godot/modules/gdscript/gdscript_parser.h
Rémi Verschelde c4733e8003
Merge pull request #90860 from vnen/gdscript-get-dependencies
GDScript: Implement `get_dependencies()`
2024-04-29 12:30:12 +02:00

1654 lines
46 KiB
C++

/**************************************************************************/
/* gdscript_parser.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef GDSCRIPT_PARSER_H
#define GDSCRIPT_PARSER_H
#include "gdscript_cache.h"
#include "gdscript_tokenizer.h"
#ifdef DEBUG_ENABLED
#include "gdscript_warning.h"
#endif
#include "core/io/resource.h"
#include "core/object/ref_counted.h"
#include "core/object/script_language.h"
#include "core/string/string_name.h"
#include "core/string/ustring.h"
#include "core/templates/hash_map.h"
#include "core/templates/list.h"
#include "core/templates/rb_map.h"
#include "core/templates/vector.h"
#include "core/variant/variant.h"
#ifdef DEBUG_ENABLED
#include "core/string/string_builder.h"
#endif
class GDScriptParser {
struct AnnotationInfo;
public:
// Forward-declare all parser nodes, to avoid ordering issues.
struct AnnotationNode;
struct ArrayNode;
struct AssertNode;
struct AssignableNode;
struct AssignmentNode;
struct AwaitNode;
struct BinaryOpNode;
struct BreakNode;
struct BreakpointNode;
struct CallNode;
struct CastNode;
struct ClassNode;
struct ConstantNode;
struct ContinueNode;
struct DictionaryNode;
struct EnumNode;
struct ExpressionNode;
struct ForNode;
struct FunctionNode;
struct GetNodeNode;
struct IdentifierNode;
struct IfNode;
struct LambdaNode;
struct LiteralNode;
struct MatchNode;
struct MatchBranchNode;
struct ParameterNode;
struct PassNode;
struct PatternNode;
struct PreloadNode;
struct ReturnNode;
struct SelfNode;
struct SignalNode;
struct SubscriptNode;
struct SuiteNode;
struct TernaryOpNode;
struct TypeNode;
struct TypeTestNode;
struct UnaryOpNode;
struct VariableNode;
struct WhileNode;
class DataType {
public:
Vector<DataType> container_element_types;
enum Kind {
BUILTIN,
NATIVE,
SCRIPT,
CLASS, // GDScript.
ENUM, // Enumeration.
VARIANT, // Can be any type.
RESOLVING, // Currently resolving.
UNRESOLVED,
};
Kind kind = UNRESOLVED;
enum TypeSource {
UNDETECTED, // Can be any type.
INFERRED, // Has inferred type, but still dynamic.
ANNOTATED_EXPLICIT, // Has a specific type annotated.
ANNOTATED_INFERRED, // Has a static type but comes from the assigned value.
};
TypeSource type_source = UNDETECTED;
bool is_constant = false;
bool is_read_only = false;
bool is_meta_type = false;
bool is_pseudo_type = false; // For global names that can't be used standalone.
bool is_coroutine = false; // For function calls.
Variant::Type builtin_type = Variant::NIL;
StringName native_type;
StringName enum_type; // Enum name or the value name in an enum.
Ref<Script> script_type;
String script_path;
ClassNode *class_type = nullptr;
MethodInfo method_info; // For callable/signals.
HashMap<StringName, int64_t> enum_values; // For enums.
_FORCE_INLINE_ bool is_set() const { return kind != RESOLVING && kind != UNRESOLVED; }
_FORCE_INLINE_ bool is_resolving() const { return kind == RESOLVING; }
_FORCE_INLINE_ bool has_no_type() const { return type_source == UNDETECTED; }
_FORCE_INLINE_ bool is_variant() const { return kind == VARIANT || kind == RESOLVING || kind == UNRESOLVED; }
_FORCE_INLINE_ bool is_hard_type() const { return type_source > INFERRED; }
String to_string() const;
_FORCE_INLINE_ String to_string_strict() const { return is_hard_type() ? to_string() : "Variant"; }
PropertyInfo to_property_info(const String &p_name) const;
_FORCE_INLINE_ static DataType get_variant_type() { // Default DataType for container elements.
DataType datatype;
datatype.kind = VARIANT;
datatype.type_source = INFERRED;
return datatype;
}
_FORCE_INLINE_ void set_container_element_type(int p_index, const DataType &p_type) {
ERR_FAIL_COND(p_index < 0);
while (p_index >= container_element_types.size()) {
container_element_types.push_back(get_variant_type());
}
container_element_types.write[p_index] = DataType(p_type);
}
_FORCE_INLINE_ DataType get_container_element_type(int p_index) const {
ERR_FAIL_INDEX_V(p_index, container_element_types.size(), get_variant_type());
return container_element_types[p_index];
}
_FORCE_INLINE_ DataType get_container_element_type_or_variant(int p_index) const {
if (p_index < 0 || p_index >= container_element_types.size()) {
return get_variant_type();
}
return container_element_types[p_index];
}
_FORCE_INLINE_ bool has_container_element_type(int p_index) const {
return p_index >= 0 && p_index < container_element_types.size();
}
_FORCE_INLINE_ bool has_container_element_types() const {
return !container_element_types.is_empty();
}
bool is_typed_container_type() const;
GDScriptParser::DataType get_typed_container_type() const;
bool operator==(const DataType &p_other) const {
if (type_source == UNDETECTED || p_other.type_source == UNDETECTED) {
return true; // Can be considered equal for parsing purposes.
}
if (type_source == INFERRED || p_other.type_source == INFERRED) {
return true; // Can be considered equal for parsing purposes.
