godot/modules/lightmapper_rd/lightmapper_rd.cpp
William Deurwaarder e11dd6500a GPULightmapper's triangles and their bounding box will be in-sync
Previously the bounding boxes and triangles were maintained in two separate
arrays (Vectors). As the triangle vector was sorted and the bounding-box array
was not , the order of both arrays differed. This meant that the index in one
was different than the other, which caused lookup issues.

To prevent this, the bounding-box is now part of the triangle structure so that
there is a single structure that cannot become out-of-sync anymore.
2021-09-11 14:02:37 +02:00

1724 lines
60 KiB
C++

/*************************************************************************/
/* lightmapper_rd.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "lightmapper_rd.h"
#include "core/config/project_settings.h"
#include "core/math/geometry_2d.h"
#include "lm_blendseams.glsl.gen.h"
#include "lm_compute.glsl.gen.h"
#include "lm_raster.glsl.gen.h"
#include "servers/rendering/rendering_device_binds.h"
//uncomment this if you want to see textures from all the process saved
//#define DEBUG_TEXTURES
void LightmapperRD::add_mesh(const MeshData &p_mesh) {
ERR_FAIL_COND(p_mesh.albedo_on_uv2.is_null() || p_mesh.albedo_on_uv2->is_empty());
ERR_FAIL_COND(p_mesh.emission_on_uv2.is_null() || p_mesh.emission_on_uv2->is_empty());
ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_width() != p_mesh.emission_on_uv2->get_width());
ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_height() != p_mesh.emission_on_uv2->get_height());
ERR_FAIL_COND(p_mesh.points.size() == 0);
MeshInstance mi;
mi.data = p_mesh;
mesh_instances.push_back(mi);
}
void LightmapperRD::add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_angular_distance) {
Light l;
l.type = LIGHT_TYPE_DIRECTIONAL;
l.direction[0] = p_direction.x;
l.direction[1] = p_direction.y;
l.direction[2] = p_direction.z;
l.color[0] = p_color.r;
l.color[1] = p_color.g;
l.color[2] = p_color.b;
l.energy = p_energy;
l.static_bake = p_static;
l.size = p_angular_distance;
lights.push_back(l);
}
void LightmapperRD::add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_range, float p_attenuation, float p_size) {
Light l;
l.type = LIGHT_TYPE_OMNI;
l.position[0] = p_position.x;
l.position[1] = p_position.y;
l.position[2] = p_position.z;
l.range = p_range;
l.attenuation = p_attenuation;
l.color[0] = p_color.r;
l.color[1] = p_color.g;
l.color[2] = p_color.b;
l.energy = p_energy;
l.static_bake = p_static;
l.size = p_size;
lights.push_back(l);
}
void LightmapperRD::add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size) {
Light l;
l.type = LIGHT_TYPE_SPOT;
l.position[0] = p_position.x;
l.position[1] = p_position.y;
l.position[2] = p_position.z;
l.direction[0] = p_direction.x;
l.direction[1] = p_direction.y;
l.direction[2] = p_direction.z;
l.range = p_range;
l.attenuation = p_attenuation;
l.cos_spot_angle = Math::cos(Math::deg2rad(p_spot_angle));
l.inv_spot_attenuation = 1.0f / p_spot_attenuation;
l.color[0] = p_color.r;
l.color[1] = p_color.g;
l.color[2] = p_color.b;
l.energy = p_energy;
l.static_bake = p_static;
l.size = p_size;
lights.push_back(l);
}
void LightmapperRD::add_probe(const Vector3 &p_position) {
Probe probe;
probe.position[0] = p_position.x;
probe.position[1] = p_position.y;
probe.position[2] = p_position.z;
probe.position[3] = 0;
probe_positions.push_back(probe);
}
void LightmapperRD::_plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector<TriangleSort> &triangles, uint32_t p_grid_size) {
int half_size = p_size / 2;
for (int i = 0; i < 8; i++) {
AABB aabb = p_bounds;
aabb.size *= 0.5;
Vector3i n = p_ofs;
if (i & 1) {
aabb.position.x += aabb.size.x;
n.x += half_size;
}
if (i & 2) {
aabb.position.y += aabb.size.y;
n.y += half_size;
}
if (i & 4) {
aabb.position.z += aabb.size.z;
n.z += half_size;
}
{
Vector3 qsize = aabb.size * 0.5; //quarter size, for fast aabb test
if (!Geometry3D::triangle_box_overlap(aabb.position + qsize, qsize, p_points)) {
//does not fit in child, go on
continue;
}
}
if (half_size == 1) {
//got to the end
TriangleSort ts;
ts.cell_index = n.x + (n.y * p_grid_size) + (n.z * p_grid_size * p_grid_size);
ts.triangle_index = p_triangle_index;
triangles.push_back(ts);
} else {
_plot_triangle_into_triangle_index_list(half_size, n, aabb, p_points, p_triangle_index, triangles, p_grid_size);
}
}
}
Lightmapper::BakeError LightmapperRD::_blit_meshes_into_atlas(int p_max_texture_size, Vector<Ref<Image>> &albedo_images, Vector<Ref<Image>> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, BakeStepFunc p_step_function, void *p_bake_userdata) {
