mirror of
https://github.com/godotengine/godot.git
synced 2024-11-27 09:16:35 +08:00
11518665b7
We allow using auto for lambdas or complex macros where a return type may change based on the parameters. But where the type is clear, we should be explicit. Co-authored-by: A Thousand Ships <96648715+AThousandShips@users.noreply.github.com>
543 lines
14 KiB
C++
543 lines
14 KiB
C++
/**************************************************************************/
|
|
/* test_dictionary.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TEST_DICTIONARY_H
|
|
#define TEST_DICTIONARY_H
|
|
|
|
#include "core/variant/dictionary.h"
|
|
#include "tests/test_macros.h"
|
|
|
|
namespace TestDictionary {
|
|
|
|
static inline Array build_array() {
|
|
return Array();
|
|
}
|
|
template <typename... Targs>
|
|
static inline Array build_array(Variant item, Targs... Fargs) {
|
|
Array a = build_array(Fargs...);
|
|
a.push_front(item);
|
|
return a;
|
|
}
|
|
static inline Dictionary build_dictionary() {
|
|
return Dictionary();
|
|
}
|
|
template <typename... Targs>
|
|
static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) {
|
|
Dictionary d = build_dictionary(Fargs...);
|
|
d[key] = item;
|
|
return d;
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Assignment using bracket notation ([])") {
|
|
Dictionary map;
|
|
map["Hello"] = 0;
|
|
CHECK(int(map["Hello"]) == 0);
|
|
map["Hello"] = 3;
|
|
CHECK(int(map["Hello"]) == 3);
|
|
map["World!"] = 4;
|
|
CHECK(int(map["World!"]) == 4);
|
|
|
|
map[StringName("HelloName")] = 6;
|
|
CHECK(int(map[StringName("HelloName")]) == 6);
|
|
// Check that StringName key is converted to String.
|
|
CHECK(int(map.find_key(6).get_type()) == Variant::STRING);
|
|
map[StringName("HelloName")] = 7;
|
|
CHECK(int(map[StringName("HelloName")]) == 7);
|
|
|
|
// Test String and StringName are equivalent.
|
|
map[StringName("Hello")] = 8;
|
|
CHECK(int(map["Hello"]) == 8);
|
|
map["Hello"] = 9;
|
|
CHECK(int(map[StringName("Hello")]) == 9);
|
|
|
|
// Test non-string keys, since keys can be of any Variant type.
|
|
map[12345] = -5;
|
|
CHECK(int(map[12345]) == -5);
|
|
map[false] = 128;
|
|
CHECK(int(map[false]) == 128);
|
|
map[Vector2(10, 20)] = 30;
|
|
CHECK(int(map[Vector2(10, 20)]) == 30);
|
|
map[0] = 400;
|
|
CHECK(int(map[0]) == 400);
|
|
// Check that assigning 0 doesn't overwrite the value for `false`.
|
|
CHECK(int(map[false]) == 128);
|
|
|
|
// Ensure read-only maps aren't modified by non-existing keys.
|
|
const int length = map.size();
|
|
map.make_read_only();
|
|
CHECK(int(map["This key does not exist"].get_type()) == Variant::NIL);
|
|
CHECK(map.size() == length);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] get_key_lists()") {
|
|
Dictionary map;
|
|
List<Variant> keys;
|
|
List<Variant> *ptr = &keys;
|
|
map.get_key_list(ptr);
|
|
CHECK(keys.is_empty());
|
|
map[1] = 3;
|
|
map.get_key_list(ptr);
|
|
CHECK(keys.size() == 1);
|
|
CHECK(int(keys[0]) == 1);
|
|
map[2] = 4;
|
|
map.get_key_list(ptr);
|
|
CHECK(keys.size() == 3);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] get_key_at_index()") {
|
|
Dictionary map;
|
|
map[4] = 3;
|
|
Variant val = map.get_key_at_index(0);
|
|
CHECK(int(val) == 4);
|
|
map[3] = 1;
|
|
val = map.get_key_at_index(0);
|
|
CHECK(int(val) == 4);
|
|
val = map.get_key_at_index(1);
|
|
CHECK(int(val) == 3);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] getptr()") {
|
|
Dictionary map;
|
|
map[1] = 3;
|
|
Variant *key = map.getptr(1);
|
|