}
if (kind != p_other.kind) {
return false;
}
switch (kind) {
case VARIANT:
return true; // All variants are the same.
case BUILTIN:
return builtin_type == p_other.builtin_type;
case NATIVE:
case ENUM: // Enums use native_type to identify the enum and its base class.
return native_type == p_other.native_type;
case SCRIPT:
return script_type == p_other.script_type;
case CLASS:
return class_type == p_other.class_type || class_type->fqcn == p_other.class_type->fqcn;
case RESOLVING:
case UNRESOLVED:
break;
}
return false;
}
bool operator!=(const DataType &p_other) const {
return !(*this == p_other);
}
void operator=(const DataType &p_other) {
kind = p_other.kind;
type_source = p_other.type_source;
is_read_only = p_other.is_read_only;
is_constant = p_other.is_constant;
is_meta_type = p_other.is_meta_type;
is_pseudo_type = p_other.is_pseudo_type;
is_coroutine = p_other.is_coroutine;
builtin_type = p_other.builtin_type;
native_type = p_other.native_type;
enum_type = p_other.enum_type;
script_type = p_other.script_type;
script_path = p_other.script_path;
class_type = p_other.class_type;
method_info = p_other.method_info;
enum_values = p_other.enum_values;
container_element_types = p_other.container_element_types;
}
DataType() = default;
DataType(const DataType &p_other) {
*this = p_other;
}
~DataType() {}
};
struct ParserError {
// TODO: Do I really need a "type"?
// enum Type {
// NO_ERROR,
// EMPTY_FILE,
// CLASS_NAME_USED_TWICE,
// EXTENDS_USED_TWICE,
// EXPECTED_END_STATEMENT,
// };
// Type type = NO_ERROR;
String message;
int line = 0, column = 0;
};
#ifdef TOOLS_ENABLED
struct ClassDocData {
String brief;
String description;
Vector<Pair<String, String>> tutorials;
bool is_deprecated = false;
String deprecated_message;
bool is_experimental = false;
String experimental_message;
};
struct MemberDocData {
String description;
bool is_deprecated = false;
String deprecated_message;
bool is_experimental = false;
String experimental_message;
};
#endif // TOOLS_ENABLED
struct Node {
enum Type {
NONE,
ANNOTATION,
ARRAY,
ASSERT,
ASSIGNMENT,
AWAIT,
BINARY_OPERATOR,
BREAK,
BREAKPOINT,
CALL,
CAST,
CLASS,
CONSTANT,
CONTINUE,
DICTIONARY,
ENUM,
FOR,
FUNCTION,
GET_NODE,
IDENTIFIER,
IF,
LAMBDA,
LITERAL,
MATCH,
MATCH_BRANCH,
PARAMETER,
PASS,
PATTERN,
PRELOAD,
RETURN,
SELF,
SIGNAL,
SUBSCRIPT,
SUITE,
TERNARY_OPERATOR,
TYPE,
TYPE_TEST,
UNARY_OPERATOR,
VARIABLE,
WHILE,
};
Type type = NONE;
int start_line = 0, end_line = 0;
int start_column = 0, end_column = 0;
int leftmost_column = 0, rightmost_column = 0;
Node *next = nullptr;
List<AnnotationNode *> annotations;
DataType datatype;
virtual DataType get_datatype() const { return datatype; }
virtual void set_datatype(const DataType &p_datatype) { datatype = p_datatype; }
virtual bool is_expression() const { return false; }
virtual ~Node() {}
};
struct ExpressionNode : public Node {
// Base type for all expression kinds.
bool reduced = false;
bool is_constant = false;
Variant reduced_value;
virtual bool is_expression() const override { return true; }
virtual ~ExpressionNode() {}
protected:
ExpressionNode() {}
};
struct AnnotationNode : public Node {
StringName name;
Vector<ExpressionNode *> arguments;
Vector<Variant> resolved_arguments;
AnnotationInfo *info = nullptr;
PropertyInfo export_info;
bool is_resolved = false;
bool is_applied = false;
bool apply(GDScriptParser *p_this, Node *p_target, ClassNode *p_class);
bool applies_to(uint32_t p_target_kinds) const;
AnnotationNode() {
type = ANNOTATION;
}
};
struct ArrayNode : public ExpressionNode {
Vector<ExpressionNode *> elements;
ArrayNode() {
type = ARRAY;
}
};
struct AssertNode : public Node {
ExpressionNode *condition = nullptr;
ExpressionNode *message = nullptr;
AssertNode() {
type = ASSERT;
}
};
struct AssignableNode : public Node {
IdentifierNode *identifier = nullptr;
ExpressionNode *initializer = nullptr;
TypeNode *datatype_specifier = nullptr;
bool infer_datatype = false;
bool use_conversion_assign = false;
int usages = 0;
virtual ~AssignableNode() {}
protected:
AssignableNode() {}
};
struct AssignmentNode : public ExpressionNode {
// Assignment is not really an expression but it's easier to parse as if it were.
