godot/thirdparty/libsimplewebm/libwebm/mkvparser/mkvparser.cc
2018-03-03 09:11:26 +03:00

7834 lines
182 KiB
C++

// Copyright (c) 2012 The WebM project authors. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
#include "mkvparser/mkvparser.h"
#if defined(_MSC_VER) && _MSC_VER < 1800
#include <float.h> // _isnan() / _finite()
#define MSC_COMPAT
#endif
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <string.h>
#include "common/webmids.h"
namespace mkvparser {
const float MasteringMetadata::kValueNotPresent = FLT_MAX;
const long long Colour::kValueNotPresent = LLONG_MAX;
#ifdef MSC_COMPAT
inline bool isnan(double val) { return !!_isnan(val); }
inline bool isinf(double val) { return !_finite(val); }
#endif // MSC_COMPAT
template<typename T>
class my_auto_ptr {
my_auto_ptr(const my_auto_ptr &);
T *operator =(const my_auto_ptr &);
T *m_ptr;
public:
my_auto_ptr(T *ptr) :
m_ptr(ptr)
{}
my_auto_ptr() :
m_ptr(NULL)
{}
~my_auto_ptr() {
delete m_ptr;
}
T *release() {
T *ptr = m_ptr;
m_ptr = NULL;
return ptr;
}
T *operator ->() const {
return m_ptr;
}
};
IMkvReader::~IMkvReader() {}
template <typename Type>
Type* SafeArrayAlloc(unsigned long long num_elements,
unsigned long long element_size) {
if (num_elements == 0 || element_size == 0)
return NULL;
const size_t kMaxAllocSize = 0x80000000; // 2GiB
const unsigned long long num_bytes = num_elements * element_size;
if (element_size > (kMaxAllocSize / num_elements))
return NULL;
if (num_bytes != static_cast<size_t>(num_bytes))
return NULL;
return new Type[static_cast<size_t>(num_bytes)];
}
void GetVersion(int& major, int& minor, int& build, int& revision) {
major = 1;
minor = 0;
build = 0;
revision = 30;
}
long long ReadUInt(IMkvReader* pReader, long long pos, long& len) {
if (!pReader || pos < 0)
return E_FILE_FORMAT_INVALID;
len = 1;
unsigned char b;
int status = pReader->Read(pos, 1, &b);
if (status < 0) // error or underflow
return status;
if (status > 0) // interpreted as "underflow"
return E_BUFFER_NOT_FULL;
if (b == 0) // we can't handle u-int values larger than 8 bytes
return E_FILE_FORMAT_INVALID;
unsigned char m = 0x80;
while (!(b & m)) {
m >>= 1;
++len;
}
long long result = b & (~m);
++pos;
for (int i = 1; i < len; ++i) {
status = pReader->Read(pos, 1, &b);
if (status < 0) {
len = 1;
return status;
}
if (status > 0) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result <<= 8;
result |= b;
++pos;
}
return result;
}
// Reads an EBML ID and returns it.
// An ID must at least 1 byte long, cannot exceed 4, and its value must be
// greater than 0.
// See known EBML values and EBMLMaxIDLength:
// http://www.matroska.org/technical/specs/index.html
// Returns the ID, or a value less than 0 to report an error while reading the
// ID.
long long ReadID(IMkvReader* pReader, long long pos, long& len) {
if (pReader == NULL || pos < 0)
return E_FILE_FORMAT_INVALID;
// Read the first byte. The length in bytes of the ID is determined by
// finding the first set bit in the first byte of the ID.
unsigned char temp_byte = 0;
int read_status = pReader->Read(pos, 1, &temp_byte);
if (read_status < 0)
return E_FILE_FORMAT_INVALID;
else if (read_status > 0) // No data to read.
return E_BUFFER_NOT_FULL;
if (temp_byte == 0) // ID length > 8 bytes; invalid file.
return E_FILE_FORMAT_INVALID;
int bit_pos = 0;
const int kMaxIdLengthInBytes = 4;
const int kCheckByte = 0x80;
// Find the first bit that's set.
bool found_bit = false;
for (; bit_pos < kMaxIdLengthInBytes; ++bit_pos) {
if ((kCheckByte >> bit_pos) & temp_byte) {
found_bit = true;
break;
}
}
if (!found_bit) {
// The value is too large to be a valid ID.
return E_FILE_FORMAT_INVALID;
}
// Read the remaining bytes of the ID (if any).
const int id_length = bit_pos + 1;
long long ebml_id = temp_byte;
for (int i = 1; i < id_length; ++i) {
ebml_id <<= 8;
read_status = pReader->Read(pos + i, 1, &temp_byte);
if (read_status < 0)
return E_FILE_FORMAT_INVALID;
else if (read_status > 0)
return E_BUFFER_NOT_FULL;
ebml_id |= temp_byte;
}
len = id_length;
return ebml_id;
}
long long GetUIntLength(IMkvReader* pReader, long long pos, long& len) {
if (!pReader || pos < 0)
return E_FILE_FORMAT_INVALID;
long long total, available;
int status = pReader->Length(&total, &available);
if (status < 0 || (total >= 0 && available > total))
return E_FILE_FORMAT_INVALID;
len = 1;
if (pos >= available)
return pos; // too few bytes available
unsigned char b;
status = pReader->Read(pos, 1, &b);
if (status != 0)
return status;
if (b == 0) // we can't handle u-int values larger than 8 bytes
return E_FILE_FORMAT_INVALID;
unsigned char m = 0x80;
while (!(b & m)) {
m >>= 1;
++len;
}
return 0; // success
}
// TODO(vigneshv): This function assumes that unsigned values never have their
// high bit set.
long long UnserializeUInt(IMkvReader* pReader, long long pos, long long size) {
if (!pReader || pos < 0 || (size <= 0) || (size > 8))
return E_FILE_FORMAT_INVALID;
long long result = 0;
for (long long i = 0; i < size; ++i) {
unsigned char b;
const long status = pReader->Read(pos, 1, &b);
if (status < 0)
return status;
result <<= 8;
result |= b;
++pos;
}
return result;
}
long UnserializeFloat(IMkvReader* pReader, long long pos, long long size_,
double& result) {
if (!pReader || pos < 0 || ((size_ != 4) && (size_ != 8)))
return E_FILE_FORMAT_INVALID;
const long size = static_cast<long>(size_);
unsigned char buf[8];
const int status = pReader->Read(pos, size, buf);
if (status < 0) // error
return status;
if (size == 4) {
union {
float f;
unsigned long ff;
};
ff = 0;
for (int i = 0;;) {
ff |= buf[i];
if (++i >= 4)
break;
ff <<= 8;
}
result = f;
} else {
union {
double d;
unsigned long long dd;
};
dd = 0;
for (int i = 0;;) {
dd |= buf[i];
if (++i >= 8)
break;
dd <<= 8;
}
result = d;
}
if (isinf(result) || isnan(result))
return E_FILE_FORMAT_INVALID;
return 0;
}
long UnserializeInt(IMkvReader* pReader, long long pos, long long size,
long long& result_ref) {
if (!pReader || pos < 0 || size < 1 || size > 8)
return E_FILE_FORMAT_INVALID;
signed char first_byte = 0;
const long status = pReader->Read(pos, 1, (unsigned char*)&first_byte);
if (status < 0)
return status;
unsigned long long result = first_byte;
++pos;
for (long i = 1; i < size; ++i) {
unsigned char b;
const long status = pReader->Read(pos, 1, &b);
if (status < 0)
return status;
result <<= 8;
result |= b;
++pos;
}
result_ref = static_cast<long long>(result);
return 0;
}
long UnserializeString(IMkvReader* pReader, long long pos, long long size,
char*& str) {
delete[] str;
str = NULL;
if (size >= LONG_MAX || size < 0)
return E_FILE_FORMAT_INVALID;
// +1 for '\0' terminator
const long required_size = static_cast<long>(size) + 1;
str = SafeArrayAlloc<char>(1, required_size);
if (str == NULL)
return E_FILE_FORMAT_INVALID;
unsigned char* const buf = reinterpret_cast<unsigned char*>(str);
const long status = pReader->Read(pos, static_cast<long>(size), buf);
if (status) {
delete[] str;
str = NULL;
return status;
}
str[required_size - 1] = '\0';
return 0;
}
long ParseElementHeader(IMkvReader* pReader, long long& pos, long long stop,
long long& id, long long& size) {
if (stop >= 0 && pos >= stop)
return E_FILE_FORMAT_INVALID;
long len;
id = ReadID(pReader, pos, len);
if (id < 0)
return E_FILE_FORMAT_INVALID;
pos += len; // consume id
if (stop >= 0 && pos >= stop)
return E_FILE_FORMAT_INVALID;
size = ReadUInt(pReader, pos, len);
if (size < 0 || len < 1 || len > 8) {
// Invalid: Negative payload size, negative or 0 length integer, or integer
// larger than 64 bits (libwebm cannot handle them).
return E_FILE_FORMAT_INVALID;
}
// Avoid rolling over pos when very close to LLONG_MAX.
const unsigned long long rollover_check =
static_cast<unsigned long long>(pos) + len;
if (rollover_check > LLONG_MAX)
return E_FILE_FORMAT_INVALID;
pos += len; // consume length of size
// pos now designates payload
if (stop >= 0 && pos > stop)
return E_FILE_FORMAT_INVALID;
return 0; // success
}
bool Match(IMkvReader* pReader, long long& pos, unsigned long expected_id,
long long& val) {
if (!pReader || pos < 0)
return false;
long long total = 0;
long long available = 0;
const long status = pReader->Length(&total, &available);
if (status < 0 || (total >= 0 && available > total))
return false;
long len = 0;
const long long id = ReadID(pReader, pos, len);
if (id < 0 || (available - pos) > len)
return false;
if (static_cast<unsigned long>(id) != expected_id)
return false;
pos += len; // consume id
const long long size = ReadUInt(pReader, pos, len);
if (size < 0 || size > 8 || len < 1 || len > 8 || (available - pos) > len)
return false;
pos += len; // consume length of size of payload
val = UnserializeUInt(pReader, pos, size);
if (val < 0)
return false;
pos += size; // consume size of payload
return true;
}
bool Match(IMkvReader* pReader, long long& pos, unsigned long expected_id,
unsigned char*& buf, size_t& buflen) {
if (!pReader || pos < 0)
return false;
long long total = 0;
long long available = 0;
long status = pReader->Length(&total, &available);
if (status < 0 || (total >= 0 && available > total))
return false;
long len = 0;
const long long id = ReadID(pReader, pos, len);
if (id < 0 || (available - pos) > len)
return false;
if (static_cast<unsigned long>(id) != expected_id)
return false;
pos += len; // consume id
const long long size = ReadUInt(pReader, pos, len);
if (size < 0 || len <= 0 || len > 8 || (available - pos) > len)
return false;
unsigned long long rollover_check =
static_cast<unsigned long long>(pos) + len;
if (rollover_check > LLONG_MAX)
return false;
pos += len; // consume length of size of payload
rollover_check = static_cast<unsigned long long>(pos) + size;
if (rollover_check > LLONG_MAX)
return false;
if ((pos + size) > available)
return false;
if (size >= LONG_MAX)
return false;
const long buflen_ = static_cast<long>(size);
buf = SafeArrayAlloc<unsigned char>(1, buflen_);
if (!buf)
return false;
status = pReader->Read(pos, buflen_, buf);
if (status != 0)
return false;
buflen = buflen_;
pos += size; // consume size of payload
return true;
}
EBMLHeader::EBMLHeader() : m_docType(NULL) { Init(); }
EBMLHeader::~EBMLHeader() { delete[] m_docType; }
void EBMLHeader::Init() {
m_version = 1;
m_readVersion = 1;
m_maxIdLength = 4;
m_maxSizeLength = 8;
if (m_docType) {
delete[] m_docType;
m_docType = NULL;
}
m_docTypeVersion = 1;
m_docTypeReadVersion = 1;
}
long long EBMLHeader::Parse(IMkvReader* pReader, long long& pos) {
if (!pReader)
return E_FILE_FORMAT_INVALID;
long long total, available;
long status = pReader->Length(&total, &available);
if (status < 0) // error
return status;
pos = 0;
// Scan until we find what looks like the first byte of the EBML header.
const long long kMaxScanBytes = (available >= 1024) ? 1024 : available;
const unsigned char kEbmlByte0 = 0x1A;
unsigned char scan_byte = 0;
while (pos < kMaxScanBytes) {
status = pReader->Read(pos, 1, &scan_byte);
if (status < 0) // error
return status;
else if (status > 0)
return E_BUFFER_NOT_FULL;
if (scan_byte == kEbmlByte0)
break;
++pos;
}
long len = 0;
const long long ebml_id = ReadID(pReader, pos, len);
if (ebml_id == E_BUFFER_NOT_FULL)
return E_BUFFER_NOT_FULL;
if (len != 4 || ebml_id != libwebm::kMkvEBML)
return E_FILE_FORMAT_INVALID;
// Move read pos forward to the EBML header size field.
pos += 4;
// Read length of size field.
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return E_FILE_FORMAT_INVALID;
else if (result > 0) // need more data
return E_BUFFER_NOT_FULL;
if (len < 1 || len > 8)
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((total - pos) < len))
return E_FILE_FORMAT_INVALID;
if ((available - pos) < len)
return pos + len; // try again later
// Read the EBML header size.
result = ReadUInt(pReader, pos, len);
if (result < 0) // error
return result;
pos += len; // consume size field
// pos now designates start of payload
if ((total >= 0) && ((total - pos) < result))
return E_FILE_FORMAT_INVALID;
if ((available - pos) < result)
return pos + result;
const long long end = pos + result;
Init();
while (pos < end) {
long long id, size;
status = ParseElementHeader(pReader, pos, end, id, size);
if (status < 0) // error
return status;
if (size == 0)
return E_FILE_FORMAT_INVALID;
if (id == libwebm::kMkvEBMLVersion) {
m_version = UnserializeUInt(pReader, pos, size);
if (m_version <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvEBMLReadVersion) {
m_readVersion = UnserializeUInt(pReader, pos, size);
if (m_readVersion <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvEBMLMaxIDLength) {
m_maxIdLength = UnserializeUInt(pReader, pos, size);
if (m_maxIdLength <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvEBMLMaxSizeLength) {
m_maxSizeLength = UnserializeUInt(pReader, pos, size);
if (m_maxSizeLength <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvDocType) {
if (m_docType)
return E_FILE_FORMAT_INVALID;
status = UnserializeString(pReader, pos, size, m_docType);
if (status) // error
return status;
} else if (id == libwebm::kMkvDocTypeVersion) {
m_docTypeVersion = UnserializeUInt(pReader, pos, size);
if (m_docTypeVersion <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvDocTypeReadVersion) {
m_docTypeReadVersion = UnserializeUInt(pReader, pos, size);
if (m_docTypeReadVersion <= 0)
return E_FILE_FORMAT_INVALID;
}
pos += size;
}
if (pos != end)
return E_FILE_FORMAT_INVALID;
// Make sure DocType, DocTypeReadVersion, and DocTypeVersion are valid.
if (m_docType == NULL || m_docTypeReadVersion <= 0 || m_docTypeVersion <= 0)
return E_FILE_FORMAT_INVALID;
// Make sure EBMLMaxIDLength and EBMLMaxSizeLength are valid.
if (m_maxIdLength <= 0 || m_maxIdLength > 4 || m_maxSizeLength <= 0 ||
m_maxSizeLength > 8)
return E_FILE_FORMAT_INVALID;
return 0;
}
Segment::Segment(IMkvReader* pReader, long long elem_start,
// long long elem_size,
long long start, long long size)
: m_pReader(pReader),
m_element_start(elem_start),
// m_element_size(elem_size),
m_start(start),
m_size(size),
m_pos(start),
m_pUnknownSize(0),
m_pSeekHead(NULL),
m_pInfo(NULL),
m_pTracks(NULL),
m_pCues(NULL),
m_pChapters(NULL),
m_pTags(NULL),
m_clusters(NULL),
m_clusterCount(0),
m_clusterPreloadCount(0),
m_clusterSize(0) {}
Segment::~Segment() {
const long count = m_clusterCount + m_clusterPreloadCount;
Cluster** i = m_clusters;
Cluster** j = m_clusters + count;
while (i != j) {
Cluster* const p = *i++;
delete p;
}
delete[] m_clusters;
delete m_pTracks;
delete m_pInfo;
delete m_pCues;
delete m_pChapters;
delete m_pTags;
delete m_pSeekHead;
}
long long Segment::CreateInstance(IMkvReader* pReader, long long pos,
Segment*& pSegment) {
if (pReader == NULL || pos < 0)
return E_PARSE_FAILED;
pSegment = NULL;
long long total, available;
const long status = pReader->Length(&total, &available);
if (status < 0) // error
return status;
if (available < 0)
return -1;
if ((total >= 0) && (available > total))
return -1;
// I would assume that in practice this loop would execute
// exactly once, but we allow for other elements (e.g. Void)
// to immediately follow the EBML header. This is fine for
// the source filter case (since the entire file is available),
// but in the splitter case over a network we should probably
// just give up early. We could for example decide only to
// execute this loop a maximum of, say, 10 times.