CHECK(int(*key) == 3);
|
|
key = map.getptr(2);
|
|
CHECK(key == nullptr);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] get_valid()") {
|
|
Dictionary map;
|
|
map[1] = 3;
|
|
Variant val = map.get_valid(1);
|
|
CHECK(int(val) == 3);
|
|
}
|
|
TEST_CASE("[Dictionary] get()") {
|
|
Dictionary map;
|
|
map[1] = 3;
|
|
Variant val = map.get(1, -1);
|
|
CHECK(int(val) == 3);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] size(), empty() and clear()") {
|
|
Dictionary map;
|
|
CHECK(map.size() == 0);
|
|
CHECK(map.is_empty());
|
|
map[1] = 3;
|
|
CHECK(map.size() == 1);
|
|
CHECK(!map.is_empty());
|
|
map.clear();
|
|
CHECK(map.size() == 0);
|
|
CHECK(map.is_empty());
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] has() and has_all()") {
|
|
Dictionary map;
|
|
CHECK(map.has(1) == false);
|
|
map[1] = 3;
|
|
CHECK(map.has(1));
|
|
Array keys;
|
|
keys.push_back(1);
|
|
CHECK(map.has_all(keys));
|
|
keys.push_back(2);
|
|
CHECK(map.has_all(keys) == false);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] keys() and values()") {
|
|
Dictionary map;
|
|
Array keys = map.keys();
|
|
Array values = map.values();
|
|
CHECK(keys.is_empty());
|
|
CHECK(values.is_empty());
|
|
map[1] = 3;
|
|
keys = map.keys();
|
|
values = map.values();
|
|
CHECK(int(keys[0]) == 1);
|
|
CHECK(int(values[0]) == 3);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Duplicate dictionary") {
|
|
// d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
|
|
Dictionary k2 = build_dictionary(2, 2);
|
|
Array k3 = build_array(3);
|
|
Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
|
|
|
|
// Deep copy
|
|
Dictionary deep_d = d.duplicate(true);
|
|
CHECK_MESSAGE(deep_d.id() != d.id(), "Should create a new dictionary");
|
|
CHECK_MESSAGE(Dictionary(deep_d[1]).id() != Dictionary(d[1]).id(), "Should clone nested dictionary");
|
|
CHECK_MESSAGE(Array(deep_d[k2]).id() != Array(d[k2]).id(), "Should clone nested array");
|
|
CHECK_EQ(deep_d, d);
|
|
deep_d[0] = 0;
|
|
CHECK_NE(deep_d, d);
|
|
deep_d.erase(0);
|
|
Dictionary(deep_d[1]).operator[](0) = 0;
|
|
CHECK_NE(deep_d, d);
|
|
Dictionary(deep_d[1]).erase(0);
|
|
CHECK_EQ(deep_d, d);
|
|
// Keys should also be copied
|
|
k2[0] = 0;
|
|
CHECK_NE(deep_d, d);
|
|
k2.erase(0);
|
|
CHECK_EQ(deep_d, d);
|
|
k3.push_back(0);
|
|
CHECK_NE(deep_d, d);
|
|
k3.pop_back();
|
|
CHECK_EQ(deep_d, d);
|
|
|
|
// Shallow copy
|
|
Dictionary shallow_d = d.duplicate(false);
|
|
CHECK_MESSAGE(shallow_d.id() != d.id(), "Should create a new array");
|
|
CHECK_MESSAGE(Dictionary(shallow_d[1]).id() == Dictionary(d[1]).id(), "Should keep nested dictionary");
|
|
CHECK_MESSAGE(Array(shallow_d[k2]).id() == Array(d[k2]).id(), "Should keep nested array");
|
|
CHECK_EQ(shallow_d, d);
|
|
shallow_d[0] = 0;
|
|
CHECK_NE(shallow_d, d);
|
|
shallow_d.erase(0);
|
|
#if 0 // TODO: recursion in dict key currently is buggy
|
|
// Keys should also be shallowed
|
|
k2[0] = 0;
|
|
CHECK_EQ(shallow_d, d);
|
|
k2.erase(0);
|
|
k3.push_back(0);
|
|
CHECK_EQ(shallow_d, d);
|
|
#endif
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Duplicate recursive dictionary") {
|
|
// Self recursive
|
|
Dictionary d;
|
|
d[1] = d;
|
|
|
|
Dictionary d_shallow = d.duplicate(false);
|
|
CHECK_EQ(d, d_shallow);
|
|
|
|
// Deep copy of recursive dictionary endup with recursion limit and return
|
|
// an invalid result (multiple nested dictionaries), the point is we should
|
|
// not end up with a segfault and an error log should be printed