enum Operation {
OP_NONE,
OP_ADDITION,
OP_SUBTRACTION,
OP_MULTIPLICATION,
OP_DIVISION,
OP_MODULO,
OP_POWER,
OP_BIT_SHIFT_LEFT,
OP_BIT_SHIFT_RIGHT,
OP_BIT_AND,
OP_BIT_OR,
OP_BIT_XOR,
};
Operation operation = OP_NONE;
Variant::Operator variant_op = Variant::OP_MAX;
ExpressionNode *assignee = nullptr;
ExpressionNode *assigned_value = nullptr;
bool use_conversion_assign = false;
AssignmentNode() {
type = ASSIGNMENT;
}
};
struct AwaitNode : public ExpressionNode {
ExpressionNode *to_await = nullptr;
AwaitNode() {
type = AWAIT;
}
};
struct BinaryOpNode : public ExpressionNode {
enum OpType {
OP_ADDITION,
OP_SUBTRACTION,
OP_MULTIPLICATION,
OP_DIVISION,
OP_MODULO,
OP_POWER,
OP_BIT_LEFT_SHIFT,
OP_BIT_RIGHT_SHIFT,
OP_BIT_AND,
OP_BIT_OR,
OP_BIT_XOR,
OP_LOGIC_AND,
OP_LOGIC_OR,
OP_CONTENT_TEST,
OP_COMP_EQUAL,
OP_COMP_NOT_EQUAL,
OP_COMP_LESS,
OP_COMP_LESS_EQUAL,
OP_COMP_GREATER,
OP_COMP_GREATER_EQUAL,
};
OpType operation = OpType::OP_ADDITION;
Variant::Operator variant_op = Variant::OP_MAX;
ExpressionNode *left_operand = nullptr;
ExpressionNode *right_operand = nullptr;
BinaryOpNode() {
type = BINARY_OPERATOR;
}
};
struct BreakNode : public Node {
BreakNode() {
type = BREAK;
}
};
struct BreakpointNode : public Node {
BreakpointNode() {
type = BREAKPOINT;
}
};
struct CallNode : public ExpressionNode {
ExpressionNode *callee = nullptr;
Vector<ExpressionNode *> arguments;
StringName function_name;
bool is_super = false;
bool is_static = false;
CallNode() {
type = CALL;
}
Type get_callee_type() const {
if (callee == nullptr) {
return Type::NONE;
} else {
return callee->type;
}
}
};
struct CastNode : public ExpressionNode {
ExpressionNode *operand = nullptr;
TypeNode *cast_type = nullptr;
CastNode() {
type = CAST;
}
};
struct EnumNode : public Node {
struct Value {
IdentifierNode *identifier = nullptr;
ExpressionNode *custom_value = nullptr;
EnumNode *parent_enum = nullptr;
int index = -1;
bool resolved = false;
int64_t value = 0;
int line = 0;
int leftmost_column = 0;
int rightmost_column = 0;
#ifdef TOOLS_ENABLED
MemberDocData doc_data;
#endif // TOOLS_ENABLED
};
IdentifierNode *identifier = nullptr;
Vector<Value> values;
Variant dictionary;
#ifdef TOOLS_ENABLED
MemberDocData doc_data;
#endif // TOOLS_ENABLED
EnumNode() {
type = ENUM;
}
};
struct ClassNode : public Node {
struct Member {
enum Type {
UNDEFINED,
CLASS,
CONSTANT,
FUNCTION,
SIGNAL,
VARIABLE,
ENUM,
ENUM_VALUE, // For unnamed enums.
GROUP, // For member grouping.
};
Type type = UNDEFINED;
union {
ClassNode *m_class = nullptr;
ConstantNode *constant;
FunctionNode *function;
SignalNode *signal;
VariableNode *variable;
EnumNode *m_enum;
AnnotationNode *annotation;
};
EnumNode::Value enum_value;
String get_name() const {
switch (type) {
case UNDEFINED:
return "<undefined member>";
case CLASS:
// All class-type members have an id.
return m_class->identifier->name;
case CONSTANT:
return constant->identifier->name;
case FUNCTION:
return function->identifier->name;
case SIGNAL:
return signal->identifier->name;
case VARIABLE:
return variable->identifier->name;
case ENUM:
// All enum-type members have an id.
return m_enum->identifier->name;
case ENUM_VALUE:
return enum_value.identifier->name;
case GROUP:
return annotation->export_info.name;
}
return "";
}
String get_type_name() const {
switch (type) {
case UNDEFINED:
return "???";
case CLASS:
return "class";
case CONSTANT:
return "constant";
case FUNCTION:
return "function";
case SIGNAL:
return "signal";
case VARIABLE:
return "variable";
case ENUM:
return "enum";
case ENUM_VALUE:
return "enum value";
case GROUP:
return "group";
}
return "";
}
int get_line() const {
switch (type) {
case CLASS:
return m_class->start_line;
case CONSTANT:
return constant->start_line;
case FUNCTION:
return function->start_line;
case VARIABLE:
return variable->start_line;
case ENUM_VALUE:
return enum_value.line;
case ENUM:
return m_enum->start_line;
case SIGNAL:
return signal->start_line;
case GROUP:
return annotation->start_line;
case UNDEFINED:
ERR_FAIL_V_MSG(-1, "Reaching undefined member type.");
}
ERR_FAIL_V_MSG(-1, "Reaching unhandled type.");
}
DataType get_datatype() const {
switch (type) {
case CLASS:
return m_class->get_datatype();
case CONSTANT:
return constant->get_datatype();
case FUNCTION:
return function->get_datatype();
case VARIABLE:
return variable->get_datatype();
case ENUM:
return m_enum->get_datatype();
case ENUM_VALUE:
return enum_value.identifier->get_datatype();
case SIGNAL:
return signal->get_datatype();
case GROUP:
return DataType();
case UNDEFINED:
return DataType();
}
ERR_FAIL_V_MSG(DataType(), "Reaching unhandled type.");
}
Node *get_source_node() const {
switch (type) {
case CLASS:
return m_class;
case CONSTANT:
return constant;
case FUNCTION:
return function;
case VARIABLE:
return variable;
case ENUM:
return m_enum;
case ENUM_VALUE:
return enum_value.identifier;
case SIGNAL:
return signal;
case GROUP:
return annotation;
case UNDEFINED:
return nullptr;
}
ERR_FAIL_V_MSG(nullptr, "Reaching unhandled type.");
}
Member() {}
Member(ClassNode *p_class) {
type = CLASS;
m_class = p_class;
}
Member(ConstantNode *p_constant) {
type = CONSTANT;
constant = p_constant;
}
Member(VariableNode *p_variable) {
type = VARIABLE;
variable = p_variable;
}
Member(SignalNode *p_signal) {
type = SIGNAL;
signal = p_signal;
}
Member(FunctionNode *p_function) {
type = FUNCTION;
function = p_function;
}
Member(EnumNode *p_enum) {
type = ENUM;
m_enum = p_enum;
}
Member(const EnumNode::Value &p_enum_value) {
type = ENUM_VALUE;
enum_value = p_enum_value;
}
Member(AnnotationNode *p_annotation) {
type = GROUP;
annotation = p_annotation;
}
};
IdentifierNode *identifier = nullptr;
String icon_path;
String simplified_icon_path;
Vector<Member> members;
HashMap<StringName, int> members_indices;
ClassNode *outer = nullptr;
bool extends_used = false;
bool onready_used = false;
bool has_static_data = false;
bool annotated_static_unload = false;
String extends_path;
Vector<IdentifierNode *> extends; // List for indexing: extends A.B.C
DataType base_type;
String fqcn; // Fully-qualified class name. Identifies uniquely any class in the project.