// TODO:
// There is an implied "give up early" by only parsing up
// to the available limit. We do do that, but only if the
// total file size is unknown. We could decide to always
// use what's available as our limit (irrespective of whether
// we happen to know the total file length). This would have
// as its sense "parse this much of the file before giving up",
// which a slightly different sense from "try to parse up to
// 10 EMBL elements before giving up".
for (;;) {
if ((total >= 0) && (pos >= total))
return E_FILE_FORMAT_INVALID;
// Read ID
long len;
long long result = GetUIntLength(pReader, pos, len);
if (result) // error, or too few available bytes
return result;
if ((total >= 0) && ((pos + len) > total))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
const long long idpos = pos;
const long long id = ReadID(pReader, pos, len);
if (id < 0)
return E_FILE_FORMAT_INVALID;
pos += len; // consume ID
// Read Size
result = GetUIntLength(pReader, pos, len);
if (result) // error, or too few available bytes
return result;
if ((total >= 0) && ((pos + len) > total))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
long long size = ReadUInt(pReader, pos, len);
if (size < 0) // error
return size;
pos += len; // consume length of size of element
// Pos now points to start of payload
// Handle "unknown size" for live streaming of webm files.
const long long unknown_size = (1LL << (7 * len)) - 1;
if (id == libwebm::kMkvSegment) {
if (size == unknown_size)
size = -1;
else if (total < 0)
size = -1;
else if ((pos + size) > total)
size = -1;
pSegment = new Segment(pReader, idpos, pos, size);
return 0; // success
}
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((pos + size) > total))
return E_FILE_FORMAT_INVALID;
if ((pos + size) > available)
return pos + size;
pos += size; // consume payload
}
}
long long Segment::ParseHeaders() {
// Outermost (level 0) segment object has been constructed,
// and pos designates start of payload. We need to find the
// inner (level 1) elements.
long long total, available;
const int status = m_pReader->Length(&total, &available);
if (status < 0) // error
return status;
if (total > 0 && available > total)
return E_FILE_FORMAT_INVALID;
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
if ((segment_stop >= 0 && total >= 0 && segment_stop > total) ||
(segment_stop >= 0 && m_pos > segment_stop)) {
return E_FILE_FORMAT_INVALID;
}
for (;;) {
if ((total >= 0) && (m_pos >= total))
break;
if ((segment_stop >= 0) && (m_pos >= segment_stop))
break;
long long pos = m_pos;
const long long element_start = pos;
// Avoid rolling over pos when very close to LLONG_MAX.
unsigned long long rollover_check = pos + 1ULL;
if (rollover_check > LLONG_MAX)
return E_FILE_FORMAT_INVALID;
if ((pos + 1) > available)
return (pos + 1);
long len;
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return result;
if (result > 0) {
// MkvReader doesn't have enough data to satisfy this read attempt.
return (pos + 1);
}
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
const long long idpos = pos;
const long long id = ReadID(m_pReader, idpos, len);
if (id < 0)
return E_FILE_FORMAT_INVALID;
if (id == libwebm::kMkvCluster)
break;
pos += len; // consume ID
if ((pos + 1) > available)
return (pos + 1);
// Read Size
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return result;
if (result > 0) {
// MkvReader doesn't have enough data to satisfy this read attempt.
return (pos + 1);
}
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0 || len < 1 || len > 8) {
// TODO(tomfinegan): ReadUInt should return an error when len is < 1 or
// len > 8 is true instead of checking this _everywhere_.
return size;
}
pos += len; // consume length of size of element
// Avoid rolling over pos when very close to LLONG_MAX.
rollover_check = static_cast<unsigned long long>(pos) + size;
if (rollover_check > LLONG_MAX)
return E_FILE_FORMAT_INVALID;
const long long element_size = size + pos - element_start;
// Pos now points to start of payload
if ((segment_stop >= 0) && ((pos + size) > segment_stop))
return E_FILE_FORMAT_INVALID;
// We read EBML elements either in total or nothing at all.
if ((pos + size) > available)
return pos + size;
if (id == libwebm::kMkvInfo) {
if (m_pInfo)
return E_FILE_FORMAT_INVALID;
m_pInfo = new SegmentInfo(this, pos, size, element_start, element_size);
const long status = m_pInfo->Parse();
if (status)
return status;
} else if (id == libwebm::kMkvTracks) {
if (m_pTracks)
return E_FILE_FORMAT_INVALID;
m_pTracks = new Tracks(this, pos, size, element_start, element_size);
const long status = m_pTracks->Parse();
if (status)
return status;
} else if (id == libwebm::kMkvCues) {
if (m_pCues == NULL) {
m_pCues = new Cues(this, pos, size, element_start, element_size);
}
} else if (id == libwebm::kMkvSeekHead) {
if (m_pSeekHead == NULL) {
m_pSeekHead = new SeekHead(this, pos, size, element_start, element_size);
const long status = m_pSeekHead->Parse();
if (status)
return status;
}
} else if (id == libwebm::kMkvChapters) {
if (m_pChapters == NULL) {
m_pChapters = new Chapters(this, pos, size, element_start, element_size);
const long status = m_pChapters->Parse();
if (status)
return status;
}
} else if (id == libwebm::kMkvTags) {
if (m_pTags == NULL) {
m_pTags = new Tags(this, pos, size, element_start, element_size);
const long status = m_pTags->Parse();
if (status)
return status;
}
}
m_pos = pos + size; // consume payload
}
if (segment_stop >= 0 && m_pos > segment_stop)
return E_FILE_FORMAT_INVALID;
if (m_pInfo == NULL) // TODO: liberalize this behavior
return E_FILE_FORMAT_INVALID;
if (m_pTracks == NULL)
return E_FILE_FORMAT_INVALID;
return 0; // success
}
long Segment::LoadCluster(long long& pos, long& len) {
for (;;) {
const long result = DoLoadCluster(pos, len);
if (result <= 1)
return result;
}
}
long Segment::DoLoadCluster(long long& pos, long& len) {
if (m_pos < 0)
return DoLoadClusterUnknownSize(pos, len);
long long total, avail;
long status = m_pReader->Length(&total, &avail);
if (status < 0) // error
return status;
if (total >= 0 && avail > total)
return E_FILE_FORMAT_INVALID;
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
long long cluster_off = -1; // offset relative to start of segment
long long cluster_size = -1; // size of cluster payload
for (;;) {
if ((total >= 0) && (m_pos >= total))
return 1; // no more clusters
if ((segment_stop >= 0) && (m_pos >= segment_stop))
return 1; // no more clusters
pos = m_pos;
// Read ID
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0)
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos;
const long long id = ReadID(m_pReader, idpos, len);
if (id < 0)
return E_FILE_FORMAT_INVALID;
pos += len; // consume ID
// Read Size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0)
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
pos += len; // consume length of size of element
// pos now points to start of payload
if (size == 0) {
// Missing element payload: move on.
m_pos = pos;
continue;
}
const long long unknown_size = (1LL << (7 * len)) - 1;
if ((segment_stop >= 0) && (size != unknown_size) &&
((pos + size) > segment_stop)) {
return E_FILE_FORMAT_INVALID;
}
if (id == libwebm::kMkvCues) {
if (size == unknown_size) {
// Cues element of unknown size: Not supported.
return E_FILE_FORMAT_INVALID;
}
if (m_pCues == NULL) {
const long long element_size = (pos - idpos) + size;
m_pCues = new Cues(this, pos, size, idpos, element_size);
}
m_pos = pos + size; // consume payload
continue;
}
if (id != libwebm::kMkvCluster) {
// Besides the Segment, Libwebm allows only cluster elements of unknown
// size. Fail the parse upon encountering a non-cluster element reporting
// unknown size.
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
m_pos = pos + size; // consume payload
continue;
}
// We have a cluster.
cluster_off = idpos - m_start; // relative pos
if (size != unknown_size)
cluster_size = size;
break;
}
if (cluster_off < 0) {
// No cluster, die.
return E_FILE_FORMAT_INVALID;
}
long long pos_;
long len_;
status = Cluster::HasBlockEntries(this, cluster_off, pos_, len_);
if (status < 0) { // error, or underflow
pos = pos_;
len = len_;
return status;
}
// status == 0 means "no block entries found"
// status > 0 means "found at least one block entry"
// TODO:
// The issue here is that the segment increments its own
// pos ptr past the most recent cluster parsed, and then
// starts from there to parse the next cluster. If we
// don't know the size of the current cluster, then we
// must either parse its payload (as we do below), looking
// for the cluster (or cues) ID to terminate the parse.
// This isn't really what we want: rather, we really need
// a way to create the curr cluster object immediately.
// The pity is that cluster::parse can determine its own
// boundary, and we largely duplicate that same logic here.
//
// Maybe we need to get rid of our look-ahead preloading
// in source::parse???
//
// As we're parsing the blocks in the curr cluster
//(in cluster::parse), we should have some way to signal
// to the segment that we have determined the boundary,
// so it can adjust its own segment::m_pos member.
//
// The problem is that we're asserting in asyncreadinit,
// because we adjust the pos down to the curr seek pos,
// and the resulting adjusted len is > 2GB. I'm suspicious
// that this is even correct, but even if it is, we can't
// be loading that much data in the cache anyway.
const long idx = m_clusterCount;
if (m_clusterPreloadCount > 0) {
if (idx >= m_clusterSize)
return E_FILE_FORMAT_INVALID;
Cluster* const pCluster = m_clusters[idx];
if (pCluster == NULL || pCluster->m_index >= 0)
return E_FILE_FORMAT_INVALID;
const long long off = pCluster->GetPosition();
if (off < 0)
return E_FILE_FORMAT_INVALID;
if (off == cluster_off) { // preloaded already
if (status == 0) // no entries found
return E_FILE_FORMAT_INVALID;
if (cluster_size >= 0)
pos += cluster_size;
else {
const long long element_size = pCluster->GetElementSize();
if (element_size <= 0)
return E_FILE_FORMAT_INVALID; // TODO: handle this case
pos = pCluster->m_element_start + element_size;
}
pCluster->m_index = idx; // move from preloaded to loaded
++m_clusterCount;
--m_clusterPreloadCount;
m_pos = pos; // consume payload
if (segment_stop >= 0 && m_pos > segment_stop)
return E_FILE_FORMAT_INVALID;
return 0; // success
}
}
if (status == 0) { // no entries found
if (cluster_size >= 0)
pos += cluster_size;
if ((total >= 0) && (pos >= total)) {
m_pos = total;
return 1; // no more clusters
}
if ((segment_stop >= 0) && (pos >= segment_stop)) {
m_pos = segment_stop;
return 1; // no more clusters
}
m_pos = pos;
return 2; // try again
}
// status > 0 means we have an entry
Cluster* const pCluster = Cluster::Create(this, idx, cluster_off);
if (pCluster == NULL)
return -1;
if (!AppendCluster(pCluster)) {
delete pCluster;
return -1;
}
if (cluster_size >= 0) {
pos += cluster_size;
m_pos = pos;
// -- GODOT start --
delete pCluster;
// -- GODOT end --
if (segment_stop > 0 && m_pos > segment_stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
m_pUnknownSize = pCluster;
m_pos = -pos;
return 0; // partial success, since we have a new cluster
// status == 0 means "no block entries found"
// pos designates start of payload
// m_pos has NOT been adjusted yet (in case we need to come back here)
}
long Segment::DoLoadClusterUnknownSize(long long& pos, long& len) {
if (m_pos >= 0 || m_pUnknownSize == NULL)
return E_PARSE_FAILED;
const long status = m_pUnknownSize->Parse(pos, len);
if (status < 0) // error or underflow
return status;
if (status == 0) // parsed a block
return 2; // continue parsing
const long long start = m_pUnknownSize->m_element_start;
const long long size = m_pUnknownSize->GetElementSize();
if (size < 0)
return E_FILE_FORMAT_INVALID;
pos = start + size;
m_pos = pos;
m_pUnknownSize = 0;
return 2; // continue parsing
}
bool Segment::AppendCluster(Cluster* pCluster) {
if (pCluster == NULL || pCluster->m_index < 0)
return false;
const long count = m_clusterCount + m_clusterPreloadCount;
long& size = m_clusterSize;
const long idx = pCluster->m_index;
if (size < count || idx != m_clusterCount)
return false;
if (count >= size) {
const long n = (size <= 0) ? 2048 : 2 * size;
Cluster** const qq = new Cluster*[n];
Cluster** q = qq;
Cluster** p = m_clusters;
Cluster** const pp = p + count;
while (p != pp)
*q++ = *p++;
delete[] m_clusters;
m_clusters = qq;
size = n;
}
if (m_clusterPreloadCount > 0) {
Cluster** const p = m_clusters + m_clusterCount;
if (*p == NULL || (*p)->m_index >= 0)
return false;
Cluster** q = p + m_clusterPreloadCount;
if (q >= (m_clusters + size))
return false;
for (;;) {
Cluster** const qq = q - 1;
if ((*qq)->m_index >= 0)
return false;
*q = *qq;
q = qq;
if (q == p)
break;
}
}
m_clusters[idx] = pCluster;
++m_clusterCount;
return true;
}
bool Segment::PreloadCluster(Cluster* pCluster, ptrdiff_t idx) {
if (pCluster == NULL || pCluster->m_index >= 0 || idx < m_clusterCount)
return false;
const long count = m_clusterCount + m_clusterPreloadCount;
long& size = m_clusterSize;
if (size < count)
return false;
if (count >= size) {
const long n = (size <= 0) ? 2048 : 2 * size;
Cluster** const qq = new Cluster*[n];
Cluster** q = qq;
Cluster** p = m_clusters;
Cluster** const pp = p + count;
while (p != pp)
*q++ = *p++;
delete[] m_clusters;
m_clusters = qq;
size = n;
}
if (m_clusters == NULL)
return false;
Cluster** const p = m_clusters + idx;
Cluster** q = m_clusters + count;
if (q < p || q >= (m_clusters + size))
return false;
while (q > p) {
Cluster** const qq = q - 1;
if ((*qq)->m_index >= 0)
return false;
*q = *qq;
q = qq;
}
m_clusters[idx] = pCluster;
++m_clusterPreloadCount;
return true;
}
long Segment::Load() {
if (m_clusters != NULL || m_clusterSize != 0 || m_clusterCount != 0)
return E_PARSE_FAILED;
// Outermost (level 0) segment object has been constructed,
// and pos designates start of payload. We need to find the
// inner (level 1) elements.
const long long header_status = ParseHeaders();
if (header_status < 0) // error
return static_cast<long>(header_status);
if (header_status > 0) // underflow
return E_BUFFER_NOT_FULL;
if (m_pInfo == NULL || m_pTracks == NULL)
return E_FILE_FORMAT_INVALID;
for (;;) {
const long status = LoadCluster();
if (status < 0) // error
return status;
if (status >= 1) // no more clusters
return 0;
}
}
SeekHead::SeekHead(Segment* pSegment, long long start, long long size_,
long long element_start, long long element_size)
: m_pSegment(pSegment),
m_start(start),
m_size(size_),
m_element_start(element_start),
m_element_size(element_size),
m_entries(0),
m_entry_count(0),
m_void_elements(0),
m_void_element_count(0) {}
SeekHead::~SeekHead() {
delete[] m_entries;
delete[] m_void_elements;
}
long SeekHead::Parse() {
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = m_start;
const long long stop = m_start + m_size;
// first count the seek head entries
int entry_count = 0;
int void_element_count = 0;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvSeek)
++entry_count;
else if (id == libwebm::kMkvVoid)
++void_element_count;
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
m_entries = new Entry[entry_count];
m_void_elements = new VoidElement[void_element_count];
// now parse the entries and void elements
Entry* pEntry = m_entries;
VoidElement* pVoidElement = m_void_elements;
pos = m_start;
while (pos < stop) {
const long long idpos = pos;
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvSeek) {
if (ParseEntry(pReader, pos, size, pEntry)) {
Entry& e = *pEntry++;
e.element_start = idpos;
e.element_size = (pos + size) - idpos;
}
} else if (id == libwebm::kMkvVoid) {
VoidElement& e = *pVoidElement++;
e.element_start = idpos;
e.element_size = (pos + size) - idpos;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
ptrdiff_t count_ = ptrdiff_t(pEntry - m_entries);
assert(count_ >= 0);
assert(count_ <= entry_count);
m_entry_count = static_cast<int>(count_);
count_ = ptrdiff_t(pVoidElement - m_void_elements);
assert(count_ >= 0);
assert(count_ <= void_element_count);
m_void_element_count = static_cast<int>(count_);
return 0;
}
int SeekHead::GetCount() const { return m_entry_count; }
const SeekHead::Entry* SeekHead::GetEntry(int idx) const {
if (idx < 0)
return 0;
if (idx >= m_entry_count)
return 0;
return m_entries + idx;
}
int SeekHead::GetVoidElementCount() const { return m_void_element_count; }
const SeekHead::VoidElement* SeekHead::GetVoidElement(int idx) const {
if (idx < 0)
return 0;
if (idx >= m_void_element_count)
return 0;
return m_void_elements + idx;
}
long Segment::ParseCues(long long off, long long& pos, long& len) {
if (m_pCues)
return 0; // success
if (off < 0)
return -1;
long long total, avail;
const int status = m_pReader->Length(&total, &avail);
if (status < 0) // error
return status;
assert((total < 0) || (avail <= total));
pos = m_start + off;
if ((total < 0) || (pos >= total))
return 1; // don't bother parsing cues
const long long element_start = pos;
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // underflow (weird)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos;
const long long id = ReadID(m_pReader, idpos, len);
if (id != libwebm::kMkvCues)
return E_FILE_FORMAT_INVALID;
pos += len; // consume ID
assert((segment_stop < 0) || (pos <= segment_stop));
// Read Size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // underflow (weird)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
if (size == 0) // weird, although technically not illegal
return 1; // done
pos += len; // consume length of size of element
assert((segment_stop < 0) || (pos <= segment_stop));
// Pos now points to start of payload
const long long element_stop = pos + size;
if ((segment_stop >= 0) && (element_stop > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && (element_stop > total))
return 1; // don't bother parsing anymore
len = static_cast<long>(size);
if (element_stop > avail)
return E_BUFFER_NOT_FULL;
const long long element_size = element_stop - element_start;
m_pCues = new Cues(this, pos, size, element_start, element_size);
return 0; // success
}
bool SeekHead::ParseEntry(IMkvReader* pReader, long long start, long long size_,
Entry* pEntry) {
if (size_ <= 0)
return false;
long long pos = start;
const long long stop = start + size_;
long len;
// parse the container for the level-1 element ID
const long long seekIdId = ReadID(pReader, pos, len);
if (seekIdId < 0)
return false;
if (seekIdId != libwebm::kMkvSeekID)
return false;
if ((pos + len) > stop)
return false;
pos += len; // consume SeekID id
const long long seekIdSize = ReadUInt(pReader, pos, len);
if (seekIdSize <= 0)
return false;
if ((pos + len) > stop)
return false;
pos += len; // consume size of field
if ((pos + seekIdSize) > stop)
return false;
// Note that the SeekId payload really is serialized
// as a "Matroska integer", not as a plain binary value.
// In fact, Matroska requires that ID values in the
// stream exactly match the binary representation as listed
// in the Matroska specification.
//
// This parser is more liberal, and permits IDs to have
// any width. (This could make the representation in the stream
// different from what's in the spec, but it doesn't matter here,
// since we always normalize "Matroska integer" values.)
pEntry->id = ReadUInt(pReader, pos, len); // payload
if (pEntry->id <= 0)
return false;
if (len != seekIdSize)
return false;
pos += seekIdSize; // consume SeekID payload
const long long seekPosId = ReadID(pReader, pos, len);
if (seekPosId != libwebm::kMkvSeekPosition)
return false;
if ((pos + len) > stop)
return false;
pos += len; // consume id
const long long seekPosSize = ReadUInt(pReader, pos, len);
if (seekPosSize <= 0)
return false;
if ((pos + len) > stop)
return false;
pos += len; // consume size
if ((pos + seekPosSize) > stop)
return false;
pEntry->pos = UnserializeUInt(pReader, pos, seekPosSize);
if (pEntry->pos < 0)
return false;
pos += seekPosSize; // consume payload
if (pos != stop)
return false;
return true;
}
Cues::Cues(Segment* pSegment, long long start_, long long size_,
long long element_start, long long element_size)
: m_pSegment(pSegment),
m_start(start_),
m_size(size_),
m_element_start(element_start),
m_element_size(element_size),
m_cue_points(NULL),
m_count(0),
m_preload_count(0),
m_pos(start_) {}
Cues::~Cues() {
const long n = m_count + m_preload_count;
CuePoint** p = m_cue_points;
CuePoint** const q = p + n;
while (p != q) {
CuePoint* const pCP = *p++;
assert(pCP);
delete pCP;
}
delete[] m_cue_points;
}
long Cues::GetCount() const {
if (m_cue_points == NULL)
return -1;
return m_count; // TODO: really ignore preload count?
