mirror of
https://github.com/godotengine/godot.git
synced 2024-12-21 10:25:24 +08:00
302 lines
8.9 KiB
C++
302 lines
8.9 KiB
C++
/*
|
|
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
|
|
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2019 Google Inc. http://bulletphysics.org
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_MASS_SPRING_H
|
|
#define BT_MASS_SPRING_H
|
|
|
|
#include "btDeformableLagrangianForce.h"
|
|
|
|
class btDeformableMassSpringForce : public btDeformableLagrangianForce
|
|
{
|
|
// If true, the damping force will be in the direction of the spring
|
|
// If false, the damping force will be in the direction of the velocity
|
|
bool m_momentum_conserving;
|
|
btScalar m_elasticStiffness, m_dampingStiffness, m_bendingStiffness;
|
|
|
|
public:
|
|
typedef btAlignedObjectArray<btVector3> TVStack;
|
|
btDeformableMassSpringForce() : m_momentum_conserving(false), m_elasticStiffness(1), m_dampingStiffness(0.05)
|
|
{
|
|
}
|
|
btDeformableMassSpringForce(btScalar k, btScalar d, bool conserve_angular = true, double bending_k = -1) : m_momentum_conserving(conserve_angular), m_elasticStiffness(k), m_dampingStiffness(d), m_bendingStiffness(bending_k)
|
|
{
|
|
if (m_bendingStiffness < btScalar(0))
|
|
{
|
|
m_bendingStiffness = m_elasticStiffness;
|
|
}
|
|
}
|
|
|
|
virtual void addScaledForces(btScalar scale, TVStack& force)
|
|
{
|
|
addScaledDampingForce(scale, force);
|
|
addScaledElasticForce(scale, force);
|
|
}
|
|
|
|
virtual void addScaledExplicitForce(btScalar scale, TVStack& force)
|
|
{
|
|
addScaledElasticForce(scale, force);
|
|
}
|
|
|
|
virtual void addScaledDampingForce(btScalar scale, TVStack& force)
|
|
{
|
|
int numNodes = getNumNodes();
|
|
btAssert(numNodes <= force.size());
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
const btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_links.size(); ++j)
|
|
{
|
|
const btSoftBody::Link& link = psb->m_links[j];
|
|
btSoftBody::Node* node1 = link.m_n[0];
|
|
btSoftBody::Node* node2 = link.m_n[1];
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
|
|
// damping force
|
|
btVector3 v_diff = (node2->m_v - node1->m_v);
|
|
btVector3 scaled_force = scale * m_dampingStiffness * v_diff;
|
|
if (m_momentum_conserving)
|
|
{
|
|
if ((node2->m_x - node1->m_x).norm() > SIMD_EPSILON)
|
|
{
|
|
btVector3 dir = (node2->m_x - node1->m_x).normalized();
|
|
scaled_force = scale * m_dampingStiffness * v_diff.dot(dir) * dir;
|
|
}
|
|
}
|
|
force[id1] += scaled_force;
|
|
force[id2] -= scaled_force;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void addScaledElasticForce(btScalar scale, TVStack& force)
|
|
{
|
|
int numNodes = getNumNodes();
|
|
btAssert(numNodes <= force.size());
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
const btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_links.size(); ++j)
|
|
{
|
|
const btSoftBody::Link& link = psb->m_links[j];
|
|
btSoftBody::Node* node1 = link.m_n[0];
|
|
btSoftBody::Node* node2 = link.m_n[1];
|
|
btScalar r = link.m_rl;
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
|
|
// elastic force
|
|
btVector3 dir = (node2->m_q - node1->m_q);
|
|
btVector3 dir_normalized = (dir.norm() > SIMD_EPSILON) ? dir.normalized() : btVector3(0, 0, 0);
|
|
btScalar scaled_stiffness = scale * (link.m_bbending ? m_bendingStiffness : m_elasticStiffness);
|
|
btVector3 scaled_force = scaled_stiffness * (dir - dir_normalized * r);
|
|
force[id1] += scaled_force;
|
|
force[id2] -= scaled_force;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df)
|
|
{
|
|
// implicit damping force differential
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
btScalar scaled_k_damp = m_dampingStiffness * scale;
|
|
for (int j = 0; j < psb->m_links.size(); ++j)
|
|
{
|
|
const btSoftBody::Link& link = psb->m_links[j];
|
|
btSoftBody::Node* node1 = link.m_n[0];
|
|
btSoftBody::Node* node2 = link.m_n[1];
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
|
|