#ifdef TOOLS_ENABLED
ClassDocData doc_data;
// EnumValue docs are parsed after itself, so we need a method to add/modify the doc property later.
void set_enum_value_doc_data(const StringName &p_name, const MemberDocData &p_doc_data) {
ERR_FAIL_INDEX(members_indices[p_name], members.size());
members.write[members_indices[p_name]].enum_value.doc_data = p_doc_data;
}
#endif // TOOLS_ENABLED
bool resolved_interface = false;
bool resolved_body = false;
StringName get_global_name() const {
return (outer == nullptr && identifier != nullptr) ? identifier->name : StringName();
}
Member get_member(const StringName &p_name) const {
return members[members_indices[p_name]];
}
bool has_member(const StringName &p_name) const {
return members_indices.has(p_name);
}
bool has_function(const StringName &p_name) const {
return has_member(p_name) && members[members_indices[p_name]].type == Member::FUNCTION;
}
template <typename T>
void add_member(T *p_member_node) {
members_indices[p_member_node->identifier->name] = members.size();
members.push_back(Member(p_member_node));
}
void add_member(const EnumNode::Value &p_enum_value) {
members_indices[p_enum_value.identifier->name] = members.size();
members.push_back(Member(p_enum_value));
}
void add_member_group(AnnotationNode *p_annotation_node) {
// Avoid name conflict. See GH-78252.
StringName name = vformat("@group_%d_%s", members.size(), p_annotation_node->export_info.name);
members_indices[name] = members.size();
members.push_back(Member(p_annotation_node));
}
ClassNode() {
type = CLASS;
}
};
struct ConstantNode : public AssignableNode {
#ifdef TOOLS_ENABLED
MemberDocData doc_data;
#endif // TOOLS_ENABLED
ConstantNode() {
type = CONSTANT;
}
};
struct ContinueNode : public Node {
ContinueNode() {
type = CONTINUE;
}
};
struct DictionaryNode : public ExpressionNode {
struct Pair {
ExpressionNode *key = nullptr;
ExpressionNode *value = nullptr;
};
Vector<Pair> elements;
enum Style {
LUA_TABLE,
PYTHON_DICT,
};
Style style = PYTHON_DICT;
DictionaryNode() {
type = DICTIONARY;
}
};
struct ForNode : public Node {
IdentifierNode *variable = nullptr;
TypeNode *datatype_specifier = nullptr;
bool use_conversion_assign = false;
ExpressionNode *list = nullptr;
SuiteNode *loop = nullptr;
ForNode() {
type = FOR;
}
};
struct FunctionNode : public Node {
IdentifierNode *identifier = nullptr;
Vector<ParameterNode *> parameters;
HashMap<StringName, int> parameters_indices;
TypeNode *return_type = nullptr;
SuiteNode *body = nullptr;
bool is_static = false; // For lambdas it's determined in the analyzer.
bool is_coroutine = false;
Variant rpc_config;
MethodInfo info;
LambdaNode *source_lambda = nullptr;
Vector<Variant> default_arg_values;
#ifdef TOOLS_ENABLED
MemberDocData doc_data;
#endif // TOOLS_ENABLED
bool resolved_signature = false;
bool resolved_body = false;
FunctionNode() {
type = FUNCTION;
}
};
struct GetNodeNode : public ExpressionNode {
String full_path;
bool use_dollar = true;
GetNodeNode() {
type = GET_NODE;
}
};
struct IdentifierNode : public ExpressionNode {
StringName name;
SuiteNode *suite = nullptr; // The block in which the identifier is used.
enum Source {
UNDEFINED_SOURCE,
FUNCTION_PARAMETER,
LOCAL_VARIABLE,
LOCAL_CONSTANT,
LOCAL_ITERATOR, // `for` loop iterator.
LOCAL_BIND, // Pattern bind.
MEMBER_VARIABLE,
MEMBER_CONSTANT,
MEMBER_FUNCTION,
MEMBER_SIGNAL,
MEMBER_CLASS,
INHERITED_VARIABLE,
STATIC_VARIABLE,
};
Source source = UNDEFINED_SOURCE;
union {
ParameterNode *parameter_source = nullptr;
IdentifierNode *bind_source;
VariableNode *variable_source;
ConstantNode *constant_source;
SignalNode *signal_source;
};
FunctionNode *source_function = nullptr;
int usages = 0; // Useful for binds/iterator variable.