}
bool Cues::DoneParsing() const {
const long long stop = m_start + m_size;
return (m_pos >= stop);
}
bool Cues::Init() const {
if (m_cue_points)
return true;
if (m_count != 0 || m_preload_count != 0)
return false;
IMkvReader* const pReader = m_pSegment->m_pReader;
const long long stop = m_start + m_size;
long long pos = m_start;
long cue_points_size = 0;
while (pos < stop) {
const long long idpos = pos;
long len;
const long long id = ReadID(pReader, pos, len);
if (id < 0 || (pos + len) > stop) {
return false;
}
pos += len; // consume ID
const long long size = ReadUInt(pReader, pos, len);
if (size < 0 || (pos + len > stop)) {
return false;
}
pos += len; // consume Size field
if (pos + size > stop) {
return false;
}
if (id == libwebm::kMkvCuePoint) {
if (!PreloadCuePoint(cue_points_size, idpos))
return false;
}
pos += size; // skip payload
}
return true;
}
bool Cues::PreloadCuePoint(long& cue_points_size, long long pos) const {
if (m_count != 0)
return false;
if (m_preload_count >= cue_points_size) {
const long n = (cue_points_size <= 0) ? 2048 : 2 * cue_points_size;
CuePoint** const qq = new CuePoint*[n];
CuePoint** q = qq; // beginning of target
CuePoint** p = m_cue_points; // beginning of source
CuePoint** const pp = p + m_preload_count; // end of source
while (p != pp)
*q++ = *p++;
delete[] m_cue_points;
m_cue_points = qq;
cue_points_size = n;
}
CuePoint* const pCP = new CuePoint(m_preload_count, pos);
m_cue_points[m_preload_count++] = pCP;
return true;
}
bool Cues::LoadCuePoint() const {
const long long stop = m_start + m_size;
if (m_pos >= stop)
return false; // nothing else to do
if (!Init()) {
m_pos = stop;
return false;
}
IMkvReader* const pReader = m_pSegment->m_pReader;
while (m_pos < stop) {
const long long idpos = m_pos;
long len;
const long long id = ReadID(pReader, m_pos, len);
if (id < 0 || (m_pos + len) > stop)
return false;
m_pos += len; // consume ID
const long long size = ReadUInt(pReader, m_pos, len);
if (size < 0 || (m_pos + len) > stop)
return false;
m_pos += len; // consume Size field
if ((m_pos + size) > stop)
return false;
if (id != libwebm::kMkvCuePoint) {
m_pos += size; // consume payload
if (m_pos > stop)
return false;
continue;
}
if (m_preload_count < 1)
return false;
CuePoint* const pCP = m_cue_points[m_count];
if (!pCP || (pCP->GetTimeCode() < 0 && (-pCP->GetTimeCode() != idpos)))
return false;
if (!pCP->Load(pReader)) {
m_pos = stop;
return false;
}
++m_count;
--m_preload_count;
m_pos += size; // consume payload
if (m_pos > stop)
return false;
return true; // yes, we loaded a cue point
}
return false; // no, we did not load a cue point
}
bool Cues::Find(long long time_ns, const Track* pTrack, const CuePoint*& pCP,
const CuePoint::TrackPosition*& pTP) const {
if (time_ns < 0 || pTrack == NULL || m_cue_points == NULL || m_count == 0)
return false;
CuePoint** const ii = m_cue_points;
CuePoint** i = ii;
CuePoint** const jj = ii + m_count;
CuePoint** j = jj;
pCP = *i;
if (pCP == NULL)
return false;
if (time_ns <= pCP->GetTime(m_pSegment)) {
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
while (i < j) {
// INVARIANT:
//[ii, i) <= time_ns
//[i, j) ?
//[j, jj) > time_ns
CuePoint** const k = i + (j - i) / 2;
if (k >= jj)
return false;
CuePoint* const pCP = *k;
if (pCP == NULL)
return false;
const long long t = pCP->GetTime(m_pSegment);
if (t <= time_ns)
i = k + 1;
else
j = k;
if (i > j)
return false;
}
if (i != j || i > jj || i <= ii)
return false;
pCP = *--i;
if (pCP == NULL || pCP->GetTime(m_pSegment) > time_ns)
return false;
// TODO: here and elsewhere, it's probably not correct to search
// for the cue point with this time, and then search for a matching
// track. In principle, the matching track could be on some earlier
// cue point, and with our current algorithm, we'd miss it. To make
// this bullet-proof, we'd need to create a secondary structure,
// with a list of cue points that apply to a track, and then search
// that track-based structure for a matching cue point.
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
const CuePoint* Cues::GetFirst() const {
if (m_cue_points == NULL || m_count == 0)
return NULL;
CuePoint* const* const pp = m_cue_points;
if (pp == NULL)
return NULL;
CuePoint* const pCP = pp[0];
if (pCP == NULL || pCP->GetTimeCode() < 0)
return NULL;
return pCP;
}
const CuePoint* Cues::GetLast() const {
if (m_cue_points == NULL || m_count <= 0)
return NULL;
const long index = m_count - 1;
CuePoint* const* const pp = m_cue_points;
if (pp == NULL)
return NULL;
CuePoint* const pCP = pp[index];
if (pCP == NULL || pCP->GetTimeCode() < 0)
return NULL;
return pCP;
}
const CuePoint* Cues::GetNext(const CuePoint* pCurr) const {
if (pCurr == NULL || pCurr->GetTimeCode() < 0 || m_cue_points == NULL ||
m_count < 1) {
return NULL;
}
long index = pCurr->m_index;
if (index >= m_count)
return NULL;
CuePoint* const* const pp = m_cue_points;
if (pp == NULL || pp[index] != pCurr)
return NULL;
++index;
if (index >= m_count)
return NULL;
CuePoint* const pNext = pp[index];
if (pNext == NULL || pNext->GetTimeCode() < 0)
return NULL;
return pNext;
}
const BlockEntry* Cues::GetBlock(const CuePoint* pCP,
const CuePoint::TrackPosition* pTP) const {
if (pCP == NULL || pTP == NULL)
return NULL;
return m_pSegment->GetBlock(*pCP, *pTP);
}
const BlockEntry* Segment::GetBlock(const CuePoint& cp,
const CuePoint::TrackPosition& tp) {
Cluster** const ii = m_clusters;
Cluster** i = ii;
const long count = m_clusterCount + m_clusterPreloadCount;
Cluster** const jj = ii + count;
Cluster** j = jj;
while (i < j) {
// INVARIANT:
//[ii, i) < pTP->m_pos
//[i, j) ?
//[j, jj) > pTP->m_pos
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
Cluster* const pCluster = *k;
assert(pCluster);
// const long long pos_ = pCluster->m_pos;
// assert(pos_);
// const long long pos = pos_ * ((pos_ < 0) ? -1 : 1);
const long long pos = pCluster->GetPosition();
assert(pos >= 0);
if (pos < tp.m_pos)
i = k + 1;
else if (pos > tp.m_pos)
j = k;
else
return pCluster->GetEntry(cp, tp);
}
assert(i == j);
// assert(Cluster::HasBlockEntries(this, tp.m_pos));
Cluster* const pCluster = Cluster::Create(this, -1, tp.m_pos); //, -1);
if (pCluster == NULL)
return NULL;
const ptrdiff_t idx = i - m_clusters;
if (!PreloadCluster(pCluster, idx)) {
delete pCluster;
return NULL;
}
assert(m_clusters);
assert(m_clusterPreloadCount > 0);
assert(m_clusters[idx] == pCluster);
return pCluster->GetEntry(cp, tp);
}
const Cluster* Segment::FindOrPreloadCluster(long long requested_pos) {
if (requested_pos < 0)
return 0;
Cluster** const ii = m_clusters;
Cluster** i = ii;
const long count = m_clusterCount + m_clusterPreloadCount;
Cluster** const jj = ii + count;
Cluster** j = jj;
while (i < j) {
// INVARIANT:
//[ii, i) < pTP->m_pos
//[i, j) ?
//[j, jj) > pTP->m_pos
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
Cluster* const pCluster = *k;
assert(pCluster);
// const long long pos_ = pCluster->m_pos;
// assert(pos_);
// const long long pos = pos_ * ((pos_ < 0) ? -1 : 1);
const long long pos = pCluster->GetPosition();
assert(pos >= 0);
if (pos < requested_pos)
i = k + 1;
else if (pos > requested_pos)
j = k;
else
return pCluster;
}
assert(i == j);
// assert(Cluster::HasBlockEntries(this, tp.m_pos));
Cluster* const pCluster = Cluster::Create(this, -1, requested_pos);
if (pCluster == NULL)
return NULL;
const ptrdiff_t idx = i - m_clusters;
if (!PreloadCluster(pCluster, idx)) {
delete pCluster;
return NULL;
}
assert(m_clusters);
assert(m_clusterPreloadCount > 0);
assert(m_clusters[idx] == pCluster);
return pCluster;
}
CuePoint::CuePoint(long idx, long long pos)
: m_element_start(0),
m_element_size(0),
m_index(idx),
m_timecode(-1 * pos),
m_track_positions(NULL),
m_track_positions_count(0) {
assert(pos > 0);
}
CuePoint::~CuePoint() { delete[] m_track_positions; }
bool CuePoint::Load(IMkvReader* pReader) {
// odbgstream os;
// os << "CuePoint::Load(begin): timecode=" << m_timecode << endl;
if (m_timecode >= 0) // already loaded
return true;
assert(m_track_positions == NULL);
assert(m_track_positions_count == 0);
long long pos_ = -m_timecode;
const long long element_start = pos_;
long long stop;
{
long len;
const long long id = ReadID(pReader, pos_, len);
if (id != libwebm::kMkvCuePoint)
return false;
pos_ += len; // consume ID
const long long size = ReadUInt(pReader, pos_, len);
assert(size >= 0);
pos_ += len; // consume Size field
// pos_ now points to start of payload
stop = pos_ + size;
}
const long long element_size = stop - element_start;
long long pos = pos_;
// First count number of track positions
while (pos < stop) {
long len;
const long long id = ReadID(pReader, pos, len);
if ((id < 0) || (pos + len > stop)) {
return false;
}
pos += len; // consume ID
const long long size = ReadUInt(pReader, pos, len);
if ((size < 0) || (pos + len > stop)) {
return false;
}
pos += len; // consume Size field
if ((pos + size) > stop) {
return false;
}
if (id == libwebm::kMkvCueTime)
m_timecode = UnserializeUInt(pReader, pos, size);
else if (id == libwebm::kMkvCueTrackPositions)
++m_track_positions_count;
pos += size; // consume payload
}
if (m_timecode < 0 || m_track_positions_count <= 0) {
return false;
}
// os << "CuePoint::Load(cont'd): idpos=" << idpos
// << " timecode=" << m_timecode
// << endl;
m_track_positions = new TrackPosition[m_track_positions_count];
// Now parse track positions
TrackPosition* p = m_track_positions;
pos = pos_;
while (pos < stop) {
long len;
const long long id = ReadID(pReader, pos, len);
if (id < 0 || (pos + len) > stop)
return false;
pos += len; // consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; // consume Size field
assert((pos + size) <= stop);
if (id == libwebm::kMkvCueTrackPositions) {
TrackPosition& tp = *p++;
if (!tp.Parse(pReader, pos, size)) {
return false;
}
}
pos += size; // consume payload
if (pos > stop)
return false;
}
assert(size_t(p - m_track_positions) == m_track_positions_count);
m_element_start = element_start;
m_element_size = element_size;
return true;
}
bool CuePoint::TrackPosition::Parse(IMkvReader* pReader, long long start_,
long long size_) {
const long long stop = start_ + size_;
long long pos = start_;
m_track = -1;
m_pos = -1;
m_block = 1; // default
while (pos < stop) {
long len;
const long long id = ReadID(pReader, pos, len);
if ((id < 0) || ((pos + len) > stop)) {
return false;
}
pos += len; // consume ID
const long long size = ReadUInt(pReader, pos, len);
if ((size < 0) || ((pos + len) > stop)) {
return false;
}
pos += len; // consume Size field
if ((pos + size) > stop) {
return false;
}
if (id == libwebm::kMkvCueTrack)
m_track = UnserializeUInt(pReader, pos, size);
else if (id == libwebm::kMkvCueClusterPosition)
m_pos = UnserializeUInt(pReader, pos, size);
else if (id == libwebm::kMkvCueBlockNumber)
m_block = UnserializeUInt(pReader, pos, size);
pos += size; // consume payload
}
if ((m_pos < 0) || (m_track <= 0)) {
return false;
}
return true;
}
const CuePoint::TrackPosition* CuePoint::Find(const Track* pTrack) const {
assert(pTrack);
const long long n = pTrack->GetNumber();
const TrackPosition* i = m_track_positions;
const TrackPosition* const j = i + m_track_positions_count;
while (i != j) {
const TrackPosition& p = *i++;
if (p.m_track == n)
return &p;
}
return NULL; // no matching track number found
}
long long CuePoint::GetTimeCode() const { return m_timecode; }
long long CuePoint::GetTime(const Segment* pSegment) const {
assert(pSegment);
assert(m_timecode >= 0);
const SegmentInfo* const pInfo = pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long time = scale * m_timecode;
return time;
}
bool Segment::DoneParsing() const {
if (m_size < 0) {
long long total, avail;
const int status = m_pReader->Length(&total, &avail);
if (status < 0) // error
return true; // must assume done
if (total < 0)
return false; // assume live stream
return (m_pos >= total);
}
const long long stop = m_start + m_size;
return (m_pos >= stop);
}
const Cluster* Segment::GetFirst() const {
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
Cluster* const pCluster = m_clusters[0];
assert(pCluster);
return pCluster;
}
const Cluster* Segment::GetLast() const {
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
const long idx = m_clusterCount - 1;
Cluster* const pCluster = m_clusters[idx];
assert(pCluster);
return pCluster;
}
unsigned long Segment::GetCount() const { return m_clusterCount; }
const Cluster* Segment::GetNext(const Cluster* pCurr) {
assert(pCurr);
assert(pCurr != &m_eos);
assert(m_clusters);
long idx = pCurr->m_index;
if (idx >= 0) {
assert(m_clusterCount > 0);
assert(idx < m_clusterCount);
assert(pCurr == m_clusters[idx]);
++idx;
if (idx >= m_clusterCount)
return &m_eos; // caller will LoadCluster as desired
Cluster* const pNext = m_clusters[idx];
assert(pNext);
assert(pNext->m_index >= 0);
assert(pNext->m_index == idx);
return pNext;
}
assert(m_clusterPreloadCount > 0);
long long pos = pCurr->m_element_start;
assert(m_size >= 0); // TODO
const long long stop = m_start + m_size; // end of segment
{
long len;
long long result = GetUIntLength(m_pReader, pos, len);
assert(result == 0);
assert((pos + len) <= stop); // TODO
if (result != 0)
return NULL;
const long long id = ReadID(m_pReader, pos, len);
if (id != libwebm::kMkvCluster)
return NULL;
pos += len; // consume ID
// Read Size
result = GetUIntLength(m_pReader, pos, len);
assert(result == 0); // TODO
assert((pos + len) <= stop); // TODO
const long long size = ReadUInt(m_pReader, pos, len);
assert(size > 0); // TODO
// assert((pCurr->m_size <= 0) || (pCurr->m_size == size));
pos += len; // consume length of size of element
assert((pos + size) <= stop); // TODO
// Pos now points to start of payload
pos += size; // consume payload
}
long long off_next = 0;
while (pos < stop) {
long len;
long long result = GetUIntLength(m_pReader, pos, len);
assert(result == 0);
assert((pos + len) <= stop); // TODO
if (result != 0)
return NULL;
const long long idpos = pos; // pos of next (potential) cluster
const long long id = ReadID(m_pReader, idpos, len);
if (id < 0)
return NULL;
pos += len; // consume ID
// Read Size
result = GetUIntLength(m_pReader, pos, len);
assert(result == 0); // TODO
assert((pos + len) <= stop); // TODO
const long long size = ReadUInt(m_pReader, pos, len);
assert(size >= 0); // TODO
pos += len; // consume length of size of element
assert((pos + size) <= stop); // TODO
// Pos now points to start of payload
if (size == 0) // weird
continue;
if (id == libwebm::kMkvCluster) {
const long long off_next_ = idpos - m_start;
long long pos_;
long len_;
const long status = Cluster::HasBlockEntries(this, off_next_, pos_, len_);
assert(status >= 0);
if (status > 0) {
off_next = off_next_;
break;
}
}
pos += size; // consume payload
}
if (off_next <= 0)
return 0;
Cluster** const ii = m_clusters + m_clusterCount;
Cluster** i = ii;
Cluster** const jj = ii + m_clusterPreloadCount;
Cluster** j = jj;
while (i < j) {
// INVARIANT:
//[0, i) < pos_next
//[i, j) ?
//[j, jj) > pos_next
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
Cluster* const pNext = *k;
assert(pNext);
assert(pNext->m_index < 0);
// const long long pos_ = pNext->m_pos;
// assert(pos_);
// pos = pos_ * ((pos_ < 0) ? -1 : 1);
pos = pNext->GetPosition();
if (pos < off_next)
i = k + 1;
else if (pos > off_next)
j = k;
else
return pNext;
}
assert(i == j);
Cluster* const pNext = Cluster::Create(this, -1, off_next);
if (pNext == NULL)
return NULL;
const ptrdiff_t idx_next = i - m_clusters; // insertion position
if (!PreloadCluster(pNext, idx_next)) {
delete pNext;
return NULL;
}
assert(m_clusters);
assert(idx_next < m_clusterSize);
assert(m_clusters[idx_next] == pNext);
return pNext;
}
long Segment::ParseNext(const Cluster* pCurr, const Cluster*& pResult,
long long& pos, long& len) {
assert(pCurr);
assert(!pCurr->EOS());
assert(m_clusters);
pResult = 0;
if (pCurr->m_index >= 0) { // loaded (not merely preloaded)
assert(m_clusters[pCurr->m_index] == pCurr);
const long next_idx = pCurr->m_index + 1;
if (next_idx < m_clusterCount) {
pResult = m_clusters[next_idx];
return 0; // success
}
// curr cluster is last among loaded
const long result = LoadCluster(pos, len);
if (result < 0) // error or underflow
return result;
if (result > 0) // no more clusters
{
// pResult = &m_eos;
return 1;
}
pResult = GetLast();
return 0; // success
}
assert(m_pos > 0);
long long total, avail;
long status = m_pReader->Length(&total, &avail);
if (status < 0) // error
return status;
assert((total < 0) || (avail <= total));
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
// interrogate curr cluster
pos = pCurr->m_element_start;
if (pCurr->m_element_size >= 0)
pos += pCurr->m_element_size;
else {
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(m_pReader, pos, len);
if (id != libwebm::kMkvCluster)
return -1;
pos += len; // consume ID
// Read Size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
pos += len; // consume size field
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size) // TODO: should never happen
return E_FILE_FORMAT_INVALID; // TODO: resolve this
// assert((pCurr->m_size <= 0) || (pCurr->m_size == size));
if ((segment_stop >= 0) && ((pos + size) > segment_stop))
return E_FILE_FORMAT_INVALID;
// Pos now points to start of payload
pos += size; // consume payload (that is, the current cluster)
if (segment_stop >= 0 && pos > segment_stop)
return E_FILE_FORMAT_INVALID;
// By consuming the payload, we are assuming that the curr
// cluster isn't interesting. That is, we don't bother checking
// whether the payload of the curr cluster is less than what
// happens to be available (obtained via IMkvReader::Length).
// Presumably the caller has already dispensed with the current
// cluster, and really does want the next cluster.
}
// pos now points to just beyond the last fully-loaded cluster
for (;;) {
const long status = DoParseNext(pResult, pos, len);
if (status <= 1)
return status;
}
}
long Segment::DoParseNext(const Cluster*& pResult, long long& pos, long& len) {
long long total, avail;
long status = m_pReader->Length(&total, &avail);
if (status < 0) // error
return status;
assert((total < 0) || (avail <= total));
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
// Parse next cluster. This is strictly a parsing activity.
// Creation of a new cluster object happens later, after the
// parsing is done.
long long off_next = 0;
long long cluster_size = -1;
for (;;) {
if ((total >= 0) && (pos >= total))
return 1; // EOF
if ((segment_stop >= 0) && (pos >= segment_stop))
return 1; // EOF
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos; // absolute
const long long idoff = pos - m_start; // relative
const long long id = ReadID(m_pReader, idpos, len); // absolute
if (id < 0) // error
return static_cast<long>(id);
if (id == 0) // weird
return -1; // generic error
pos += len; // consume ID
// Read Size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
pos += len; // consume length of size of element
// Pos now points to start of payload
if (size == 0) // weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if ((segment_stop >= 0) && (size != unknown_size) &&
((pos + size) > segment_stop)) {
return E_FILE_FORMAT_INVALID;
}
if (id == libwebm::kMkvCues) {
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
const long long element_stop = pos + size;
if ((segment_stop >= 0) && (element_stop > segment_stop))
return E_FILE_FORMAT_INVALID;
const long long element_start = idpos;
const long long element_size = element_stop - element_start;
if (m_pCues == NULL) {
m_pCues = new Cues(this, pos, size, element_start, element_size);
}
pos += size; // consume payload
if (segment_stop >= 0 && pos > segment_stop)
return E_FILE_FORMAT_INVALID;
continue;
}
if (id != libwebm::kMkvCluster) { // not a Cluster ID
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
pos += size; // consume payload
if (segment_stop >= 0 && pos > segment_stop)
return E_FILE_FORMAT_INVALID;
continue;
}
// We have a cluster.
off_next = idoff;
if (size != unknown_size)
cluster_size = size;
break;
}
assert(off_next > 0); // have cluster
// We have parsed the next cluster.
