|
|
c[idx].collider_instance_id = p_collider_instance_id;
|
|
c[idx].collider = p_collider;
|
|
c[idx].collider_velocity_at_pos = p_collider_velocity_at_pos;
|
|
}
|
|
|
|
class PhysicsDirectBodyStateSW : public PhysicsDirectBodyState {
|
|
|
|
GDCLASS(PhysicsDirectBodyStateSW, PhysicsDirectBodyState);
|
|
|
|
public:
|
|
static PhysicsDirectBodyStateSW *singleton;
|
|
BodySW *body;
|
|
real_t step;
|
|
|
|
virtual Vector3 get_total_gravity() const { return body->gravity; } // get gravity vector working on this body space/area
|
|
virtual real_t get_total_angular_damp() const { return body->area_angular_damp; } // get density of this body space/area
|
|
virtual real_t get_total_linear_damp() const { return body->area_linear_damp; } // get density of this body space/area
|
|
|
|
virtual Vector3 get_center_of_mass() const { return body->get_center_of_mass(); }
|
|
virtual Basis get_principal_inertia_axes() const { return body->get_principal_inertia_axes(); }
|
|
|
|
virtual real_t get_inverse_mass() const { return body->get_inv_mass(); } // get the mass
|
|
virtual Vector3 get_inverse_inertia() const { return body->get_inv_inertia(); } // get density of this body space
|
|
virtual Basis get_inverse_inertia_tensor() const { return body->get_inv_inertia_tensor(); } // get density of this body space
|
|
|
|
virtual void set_linear_velocity(const Vector3 &p_velocity) { body->set_linear_velocity(p_velocity); }
|
|
virtual Vector3 get_linear_velocity() const { return body->get_linear_velocity(); }
|
|
|
|
virtual void set_angular_velocity(const Vector3 &p_velocity) { body->set_angular_velocity(p_velocity); }
|
|
virtual Vector3 get_angular_velocity() const { return body->get_angular_velocity(); }
|
|
|
|
virtual void set_transform(const Transform &p_transform) { body->set_state(PhysicsServer::BODY_STATE_TRANSFORM, p_transform); }
|
|
virtual Transform get_transform() const { return body->get_transform(); }
|
|
|
|
virtual void add_central_force(const Vector3 &p_force) { body->add_central_force(p_force); }
|
|
virtual void add_force(const Vector3 &p_force, const Vector3 &p_pos) { body->add_force(p_force, p_pos); }
|
|
virtual void add_torque(const Vector3 &p_torque) { body->add_torque(p_torque); }
|
|
virtual void apply_central_impulse(const Vector3 &p_j) { body->apply_central_impulse(p_j); }
|
|
virtual void apply_impulse(const Vector3 &p_pos, const Vector3 &p_j) { body->apply_impulse(p_pos, p_j); }
|
|
virtual void apply_torque_impulse(const Vector3 &p_j) { body->apply_torque_impulse(p_j); }
|
|
|
|
virtual void set_sleep_state(bool p_enable) { body->set_active(!p_enable); }
|
|
virtual bool is_sleeping() const { return !body->is_active(); }
|
|
|
|
virtual int get_contact_count() const { return body->contact_count; }
|
|
|
|
virtual Vector3 get_contact_local_position(int p_contact_idx) const {
|
|
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, Vector3());
|
|
return body->contacts[p_contact_idx].local_pos;
|
|
}
|
|
virtual Vector3 get_contact_local_normal(int p_contact_idx) const {
|
|
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, Vector3());
|
|
return body->contacts[p_contact_idx].local_normal;
|
|
}
|
|
virtual float get_contact_impulse(int p_contact_idx) const {
|
|
return 0.0f; // Only implemented for bullet
|
|
}
|
|
virtual int get_contact_local_shape(int p_contact_idx) const {
|
|
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, -1);
|
|
return body->contacts[p_contact_idx].local_shape;
|
|
}
|
|
|
|
virtual RID get_contact_collider(int p_contact_idx) const {
|
|
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, RID());
|
|
return body->contacts[p_contact_idx].collider;
|
|
}
|
|
virtual Vector3 get_contact_collider_position(int p_contact_idx) const {
|
|
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, Vector3());
|
|
return body->contacts[p_contact_idx].collider_pos;
|
|
}
|
|
virtual ObjectID get_contact_collider_id(int p_contact_idx) const {
|
|
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, 0);
|
|
return body->contacts[p_contact_idx].collider_instance_id;
|
|
}
|
|
virtual int get_contact_collider_shape(int p_contact_idx) const {
|
|
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, 0);
|
|
return body->contacts[p_contact_idx].collider_shape;
|
|
}
|
|
virtual Vector3 get_contact_collider_velocity_at_position(int p_contact_idx) const {
|
|
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, Vector3());
|
|
return body->contacts[p_contact_idx].collider_velocity_at_pos;
|
|
}
|
|
|
|
virtual PhysicsDirectSpaceState *get_space_state();
|
|
|
|
virtual real_t get_step() const { return step; }
|
|
PhysicsDirectBodyStateSW() {
|
|
singleton = this;
|
|
body = NULL;
|
|
}
|
|
};
|
|
|
|
#endif // BODY__SW_H
|