IdentifierNode() {
type = IDENTIFIER;
}
};
struct IfNode : public Node {
ExpressionNode *condition = nullptr;
SuiteNode *true_block = nullptr;
SuiteNode *false_block = nullptr;
IfNode() {
type = IF;
}
};
struct LambdaNode : public ExpressionNode {
FunctionNode *function = nullptr;
FunctionNode *parent_function = nullptr;
LambdaNode *parent_lambda = nullptr;
Vector<IdentifierNode *> captures;
HashMap<StringName, int> captures_indices;
bool use_self = false;
bool has_name() const {
return function && function->identifier;
}
LambdaNode() {
type = LAMBDA;
}
};
struct LiteralNode : public ExpressionNode {
Variant value;
LiteralNode() {
type = LITERAL;
}
};
struct MatchNode : public Node {
ExpressionNode *test = nullptr;
Vector<MatchBranchNode *> branches;
MatchNode() {
type = MATCH;
}
};
struct MatchBranchNode : public Node {
Vector<PatternNode *> patterns;
SuiteNode *block = nullptr;
bool has_wildcard = false;
SuiteNode *guard_body = nullptr;
MatchBranchNode() {
type = MATCH_BRANCH;
}
};
struct ParameterNode : public AssignableNode {
ParameterNode() {
type = PARAMETER;
}
};
struct PassNode : public Node {
PassNode() {
type = PASS;
}
};
struct PatternNode : public Node {
enum Type {
PT_LITERAL,
PT_EXPRESSION,
PT_BIND,
PT_ARRAY,
PT_DICTIONARY,
PT_REST,
PT_WILDCARD,
};
Type pattern_type = PT_LITERAL;
union {
LiteralNode *literal = nullptr;
IdentifierNode *bind;
ExpressionNode *expression;
};
Vector<PatternNode *> array;
bool rest_used = false; // For array/dict patterns.
struct Pair {
ExpressionNode *key = nullptr;
PatternNode *value_pattern = nullptr;
};
Vector<Pair> dictionary;
HashMap<StringName, IdentifierNode *> binds;
bool has_bind(const StringName &p_name);
IdentifierNode *get_bind(const StringName &p_name);
PatternNode() {
type = PATTERN;
}
};
struct PreloadNode : public ExpressionNode {
ExpressionNode *path = nullptr;
String resolved_path;
Ref<Resource> resource;
PreloadNode() {
type = PRELOAD;
}
};
struct ReturnNode : public Node {
ExpressionNode *return_value = nullptr;
bool void_return = false;
ReturnNode() {
type = RETURN;
}
};
struct SelfNode : public ExpressionNode {
ClassNode *current_class = nullptr;
SelfNode() {
type = SELF;
}
};
struct SignalNode : public Node {
IdentifierNode *identifier = nullptr;
Vector<ParameterNode *> parameters;
HashMap<StringName, int> parameters_indices;
MethodInfo method_info;
#ifdef TOOLS_ENABLED
MemberDocData doc_data;
#endif // TOOLS_ENABLED
int usages = 0;
SignalNode() {
type = SIGNAL;
}
};
struct SubscriptNode : public ExpressionNode {
ExpressionNode *base = nullptr;
union {
ExpressionNode *index = nullptr;
IdentifierNode *attribute;
};
bool is_attribute = false;
SubscriptNode() {
type = SUBSCRIPT;
}
};
struct SuiteNode : public Node {
SuiteNode *parent_block = nullptr;
Vector<Node *> statements;
struct Local {
enum Type {
UNDEFINED,
CONSTANT,
VARIABLE,
PARAMETER,
FOR_VARIABLE,
PATTERN_BIND,
};
Type type = UNDEFINED;
union {
ConstantNode *constant = nullptr;
VariableNode *variable;
ParameterNode *parameter;
IdentifierNode *bind;
};
StringName name;
FunctionNode *source_function = nullptr;
int start_line = 0, end_line = 0;
int start_column = 0, end_column = 0;
int leftmost_column = 0, rightmost_column = 0;
DataType get_datatype() const;
String get_name() const;
Local() {}
Local(ConstantNode *p_constant, FunctionNode *p_source_function) {
type = CONSTANT;
constant = p_constant;
name = p_constant->identifier->name;
source_function = p_source_function;
start_line = p_constant->start_line;
end_line = p_constant->end_line;
start_column = p_constant->start_column;
end_column = p_constant->end_column;
leftmost_column = p_constant->leftmost_column;
rightmost_column = p_constant->rightmost_column;
}
Local(VariableNode *p_variable, FunctionNode *p_source_function) {
type = VARIABLE;
variable = p_variable;
name = p_variable->identifier->name;
source_function = p_source_function;
start_line = p_variable->start_line;
end_line = p_variable->end_line;
start_column = p_variable->start_column;
end_column = p_variable->end_column;
leftmost_column = p_variable->leftmost_column;
rightmost_column = p_variable->rightmost_column;
}
Local(ParameterNode *p_parameter, FunctionNode *p_source_function) {
type = PARAMETER;
parameter = p_parameter;
name = p_parameter->identifier->name;
source_function = p_source_function;
start_line = p_parameter->start_line;
end_line = p_parameter->end_line;
start_column = p_parameter->start_column;
end_column = p_parameter->end_column;
leftmost_column = p_parameter->leftmost_column;
rightmost_column = p_parameter->rightmost_column;
}
Local(IdentifierNode *p_identifier, FunctionNode *p_source_function) {
type = FOR_VARIABLE;
bind = p_identifier;
name = p_identifier->name;
source_function = p_source_function;
start_line = p_identifier->start_line;
end_line = p_identifier->end_line;
start_column = p_identifier->start_column;
end_column = p_identifier->end_column;
leftmost_column = p_identifier->leftmost_column;
rightmost_column = p_identifier->rightmost_column;
}
};
Local empty;
Vector<Local> locals;
HashMap<StringName, int> locals_indices;
FunctionNode *parent_function = nullptr;
IfNode *parent_if = nullptr;
bool has_return = false;
bool has_continue = false;
bool has_unreachable_code = false; // Just so warnings aren't given more than once per block.
bool is_in_loop = false; // The block is nested in a loop (directly or indirectly).
bool has_local(const StringName &p_name) const;
const Local &get_local(const StringName &p_name) const;
template <typename T>
void add_local(T *p_local, FunctionNode *p_source_function) {
locals_indices[p_local->identifier->name] = locals.size();
locals.push_back(Local(p_local, p_source_function));
}
void add_local(const Local &p_local) {
locals_indices[p_local.name] = locals.size();
locals.push_back(p_local);
}
SuiteNode() {
type = SUITE;
}
};
struct TernaryOpNode : public ExpressionNode {
// Only one ternary operation exists, so no abstraction here.