// We have not created a cluster object yet. What we need
// to do now is determine whether it has already be preloaded
//(in which case, an object for this cluster has already been
// created), and if not, create a new cluster object.
Cluster** const ii = m_clusters + m_clusterCount;
Cluster** i = ii;
Cluster** const jj = ii + m_clusterPreloadCount;
Cluster** j = jj;
while (i < j) {
// INVARIANT:
//[0, i) < pos_next
//[i, j) ?
//[j, jj) > pos_next
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
const Cluster* const pNext = *k;
assert(pNext);
assert(pNext->m_index < 0);
pos = pNext->GetPosition();
assert(pos >= 0);
if (pos < off_next)
i = k + 1;
else if (pos > off_next)
j = k;
else {
pResult = pNext;
return 0; // success
}
}
assert(i == j);
long long pos_;
long len_;
status = Cluster::HasBlockEntries(this, off_next, pos_, len_);
if (status < 0) { // error or underflow
pos = pos_;
len = len_;
return status;
}
if (status > 0) { // means "found at least one block entry"
Cluster* const pNext = Cluster::Create(this,
-1, // preloaded
off_next);
if (pNext == NULL)
return -1;
const ptrdiff_t idx_next = i - m_clusters; // insertion position
if (!PreloadCluster(pNext, idx_next)) {
delete pNext;
return -1;
}
assert(m_clusters);
assert(idx_next < m_clusterSize);
assert(m_clusters[idx_next] == pNext);
pResult = pNext;
return 0; // success
}
// status == 0 means "no block entries found"
if (cluster_size < 0) { // unknown size
const long long payload_pos = pos; // absolute pos of cluster payload
for (;;) { // determine cluster size
if ((total >= 0) && (pos >= total))
break;
if ((segment_stop >= 0) && (pos >= segment_stop))
break; // no more clusters
// Read ID
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos;
const long long id = ReadID(m_pReader, idpos, len);
if (id < 0) // error (or underflow)
return static_cast<long>(id);
// This is the distinguished set of ID's we use to determine
// that we have exhausted the sub-element's inside the cluster
// whose ID we parsed earlier.
if (id == libwebm::kMkvCluster || id == libwebm::kMkvCues)
break;
pos += len; // consume ID (of sub-element)
// Read Size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
pos += len; // consume size field of element
// pos now points to start of sub-element's payload
if (size == 0) // weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; // not allowed for sub-elements
if ((segment_stop >= 0) && ((pos + size) > segment_stop)) // weird
return E_FILE_FORMAT_INVALID;
pos += size; // consume payload of sub-element
if (segment_stop >= 0 && pos > segment_stop)
return E_FILE_FORMAT_INVALID;
} // determine cluster size
cluster_size = pos - payload_pos;
assert(cluster_size >= 0); // TODO: handle cluster_size = 0
pos = payload_pos; // reset and re-parse original cluster
}
pos += cluster_size; // consume payload
if (segment_stop >= 0 && pos > segment_stop)
return E_FILE_FORMAT_INVALID;
return 2; // try to find a cluster that follows next
}
const Cluster* Segment::FindCluster(long long time_ns) const {
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
{
Cluster* const pCluster = m_clusters[0];
assert(pCluster);
assert(pCluster->m_index == 0);
if (time_ns <= pCluster->GetTime())
return pCluster;
}
// Binary search of cluster array
long i = 0;
long j = m_clusterCount;
while (i < j) {
// INVARIANT:
//[0, i) <= time_ns
//[i, j) ?
//[j, m_clusterCount) > time_ns
const long k = i + (j - i) / 2;
assert(k < m_clusterCount);
Cluster* const pCluster = m_clusters[k];
assert(pCluster);
assert(pCluster->m_index == k);
const long long t = pCluster->GetTime();
if (t <= time_ns)
i = k + 1;
else
j = k;
assert(i <= j);
}
assert(i == j);
assert(i > 0);
assert(i <= m_clusterCount);
const long k = i - 1;
Cluster* const pCluster = m_clusters[k];
assert(pCluster);
assert(pCluster->m_index == k);
assert(pCluster->GetTime() <= time_ns);
return pCluster;
}
const Tracks* Segment::GetTracks() const { return m_pTracks; }
const SegmentInfo* Segment::GetInfo() const { return m_pInfo; }
const Cues* Segment::GetCues() const { return m_pCues; }
const Chapters* Segment::GetChapters() const { return m_pChapters; }
const Tags* Segment::GetTags() const { return m_pTags; }
const SeekHead* Segment::GetSeekHead() const { return m_pSeekHead; }
long long Segment::GetDuration() const {
assert(m_pInfo);
return m_pInfo->GetDuration();
}
Chapters::Chapters(Segment* pSegment, long long payload_start,
long long payload_size, long long element_start,
long long element_size)
: m_pSegment(pSegment),
m_start(payload_start),
m_size(payload_size),
m_element_start(element_start),
m_element_size(element_size),
m_editions(NULL),
m_editions_size(0),
m_editions_count(0) {}
Chapters::~Chapters() {
while (m_editions_count > 0) {
Edition& e = m_editions[--m_editions_count];
e.Clear();
}
delete[] m_editions;
}
long Chapters::Parse() {
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = m_start; // payload start
const long long stop = pos + m_size; // payload stop
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (size == 0) // weird
continue;
if (id == libwebm::kMkvEditionEntry) {
status = ParseEdition(pos, size);
if (status < 0) // error
return status;
}
pos += size;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
int Chapters::GetEditionCount() const { return m_editions_count; }
const Chapters::Edition* Chapters::GetEdition(int idx) const {
if (idx < 0)
return NULL;
if (idx >= m_editions_count)
return NULL;
return m_editions + idx;
}
bool Chapters::ExpandEditionsArray() {
if (m_editions_size > m_editions_count)
return true; // nothing else to do
const int size = (m_editions_size == 0) ? 1 : 2 * m_editions_size;
Edition* const editions = new Edition[size];
for (int idx = 0; idx < m_editions_count; ++idx) {
m_editions[idx].ShallowCopy(editions[idx]);
}
delete[] m_editions;
m_editions = editions;
m_editions_size = size;
return true;
}
long Chapters::ParseEdition(long long pos, long long size) {
if (!ExpandEditionsArray())
return -1;
Edition& e = m_editions[m_editions_count++];
e.Init();
return e.Parse(m_pSegment->m_pReader, pos, size);
}
Chapters::Edition::Edition() {}
Chapters::Edition::~Edition() {}
int Chapters::Edition::GetAtomCount() const { return m_atoms_count; }
const Chapters::Atom* Chapters::Edition::GetAtom(int index) const {
if (index < 0)
return NULL;
if (index >= m_atoms_count)
return NULL;
return m_atoms + index;
}
void Chapters::Edition::Init() {
m_atoms = NULL;
m_atoms_size = 0;
m_atoms_count = 0;
}
void Chapters::Edition::ShallowCopy(Edition& rhs) const {
rhs.m_atoms = m_atoms;
rhs.m_atoms_size = m_atoms_size;
rhs.m_atoms_count = m_atoms_count;
}
void Chapters::Edition::Clear() {
while (m_atoms_count > 0) {
Atom& a = m_atoms[--m_atoms_count];
a.Clear();
}
delete[] m_atoms;
m_atoms = NULL;
m_atoms_size = 0;
}
long Chapters::Edition::Parse(IMkvReader* pReader, long long pos,
long long size) {
const long long stop = pos + size;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (size == 0)
continue;
if (id == libwebm::kMkvChapterAtom) {
status = ParseAtom(pReader, pos, size);
if (status < 0) // error
return status;
}
pos += size;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
long Chapters::Edition::ParseAtom(IMkvReader* pReader, long long pos,
long long size) {
if (!ExpandAtomsArray())
return -1;
Atom& a = m_atoms[m_atoms_count++];
a.Init();
return a.Parse(pReader, pos, size);
}
bool Chapters::Edition::ExpandAtomsArray() {
if (m_atoms_size > m_atoms_count)
return true; // nothing else to do
const int size = (m_atoms_size == 0) ? 1 : 2 * m_atoms_size;
Atom* const atoms = new Atom[size];
for (int idx = 0; idx < m_atoms_count; ++idx) {
m_atoms[idx].ShallowCopy(atoms[idx]);
}
delete[] m_atoms;
m_atoms = atoms;
m_atoms_size = size;
return true;
}
Chapters::Atom::Atom() {}
Chapters::Atom::~Atom() {}
unsigned long long Chapters::Atom::GetUID() const { return m_uid; }
const char* Chapters::Atom::GetStringUID() const { return m_string_uid; }
long long Chapters::Atom::GetStartTimecode() const { return m_start_timecode; }
long long Chapters::Atom::GetStopTimecode() const { return m_stop_timecode; }
long long Chapters::Atom::GetStartTime(const Chapters* pChapters) const {
return GetTime(pChapters, m_start_timecode);
}
long long Chapters::Atom::GetStopTime(const Chapters* pChapters) const {
return GetTime(pChapters, m_stop_timecode);
}
int Chapters::Atom::GetDisplayCount() const { return m_displays_count; }
const Chapters::Display* Chapters::Atom::GetDisplay(int index) const {
if (index < 0)
return NULL;
if (index >= m_displays_count)
return NULL;
return m_displays + index;
}
void Chapters::Atom::Init() {
m_string_uid = NULL;
m_uid = 0;
m_start_timecode = -1;
m_stop_timecode = -1;
m_displays = NULL;
m_displays_size = 0;
m_displays_count = 0;
}
void Chapters::Atom::ShallowCopy(Atom& rhs) const {
rhs.m_string_uid = m_string_uid;
rhs.m_uid = m_uid;
rhs.m_start_timecode = m_start_timecode;
rhs.m_stop_timecode = m_stop_timecode;
rhs.m_displays = m_displays;
rhs.m_displays_size = m_displays_size;
rhs.m_displays_count = m_displays_count;
}
void Chapters::Atom::Clear() {
delete[] m_string_uid;
m_string_uid = NULL;
while (m_displays_count > 0) {
Display& d = m_displays[--m_displays_count];
d.Clear();
}
delete[] m_displays;
m_displays = NULL;
m_displays_size = 0;
}
long Chapters::Atom::Parse(IMkvReader* pReader, long long pos, long long size) {
const long long stop = pos + size;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (size == 0) // 0 length payload, skip.
continue;
if (id == libwebm::kMkvChapterDisplay) {
status = ParseDisplay(pReader, pos, size);
if (status < 0) // error
return status;
} else if (id == libwebm::kMkvChapterStringUID) {
status = UnserializeString(pReader, pos, size, m_string_uid);
if (status < 0) // error
return status;
} else if (id == libwebm::kMkvChapterUID) {
long long val;
status = UnserializeInt(pReader, pos, size, val);
if (status < 0) // error
return status;
m_uid = static_cast<unsigned long long>(val);
} else if (id == libwebm::kMkvChapterTimeStart) {
const long long val = UnserializeUInt(pReader, pos, size);
if (val < 0) // error
return static_cast<long>(val);
m_start_timecode = val;
} else if (id == libwebm::kMkvChapterTimeEnd) {
const long long val = UnserializeUInt(pReader, pos, size);
if (val < 0) // error
return static_cast<long>(val);
m_stop_timecode = val;
}
pos += size;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
long long Chapters::Atom::GetTime(const Chapters* pChapters,
long long timecode) {
if (pChapters == NULL)
return -1;
Segment* const pSegment = pChapters->m_pSegment;
if (pSegment == NULL) // weird
return -1;
const SegmentInfo* const pInfo = pSegment->GetInfo();
if (pInfo == NULL)
return -1;
const long long timecode_scale = pInfo->GetTimeCodeScale();
if (timecode_scale < 1) // weird
return -1;
if (timecode < 0)
return -1;
const long long result = timecode_scale * timecode;
return result;
}
long Chapters::Atom::ParseDisplay(IMkvReader* pReader, long long pos,
long long size) {
if (!ExpandDisplaysArray())
return -1;
Display& d = m_displays[m_displays_count++];
d.Init();
return d.Parse(pReader, pos, size);
}
bool Chapters::Atom::ExpandDisplaysArray() {
if (m_displays_size > m_displays_count)
return true; // nothing else to do
const int size = (m_displays_size == 0) ? 1 : 2 * m_displays_size;
Display* const displays = new Display[size];
for (int idx = 0; idx < m_displays_count; ++idx) {
m_displays[idx].ShallowCopy(displays[idx]);
}
delete[] m_displays;
m_displays = displays;
m_displays_size = size;
return true;
}
Chapters::Display::Display() {}
Chapters::Display::~Display() {}
const char* Chapters::Display::GetString() const { return m_string; }
const char* Chapters::Display::GetLanguage() const { return m_language; }
const char* Chapters::Display::GetCountry() const { return m_country; }
void Chapters::Display::Init() {
m_string = NULL;
m_language = NULL;
m_country = NULL;
}
void Chapters::Display::ShallowCopy(Display& rhs) const {
rhs.m_string = m_string;
rhs.m_language = m_language;
rhs.m_country = m_country;
}
void Chapters::Display::Clear() {
delete[] m_string;
m_string = NULL;
delete[] m_language;
m_language = NULL;
delete[] m_country;
m_country = NULL;
}
long Chapters::Display::Parse(IMkvReader* pReader, long long pos,
long long size) {
const long long stop = pos + size;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (size == 0) // No payload.
continue;
if (id == libwebm::kMkvChapString) {
status = UnserializeString(pReader, pos, size, m_string);
if (status)
return status;
} else if (id == libwebm::kMkvChapLanguage) {
status = UnserializeString(pReader, pos, size, m_language);
if (status)
return status;
} else if (id == libwebm::kMkvChapCountry) {
status = UnserializeString(pReader, pos, size, m_country);
if (status)
return status;
}
pos += size;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
Tags::Tags(Segment* pSegment, long long payload_start, long long payload_size,
long long element_start, long long element_size)
: m_pSegment(pSegment),
m_start(payload_start),
m_size(payload_size),
m_element_start(element_start),
m_element_size(element_size),
m_tags(NULL),
m_tags_size(0),
m_tags_count(0) {}
Tags::~Tags() {
while (m_tags_count > 0) {
Tag& t = m_tags[--m_tags_count];
t.Clear();
}
delete[] m_tags;
}
long Tags::Parse() {
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = m_start; // payload start
const long long stop = pos + m_size; // payload stop
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0)
return status;
if (size == 0) // 0 length tag, read another
continue;
if (id == libwebm::kMkvTag) {
status = ParseTag(pos, size);
if (status < 0)
return status;
}
pos += size;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
int Tags::GetTagCount() const { return m_tags_count; }
const Tags::Tag* Tags::GetTag(int idx) const {
if (idx < 0)
return NULL;
if (idx >= m_tags_count)
return NULL;
return m_tags + idx;
}
bool Tags::ExpandTagsArray() {
if (m_tags_size > m_tags_count)
return true; // nothing else to do
const int size = (m_tags_size == 0) ? 1 : 2 * m_tags_size;
Tag* const tags = new Tag[size];
for (int idx = 0; idx < m_tags_count; ++idx) {
m_tags[idx].ShallowCopy(tags[idx]);
}
delete[] m_tags;
m_tags = tags;
m_tags_size = size;
return true;
}
long Tags::ParseTag(long long pos, long long size) {
if (!ExpandTagsArray())
return -1;
Tag& t = m_tags[m_tags_count++];
t.Init();
return t.Parse(m_pSegment->m_pReader, pos, size);
}
Tags::Tag::Tag() {}
Tags::Tag::~Tag() {}
int Tags::Tag::GetSimpleTagCount() const { return m_simple_tags_count; }
const Tags::SimpleTag* Tags::Tag::GetSimpleTag(int index) const {
if (index < 0)
return NULL;
if (index >= m_simple_tags_count)
return NULL;
return m_simple_tags + index;
}
void Tags::Tag::Init() {
m_simple_tags = NULL;
m_simple_tags_size = 0;
m_simple_tags_count = 0;
}
void Tags::Tag::ShallowCopy(Tag& rhs) const {
rhs.m_simple_tags = m_simple_tags;
rhs.m_simple_tags_size = m_simple_tags_size;
rhs.m_simple_tags_count = m_simple_tags_count;
}
void Tags::Tag::Clear() {
while (m_simple_tags_count > 0) {
SimpleTag& d = m_simple_tags[--m_simple_tags_count];
d.Clear();
}
delete[] m_simple_tags;
m_simple_tags = NULL;
m_simple_tags_size = 0;
}
long Tags::Tag::Parse(IMkvReader* pReader, long long pos, long long size) {
const long long stop = pos + size;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0)
return status;
if (size == 0) // 0 length tag, read another
continue;
if (id == libwebm::kMkvSimpleTag) {
status = ParseSimpleTag(pReader, pos, size);
if (status < 0)
return status;
}
pos += size;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
long Tags::Tag::ParseSimpleTag(IMkvReader* pReader, long long pos,
long long size) {
if (!ExpandSimpleTagsArray())
return -1;
SimpleTag& st = m_simple_tags[m_simple_tags_count++];
st.Init();
return st.Parse(pReader, pos, size);
}
bool Tags::Tag::ExpandSimpleTagsArray() {
if (m_simple_tags_size > m_simple_tags_count)
return true; // nothing else to do
const int size = (m_simple_tags_size == 0) ? 1 : 2 * m_simple_tags_size;
SimpleTag* const displays = new SimpleTag[size];
for (int idx = 0; idx < m_simple_tags_count; ++idx) {
m_simple_tags[idx].ShallowCopy(displays[idx]);
}
delete[] m_simple_tags;
m_simple_tags = displays;
m_simple_tags_size = size;
return true;
}
Tags::SimpleTag::SimpleTag() {}
Tags::SimpleTag::~SimpleTag() {}
const char* Tags::SimpleTag::GetTagName() const { return m_tag_name; }
const char* Tags::SimpleTag::GetTagString() const { return m_tag_string; }
void Tags::SimpleTag::Init() {
m_tag_name = NULL;
m_tag_string = NULL;
}
void Tags::SimpleTag::ShallowCopy(SimpleTag& rhs) const {
rhs.m_tag_name = m_tag_name;
rhs.m_tag_string = m_tag_string;
}
void Tags::SimpleTag::Clear() {
delete[] m_tag_name;
m_tag_name = NULL;
delete[] m_tag_string;
m_tag_string = NULL;
}
long Tags::SimpleTag::Parse(IMkvReader* pReader, long long pos,
long long size) {
const long long stop = pos + size;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (size == 0) // weird
continue;
if (id == libwebm::kMkvTagName) {
status = UnserializeString(pReader, pos, size, m_tag_name);
if (status)
return status;
} else if (id == libwebm::kMkvTagString) {
status = UnserializeString(pReader, pos, size, m_tag_string);
if (status)
return status;
}
pos += size;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
SegmentInfo::SegmentInfo(Segment* pSegment, long long start, long long size_,
long long element_start, long long element_size)
: m_pSegment(pSegment),
m_start(start),
m_size(size_),
m_element_start(element_start),
m_element_size(element_size),
m_pMuxingAppAsUTF8(NULL),
m_pWritingAppAsUTF8(NULL),
m_pTitleAsUTF8(NULL) {}
SegmentInfo::~SegmentInfo() {
delete[] m_pMuxingAppAsUTF8;
m_pMuxingAppAsUTF8 = NULL;
delete[] m_pWritingAppAsUTF8;
m_pWritingAppAsUTF8 = NULL;
delete[] m_pTitleAsUTF8;
m_pTitleAsUTF8 = NULL;
}
long SegmentInfo::Parse() {
assert(m_pMuxingAppAsUTF8 == NULL);
assert(m_pWritingAppAsUTF8 == NULL);
assert(m_pTitleAsUTF8 == NULL);
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = m_start;
const long long stop = m_start + m_size;
m_timecodeScale = 1000000;
m_duration = -1;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvTimecodeScale) {
m_timecodeScale = UnserializeUInt(pReader, pos, size);
if (m_timecodeScale <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvDuration) {
const long status = UnserializeFloat(pReader, pos, size, m_duration);
if (status < 0)
return status;
if (m_duration < 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvMuxingApp) {
const long status =
UnserializeString(pReader, pos, size, m_pMuxingAppAsUTF8);
if (status)
return status;
} else if (id == libwebm::kMkvWritingApp) {
const long status =
UnserializeString(pReader, pos, size, m_pWritingAppAsUTF8);
if (status)
return status;
} else if (id == libwebm::kMkvTitle) {
const long status = UnserializeString(pReader, pos, size, m_pTitleAsUTF8);
if (status)
return status;
}
pos += size;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
const double rollover_check = m_duration * m_timecodeScale;
if (rollover_check > LLONG_MAX)
return E_FILE_FORMAT_INVALID;
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
long long SegmentInfo::GetTimeCodeScale() const { return m_timecodeScale; }
long long SegmentInfo::GetDuration() const {
if (m_duration < 0)
return -1;
assert(m_timecodeScale >= 1);
const double dd = double(m_duration) * double(m_timecodeScale);
const long long d = static_cast<long long>(dd);
return d;
}
const char* SegmentInfo::GetMuxingAppAsUTF8() const {
return m_pMuxingAppAsUTF8;
}
const char* SegmentInfo::GetWritingAppAsUTF8() const {
return m_pWritingAppAsUTF8;
}
const char* SegmentInfo::GetTitleAsUTF8() const { return m_pTitleAsUTF8; }
///////////////////////////////////////////////////////////////
// ContentEncoding element
ContentEncoding::ContentCompression::ContentCompression()
: algo(0), settings(NULL), settings_len(0) {}
ContentEncoding::ContentCompression::~ContentCompression() {
delete[] settings;
}
ContentEncoding::ContentEncryption::ContentEncryption()
: algo(0),
key_id(NULL),
key_id_len(0),
signature(NULL),
signature_len(0),
sig_key_id(NULL),
sig_key_id_len(0),
sig_algo(0),
sig_hash_algo(0) {}
ContentEncoding::ContentEncryption::~ContentEncryption() {
delete[] key_id;
delete[] signature;
delete[] sig_key_id;
}
ContentEncoding::ContentEncoding()
: compression_entries_(NULL),
compression_entries_end_(NULL),
encryption_entries_(NULL),
encryption_entries_end_(NULL),
encoding_order_(0),
encoding_scope_(1),
encoding_type_(0) {}
ContentEncoding::~ContentEncoding() {
ContentCompression** comp_i = compression_entries_;
ContentCompression** const comp_j = compression_entries_end_;
while (comp_i != comp_j) {
ContentCompression* const comp = *comp_i++;
delete comp;
}
delete[] compression_entries_;
ContentEncryption** enc_i = encryption_entries_;
ContentEncryption** const enc_j = encryption_entries_end_;
while (enc_i != enc_j) {
ContentEncryption* const enc = *enc_i++;
delete enc;
}
delete[] encryption_entries_;
}
const ContentEncoding::ContentCompression*
ContentEncoding::GetCompressionByIndex(unsigned long idx) const {
const ptrdiff_t count = compression_entries_end_ - compression_entries_;
assert(count >= 0);
if (idx >= static_cast<unsigned long>(count))
return NULL;
return compression_entries_[idx];
}
unsigned long ContentEncoding::GetCompressionCount() const {
const ptrdiff_t count = compression_entries_end_ - compression_entries_;
assert(count >= 0);
return static_cast<unsigned long>(count);
}
const ContentEncoding::ContentEncryption* ContentEncoding::GetEncryptionByIndex(
unsigned long idx) const {
const ptrdiff_t count = encryption_entries_end_ - encryption_entries_;
assert(count >= 0);
if (idx >= static_cast<unsigned long>(count))
return NULL;
return encryption_entries_[idx];
}
unsigned long ContentEncoding::GetEncryptionCount() const {
const ptrdiff_t count = encryption_entries_end_ - encryption_entries_;
assert(count >= 0);
return static_cast<unsigned long>(count);
}
long ContentEncoding::ParseContentEncAESSettingsEntry(
long long start, long long size, IMkvReader* pReader,
ContentEncAESSettings* aes) {
assert(pReader);
assert(aes);
long long pos = start;
const long long stop = start + size;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvAESSettingsCipherMode) {
aes->cipher_mode = UnserializeUInt(pReader, pos, size);
if (aes->cipher_mode != 1)
return E_FILE_FORMAT_INVALID;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
return 0;
}
long ContentEncoding::ParseContentEncodingEntry(long long start, long long size,
IMkvReader* pReader) {
assert(pReader);
long long pos = start;
const long long stop = start + size;
// Count ContentCompression and ContentEncryption elements.