btVector3 local_scaled_df = scaled_k_damp * (dv[id2] - dv[id1]);
|
|
if (m_momentum_conserving)
|
|
{
|
|
if ((node2->m_x - node1->m_x).norm() > SIMD_EPSILON)
|
|
{
|
|
btVector3 dir = (node2->m_x - node1->m_x).normalized();
|
|
local_scaled_df = scaled_k_damp * (dv[id2] - dv[id1]).dot(dir) * dir;
|
|
}
|
|
}
|
|
df[id1] += local_scaled_df;
|
|
df[id2] -= local_scaled_df;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA)
|
|
{
|
|
// implicit damping force differential
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
btScalar scaled_k_damp = m_dampingStiffness * scale;
|
|
for (int j = 0; j < psb->m_links.size(); ++j)
|
|
{
|
|
const btSoftBody::Link& link = psb->m_links[j];
|
|
btSoftBody::Node* node1 = link.m_n[0];
|
|
btSoftBody::Node* node2 = link.m_n[1];
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
if (m_momentum_conserving)
|
|
{
|
|
if ((node2->m_x - node1->m_x).norm() > SIMD_EPSILON)
|
|
{
|
|
btVector3 dir = (node2->m_x - node1->m_x).normalized();
|
|
for (int d = 0; d < 3; ++d)
|
|
{
|
|
if (node1->m_im > 0)
|
|
diagA[id1][d] -= scaled_k_damp * dir[d] * dir[d];
|
|
if (node2->m_im > 0)
|
|
diagA[id2][d] -= scaled_k_damp * dir[d] * dir[d];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int d = 0; d < 3; ++d)
|
|
{
|
|
if (node1->m_im > 0)
|
|
diagA[id1][d] -= scaled_k_damp;
|
|
if (node2->m_im > 0)
|
|
diagA[id2][d] -= scaled_k_damp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual double totalElasticEnergy(btScalar dt)
|
|
{
|
|
double energy = 0;
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
const btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_links.size(); ++j)
|
|
{
|
|
const btSoftBody::Link& link = psb->m_links[j];
|
|
btSoftBody::Node* node1 = link.m_n[0];
|
|
btSoftBody::Node* node2 = link.m_n[1];
|
|
btScalar r = link.m_rl;
|
|
|
|
// elastic force
|
|
btVector3 dir = (node2->m_q - node1->m_q);
|
|
energy += 0.5 * m_elasticStiffness * (dir.norm() - r) * (dir.norm() - r);
|
|
}
|
|
}
|
|
return energy;
|
|
}
|
|
|
|
virtual double totalDampingEnergy(btScalar dt)
|
|
{
|
|
double energy = 0;
|
|
int sz = 0;
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
|
{
|
|
sz = btMax(sz, psb->m_nodes[j].index);
|
|
}
|
|
}
|
|
TVStack dampingForce;
|
|
dampingForce.resize(sz + 1);
|
|
for (int i = 0; i < dampingForce.size(); ++i)
|
|
dampingForce[i].setZero();
|
|
addScaledDampingForce(0.5, dampingForce);
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
|
{
|
|
const btSoftBody::Node& node = psb->m_nodes[j];
|
|
energy -= dampingForce[node.index].dot(node.m_v) / dt;
|
|
}
|
|
}
|
|
return energy;
|
|
}
|
|
|
|
virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df)
|
|
{
|
|
// implicit damping force differential
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
const btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_links.size(); ++j)
|
|
{
|
|
const btSoftBody::Link& link = psb->m_links[j];
|
|
btSoftBody::Node* node1 = link.m_n[0];
|
|
btSoftBody::Node* node2 = link.m_n[1];
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
btScalar r = link.m_rl;
|
|
|
|
btVector3 dir = (node1->m_q - node2->m_q);
|
|
btScalar dir_norm = dir.norm();
|
|
btVector3 dir_normalized = (dir_norm > SIMD_EPSILON) ? dir.normalized() : btVector3(0, 0, 0);
|
|
btVector3 dx_diff = dx[id1] - dx[id2];
|
|
btVector3 scaled_df = btVector3(0, 0, 0);
|
|
btScalar scaled_k = scale * (link.m_bbending ? m_bendingStiffness : m_elasticStiffness);
|
|
if (dir_norm > SIMD_EPSILON)
|
|
{
|
|
scaled_df -= scaled_k * dir_normalized.dot(dx_diff) * dir_normalized;
|
|
scaled_df += scaled_k * dir_normalized.dot(dx_diff) * ((dir_norm - r) / dir_norm) * dir_normalized;
|
|
scaled_df -= scaled_k * ((dir_norm - r) / dir_norm) * dx_diff;
|
|
}
|
|
|
|
df[id1] += scaled_df;
|
|
df[id2] -= scaled_df;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual btDeformableLagrangianForceType getForceType()
|
|
{
|
|
return BT_MASSSPRING_FORCE;
|
|
}
|
|
};
|
|
|
|
#endif /* btMassSpring_h */
|