ExpressionNode *condition = nullptr;
ExpressionNode *true_expr = nullptr;
ExpressionNode *false_expr = nullptr;
TernaryOpNode() {
type = TERNARY_OPERATOR;
}
};
struct TypeNode : public Node {
Vector<IdentifierNode *> type_chain;
Vector<TypeNode *> container_types;
TypeNode *get_container_type_or_null(int p_index) const {
return p_index >= 0 && p_index < container_types.size() ? container_types[p_index] : nullptr;
}
TypeNode() {
type = TYPE;
}
};
struct TypeTestNode : public ExpressionNode {
ExpressionNode *operand = nullptr;
TypeNode *test_type = nullptr;
DataType test_datatype;
TypeTestNode() {
type = TYPE_TEST;
}
};
struct UnaryOpNode : public ExpressionNode {
enum OpType {
OP_POSITIVE,
OP_NEGATIVE,
OP_COMPLEMENT,
OP_LOGIC_NOT,
};
OpType operation = OP_POSITIVE;
Variant::Operator variant_op = Variant::OP_MAX;
ExpressionNode *operand = nullptr;
UnaryOpNode() {
type = UNARY_OPERATOR;
}
};
struct VariableNode : public AssignableNode {
enum PropertyStyle {
PROP_NONE,
PROP_INLINE,
PROP_SETGET,
};
PropertyStyle property = PROP_NONE;
union {
FunctionNode *setter = nullptr;
IdentifierNode *setter_pointer;
};
IdentifierNode *setter_parameter = nullptr;
union {
FunctionNode *getter = nullptr;
IdentifierNode *getter_pointer;
};
bool exported = false;
bool onready = false;
PropertyInfo export_info;
int assignments = 0;
bool is_static = false;
#ifdef TOOLS_ENABLED
MemberDocData doc_data;
#endif // TOOLS_ENABLED
VariableNode() {
type = VARIABLE;
}
};
struct WhileNode : public Node {
ExpressionNode *condition = nullptr;
SuiteNode *loop = nullptr;
WhileNode() {
type = WHILE;
}
};
enum CompletionType {
COMPLETION_NONE,
COMPLETION_ANNOTATION, // Annotation (following @).
COMPLETION_ANNOTATION_ARGUMENTS, // Annotation arguments hint.
COMPLETION_ASSIGN, // Assignment based on type (e.g. enum values).
COMPLETION_ATTRIBUTE, // After id.| to look for members.
COMPLETION_ATTRIBUTE_METHOD, // After id.| to look for methods.
COMPLETION_BUILT_IN_TYPE_CONSTANT_OR_STATIC_METHOD, // Constants inside a built-in type (e.g. Color.BLUE) or static methods (e.g. Color.html).
COMPLETION_CALL_ARGUMENTS, // Complete with nodes, input actions, enum values (or usual expressions).
// TODO: COMPLETION_DECLARATION, // Potential declaration (var, const, func).
COMPLETION_GET_NODE, // Get node with $ notation.
COMPLETION_IDENTIFIER, // List available identifiers in scope.
COMPLETION_INHERIT_TYPE, // Type after extends. Exclude non-viable types (built-ins, enums, void). Includes subtypes using the argument index.
COMPLETION_METHOD, // List available methods in scope.
COMPLETION_OVERRIDE_METHOD, // Override implementation, also for native virtuals.
COMPLETION_PROPERTY_DECLARATION, // Property declaration (get, set).
COMPLETION_PROPERTY_DECLARATION_OR_TYPE, // Property declaration (get, set) or a type hint.
COMPLETION_PROPERTY_METHOD, // Property setter or getter (list available methods).
COMPLETION_RESOURCE_PATH, // For load/preload.
COMPLETION_SUBSCRIPT, // Inside id[|].
COMPLETION_SUPER_METHOD, // After super.
COMPLETION_TYPE_ATTRIBUTE, // Attribute in type name (Type.|).
COMPLETION_TYPE_NAME, // Name of type (after :).
COMPLETION_TYPE_NAME_OR_VOID, // Same as TYPE_NAME, but allows void (in function return type).
};
struct CompletionContext {
CompletionType type = COMPLETION_NONE;
ClassNode *current_class = nullptr;
FunctionNode *current_function = nullptr;
SuiteNode *current_suite = nullptr;
int current_line = -1;
int current_argument = -1;
Variant::Type builtin_type = Variant::VARIANT_MAX;
Node *node = nullptr;
Object *base = nullptr;
List<Ref<GDScriptParserRef>> dependent_parsers;
};
struct CompletionCall {
Node *call = nullptr;
int argument = -1;
};
private:
friend class GDScriptAnalyzer;
friend class GDScriptParserRef;
bool _is_tool = false;
String script_path;
bool for_completion = false;
bool panic_mode = false;
bool can_break = false;
bool can_continue = false;
List<bool> multiline_stack;
HashMap<String, Ref<GDScriptParserRef>> depended_parsers;
ClassNode *head = nullptr;
Node *list = nullptr;
List<ParserError> errors;
#ifdef DEBUG_ENABLED
struct PendingWarning {
const Node *source = nullptr;
GDScriptWarning::Code code = GDScriptWarning::WARNING_MAX;
bool treated_as_error = false;
Vector<String> symbols;
};
bool is_ignoring_warnings = false;
List<GDScriptWarning> warnings;
List<PendingWarning> pending_warnings;
HashSet<int> warning_ignored_lines[GDScriptWarning::WARNING_MAX];
HashSet<int> unsafe_lines;
#endif
GDScriptTokenizer *tokenizer = nullptr;
GDScriptTokenizer::Token previous;
GDScriptTokenizer::Token current;
ClassNode *current_class = nullptr;
FunctionNode *current_function = nullptr;
LambdaNode *current_lambda = nullptr;
SuiteNode *current_suite = nullptr;
CompletionContext completion_context;
CompletionCall completion_call;
List<CompletionCall> completion_call_stack;
bool passed_cursor = false;
bool in_lambda = false;
bool lambda_ended = false; // Marker for when a lambda ends, to apply an end of statement if needed.
typedef bool (GDScriptParser::*AnnotationAction)(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
struct AnnotationInfo {
enum TargetKind {
NONE = 0,
SCRIPT = 1 << 0,
CLASS = 1 << 1,
VARIABLE = 1 << 2,
CONSTANT = 1 << 3,
SIGNAL = 1 << 4,
FUNCTION = 1 << 5,
STATEMENT = 1 << 6,
STANDALONE = 1 << 7,
CLASS_LEVEL = CLASS | VARIABLE | CONSTANT | SIGNAL | FUNCTION,
};
uint32_t target_kind = 0; // Flags.