int compression_count = 0;
int encryption_count = 0;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvContentCompression)
++compression_count;
if (id == libwebm::kMkvContentEncryption)
++encryption_count;
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (compression_count <= 0 && encryption_count <= 0)
return -1;
if (compression_count > 0) {
compression_entries_ = new ContentCompression*[compression_count];
compression_entries_end_ = compression_entries_;
}
if (encryption_count > 0) {
encryption_entries_ = new ContentEncryption*[encryption_count];
encryption_entries_end_ = encryption_entries_;
}
pos = start;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvContentEncodingOrder) {
encoding_order_ = UnserializeUInt(pReader, pos, size);
} else if (id == libwebm::kMkvContentEncodingScope) {
encoding_scope_ = UnserializeUInt(pReader, pos, size);
if (encoding_scope_ < 1)
return -1;
} else if (id == libwebm::kMkvContentEncodingType) {
encoding_type_ = UnserializeUInt(pReader, pos, size);
} else if (id == libwebm::kMkvContentCompression) {
ContentCompression* const compression = new ContentCompression();
status = ParseCompressionEntry(pos, size, pReader, compression);
if (status) {
delete compression;
return status;
}
*compression_entries_end_++ = compression;
} else if (id == libwebm::kMkvContentEncryption) {
ContentEncryption* const encryption = new ContentEncryption();
status = ParseEncryptionEntry(pos, size, pReader, encryption);
if (status) {
delete encryption;
return status;
}
*encryption_entries_end_++ = encryption;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
long ContentEncoding::ParseCompressionEntry(long long start, long long size,
IMkvReader* pReader,
ContentCompression* compression) {
assert(pReader);
assert(compression);
long long pos = start;
const long long stop = start + size;
bool valid = false;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvContentCompAlgo) {
long long algo = UnserializeUInt(pReader, pos, size);
if (algo < 0)
return E_FILE_FORMAT_INVALID;
compression->algo = algo;
valid = true;
} else if (id == libwebm::kMkvContentCompSettings) {
if (size <= 0)
return E_FILE_FORMAT_INVALID;
const size_t buflen = static_cast<size_t>(size);
unsigned char* buf = SafeArrayAlloc<unsigned char>(1, buflen);
if (buf == NULL)
return -1;
const int read_status =
pReader->Read(pos, static_cast<long>(buflen), buf);
if (read_status) {
delete[] buf;
return status;
}
compression->settings = buf;
compression->settings_len = buflen;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
// ContentCompAlgo is mandatory
if (!valid)
return E_FILE_FORMAT_INVALID;
return 0;
}
long ContentEncoding::ParseEncryptionEntry(long long start, long long size,
IMkvReader* pReader,
ContentEncryption* encryption) {
assert(pReader);
assert(encryption);
long long pos = start;
const long long stop = start + size;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvContentEncAlgo) {
encryption->algo = UnserializeUInt(pReader, pos, size);
if (encryption->algo != 5)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvContentEncKeyID) {
delete[] encryption->key_id;
encryption->key_id = NULL;
encryption->key_id_len = 0;
if (size <= 0)
return E_FILE_FORMAT_INVALID;
const size_t buflen = static_cast<size_t>(size);
unsigned char* buf = SafeArrayAlloc<unsigned char>(1, buflen);
if (buf == NULL)
return -1;
const int read_status =
pReader->Read(pos, static_cast<long>(buflen), buf);
if (read_status) {
delete[] buf;
return status;
}
encryption->key_id = buf;
encryption->key_id_len = buflen;
} else if (id == libwebm::kMkvContentSignature) {
delete[] encryption->signature;
encryption->signature = NULL;
encryption->signature_len = 0;
if (size <= 0)
return E_FILE_FORMAT_INVALID;
const size_t buflen = static_cast<size_t>(size);
unsigned char* buf = SafeArrayAlloc<unsigned char>(1, buflen);
if (buf == NULL)
return -1;
const int read_status =
pReader->Read(pos, static_cast<long>(buflen), buf);
if (read_status) {
delete[] buf;
return status;
}
encryption->signature = buf;
encryption->signature_len = buflen;
} else if (id == libwebm::kMkvContentSigKeyID) {
delete[] encryption->sig_key_id;
encryption->sig_key_id = NULL;
encryption->sig_key_id_len = 0;
if (size <= 0)
return E_FILE_FORMAT_INVALID;
const size_t buflen = static_cast<size_t>(size);
unsigned char* buf = SafeArrayAlloc<unsigned char>(1, buflen);
if (buf == NULL)
return -1;
const int read_status =
pReader->Read(pos, static_cast<long>(buflen), buf);
if (read_status) {
delete[] buf;
return status;
}
encryption->sig_key_id = buf;
encryption->sig_key_id_len = buflen;
} else if (id == libwebm::kMkvContentSigAlgo) {
encryption->sig_algo = UnserializeUInt(pReader, pos, size);
} else if (id == libwebm::kMkvContentSigHashAlgo) {
encryption->sig_hash_algo = UnserializeUInt(pReader, pos, size);
} else if (id == libwebm::kMkvContentEncAESSettings) {
const long status = ParseContentEncAESSettingsEntry(
pos, size, pReader, &encryption->aes_settings);
if (status)
return status;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
return 0;
}
Track::Track(Segment* pSegment, long long element_start, long long element_size)
: m_pSegment(pSegment),
m_element_start(element_start),
m_element_size(element_size),
content_encoding_entries_(NULL),
content_encoding_entries_end_(NULL) {}
Track::~Track() {
Info& info = const_cast<Info&>(m_info);
info.Clear();
ContentEncoding** i = content_encoding_entries_;
ContentEncoding** const j = content_encoding_entries_end_;
while (i != j) {
ContentEncoding* const encoding = *i++;
delete encoding;
}
delete[] content_encoding_entries_;
}
long Track::Create(Segment* pSegment, const Info& info, long long element_start,
long long element_size, Track*& pResult) {
if (pResult)
return -1;
Track* const pTrack = new Track(pSegment, element_start, element_size);
const int status = info.Copy(pTrack->m_info);
if (status) { // error
delete pTrack;
return status;
}
pResult = pTrack;
return 0; // success
}
Track::Info::Info()
: uid(0),
defaultDuration(0),
codecDelay(0),
seekPreRoll(0),
nameAsUTF8(NULL),
language(NULL),
codecId(NULL),
codecNameAsUTF8(NULL),
codecPrivate(NULL),
codecPrivateSize(0),
lacing(false) {}
Track::Info::~Info() { Clear(); }
void Track::Info::Clear() {
delete[] nameAsUTF8;
nameAsUTF8 = NULL;
delete[] language;
language = NULL;
delete[] codecId;
codecId = NULL;
delete[] codecPrivate;
codecPrivate = NULL;
codecPrivateSize = 0;
delete[] codecNameAsUTF8;
codecNameAsUTF8 = NULL;
}
int Track::Info::CopyStr(char* Info::*str, Info& dst_) const {
if (str == static_cast<char * Info::*>(NULL))
return -1;
char*& dst = dst_.*str;
if (dst) // should be NULL already
return -1;
const char* const src = this->*str;
if (src == NULL)
return 0;
const size_t len = strlen(src);
dst = SafeArrayAlloc<char>(1, len + 1);
if (dst == NULL)
return -1;
strcpy(dst, src);
return 0;
}
int Track::Info::Copy(Info& dst) const {
if (&dst == this)
return 0;
dst.type = type;
dst.number = number;
dst.defaultDuration = defaultDuration;
dst.codecDelay = codecDelay;
dst.seekPreRoll = seekPreRoll;
dst.uid = uid;
dst.lacing = lacing;
dst.settings = settings;
// We now copy the string member variables from src to dst.
// This involves memory allocation so in principle the operation
// can fail (indeed, that's why we have Info::Copy), so we must
// report this to the caller. An error return from this function
// therefore implies that the copy was only partially successful.
if (int status = CopyStr(&Info::nameAsUTF8, dst))
return status;
if (int status = CopyStr(&Info::language, dst))
return status;
if (int status = CopyStr(&Info::codecId, dst))
return status;
if (int status = CopyStr(&Info::codecNameAsUTF8, dst))
return status;
if (codecPrivateSize > 0) {
if (codecPrivate == NULL)
return -1;
if (dst.codecPrivate)
return -1;
if (dst.codecPrivateSize != 0)
return -1;
dst.codecPrivate = SafeArrayAlloc<unsigned char>(1, codecPrivateSize);
if (dst.codecPrivate == NULL)
return -1;
memcpy(dst.codecPrivate, codecPrivate, codecPrivateSize);
dst.codecPrivateSize = codecPrivateSize;
}
return 0;
}
const BlockEntry* Track::GetEOS() const { return &m_eos; }
long Track::GetType() const { return m_info.type; }
long Track::GetNumber() const { return m_info.number; }
unsigned long long Track::GetUid() const { return m_info.uid; }
const char* Track::GetNameAsUTF8() const { return m_info.nameAsUTF8; }
const char* Track::GetLanguage() const { return m_info.language; }
const char* Track::GetCodecNameAsUTF8() const { return m_info.codecNameAsUTF8; }
const char* Track::GetCodecId() const { return m_info.codecId; }
const unsigned char* Track::GetCodecPrivate(size_t& size) const {
size = m_info.codecPrivateSize;
return m_info.codecPrivate;
}
bool Track::GetLacing() const { return m_info.lacing; }
unsigned long long Track::GetDefaultDuration() const {
return m_info.defaultDuration;
}
unsigned long long Track::GetCodecDelay() const { return m_info.codecDelay; }
unsigned long long Track::GetSeekPreRoll() const { return m_info.seekPreRoll; }
long Track::GetFirst(const BlockEntry*& pBlockEntry) const {
const Cluster* pCluster = m_pSegment->GetFirst();
for (int i = 0;;) {
if (pCluster == NULL) {
pBlockEntry = GetEOS();
return 1;
}
if (pCluster->EOS()) {
if (m_pSegment->DoneParsing()) {
pBlockEntry = GetEOS();
return 1;
}
pBlockEntry = 0;
return E_BUFFER_NOT_FULL;
}
long status = pCluster->GetFirst(pBlockEntry);
if (status < 0) // error
return status;
if (pBlockEntry == 0) { // empty cluster
pCluster = m_pSegment->GetNext(pCluster);
continue;
}
for (;;) {
const Block* const pBlock = pBlockEntry->GetBlock();
assert(pBlock);
const long long tn = pBlock->GetTrackNumber();
if ((tn == m_info.number) && VetEntry(pBlockEntry))
return 0;
const BlockEntry* pNextEntry;
status = pCluster->GetNext(pBlockEntry, pNextEntry);
if (status < 0) // error
return status;
if (pNextEntry == 0)
break;
pBlockEntry = pNextEntry;
}
++i;
if (i >= 100)
break;
pCluster = m_pSegment->GetNext(pCluster);
}
// NOTE: if we get here, it means that we didn't find a block with
// a matching track number. We interpret that as an error (which
// might be too conservative).
pBlockEntry = GetEOS(); // so we can return a non-NULL value
return 1;
}
long Track::GetNext(const BlockEntry* pCurrEntry,
const BlockEntry*& pNextEntry) const {
assert(pCurrEntry);
assert(!pCurrEntry->EOS()); //?
const Block* const pCurrBlock = pCurrEntry->GetBlock();
assert(pCurrBlock && pCurrBlock->GetTrackNumber() == m_info.number);
if (!pCurrBlock || pCurrBlock->GetTrackNumber() != m_info.number)
return -1;
const Cluster* pCluster = pCurrEntry->GetCluster();
assert(pCluster);
assert(!pCluster->EOS());
long status = pCluster->GetNext(pCurrEntry, pNextEntry);
if (status < 0) // error
return status;
for (int i = 0;;) {
while (pNextEntry) {
const Block* const pNextBlock = pNextEntry->GetBlock();
assert(pNextBlock);
if (pNextBlock->GetTrackNumber() == m_info.number)
return 0;
pCurrEntry = pNextEntry;
status = pCluster->GetNext(pCurrEntry, pNextEntry);
if (status < 0) // error
return status;
}
pCluster = m_pSegment->GetNext(pCluster);
if (pCluster == NULL) {
pNextEntry = GetEOS();
return 1;
}
if (pCluster->EOS()) {
if (m_pSegment->DoneParsing()) {
pNextEntry = GetEOS();
return 1;
}
// TODO: there is a potential O(n^2) problem here: we tell the
// caller to (pre)load another cluster, which he does, but then he
// calls GetNext again, which repeats the same search. This is
// a pathological case, since the only way it can happen is if
// there exists a long sequence of clusters none of which contain a
// block from this track. One way around this problem is for the
// caller to be smarter when he loads another cluster: don't call
// us back until you have a cluster that contains a block from this
// track. (Of course, that's not cheap either, since our caller
// would have to scan the each cluster as it's loaded, so that
// would just push back the problem.)
pNextEntry = NULL;
return E_BUFFER_NOT_FULL;
}
status = pCluster->GetFirst(pNextEntry);
if (status < 0) // error
return status;
if (pNextEntry == NULL) // empty cluster
continue;
++i;
if (i >= 100)
break;
}
// NOTE: if we get here, it means that we didn't find a block with
// a matching track number after lots of searching, so we give
// up trying.
pNextEntry = GetEOS(); // so we can return a non-NULL value
return 1;
}
bool Track::VetEntry(const BlockEntry* pBlockEntry) const {
assert(pBlockEntry);
const Block* const pBlock = pBlockEntry->GetBlock();
assert(pBlock);
assert(pBlock->GetTrackNumber() == m_info.number);
if (!pBlock || pBlock->GetTrackNumber() != m_info.number)
return false;
// This function is used during a seek to determine whether the
// frame is a valid seek target. This default function simply
// returns true, which means all frames are valid seek targets.
// It gets overridden by the VideoTrack class, because only video
// keyframes can be used as seek target.
return true;
}
long Track::Seek(long long time_ns, const BlockEntry*& pResult) const {
const long status = GetFirst(pResult);
if (status < 0) // buffer underflow, etc
return status;
assert(pResult);
if (pResult->EOS())
return 0;
const Cluster* pCluster = pResult->GetCluster();
assert(pCluster);
assert(pCluster->GetIndex() >= 0);
if (time_ns <= pResult->GetBlock()->GetTime(pCluster))
return 0;
Cluster** const clusters = m_pSegment->m_clusters;
assert(clusters);
const long count = m_pSegment->GetCount(); // loaded only, not preloaded
assert(count > 0);
Cluster** const i = clusters + pCluster->GetIndex();
assert(i);
assert(*i == pCluster);
assert(pCluster->GetTime() <= time_ns);
Cluster** const j = clusters + count;
Cluster** lo = i;
Cluster** hi = j;
while (lo < hi) {
// INVARIANT:
//[i, lo) <= time_ns
//[lo, hi) ?