|
|
ERR_PRINT_OFF;
|
|
d.duplicate(true);
|
|
ERR_PRINT_ON;
|
|
|
|
// Nested recursive
|
|
Dictionary d1;
|
|
Dictionary d2;
|
|
d1[2] = d2;
|
|
d2[1] = d1;
|
|
|
|
Dictionary d1_shallow = d1.duplicate(false);
|
|
CHECK_EQ(d1, d1_shallow);
|
|
|
|
// Same deep copy issue as above
|
|
ERR_PRINT_OFF;
|
|
d1.duplicate(true);
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d.clear();
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
|
|
#if 0 // TODO: duplicate recursion in dict key is currently buggy
|
|
TEST_CASE("[Dictionary] Duplicate recursive dictionary on keys") {
|
|
// Self recursive
|
|
Dictionary d;
|
|
d[d] = d;
|
|
|
|
Dictionary d_shallow = d.duplicate(false);
|
|
CHECK_EQ(d, d_shallow);
|
|
|
|
// Deep copy of recursive dictionary endup with recursion limit and return
|
|
// an invalid result (multiple nested dictionaries), the point is we should
|
|
// not end up with a segfault and an error log should be printed
|
|
ERR_PRINT_OFF;
|
|
d.duplicate(true);
|
|
ERR_PRINT_ON;
|
|
|
|
// Nested recursive
|
|
Dictionary d1;
|
|
Dictionary d2;
|
|
d1[d2] = d2;
|
|
d2[d1] = d1;
|
|
|
|
Dictionary d1_shallow = d1.duplicate(false);
|
|
CHECK_EQ(d1, d1_shallow);
|
|
|
|
// Same deep copy issue as above
|
|
ERR_PRINT_OFF;
|
|
d1.duplicate(true);
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d.clear();
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
#endif
|
|
|
|
TEST_CASE("[Dictionary] Hash dictionary") {
|
|
// d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
|
|
Dictionary k2 = build_dictionary(2, 2);
|
|
Array k3 = build_array(3);
|
|
Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
|
|
uint32_t original_hash = d.hash();
|
|
|
|
// Modify dict change the hash
|
|
d[0] = 0;
|
|
CHECK_NE(d.hash(), original_hash);
|
|
d.erase(0);
|
|
CHECK_EQ(d.hash(), original_hash);
|
|
|
|
// Modify nested item change the hash
|
|
Dictionary(d[1]).operator[](0) = 0;
|
|
CHECK_NE(d.hash(), original_hash);
|
|
Dictionary(d[1]).erase(0);
|
|
Array(d[k2]).push_back(0);
|
|
CHECK_NE(d.hash(), original_hash);
|
|
Array(d[k2]).pop_back();
|
|
|
|
// Modify a key change the hash
|
|
k2[0] = 0;
|
|
CHECK_NE(d.hash(), original_hash);
|
|
k2.erase(0);
|
|
CHECK_EQ(d.hash(), original_hash);
|
|
k3.push_back(0);
|
|
CHECK_NE(d.hash(), original_hash);
|
|
k3.pop_back();
|
|
CHECK_EQ(d.hash(), original_hash);
|
|
|
|
// Duplication doesn't change the hash
|
|
Dictionary d2 = d.duplicate(true);
|
|
CHECK_EQ(d2.hash(), original_hash);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Hash recursive dictionary") {
|
|
Dictionary d;
|
|
d[1] = d;
|
|
|
|
// Hash should reach recursion limit, we just make sure this doesn't blow up
|
|
ERR_PRINT_OFF;
|
|
d.hash();
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d.clear();
|
|
}
|
|
|
|
#if 0 // TODO: recursion in dict key is currently buggy
|
|
TEST_CASE("[Dictionary] Hash recursive dictionary on keys") {
|
|
Dictionary d;
|
|
d[d] = 1;
|
|
|
|
// Hash should reach recursion limit, we just make sure this doesn't blow up
|
|
ERR_PRINT_OFF;
|
|
d.hash();
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d.clear();
|
|
}
|
|
#endif
|
|
|
|
TEST_CASE("[Dictionary] Empty comparison") {
|
|
Dictionary d1;
|
|
Dictionary d2;
|
|
|
|
// test both operator== and operator!=
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Flat comparison") {
|
|
Dictionary d1 = build_dictionary(1, 1);
|
|
Dictionary d2 = build_dictionary(1, 1);
|
|
Dictionary other_d = build_dictionary(2, 1);