AnnotationAction apply = nullptr;
MethodInfo info;
};
static HashMap<StringName, AnnotationInfo> valid_annotations;
List<AnnotationNode *> annotation_stack;
typedef ExpressionNode *(GDScriptParser::*ParseFunction)(ExpressionNode *p_previous_operand, bool p_can_assign);
// Higher value means higher precedence (i.e. is evaluated first).
enum Precedence {
PREC_NONE,
PREC_ASSIGNMENT,
PREC_CAST,
PREC_TERNARY,
PREC_LOGIC_OR,
PREC_LOGIC_AND,
PREC_LOGIC_NOT,
PREC_CONTENT_TEST,
PREC_COMPARISON,
PREC_BIT_OR,
PREC_BIT_XOR,
PREC_BIT_AND,
PREC_BIT_SHIFT,
PREC_ADDITION_SUBTRACTION,
PREC_FACTOR,
PREC_SIGN,
PREC_BIT_NOT,
PREC_POWER,
PREC_TYPE_TEST,
PREC_AWAIT,
PREC_CALL,
PREC_ATTRIBUTE,
PREC_SUBSCRIPT,
PREC_PRIMARY,
};
struct ParseRule {
ParseFunction prefix = nullptr;
ParseFunction infix = nullptr;
Precedence precedence = PREC_NONE;
};
static ParseRule *get_rule(GDScriptTokenizer::Token::Type p_token_type);
List<Node *> nodes_in_progress;
void complete_extents(Node *p_node);
void update_extents(Node *p_node);
void reset_extents(Node *p_node, GDScriptTokenizer::Token p_token);
void reset_extents(Node *p_node, Node *p_from);
HashSet<String> dependencies;
template <typename T>
T *alloc_node() {
T *node = memnew(T);
node->next = list;
list = node;
reset_extents(node, previous);
nodes_in_progress.push_back(node);
return node;
}
void clear();
void push_error(const String &p_message, const Node *p_origin = nullptr);
#ifdef DEBUG_ENABLED
void push_warning(const Node *p_source, GDScriptWarning::Code p_code, const Vector<String> &p_symbols);
template <typename... Symbols>
void push_warning(const Node *p_source, GDScriptWarning::Code p_code, const Symbols &...p_symbols) {
push_warning(p_source, p_code, Vector<String>{ p_symbols... });
}
void apply_pending_warnings();
#endif
void make_completion_context(CompletionType p_type, Node *p_node, int p_argument = -1, bool p_force = false);
void make_completion_context(CompletionType p_type, Variant::Type p_builtin_type, bool p_force = false);
void push_completion_call(Node *p_call);
void pop_completion_call();
void set_last_completion_call_arg(int p_argument);
GDScriptTokenizer::Token advance();
bool match(GDScriptTokenizer::Token::Type p_token_type);
bool check(GDScriptTokenizer::Token::Type p_token_type) const;
bool consume(GDScriptTokenizer::Token::Type p_token_type, const String &p_error_message);
bool is_at_end() const;
bool is_statement_end_token() const;
bool is_statement_end() const;
void end_statement(const String &p_context);
void synchronize();
void push_multiline(bool p_state);
void pop_multiline();
// Main blocks.
void parse_program();
ClassNode *parse_class(bool p_is_static);
void parse_class_name();
void parse_extends();
void parse_class_body(bool p_is_multiline);
template <typename T>
void parse_class_member(T *(GDScriptParser::*p_parse_function)(bool), AnnotationInfo::TargetKind p_target, const String &p_member_kind, bool p_is_static = false);
SignalNode *parse_signal(bool p_is_static);
EnumNode *parse_enum(bool p_is_static);
ParameterNode *parse_parameter();
FunctionNode *parse_function(bool p_is_static);
void parse_function_signature(FunctionNode *p_function, SuiteNode *p_body, const String &p_type);
SuiteNode *parse_suite(const String &p_context, SuiteNode *p_suite = nullptr, bool p_for_lambda = false);
// Annotations
AnnotationNode *parse_annotation(uint32_t p_valid_targets);
static bool register_annotation(const MethodInfo &p_info, uint32_t p_target_kinds, AnnotationAction p_apply, const Vector<Variant> &p_default_arguments = Vector<Variant>(), bool p_is_vararg = false);
bool validate_annotation_arguments(AnnotationNode *p_annotation);
void clear_unused_annotations();
bool tool_annotation(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
bool icon_annotation(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
bool onready_annotation(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
template <PropertyHint t_hint, Variant::Type t_type>
bool export_annotations(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
bool export_custom_annotation(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
template <PropertyUsageFlags t_usage>
bool export_group_annotations(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
bool warning_annotations(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
bool rpc_annotation(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
bool static_unload_annotation(const AnnotationNode *p_annotation, Node *p_target, ClassNode *p_class);
// Statements.