//[hi, j) > time_ns
Cluster** const mid = lo + (hi - lo) / 2;
assert(mid < hi);
pCluster = *mid;
assert(pCluster);
assert(pCluster->GetIndex() >= 0);
assert(pCluster->GetIndex() == long(mid - m_pSegment->m_clusters));
const long long t = pCluster->GetTime();
if (t <= time_ns)
lo = mid + 1;
else
hi = mid;
assert(lo <= hi);
}
assert(lo == hi);
assert(lo > i);
assert(lo <= j);
while (lo > i) {
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
pResult = pCluster->GetEntry(this);
if ((pResult != 0) && !pResult->EOS())
return 0;
// landed on empty cluster (no entries)
}
pResult = GetEOS(); // weird
return 0;
}
const ContentEncoding* Track::GetContentEncodingByIndex(
unsigned long idx) const {
const ptrdiff_t count =
content_encoding_entries_end_ - content_encoding_entries_;
assert(count >= 0);
if (idx >= static_cast<unsigned long>(count))
return NULL;
return content_encoding_entries_[idx];
}
unsigned long Track::GetContentEncodingCount() const {
const ptrdiff_t count =
content_encoding_entries_end_ - content_encoding_entries_;
assert(count >= 0);
return static_cast<unsigned long>(count);
}
long Track::ParseContentEncodingsEntry(long long start, long long size) {
IMkvReader* const pReader = m_pSegment->m_pReader;
assert(pReader);
long long pos = start;
const long long stop = start + size;
// Count ContentEncoding elements.
int count = 0;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
// pos now designates start of element
if (id == libwebm::kMkvContentEncoding)
++count;
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (count <= 0)
return -1;
content_encoding_entries_ = new ContentEncoding*[count];
content_encoding_entries_end_ = content_encoding_entries_;
pos = start;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
// pos now designates start of element
if (id == libwebm::kMkvContentEncoding) {
ContentEncoding* const content_encoding = new ContentEncoding();
status = content_encoding->ParseContentEncodingEntry(pos, size, pReader);
if (status) {
delete content_encoding;
return status;
}
*content_encoding_entries_end_++ = content_encoding;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0;
}
Track::EOSBlock::EOSBlock() : BlockEntry(NULL, LONG_MIN) {}
BlockEntry::Kind Track::EOSBlock::GetKind() const { return kBlockEOS; }
const Block* Track::EOSBlock::GetBlock() const { return NULL; }
bool PrimaryChromaticity::Parse(IMkvReader* reader, long long read_pos,
long long value_size, bool is_x,
PrimaryChromaticity** chromaticity) {
if (!reader)
return false;
my_auto_ptr<PrimaryChromaticity> chromaticity_ptr(*chromaticity ? *chromaticity : new PrimaryChromaticity());
float* value = is_x ? &chromaticity_ptr->x : &chromaticity_ptr->y;
double parser_value = 0;
const long long value_parse_status =
UnserializeFloat(reader, read_pos, value_size, parser_value);
*value = static_cast<float>(parser_value);
if (value_parse_status < 0 || *value < 0.0 || *value > 1.0)
return false;
*chromaticity = chromaticity_ptr.release();
return true;
}
bool MasteringMetadata::Parse(IMkvReader* reader, long long mm_start,
long long mm_size, MasteringMetadata** mm) {
if (!reader || *mm)
return false;
my_auto_ptr<MasteringMetadata> mm_ptr(new MasteringMetadata());
const long long mm_end = mm_start + mm_size;
long long read_pos = mm_start;
while (read_pos < mm_end) {
long long child_id = 0;
long long child_size = 0;
const long long status =
ParseElementHeader(reader, read_pos, mm_end, child_id, child_size);
if (status < 0)
return false;
if (child_id == libwebm::kMkvLuminanceMax) {
double value = 0;
const long long value_parse_status =
UnserializeFloat(reader, read_pos, child_size, value);
mm_ptr->luminance_max = static_cast<float>(value);
if (value_parse_status < 0 || mm_ptr->luminance_max < 0.0 ||
mm_ptr->luminance_max > 9999.99) {
return false;
}
} else if (child_id == libwebm::kMkvLuminanceMin) {
double value = 0;
const long long value_parse_status =
UnserializeFloat(reader, read_pos, child_size, value);
mm_ptr->luminance_min = static_cast<float>(value);
if (value_parse_status < 0 || mm_ptr->luminance_min < 0.0 ||
mm_ptr->luminance_min > 999.9999) {
return false;
}
} else {
bool is_x = false;
PrimaryChromaticity** chromaticity;
switch (child_id) {
case libwebm::kMkvPrimaryRChromaticityX:
case libwebm::kMkvPrimaryRChromaticityY:
is_x = child_id == libwebm::kMkvPrimaryRChromaticityX;
chromaticity = &mm_ptr->r;
break;
case libwebm::kMkvPrimaryGChromaticityX:
case libwebm::kMkvPrimaryGChromaticityY:
is_x = child_id == libwebm::kMkvPrimaryGChromaticityX;
chromaticity = &mm_ptr->g;
break;
case libwebm::kMkvPrimaryBChromaticityX:
case libwebm::kMkvPrimaryBChromaticityY:
is_x = child_id == libwebm::kMkvPrimaryBChromaticityX;
chromaticity = &mm_ptr->b;
break;
case libwebm::kMkvWhitePointChromaticityX:
case libwebm::kMkvWhitePointChromaticityY:
is_x = child_id == libwebm::kMkvWhitePointChromaticityX;
chromaticity = &mm_ptr->white_point;
break;
default:
return false;
}
const bool value_parse_status = PrimaryChromaticity::Parse(
reader, read_pos, child_size, is_x, chromaticity);
if (!value_parse_status)
return false;
}
read_pos += child_size;
if (read_pos > mm_end)
return false;
}
*mm = mm_ptr.release();
return true;
}
bool Colour::Parse(IMkvReader* reader, long long colour_start,
long long colour_size, Colour** colour) {
if (!reader || *colour)
return false;
my_auto_ptr<Colour> colour_ptr(new Colour());
const long long colour_end = colour_start + colour_size;
long long read_pos = colour_start;
while (read_pos < colour_end) {
long long child_id = 0;
long long child_size = 0;
const long status =
ParseElementHeader(reader, read_pos, colour_end, child_id, child_size);
if (status < 0)
return false;
if (child_id == libwebm::kMkvMatrixCoefficients) {
colour_ptr->matrix_coefficients =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->matrix_coefficients < 0)
return false;
} else if (child_id == libwebm::kMkvBitsPerChannel) {
colour_ptr->bits_per_channel =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->bits_per_channel < 0)
return false;
} else if (child_id == libwebm::kMkvChromaSubsamplingHorz) {
colour_ptr->chroma_subsampling_horz =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->chroma_subsampling_horz < 0)
return false;
} else if (child_id == libwebm::kMkvChromaSubsamplingVert) {
colour_ptr->chroma_subsampling_vert =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->chroma_subsampling_vert < 0)
return false;
} else if (child_id == libwebm::kMkvCbSubsamplingHorz) {
colour_ptr->cb_subsampling_horz =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->cb_subsampling_horz < 0)
return false;
} else if (child_id == libwebm::kMkvCbSubsamplingVert) {
colour_ptr->cb_subsampling_vert =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->cb_subsampling_vert < 0)
return false;
} else if (child_id == libwebm::kMkvChromaSitingHorz) {
colour_ptr->chroma_siting_horz =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->chroma_siting_horz < 0)
return false;
} else if (child_id == libwebm::kMkvChromaSitingVert) {
colour_ptr->chroma_siting_vert =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->chroma_siting_vert < 0)
return false;
} else if (child_id == libwebm::kMkvRange) {
colour_ptr->range = UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->range < 0)
return false;
} else if (child_id == libwebm::kMkvTransferCharacteristics) {
colour_ptr->transfer_characteristics =
UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->transfer_characteristics < 0)
return false;
} else if (child_id == libwebm::kMkvPrimaries) {
colour_ptr->primaries = UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->primaries < 0)
return false;
} else if (child_id == libwebm::kMkvMaxCLL) {
colour_ptr->max_cll = UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->max_cll < 0)
return false;
} else if (child_id == libwebm::kMkvMaxFALL) {
colour_ptr->max_fall = UnserializeUInt(reader, read_pos, child_size);
if (colour_ptr->max_fall < 0)
return false;
} else if (child_id == libwebm::kMkvMasteringMetadata) {
if (!MasteringMetadata::Parse(reader, read_pos, child_size,
&colour_ptr->mastering_metadata))
return false;
} else {
return false;
}
read_pos += child_size;
if (read_pos > colour_end)
return false;
}
*colour = colour_ptr.release();
return true;
}
VideoTrack::VideoTrack(Segment* pSegment, long long element_start,
long long element_size)
: Track(pSegment, element_start, element_size), m_colour(NULL) {}
VideoTrack::~VideoTrack() { delete m_colour; }
long VideoTrack::Parse(Segment* pSegment, const Info& info,
long long element_start, long long element_size,
VideoTrack*& pResult) {
if (pResult)
return -1;
if (info.type != Track::kVideo)
return -1;
long long width = 0;
long long height = 0;
long long display_width = 0;
long long display_height = 0;
long long display_unit = 0;
long long stereo_mode = 0;
double rate = 0.0;
IMkvReader* const pReader = pSegment->m_pReader;
const Settings& s = info.settings;
assert(s.start >= 0);
assert(s.size >= 0);
long long pos = s.start;
assert(pos >= 0);
const long long stop = pos + s.size;
Colour* colour = NULL;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvPixelWidth) {
width = UnserializeUInt(pReader, pos, size);
if (width <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvPixelHeight) {
height = UnserializeUInt(pReader, pos, size);
if (height <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvDisplayWidth) {
display_width = UnserializeUInt(pReader, pos, size);
if (display_width <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvDisplayHeight) {
display_height = UnserializeUInt(pReader, pos, size);
if (display_height <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvDisplayUnit) {
display_unit = UnserializeUInt(pReader, pos, size);
if (display_unit < 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvStereoMode) {
stereo_mode = UnserializeUInt(pReader, pos, size);
if (stereo_mode < 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvFrameRate) {
const long status = UnserializeFloat(pReader, pos, size, rate);
if (status < 0)
return status;
if (rate <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvColour) {
if (!Colour::Parse(pReader, pos, size, &colour))
return E_FILE_FORMAT_INVALID;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
VideoTrack* const pTrack = new VideoTrack(pSegment, element_start, element_size);
const int status = info.Copy(pTrack->m_info);
if (status) { // error
delete pTrack;
return status;
}
pTrack->m_width = width;
pTrack->m_height = height;
pTrack->m_display_width = display_width;
pTrack->m_display_height = display_height;
pTrack->m_display_unit = display_unit;
pTrack->m_stereo_mode = stereo_mode;
pTrack->m_rate = rate;
pTrack->m_colour = colour;
pResult = pTrack;
return 0; // success
}
bool VideoTrack::VetEntry(const BlockEntry* pBlockEntry) const {
return Track::VetEntry(pBlockEntry) && pBlockEntry->GetBlock()->IsKey();
}
long VideoTrack::Seek(long long time_ns, const BlockEntry*& pResult) const {
const long status = GetFirst(pResult);
if (status < 0) // buffer underflow, etc
return status;
assert(pResult);
if (pResult->EOS())
return 0;
const Cluster* pCluster = pResult->GetCluster();
assert(pCluster);
assert(pCluster->GetIndex() >= 0);
if (time_ns <= pResult->GetBlock()->GetTime(pCluster))
return 0;
Cluster** const clusters = m_pSegment->m_clusters;
assert(clusters);
const long count = m_pSegment->GetCount(); // loaded only, not pre-loaded
assert(count > 0);
Cluster** const i = clusters + pCluster->GetIndex();
assert(i);
assert(*i == pCluster);
assert(pCluster->GetTime() <= time_ns);
Cluster** const j = clusters + count;
Cluster** lo = i;
Cluster** hi = j;
while (lo < hi) {
// INVARIANT:
//[i, lo) <= time_ns
//[lo, hi) ?
//[hi, j) > time_ns
Cluster** const mid = lo + (hi - lo) / 2;
assert(mid < hi);
pCluster = *mid;
assert(pCluster);
assert(pCluster->GetIndex() >= 0);
assert(pCluster->GetIndex() == long(mid - m_pSegment->m_clusters));
const long long t = pCluster->GetTime();
if (t <= time_ns)
lo = mid + 1;
else
hi = mid;
assert(lo <= hi);
}
assert(lo == hi);
assert(lo > i);
assert(lo <= j);
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
pResult = pCluster->GetEntry(this, time_ns);
if ((pResult != 0) && !pResult->EOS()) // found a keyframe
return 0;
while (lo != i) {
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
pResult = pCluster->GetEntry(this, time_ns);
if ((pResult != 0) && !pResult->EOS())
return 0;
}
// weird: we're on the first cluster, but no keyframe found
// should never happen but we must return something anyway
pResult = GetEOS();
return 0;
}
Colour* VideoTrack::GetColour() const { return m_colour; }
long long VideoTrack::GetWidth() const { return m_width; }
long long VideoTrack::GetHeight() const { return m_height; }
long long VideoTrack::GetDisplayWidth() const {
return m_display_width > 0 ? m_display_width : GetWidth();
}
long long VideoTrack::GetDisplayHeight() const {
return m_display_height > 0 ? m_display_height : GetHeight();
}
long long VideoTrack::GetDisplayUnit() const { return m_display_unit; }
long long VideoTrack::GetStereoMode() const { return m_stereo_mode; }
double VideoTrack::GetFrameRate() const { return m_rate; }
AudioTrack::AudioTrack(Segment* pSegment, long long element_start,
long long element_size)
: Track(pSegment, element_start, element_size) {}
long AudioTrack::Parse(Segment* pSegment, const Info& info,
long long element_start, long long element_size,
AudioTrack*& pResult) {
if (pResult)
return -1;
if (info.type != Track::kAudio)
return -1;
IMkvReader* const pReader = pSegment->m_pReader;
const Settings& s = info.settings;
assert(s.start >= 0);
assert(s.size >= 0);
long long pos = s.start;
assert(pos >= 0);
const long long stop = pos + s.size;
double rate = 8000.0; // MKV default
long long channels = 1;
long long bit_depth = 0;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (id == libwebm::kMkvSamplingFrequency) {
status = UnserializeFloat(pReader, pos, size, rate);
if (status < 0)
return status;
if (rate <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvChannels) {
channels = UnserializeUInt(pReader, pos, size);
if (channels <= 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvBitDepth) {
bit_depth = UnserializeUInt(pReader, pos, size);
if (bit_depth <= 0)
return E_FILE_FORMAT_INVALID;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
AudioTrack* const pTrack = new AudioTrack(pSegment, element_start, element_size);
const int status = info.Copy(pTrack->m_info);
if (status) {
delete pTrack;
return status;
}
pTrack->m_rate = rate;
pTrack->m_channels = channels;
pTrack->m_bitDepth = bit_depth;
pResult = pTrack;
return 0; // success
}
double AudioTrack::GetSamplingRate() const { return m_rate; }
long long AudioTrack::GetChannels() const { return m_channels; }
long long AudioTrack::GetBitDepth() const { return m_bitDepth; }
Tracks::Tracks(Segment* pSegment, long long start, long long size_,
long long element_start, long long element_size)
: m_pSegment(pSegment),
m_start(start),
m_size(size_),
m_element_start(element_start),
m_element_size(element_size),
m_trackEntries(NULL),
m_trackEntriesEnd(NULL) {}
long Tracks::Parse() {
assert(m_trackEntries == NULL);
assert(m_trackEntriesEnd == NULL);
const long long stop = m_start + m_size;
IMkvReader* const pReader = m_pSegment->m_pReader;
int count = 0;
long long pos = m_start;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, stop, id, size);
if (status < 0) // error
return status;
if (size == 0) // weird
continue;
if (id == libwebm::kMkvTrackEntry)
++count;
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
if (count <= 0)
return 0; // success
m_trackEntries = new Track*[count];
m_trackEntriesEnd = m_trackEntries;
pos = m_start;
while (pos < stop) {
const long long element_start = pos;
long long id, payload_size;
const long status =
ParseElementHeader(pReader, pos, stop, id, payload_size);
if (status < 0) // error
return status;
if (payload_size == 0) // weird
continue;
const long long payload_stop = pos + payload_size;
assert(payload_stop <= stop); // checked in ParseElement
const long long element_size = payload_stop - element_start;
if (id == libwebm::kMkvTrackEntry) {
Track*& pTrack = *m_trackEntriesEnd;
pTrack = NULL;
const long status = ParseTrackEntry(pos, payload_size, element_start,
element_size, pTrack);
if (status)
return status;
if (pTrack)
++m_trackEntriesEnd;
}
pos = payload_stop;
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
return 0; // success
}
unsigned long Tracks::GetTracksCount() const {
const ptrdiff_t result = m_trackEntriesEnd - m_trackEntries;
assert(result >= 0);
return static_cast<unsigned long>(result);
}
long Tracks::ParseTrackEntry(long long track_start, long long track_size,
long long element_start, long long element_size,
Track*& pResult) const {
if (pResult)
return -1;
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = track_start;
const long long track_stop = track_start + track_size;
Track::Info info;
info.type = 0;
info.number = 0;
info.uid = 0;
info.defaultDuration = 0;
Track::Settings v;
v.start = -1;
v.size = -1;
Track::Settings a;
a.start = -1;
a.size = -1;
Track::Settings e; // content_encodings_settings;
e.start = -1;
e.size = -1;
long long lacing = 1; // default is true
while (pos < track_stop) {
long long id, size;
const long status = ParseElementHeader(pReader, pos, track_stop, id, size);
if (status < 0) // error
return status;
if (size < 0)
return E_FILE_FORMAT_INVALID;
const long long start = pos;
if (id == libwebm::kMkvVideo) {
v.start = start;
v.size = size;
} else if (id == libwebm::kMkvAudio) {
a.start = start;
a.size = size;
} else if (id == libwebm::kMkvContentEncodings) {
e.start = start;
e.size = size;
} else if (id == libwebm::kMkvTrackUID) {
if (size > 8)
return E_FILE_FORMAT_INVALID;
info.uid = 0;
long long pos_ = start;
const long long pos_end = start + size;
while (pos_ != pos_end) {
unsigned char b;
const int status = pReader->Read(pos_, 1, &b);
if (status)
return status;
info.uid <<= 8;
info.uid |= b;
++pos_;
}
} else if (id == libwebm::kMkvTrackNumber) {
const long long num = UnserializeUInt(pReader, pos, size);
if ((num <= 0) || (num > 127))
return E_FILE_FORMAT_INVALID;
info.number = static_cast<long>(num);
} else if (id == libwebm::kMkvTrackType) {
const long long type = UnserializeUInt(pReader, pos, size);
if ((type <= 0) || (type > 254))
return E_FILE_FORMAT_INVALID;
info.type = static_cast<long>(type);
} else if (id == libwebm::kMkvName) {
const long status =
UnserializeString(pReader, pos, size, info.nameAsUTF8);
if (status)
return status;
} else if (id == libwebm::kMkvLanguage) {
const long status = UnserializeString(pReader, pos, size, info.language);
if (status)
return status;
} else if (id == libwebm::kMkvDefaultDuration) {
const long long duration = UnserializeUInt(pReader, pos, size);
if (duration < 0)
return E_FILE_FORMAT_INVALID;
info.defaultDuration = static_cast<unsigned long long>(duration);
} else if (id == libwebm::kMkvCodecID) {
const long status = UnserializeString(pReader, pos, size, info.codecId);
if (status)
return status;
} else if (id == libwebm::kMkvFlagLacing) {
lacing = UnserializeUInt(pReader, pos, size);
if ((lacing < 0) || (lacing > 1))
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvCodecPrivate) {
delete[] info.codecPrivate;
info.codecPrivate = NULL;
info.codecPrivateSize = 0;
const size_t buflen = static_cast<size_t>(size);
if (buflen) {
unsigned char* buf = SafeArrayAlloc<unsigned char>(1, buflen);
if (buf == NULL)
return -1;
const int status = pReader->Read(pos, static_cast<long>(buflen), buf);
if (status) {
delete[] buf;
return status;
}
info.codecPrivate = buf;
info.codecPrivateSize = buflen;
}
} else if (id == libwebm::kMkvCodecName) {
const long status =
UnserializeString(pReader, pos, size, info.codecNameAsUTF8);
if (status)
return status;
} else if (id == libwebm::kMkvCodecDelay) {
info.codecDelay = UnserializeUInt(pReader, pos, size);
} else if (id == libwebm::kMkvSeekPreRoll) {
info.seekPreRoll = UnserializeUInt(pReader, pos, size);
}
pos += size; // consume payload
if (pos > track_stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != track_stop)
return E_FILE_FORMAT_INVALID;
if (info.number <= 0) // not specified
return E_FILE_FORMAT_INVALID;
if (GetTrackByNumber(info.number))
return E_FILE_FORMAT_INVALID;
if (info.type <= 0) // not specified
return E_FILE_FORMAT_INVALID;
info.lacing = (lacing > 0) ? true : false;
if (info.type == Track::kVideo) {
if (v.start < 0)
return E_FILE_FORMAT_INVALID;
if (a.start >= 0)
return E_FILE_FORMAT_INVALID;
info.settings = v;
VideoTrack* pTrack = NULL;
const long status = VideoTrack::Parse(m_pSegment, info, element_start,
element_size, pTrack);
if (status)
return status;
pResult = pTrack;
assert(pResult);
if (e.start >= 0)
pResult->ParseContentEncodingsEntry(e.start, e.size);
} else if (info.type == Track::kAudio) {
if (a.start < 0)
return E_FILE_FORMAT_INVALID;
if (v.start >= 0)
return E_FILE_FORMAT_INVALID;
info.settings = a;
AudioTrack* pTrack = NULL;
const long status = AudioTrack::Parse(m_pSegment, info, element_start,
element_size, pTrack);
if (status)
return status;
pResult = pTrack;
assert(pResult);
if (e.start >= 0)
pResult->ParseContentEncodingsEntry(e.start, e.size);
} else {
// neither video nor audio - probably metadata or subtitles
if (a.start >= 0)
return E_FILE_FORMAT_INVALID;
if (v.start >= 0)
return E_FILE_FORMAT_INVALID;
if (info.type == Track::kMetadata && e.start >= 0)
return E_FILE_FORMAT_INVALID;
info.settings.start = -1;
info.settings.size = 0;
Track* pTrack = NULL;
const long status =
Track::Create(m_pSegment, info, element_start, element_size, pTrack);
if (status)
return status;
pResult = pTrack;
assert(pResult);
}
return 0; // success
}
Tracks::~Tracks() {
Track** i = m_trackEntries;
Track** const j = m_trackEntriesEnd;
while (i != j) {
Track* const pTrack = *i++;
delete pTrack;
}
delete[] m_trackEntries;
}
const Track* Tracks::GetTrackByNumber(long tn) const {
if (tn < 0)
return NULL;
Track** i = m_trackEntries;
Track** const j = m_trackEntriesEnd;
while (i != j) {
Track* const pTrack = *i++;
if (pTrack == NULL)
continue;
if (tn == pTrack->GetNumber())
return pTrack;
}
return NULL; // not found
}
const Track* Tracks::GetTrackByIndex(unsigned long idx) const {
const ptrdiff_t count = m_trackEntriesEnd - m_trackEntries;
if (idx >= static_cast<unsigned long>(count))
return NULL;
return m_trackEntries[idx];
}
long Cluster::Load(long long& pos, long& len) const {
if (m_pSegment == NULL)
return E_PARSE_FAILED;
if (m_timecode >= 0) // at least partially loaded
return 0;
if (m_pos != m_element_start || m_element_size >= 0)
return E_PARSE_FAILED;
IMkvReader* const pReader = m_pSegment->m_pReader;
long long total, avail;
const int status = pReader->Length(&total, &avail);
if (status < 0) // error
return status;
if (total >= 0 && (avail > total || m_pos > total))
return E_FILE_FORMAT_INVALID;
pos = m_pos;
long long cluster_size = -1;
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) // error or underflow
return static_cast<long>(result);
if (result > 0)
return E_BUFFER_NOT_FULL;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id_ = ReadID(pReader, pos, len);
if (id_ < 0) // error
return static_cast<long>(id_);
if (id_ != libwebm::kMkvCluster)
return E_FILE_FORMAT_INVALID;
pos += len; // consume id
// read cluster size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0)
return E_BUFFER_NOT_FULL;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) // error
return static_cast<long>(cluster_size);
if (size == 0)
return E_FILE_FORMAT_INVALID;
pos += len; // consume length of size of element
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size != unknown_size)
cluster_size = size;
// pos points to start of payload
long long timecode = -1;
long long new_pos = -1;
bool bBlock = false;
long long cluster_stop = (cluster_size < 0) ? -1 : pos + cluster_size;
for (;;) {
if ((cluster_stop >= 0) && (pos >= cluster_stop))
break;
// Parse ID
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0)
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadID(pReader, pos, len);
if (id < 0) // error
return static_cast<long>(id);
if (id == 0)
return E_FILE_FORMAT_INVALID;
// This is the distinguished set of ID's we use to determine
// that we have exhausted the sub-element's inside the cluster
// whose ID we parsed earlier.