|
|
|
|
// test both operator== and operator!=
|
|
CHECK_EQ(d1, d1); // compare self
|
|
CHECK_FALSE(d1 != d1);
|
|
CHECK_EQ(d1, d2); // different equivalent arrays
|
|
CHECK_FALSE(d1 != d2);
|
|
CHECK_NE(d1, other_d); // different arrays with different content
|
|
CHECK_FALSE(d1 == other_d);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Nested dictionary comparison") {
|
|
// d1 = {1: {2: {3: 4}}}
|
|
Dictionary d1 = build_dictionary(1, build_dictionary(2, build_dictionary(3, 4)));
|
|
|
|
Dictionary d2 = d1.duplicate(true);
|
|
|
|
// other_d = {1: {2: {3: 0}}}
|
|
Dictionary other_d = build_dictionary(1, build_dictionary(2, build_dictionary(3, 0)));
|
|
|
|
// test both operator== and operator!=
|
|
CHECK_EQ(d1, d1); // compare self
|
|
CHECK_FALSE(d1 != d1);
|
|
CHECK_EQ(d1, d2); // different equivalent arrays
|
|
CHECK_FALSE(d1 != d2);
|
|
CHECK_NE(d1, other_d); // different arrays with different content
|
|
CHECK_FALSE(d1 == other_d);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Nested array comparison") {
|
|
// d1 = {1: [2, 3]}
|
|
Dictionary d1 = build_dictionary(1, build_array(2, 3));
|
|
|
|
Dictionary d2 = d1.duplicate(true);
|
|
|
|
// other_d = {1: [2, 0]}
|
|
Dictionary other_d = build_dictionary(1, build_array(2, 0));
|
|
|
|
// test both operator== and operator!=
|
|
CHECK_EQ(d1, d1); // compare self
|
|
CHECK_FALSE(d1 != d1);
|
|
CHECK_EQ(d1, d2); // different equivalent arrays
|
|
CHECK_FALSE(d1 != d2);
|
|
CHECK_NE(d1, other_d); // different arrays with different content
|
|
CHECK_FALSE(d1 == other_d);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Recursive comparison") {
|
|
Dictionary d1;
|
|
d1[1] = d1;
|
|
|
|
Dictionary d2;
|
|
d2[1] = d2;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
ERR_PRINT_ON;
|
|
|
|
d1[2] = 2;
|
|
d2[2] = 2;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
ERR_PRINT_ON;
|
|
|
|
d1[3] = 3;
|
|
d2[3] = 0;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_NE(d1, d2);
|
|
CHECK_FALSE(d1 == d2);
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
|
|
#if 0 // TODO: recursion in dict key is currently buggy
|
|
TEST_CASE("[Dictionary] Recursive comparison on keys") {
|
|
Dictionary d1;
|
|
// Hash computation should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
d1[d1] = 1;
|
|
ERR_PRINT_ON;
|
|
|
|
Dictionary d2;
|
|
// Hash computation should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
d2[d2] = 1;
|
|
ERR_PRINT_ON;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
ERR_PRINT_ON;
|
|
|
|
d1[2] = 2;
|
|
d2[2] = 2;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
ERR_PRINT_ON;
|
|
|
|
d1[3] = 3;
|
|
d2[3] = 0;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_NE(d1, d2);
|
|
CHECK_FALSE(d1 == d2);
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
#endif
|
|
|
|
TEST_CASE("[Dictionary] Recursive self comparison") {
|
|
Dictionary d1;
|
|
Dictionary d2;
|
|
d1[1] = d2;
|
|
d2[1] = d1;
|
|
|
|
CHECK_EQ(d1, d1);
|
|
CHECK_FALSE(d1 != d1);
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Order and find") {
|
|
Dictionary d;
|
|
d[4] = "four";
|
|
d[8] = "eight";
|
|
d[12] = "twelve";
|
|
d["4"] = "four";
|
|
|
|
Array keys;
|
|
keys.append(4);
|
|
keys.append(8);
|
|
keys.append(12);
|
|
keys.append("4");
|
|
|
|
CHECK_EQ(d.keys(), keys);
|
|
CHECK_EQ(d.find_key("four"), Variant(4));
|
|
CHECK_EQ(d.find_key("does not exist"), Variant());
|
|
}
|
|
|
|
} // namespace TestDictionary
|
|
|
|
#endif // TEST_DICTIONARY_H
|