Node *parse_statement();
VariableNode *parse_variable(bool p_is_static);
VariableNode *parse_variable(bool p_is_static, bool p_allow_property);
VariableNode *parse_property(VariableNode *p_variable, bool p_need_indent);
void parse_property_getter(VariableNode *p_variable);
void parse_property_setter(VariableNode *p_variable);
ConstantNode *parse_constant(bool p_is_static);
AssertNode *parse_assert();
BreakNode *parse_break();
ContinueNode *parse_continue();
ForNode *parse_for();
IfNode *parse_if(const String &p_token = "if");
MatchNode *parse_match();
MatchBranchNode *parse_match_branch();
PatternNode *parse_match_pattern(PatternNode *p_root_pattern = nullptr);
WhileNode *parse_while();
// Expressions.
ExpressionNode *parse_expression(bool p_can_assign, bool p_stop_on_assign = false);
ExpressionNode *parse_precedence(Precedence p_precedence, bool p_can_assign, bool p_stop_on_assign = false);
ExpressionNode *parse_literal(ExpressionNode *p_previous_operand, bool p_can_assign);
LiteralNode *parse_literal();
ExpressionNode *parse_self(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_identifier(ExpressionNode *p_previous_operand, bool p_can_assign);
IdentifierNode *parse_identifier();
ExpressionNode *parse_builtin_constant(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_unary_operator(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_binary_operator(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_binary_not_in_operator(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_ternary_operator(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_assignment(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_array(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_dictionary(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_call(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_get_node(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_preload(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_grouping(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_cast(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_await(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_attribute(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_subscript(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_lambda(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_type_test(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_yield(ExpressionNode *p_previous_operand, bool p_can_assign);
ExpressionNode *parse_invalid_token(ExpressionNode *p_previous_operand, bool p_can_assign);
TypeNode *parse_type(bool p_allow_void = false);
#ifdef TOOLS_ENABLED
int max_script_doc_line = INT_MAX;
int min_member_doc_line = 1;
bool has_comment(int p_line, bool p_must_be_doc = false);
MemberDocData parse_doc_comment(int p_line, bool p_single_line = false);
ClassDocData parse_class_doc_comment(int p_line, bool p_single_line = false);
#endif // TOOLS_ENABLED
public:
Error parse(const String &p_source_code, const String &p_script_path, bool p_for_completion);
Error parse_binary(const Vector<uint8_t> &p_binary, const String &p_script_path);
ClassNode *get_tree() const { return head; }
bool is_tool() const { return _is_tool; }
Ref<GDScriptParserRef> get_depended_parser_for(const String &p_path);
const HashMap<String, Ref<GDScriptParserRef>> &get_depended_parsers();
ClassNode *find_class(const String &p_qualified_name) const;
bool has_class(const GDScriptParser::ClassNode *p_class) const;
static Variant::Type get_builtin_type(const StringName &p_type); // Excluding `Variant::NIL` and `Variant::OBJECT`.
CompletionContext get_completion_context() const { return completion_context; }
CompletionCall get_completion_call() const { return completion_call; }
void get_annotation_list(List<MethodInfo> *r_annotations) const;
bool annotation_exists(const String &p_annotation_name) const;
const List<ParserError> &get_errors() const { return errors; }
const HashSet<String> &get_dependencies() const {
return dependencies;
}
void add_dependency(const String &p_dependency) {
dependencies.insert(p_dependency);
}
#ifdef DEBUG_ENABLED
const List<GDScriptWarning> &get_warnings() const { return warnings; }
const HashSet<int> &get_unsafe_lines() const { return unsafe_lines; }
int get_last_line_number() const { return current.end_line; }
#endif
#ifdef TOOLS_ENABLED
static HashMap<String, String> theme_color_names;
#endif // TOOLS_ENABLED
GDScriptParser();
~GDScriptParser();
#ifdef DEBUG_ENABLED
class TreePrinter {
int indent_level = 0;
String indent;
StringBuilder printed;
bool pending_indent = false;
void increase_indent();
void decrease_indent();
void push_line(const String &p_line = String());
void push_text(const String &p_text);
void print_annotation(const AnnotationNode *p_annotation);
void print_array(ArrayNode *p_array);
void print_assert(AssertNode *p_assert);
void print_assignment(AssignmentNode *p_assignment);
void print_await(AwaitNode *p_await);
void print_binary_op(BinaryOpNode *p_binary_op);
void print_call(CallNode *p_call);
void print_cast(CastNode *p_cast);
void print_class(ClassNode *p_class);
void print_constant(ConstantNode *p_constant);
void print_dictionary(DictionaryNode *p_dictionary);
void print_expression(ExpressionNode *p_expression);
void print_enum(EnumNode *p_enum);
void print_for(ForNode *p_for);
void print_function(FunctionNode *p_function, const String &p_context = "Function");
void print_get_node(GetNodeNode *p_get_node);
void print_if(IfNode *p_if, bool p_is_elif = false);
void print_identifier(IdentifierNode *p_identifier);
void print_lambda(LambdaNode *p_lambda);
void print_literal(LiteralNode *p_literal);
void print_match(MatchNode *p_match);
void print_match_branch(MatchBranchNode *p_match_branch);
void print_match_pattern(PatternNode *p_match_pattern);
void print_parameter(ParameterNode *p_parameter);
void print_preload(PreloadNode *p_preload);
void print_return(ReturnNode *p_return);
void print_self(SelfNode *p_self);
void print_signal(SignalNode *p_signal);
void print_statement(Node *p_statement);
void print_subscript(SubscriptNode *p_subscript);
void print_suite(SuiteNode *p_suite);
void print_ternary_op(TernaryOpNode *p_ternary_op);
void print_type(TypeNode *p_type);
void print_type_test(TypeTestNode *p_type_test);
void print_unary_op(UnaryOpNode *p_unary_op);
void print_variable(VariableNode *p_variable);
void print_while(WhileNode *p_while);
public:
void print_tree(const GDScriptParser &p_parser);
};
#endif // DEBUG_ENABLED
static void cleanup();
};
#endif // GDSCRIPT_PARSER_H