if (id == libwebm::kMkvCluster)
break;
if (id == libwebm::kMkvCues)
break;
pos += len; // consume ID field
// Parse Size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0)
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
pos += len; // consume size field
if ((cluster_stop >= 0) && (pos > cluster_stop))
return E_FILE_FORMAT_INVALID;
// pos now points to start of payload
if (size == 0)
continue;
if ((cluster_stop >= 0) && ((pos + size) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if (id == libwebm::kMkvTimecode) {
len = static_cast<long>(size);
if ((pos + size) > avail)
return E_BUFFER_NOT_FULL;
timecode = UnserializeUInt(pReader, pos, size);
if (timecode < 0) // error (or underflow)
return static_cast<long>(timecode);
new_pos = pos + size;
if (bBlock)
break;
} else if (id == libwebm::kMkvBlockGroup) {
bBlock = true;
break;
} else if (id == libwebm::kMkvSimpleBlock) {
bBlock = true;
break;
}
pos += size; // consume payload
if (cluster_stop >= 0 && pos > cluster_stop)
return E_FILE_FORMAT_INVALID;
}
if (cluster_stop >= 0 && pos > cluster_stop)
return E_FILE_FORMAT_INVALID;
if (timecode < 0) // no timecode found
return E_FILE_FORMAT_INVALID;
if (!bBlock)
return E_FILE_FORMAT_INVALID;
m_pos = new_pos; // designates position just beyond timecode payload
m_timecode = timecode; // m_timecode >= 0 means we're partially loaded
if (cluster_size >= 0)
m_element_size = cluster_stop - m_element_start;
return 0;
}
long Cluster::Parse(long long& pos, long& len) const {
long status = Load(pos, len);
if (status < 0)
return status;
if (m_pos < m_element_start || m_timecode < 0)
return E_PARSE_FAILED;
const long long cluster_stop =
(m_element_size < 0) ? -1 : m_element_start + m_element_size;
if ((cluster_stop >= 0) && (m_pos >= cluster_stop))
return 1; // nothing else to do
IMkvReader* const pReader = m_pSegment->m_pReader;
long long total, avail;
status = pReader->Length(&total, &avail);
if (status < 0) // error
return status;
if (total >= 0 && avail > total)
return E_FILE_FORMAT_INVALID;
pos = m_pos;
for (;;) {
if ((cluster_stop >= 0) && (pos >= cluster_stop))
break;
if ((total >= 0) && (pos >= total)) {
if (m_element_size < 0)
m_element_size = pos - m_element_start;
break;
}
// Parse ID
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0)
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadID(pReader, pos, len);
if (id < 0)
return E_FILE_FORMAT_INVALID;
// This is the distinguished set of ID's we use to determine
// that we have exhausted the sub-element's inside the cluster
// whose ID we parsed earlier.
if ((id == libwebm::kMkvCluster) || (id == libwebm::kMkvCues)) {
if (m_element_size < 0)
m_element_size = pos - m_element_start;
break;
}
pos += len; // consume ID field
// Parse Size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0)
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
pos += len; // consume size field
if ((cluster_stop >= 0) && (pos > cluster_stop))
return E_FILE_FORMAT_INVALID;
// pos now points to start of payload
if (size == 0)
continue;
// const long long block_start = pos;
const long long block_stop = pos + size;
if (cluster_stop >= 0) {
if (block_stop > cluster_stop) {
if (id == libwebm::kMkvBlockGroup || id == libwebm::kMkvSimpleBlock) {
return E_FILE_FORMAT_INVALID;
}
pos = cluster_stop;
break;
}
} else if ((total >= 0) && (block_stop > total)) {
m_element_size = total - m_element_start;
pos = total;
break;
} else if (block_stop > avail) {
len = static_cast<long>(size);
return E_BUFFER_NOT_FULL;
}
Cluster* const this_ = const_cast<Cluster*>(this);
if (id == libwebm::kMkvBlockGroup)
return this_->ParseBlockGroup(size, pos, len);
if (id == libwebm::kMkvSimpleBlock)
return this_->ParseSimpleBlock(size, pos, len);
pos += size; // consume payload
if (cluster_stop >= 0 && pos > cluster_stop)
return E_FILE_FORMAT_INVALID;
}
if (m_element_size < 1)
return E_FILE_FORMAT_INVALID;
m_pos = pos;
if (cluster_stop >= 0 && m_pos > cluster_stop)
return E_FILE_FORMAT_INVALID;
if (m_entries_count > 0) {
const long idx = m_entries_count - 1;
const BlockEntry* const pLast = m_entries[idx];
if (pLast == NULL)
return E_PARSE_FAILED;
const Block* const pBlock = pLast->GetBlock();
if (pBlock == NULL)
return E_PARSE_FAILED;
const long long start = pBlock->m_start;
if ((total >= 0) && (start > total))
return E_PARSE_FAILED; // defend against trucated stream
const long long size = pBlock->m_size;
const long long stop = start + size;
if (cluster_stop >= 0 && stop > cluster_stop)
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && (stop > total))
return E_PARSE_FAILED; // defend against trucated stream
}
return 1; // no more entries
}
long Cluster::ParseSimpleBlock(long long block_size, long long& pos,
long& len) {
const long long block_start = pos;
const long long block_stop = pos + block_size;
IMkvReader* const pReader = m_pSegment->m_pReader;
long long total, avail;
long status = pReader->Length(&total, &avail);
if (status < 0) // error
return status;
assert((total < 0) || (avail <= total));
// parse track number
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((pos + len) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long track = ReadUInt(pReader, pos, len);
if (track < 0) // error
return static_cast<long>(track);
if (track == 0)
return E_FILE_FORMAT_INVALID;
pos += len; // consume track number
if ((pos + 2) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + 2) > avail) {
len = 2;
return E_BUFFER_NOT_FULL;
}
pos += 2; // consume timecode
if ((pos + 1) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
unsigned char flags;
status = pReader->Read(pos, 1, &flags);
if (status < 0) { // error or underflow
len = 1;
return status;
}
++pos; // consume flags byte
assert(pos <= avail);
if (pos >= block_stop)
return E_FILE_FORMAT_INVALID;
const int lacing = int(flags & 0x06) >> 1;
if ((lacing != 0) && (block_stop > avail)) {
len = static_cast<long>(block_stop - pos);
return E_BUFFER_NOT_FULL;
}
status = CreateBlock(libwebm::kMkvSimpleBlock, block_start, block_size,
0); // DiscardPadding
if (status != 0)
return status;
m_pos = block_stop;
return 0; // success
}
long Cluster::ParseBlockGroup(long long payload_size, long long& pos,
long& len) {
const long long payload_start = pos;
const long long payload_stop = pos + payload_size;
IMkvReader* const pReader = m_pSegment->m_pReader;
long long total, avail;
long status = pReader->Length(&total, &avail);
if (status < 0) // error
return status;
assert((total < 0) || (avail <= total));
if ((total >= 0) && (payload_stop > total))
return E_FILE_FORMAT_INVALID;
if (payload_stop > avail) {
len = static_cast<long>(payload_size);
return E_BUFFER_NOT_FULL;
}
long long discard_padding = 0;
while (pos < payload_stop) {
// parse sub-block element ID
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((pos + len) > payload_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadID(pReader, pos, len);
if (id < 0) // error
return static_cast<long>(id);
if (id == 0) // not a valid ID
return E_FILE_FORMAT_INVALID;
pos += len; // consume ID field
// Parse Size
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((pos + len) > payload_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
pos += len; // consume size field
// pos now points to start of sub-block group payload
if (pos > payload_stop)
return E_FILE_FORMAT_INVALID;
if (size == 0) // weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
if (id == libwebm::kMkvDiscardPadding) {
status = UnserializeInt(pReader, pos, size, discard_padding);
if (status < 0) // error
return status;
}
if (id != libwebm::kMkvBlock) {
pos += size; // consume sub-part of block group
if (pos > payload_stop)
return E_FILE_FORMAT_INVALID;
continue;
}
const long long block_stop = pos + size;
if (block_stop > payload_stop)
return E_FILE_FORMAT_INVALID;
// parse track number
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((pos + len) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long track = ReadUInt(pReader, pos, len);
if (track < 0) // error
return static_cast<long>(track);
if (track == 0)
return E_FILE_FORMAT_INVALID;
pos += len; // consume track number
if ((pos + 2) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + 2) > avail) {
len = 2;
return E_BUFFER_NOT_FULL;
}
pos += 2; // consume timecode
if ((pos + 1) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
unsigned char flags;
status = pReader->Read(pos, 1, &flags);
if (status < 0) { // error or underflow
len = 1;
return status;
}
++pos; // consume flags byte
assert(pos <= avail);
if (pos >= block_stop)
return E_FILE_FORMAT_INVALID;
const int lacing = int(flags & 0x06) >> 1;
if ((lacing != 0) && (block_stop > avail)) {
len = static_cast<long>(block_stop - pos);
return E_BUFFER_NOT_FULL;
}
pos = block_stop; // consume block-part of block group
if (pos > payload_stop)
return E_FILE_FORMAT_INVALID;
}
if (pos != payload_stop)
return E_FILE_FORMAT_INVALID;
status = CreateBlock(libwebm::kMkvBlockGroup, payload_start, payload_size,
discard_padding);
if (status != 0)
return status;
m_pos = payload_stop;
return 0; // success
}
long Cluster::GetEntry(long index, const mkvparser::BlockEntry*& pEntry) const {
assert(m_pos >= m_element_start);
pEntry = NULL;
if (index < 0)
return -1; // generic error
if (m_entries_count < 0)
return E_BUFFER_NOT_FULL;
assert(m_entries);
assert(m_entries_size > 0);
assert(m_entries_count <= m_entries_size);
if (index < m_entries_count) {
pEntry = m_entries[index];
assert(pEntry);
return 1; // found entry
}
if (m_element_size < 0) // we don't know cluster end yet
return E_BUFFER_NOT_FULL; // underflow
const long long element_stop = m_element_start + m_element_size;
if (m_pos >= element_stop)
return 0; // nothing left to parse
return E_BUFFER_NOT_FULL; // underflow, since more remains to be parsed
}
Cluster* Cluster::Create(Segment* pSegment, long idx, long long off) {
if (!pSegment || off < 0)
return NULL;
const long long element_start = pSegment->m_start + off;
return new Cluster(pSegment, idx, element_start);
}
Cluster::Cluster()
: m_pSegment(NULL),
m_element_start(0),
m_index(0),
m_pos(0),
m_element_size(0),
m_timecode(0),
m_entries(NULL),
m_entries_size(0),
m_entries_count(0) // means "no entries"
{}
Cluster::Cluster(Segment* pSegment, long idx, long long element_start
/* long long element_size */)
: m_pSegment(pSegment),
m_element_start(element_start),
m_index(idx),
m_pos(element_start),
m_element_size(-1 /* element_size */),
m_timecode(-1),
m_entries(NULL),
m_entries_size(0),
m_entries_count(-1) // means "has not been parsed yet"
{}
Cluster::~Cluster() {
if (m_entries_count <= 0)
return;
BlockEntry** i = m_entries;
BlockEntry** const j = m_entries + m_entries_count;
while (i != j) {
BlockEntry* p = *i++;
assert(p);
delete p;
}
delete[] m_entries;
}
bool Cluster::EOS() const { return (m_pSegment == NULL); }
long Cluster::GetIndex() const { return m_index; }
long long Cluster::GetPosition() const {
const long long pos = m_element_start - m_pSegment->m_start;
assert(pos >= 0);
return pos;
}
long long Cluster::GetElementSize() const { return m_element_size; }
long Cluster::HasBlockEntries(
const Segment* pSegment,
long long off, // relative to start of segment payload
long long& pos, long& len) {
assert(pSegment);
assert(off >= 0); // relative to segment
IMkvReader* const pReader = pSegment->m_pReader;
long long total, avail;
long status = pReader->Length(&total, &avail);
if (status < 0) // error
return status;
assert((total < 0) || (avail <= total));
pos = pSegment->m_start + off; // absolute
if ((total >= 0) && (pos >= total))
return 0; // we don't even have a complete cluster
const long long segment_stop =
(pSegment->m_size < 0) ? -1 : pSegment->m_start + pSegment->m_size;
long long cluster_stop = -1; // interpreted later to mean "unknown size"
{
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // need more data
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((pos + len) > total))
return 0;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadID(pReader, pos, len);
if (id < 0) // error
return static_cast<long>(id);
if (id != libwebm::kMkvCluster)
return E_PARSE_FAILED;
pos += len; // consume Cluster ID field
// read size field
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((pos + len) > total))
return 0;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
if (size == 0)
return 0; // cluster does not have entries
pos += len; // consume size field
// pos now points to start of payload
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size != unknown_size) {
cluster_stop = pos + size;
assert(cluster_stop >= 0);
if ((segment_stop >= 0) && (cluster_stop > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && (cluster_stop > total))
// return E_FILE_FORMAT_INVALID; //too conservative
return 0; // cluster does not have any entries
}
}
for (;;) {
if ((cluster_stop >= 0) && (pos >= cluster_stop))
return 0; // no entries detected
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // need more data
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadID(pReader, pos, len);
if (id < 0) // error
return static_cast<long>(id);
// This is the distinguished set of ID's we use to determine
// that we have exhausted the sub-element's inside the cluster
// whose ID we parsed earlier.
if (id == libwebm::kMkvCluster)
return 0; // no entries found
if (id == libwebm::kMkvCues)
return 0; // no entries found
pos += len; // consume id field
if ((cluster_stop >= 0) && (pos >= cluster_stop))
return E_FILE_FORMAT_INVALID;
// read size field
if ((pos + 1) > avail) {
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) // error
return static_cast<long>(result);
if (result > 0) // underflow
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) // error
return static_cast<long>(size);
pos += len; // consume size field
// pos now points to start of payload
if ((cluster_stop >= 0) && (pos > cluster_stop))
return E_FILE_FORMAT_INVALID;
if (size == 0) // weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; // not supported inside cluster
if ((cluster_stop >= 0) && ((pos + size) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if (id == libwebm::kMkvBlockGroup)
return 1; // have at least one entry
if (id == libwebm::kMkvSimpleBlock)
return 1; // have at least one entry
pos += size; // consume payload
if (cluster_stop >= 0 && pos > cluster_stop)
return E_FILE_FORMAT_INVALID;
}
}
long long Cluster::GetTimeCode() const {
long long pos;
long len;
const long status = Load(pos, len);
if (status < 0) // error
return status;
return m_timecode;
}
long long Cluster::GetTime() const {
const long long tc = GetTimeCode();
if (tc < 0)
return tc;
const SegmentInfo* const pInfo = m_pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long t = m_timecode * scale;
return t;
}
long long Cluster::GetFirstTime() const {
const BlockEntry* pEntry;
const long status = GetFirst(pEntry);
if (status < 0) // error
return status;
if (pEntry == NULL) // empty cluster
return GetTime();
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
return pBlock->GetTime(this);
}
long long Cluster::GetLastTime() const {
const BlockEntry* pEntry;
const long status = GetLast(pEntry);
if (status < 0) // error
return status;
if (pEntry == NULL) // empty cluster
return GetTime();
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
return pBlock->GetTime(this);
}
long Cluster::CreateBlock(long long id,
long long pos, // absolute pos of payload
long long size, long long discard_padding) {
if (id != libwebm::kMkvBlockGroup && id != libwebm::kMkvSimpleBlock)
return E_PARSE_FAILED;
if (m_entries_count < 0) { // haven't parsed anything yet
assert(m_entries == NULL);
assert(m_entries_size == 0);
m_entries_size = 1024;
m_entries = new BlockEntry*[m_entries_size];
m_entries_count = 0;
} else {
assert(m_entries);
assert(m_entries_size > 0);
assert(m_entries_count <= m_entries_size);
if (m_entries_count >= m_entries_size) {
const long entries_size = 2 * m_entries_size;
BlockEntry** const entries = new BlockEntry*[entries_size];
BlockEntry** src = m_entries;
BlockEntry** const src_end = src + m_entries_count;
BlockEntry** dst = entries;
while (src != src_end)
*dst++ = *src++;
delete[] m_entries;
m_entries = entries;
m_entries_size = entries_size;
}
}
if (id == libwebm::kMkvBlockGroup)
return CreateBlockGroup(pos, size, discard_padding);
else
return CreateSimpleBlock(pos, size);
}
long Cluster::CreateBlockGroup(long long start_offset, long long size,
long long discard_padding) {
assert(m_entries);
assert(m_entries_size > 0);
assert(m_entries_count >= 0);
assert(m_entries_count < m_entries_size);
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = start_offset;
const long long stop = start_offset + size;
// For WebM files, there is a bias towards previous reference times
//(in order to support alt-ref frames, which refer back to the previous
// keyframe). Normally a 0 value is not possible, but here we tenatively
// allow 0 as the value of a reference frame, with the interpretation
// that this is a "previous" reference time.
long long prev = 1; // nonce
long long next = 0; // nonce
long long duration = -1; // really, this is unsigned
long long bpos = -1;
long long bsize = -1;
while (pos < stop) {
long len;
const long long id = ReadID(pReader, pos, len);
if (id < 0 || (pos + len) > stop)
return E_FILE_FORMAT_INVALID;
pos += len; // consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); // TODO
assert((pos + len) <= stop);
pos += len; // consume size
if (id == libwebm::kMkvBlock) {
if (bpos < 0) { // Block ID
bpos = pos;
bsize = size;
}
} else if (id == libwebm::kMkvBlockDuration) {
if (size > 8)
return E_FILE_FORMAT_INVALID;
duration = UnserializeUInt(pReader, pos, size);
if (duration < 0)
return E_FILE_FORMAT_INVALID;
} else if (id == libwebm::kMkvReferenceBlock) {
if (size > 8 || size <= 0)
return E_FILE_FORMAT_INVALID;
const long size_ = static_cast<long>(size);
long long time;
long status = UnserializeInt(pReader, pos, size_, time);
assert(status == 0);
if (status != 0)
return -1;
if (time <= 0) // see note above
prev = time;
else
next = time;
}
pos += size; // consume payload
if (pos > stop)
return E_FILE_FORMAT_INVALID;
}
if (bpos < 0)
return E_FILE_FORMAT_INVALID;
if (pos != stop)
return E_FILE_FORMAT_INVALID;
assert(bsize >= 0);
const long idx = m_entries_count;
BlockEntry** const ppEntry = m_entries + idx;
BlockEntry*& pEntry = *ppEntry;
pEntry = new BlockGroup(this, idx, bpos, bsize, prev, next, duration, discard_padding);
BlockGroup* const p = static_cast<BlockGroup*>(pEntry);
const long status = p->Parse();
if (status == 0) { // success
++m_entries_count;
return 0;
}
delete pEntry;
pEntry = 0;
return status;
}
long Cluster::CreateSimpleBlock(long long st, long long sz) {
assert(m_entries);
assert(m_entries_size > 0);
assert(m_entries_count >= 0);
assert(m_entries_count < m_entries_size);
const long idx = m_entries_count;
BlockEntry** const ppEntry = m_entries + idx;
BlockEntry*& pEntry = *ppEntry;
pEntry = new SimpleBlock(this, idx, st, sz);
SimpleBlock* const p = static_cast<SimpleBlock*>(pEntry);
const long status = p->Parse();
if (status == 0) {
++m_entries_count;
return 0;
}
delete pEntry;
pEntry = 0;
return status;
}
long Cluster::GetFirst(const BlockEntry*& pFirst) const {
if (m_entries_count <= 0) {
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) { // error
pFirst = NULL;
return status;
}
if (m_entries_count <= 0) { // empty cluster
pFirst = NULL;
return 0;
}
}
assert(m_entries);
pFirst = m_entries[0];
assert(pFirst);
return 0; // success
}
long Cluster::GetLast(const BlockEntry*& pLast) const {
for (;;) {
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) { // error
pLast = NULL;
return status;
}
if (status > 0) // no new block
break;
}
if (m_entries_count <= 0) {
pLast = NULL;
return 0;
}
assert(m_entries);
const long idx = m_entries_count - 1;
pLast = m_entries[idx];
assert(pLast);
return 0;
}
long Cluster::GetNext(const BlockEntry* pCurr, const BlockEntry*& pNext) const {
assert(pCurr);
assert(m_entries);
assert(m_entries_count > 0);
size_t idx = pCurr->GetIndex();
assert(idx < size_t(m_entries_count));
assert(m_entries[idx] == pCurr);
++idx;
if (idx >= size_t(m_entries_count)) {
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) { // error
pNext = NULL;
return status;
}
if (status > 0) {
pNext = NULL;
return 0;
}
assert(m_entries);
assert(m_entries_count > 0);
assert(idx < size_t(m_entries_count));
}
pNext = m_entries[idx];
assert(pNext);
return 0;
}
long Cluster::GetEntryCount() const { return m_entries_count; }
const BlockEntry* Cluster::GetEntry(const Track* pTrack,
long long time_ns) const {
assert(pTrack);
if (m_pSegment == NULL) // this is the special EOS cluster
return pTrack->GetEOS();
const BlockEntry* pResult = pTrack->GetEOS();
long index = 0;
for (;;) {
if (index >= m_entries_count) {
long long pos;
long len;
const long status = Parse(pos, len);
assert(status >= 0);
if (status > 0) // completely parsed, and no more entries
return pResult;
if (status < 0) // should never happen
return 0;
assert(m_entries);
assert(index < m_entries_count);
}
const BlockEntry* const pEntry = m_entries[index];
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != pTrack->GetNumber()) {
++index;
continue;
}
if (pTrack->VetEntry(pEntry)) {
if (time_ns < 0) // just want first candidate block
return pEntry;
const long long ns = pBlock->GetTime(this);
if (ns > time_ns)
return pResult;
pResult = pEntry; // have a candidate
} else if (time_ns >= 0) {
const long long ns = pBlock->GetTime(this);
if (ns > time_ns)
return pResult;
}
++index;
}
}
const BlockEntry* Cluster::GetEntry(const CuePoint& cp,
const CuePoint::TrackPosition& tp) const {
assert(m_pSegment);
const long long tc = cp.GetTimeCode();
if (tp.m_block > 0) {
const long block = static_cast<long>(tp.m_block);
const long index = block - 1;
while (index >= m_entries_count) {
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) // TODO: can this happen?
return NULL;
if (status > 0) // nothing remains to be parsed
return NULL;
}
const BlockEntry* const pEntry = m_entries[index];
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if ((pBlock->GetTrackNumber() == tp.m_track) &&
(pBlock->GetTimeCode(this) == tc)) {
return pEntry;
}
}
long index = 0;
for (;;) {
if (index >= m_entries_count) {
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) // TODO: can this happen?
return NULL;
if (status > 0) // nothing remains to be parsed
return NULL;
assert(m_entries);
assert(index < m_entries_count);
}
const BlockEntry* const pEntry = m_entries[index];
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != tp.m_track) {
++index;
continue;
}
const long long tc_ = pBlock->GetTimeCode(this);
if (tc_ < tc) {
++index;
continue;
}
if (tc_ > tc)
return NULL;
const Tracks* const pTracks = m_pSegment->GetTracks();
assert(pTracks);
const long tn = static_cast<long>(tp.m_track);
const Track* const pTrack = pTracks->GetTrackByNumber(tn);
if (pTrack == NULL)
return NULL;
const long long type = pTrack->GetType();
if (type == 2) // audio
return pEntry;
if (type != 1) // not video
return NULL;
if (!pBlock->IsKey())
return NULL;
return pEntry;
}
}
BlockEntry::BlockEntry(Cluster* p, long idx) : m_pCluster(p), m_index(idx) {}
BlockEntry::~BlockEntry() {}
const Cluster* BlockEntry::GetCluster() const { return m_pCluster; }
long BlockEntry::GetIndex() const { return m_index; }
SimpleBlock::SimpleBlock(Cluster* pCluster, long idx, long long start,
long long size)
: BlockEntry(pCluster, idx), m_block(start, size, 0) {}
long SimpleBlock::Parse() { return m_block.Parse(m_pCluster); }
BlockEntry::Kind SimpleBlock::GetKind() const { return kBlockSimple; }
const Block* SimpleBlock::GetBlock() const { return &m_block; }
BlockGroup::BlockGroup(Cluster* pCluster, long idx, long long block_start,
long long block_size, long long prev, long long next,
long long duration, long long discard_padding)
: BlockEntry(pCluster, idx),
m_block(block_start, block_size, discard_padding),
m_prev(prev),
m_next(next),
m_duration(duration) {}
long BlockGroup::Parse() {
const long status = m_block.Parse(m_pCluster);
if (status)
return status;
m_block.SetKey((m_prev > 0) && (m_next <= 0));
return 0;
}
BlockEntry::Kind BlockGroup::GetKind() const { return kBlockGroup; }
const Block* BlockGroup::GetBlock() const { return &m_block; }
long long BlockGroup::GetPrevTimeCode() const { return m_prev; }
long long BlockGroup::GetNextTimeCode() const { return m_next; }
long long BlockGroup::GetDurationTimeCode() const { return m_duration; }
Block::Block(long long start, long long size_, long long discard_padding)
: m_start(start),
m_size(size_),
m_track(0),
m_timecode(-1),
m_flags(0),
m_frames(NULL),
m_frame_count(-1),
m_discard_padding(discard_padding) {}
Block::~Block() { delete[] m_frames; }
long Block::Parse(const Cluster* pCluster) {
if (pCluster == NULL)
return -1;
if (pCluster->m_pSegment == NULL)
return -1;
assert(m_start >= 0);
assert(m_size >= 0);
assert(m_track <= 0);
assert(m_frames == NULL);
assert(m_frame_count <= 0);
long long pos = m_start;
const long long stop = m_start + m_size;
long len;
IMkvReader* const pReader = pCluster->m_pSegment->m_pReader;
m_track = ReadUInt(pReader, pos, len);
if (m_track <= 0)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
pos += len; // consume track number
if ((stop - pos) < 2)
return E_FILE_FORMAT_INVALID;
long status;
long long value;
status = UnserializeInt(pReader, pos, 2, value);
if (status)
return E_FILE_FORMAT_INVALID;
if (value < SHRT_MIN)
return E_FILE_FORMAT_INVALID;
if (value > SHRT_MAX)
return E_FILE_FORMAT_INVALID;
m_timecode = static_cast<short>(value);
pos += 2;
if ((stop - pos) <= 0)
return E_FILE_FORMAT_INVALID;
status = pReader->Read(pos, 1, &m_flags);
if (status)
return E_FILE_FORMAT_INVALID;
const int lacing = int(m_flags & 0x06) >> 1;
++pos; // consume flags byte
if (lacing == 0) { // no lacing
if (pos > stop)
return E_FILE_FORMAT_INVALID;
m_frame_count = 1;
m_frames = new Frame[m_frame_count];
Frame& f = m_frames[0];
f.pos = pos;
const long long frame_size = stop - pos;
if (frame_size > LONG_MAX || frame_size <= 0)
return E_FILE_FORMAT_INVALID;
f.len = static_cast<long>(frame_size);
return 0; // success
}
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
unsigned char biased_count;
status = pReader->Read(pos, 1, &biased_count);
if (status)
return E_FILE_FORMAT_INVALID;
++pos; // consume frame count
if (pos > stop)
return E_FILE_FORMAT_INVALID;
m_frame_count = int(biased_count) + 1;
m_frames = new Frame[m_frame_count];
if (!m_frames)
return E_FILE_FORMAT_INVALID;
if (lacing == 1) { // Xiph
Frame* pf = m_frames;
Frame* const pf_end = pf + m_frame_count;
long long size = 0;
int frame_count = m_frame_count;
while (frame_count > 1) {
long frame_size = 0;
for (;;) {
unsigned char val;
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
status = pReader->Read(pos, 1, &val);
if (status)
return E_FILE_FORMAT_INVALID;
++pos; // consume xiph size byte
frame_size += val;
if (val < 255)
break;
}
Frame& f = *pf++;
assert(pf < pf_end);
if (pf >= pf_end)
return E_FILE_FORMAT_INVALID;
f.pos = 0; // patch later
if (frame_size <= 0)
return E_FILE_FORMAT_INVALID;
f.len = frame_size;
size += frame_size; // contribution of this frame
--frame_count;
}
if (pf >= pf_end || pos > stop)
return E_FILE_FORMAT_INVALID;
{
Frame& f = *pf++;
if (pf != pf_end)
return E_FILE_FORMAT_INVALID;
f.pos = 0; // patch later
const long long total_size = stop - pos;
if (total_size < size)
return E_FILE_FORMAT_INVALID;
const long long frame_size = total_size - size;
if (frame_size > LONG_MAX || frame_size <= 0)
return E_FILE_FORMAT_INVALID;
f.len = static_cast<long>(frame_size);
}
pf = m_frames;
while (pf != pf_end) {
Frame& f = *pf++;
assert((pos + f.len) <= stop);
if ((pos + f.len) > stop)
return E_FILE_FORMAT_INVALID;
f.pos = pos;
pos += f.len;
}
assert(pos == stop);
if (pos != stop)
return E_FILE_FORMAT_INVALID;
} else if (lacing == 2) { // fixed-size lacing
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
const long long total_size = stop - pos;
if ((total_size % m_frame_count) != 0)
return E_FILE_FORMAT_INVALID;
const long long frame_size = total_size / m_frame_count;
if (frame_size > LONG_MAX || frame_size <= 0)
return E_FILE_FORMAT_INVALID;
Frame* pf = m_frames;
Frame* const pf_end = pf + m_frame_count;
while (pf != pf_end) {
assert((pos + frame_size) <= stop);
if ((pos + frame_size) > stop)
return E_FILE_FORMAT_INVALID;
Frame& f = *pf++;
f.pos = pos;
f.len = static_cast<long>(frame_size);
pos += frame_size;
}
assert(pos == stop);
if (pos != stop)
return E_FILE_FORMAT_INVALID;
} else {
assert(lacing == 3); // EBML lacing
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
long long size = 0;
int frame_count = m_frame_count;
long long frame_size = ReadUInt(pReader, pos, len);
if (frame_size <= 0)
return E_FILE_FORMAT_INVALID;
if (frame_size > LONG_MAX)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
pos += len; // consume length of size of first frame
if ((pos + frame_size) > stop)
return E_FILE_FORMAT_INVALID;
Frame* pf = m_frames;
Frame* const pf_end = pf + m_frame_count;
{
Frame& curr = *pf;
curr.pos = 0; // patch later
curr.len = static_cast<long>(frame_size);
size += curr.len; // contribution of this frame
}
--frame_count;
while (frame_count > 1) {
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
assert(pf < pf_end);
if (pf >= pf_end)
return E_FILE_FORMAT_INVALID;
const Frame& prev = *pf++;
assert(prev.len == frame_size);
if (prev.len != frame_size)
return E_FILE_FORMAT_INVALID;
assert(pf < pf_end);
if (pf >= pf_end)
return E_FILE_FORMAT_INVALID;
Frame& curr = *pf;
curr.pos = 0; // patch later
const long long delta_size_ = ReadUInt(pReader, pos, len);
if (delta_size_ < 0)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
pos += len; // consume length of (delta) size
if (pos > stop)
return E_FILE_FORMAT_INVALID;
const long exp = 7 * len - 1;
const long long bias = (1LL << exp) - 1LL;
const long long delta_size = delta_size_ - bias;
frame_size += delta_size;
if (frame_size <= 0)
return E_FILE_FORMAT_INVALID;
if (frame_size > LONG_MAX)
return E_FILE_FORMAT_INVALID;
curr.len = static_cast<long>(frame_size);
size += curr.len; // contribution of this frame
--frame_count;
}
// parse last frame
if (frame_count > 0) {
if (pos > stop || pf >= pf_end)
return E_FILE_FORMAT_INVALID;
const Frame& prev = *pf++;
assert(prev.len == frame_size);
if (prev.len != frame_size)
return E_FILE_FORMAT_INVALID;
if (pf >= pf_end)
return E_FILE_FORMAT_INVALID;
Frame& curr = *pf++;
if (pf != pf_end)
return E_FILE_FORMAT_INVALID;
curr.pos = 0; // patch later
const long long total_size = stop - pos;
if (total_size < size)
return E_FILE_FORMAT_INVALID;
frame_size = total_size - size;
if (frame_size > LONG_MAX || frame_size <= 0)
return E_FILE_FORMAT_INVALID;
curr.len = static_cast<long>(frame_size);
}
pf = m_frames;
while (pf != pf_end) {
Frame& f = *pf++;
assert((pos + f.len) <= stop);
if ((pos + f.len) > stop)
return E_FILE_FORMAT_INVALID;
f.pos = pos;
pos += f.len;
}
if (pos != stop)
return E_FILE_FORMAT_INVALID;
}
return 0; // success
}
long long Block::GetTimeCode(const Cluster* pCluster) const {
if (pCluster == 0)
return m_timecode;
const long long tc0 = pCluster->GetTimeCode();
assert(tc0 >= 0);
const long long tc = tc0 + m_timecode;
return tc; // unscaled timecode units
}
long long Block::GetTime(const Cluster* pCluster) const {
assert(pCluster);
const long long tc = GetTimeCode(pCluster);
const Segment* const pSegment = pCluster->m_pSegment;
const SegmentInfo* const pInfo = pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long ns = tc * scale;
return ns;
}
long long Block::GetTrackNumber() const { return m_track; }
bool Block::IsKey() const {
return ((m_flags & static_cast<unsigned char>(1 << 7)) != 0);
}
void Block::SetKey(bool bKey) {
if (bKey)
m_flags |= static_cast<unsigned char>(1 << 7);
else
m_flags &= 0x7F;
}
bool Block::IsInvisible() const { return bool(int(m_flags & 0x08) != 0); }
Block::Lacing Block::GetLacing() const {
const int value = int(m_flags & 0x06) >> 1;
return static_cast<Lacing>(value);
}
int Block::GetFrameCount() const { return m_frame_count; }
const Block::Frame& Block::GetFrame(int idx) const {
assert(idx >= 0);
assert(idx < m_frame_count);
const Frame& f = m_frames[idx];
assert(f.pos > 0);
assert(f.len > 0);
return f;
}
long Block::Frame::Read(IMkvReader* pReader, unsigned char* buf) const {
assert(pReader);
assert(buf);
const long status = pReader->Read(pos, len, buf);
return status;
}
long long Block::GetDiscardPadding() const { return m_discard_padding; }
} // namespace mkvparser