Vector<Size2i> sizes;
for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
MeshInstance &mi = mesh_instances.write[m_i];
Size2i s = Size2i(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height());
sizes.push_back(s);
atlas_size.width = MAX(atlas_size.width, s.width + 2);
atlas_size.height = MAX(atlas_size.height, s.height + 2);
}
int max = nearest_power_of_2_templated(atlas_size.width);
max = MAX(max, nearest_power_of_2_templated(atlas_size.height));
if (max > p_max_texture_size) {
return BAKE_ERROR_LIGHTMAP_TOO_SMALL;
}
if (p_step_function) {
p_step_function(0.1, TTR("Determining optimal atlas size"), p_bake_userdata, true);
}
atlas_size = Size2i(max, max);
Size2i best_atlas_size;
int best_atlas_slices = 0;
int best_atlas_memory = 0x7FFFFFFF;
Vector<Vector3i> best_atlas_offsets;
//determine best texture array atlas size by bruteforce fitting
while (atlas_size.x <= p_max_texture_size && atlas_size.y <= p_max_texture_size) {
Vector<Vector2i> source_sizes;
Vector<int> source_indices;
source_sizes.resize(sizes.size());
source_indices.resize(sizes.size());
for (int i = 0; i < source_indices.size(); i++) {
source_sizes.write[i] = sizes[i] + Vector2i(2, 2); // Add padding between lightmaps
source_indices.write[i] = i;
}
Vector<Vector3i> atlas_offsets;
atlas_offsets.resize(source_sizes.size());
int slices = 0;
while (source_sizes.size() > 0) {
Vector<Vector3i> offsets = Geometry2D::partial_pack_rects(source_sizes, atlas_size);
Vector<int> new_indices;
Vector<Vector2i> new_sources;
for (int i = 0; i < offsets.size(); i++) {
Vector3i ofs = offsets[i];
int sidx = source_indices[i];
if (ofs.z > 0) {
//valid
ofs.z = slices;
atlas_offsets.write[sidx] = ofs + Vector3i(1, 1, 0); // Center lightmap in the reserved oversized region
} else {
new_indices.push_back(sidx);
new_sources.push_back(source_sizes[i]);
}
}
source_sizes = new_sources;
source_indices = new_indices;
slices++;
}
int mem_used = atlas_size.x * atlas_size.y * slices;
if (mem_used < best_atlas_memory) {
best_atlas_size = atlas_size;
best_atlas_offsets = atlas_offsets;
best_atlas_slices = slices;
best_atlas_memory = mem_used;
}
if (atlas_size.width == atlas_size.height) {
atlas_size.width *= 2;
} else {
atlas_size.height *= 2;
}
}
atlas_size = best_atlas_size;
atlas_slices = best_atlas_slices;
// apply the offsets and slice to all images, and also blit albedo and emission
albedo_images.resize(atlas_slices);
emission_images.resize(atlas_slices);
if (p_step_function) {
p_step_function(0.2, TTR("Blitting albedo and emission"), p_bake_userdata, true);
}
for (int i = 0; i < atlas_slices; i++) {
Ref<Image> albedo;
albedo.instantiate();
albedo->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBA8);
albedo->set_as_black();
albedo_images.write[i] = albedo;
Ref<Image> emission;
emission.instantiate();
emission->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH);
emission->set_as_black();
emission_images.write[i] = emission;
}
//assign uv positions
for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
MeshInstance &mi = mesh_instances.write[m_i];
mi.offset.x = best_atlas_offsets[m_i].x;
mi.offset.y = best_atlas_offsets[m_i].y;
mi.slice = best_atlas_offsets[m_i].z;
albedo_images.write[mi.slice]->blit_rect(mi.data.albedo_on_uv2, Rect2(Vector2(), Size2i(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height())), mi.offset);
emission_images.write[mi.slice]->blit_rect(mi.data.emission_on_uv2, Rect2(Vector2(), Size2i(mi.data.emission_on_uv2->get_width(), mi.data.emission_on_uv2->get_height())), mi.offset);
}
return BAKE_OK;
}
void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, Vector<Probe> &probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &lights_buffer, RID &triangle_cell_indices_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata) {
HashMap<Vertex, uint32_t, VertexHash> vertex_map;
//fill triangles array and vertex array
LocalVector<Triangle> triangles;
LocalVector<Vertex> vertex_array;
LocalVector<Seam> seams;
slice_triangle_count.resize(atlas_slices);
slice_seam_count.resize(atlas_slices);
for (int i = 0; i < atlas_slices; i++) {
slice_triangle_count.write[i] = 0;
slice_seam_count.write[i] = 0;
}
bounds = AABB();
for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
if (p_step_function) {
float p = float(m_i + 1) / mesh_instances.size() * 0.1;
p_step_function(0.3 + p, vformat(TTR("Plotting mesh into acceleration structure %d/%d"), m_i + 1, mesh_instances.size()), p_bake_userdata, false);
}
HashMap<Edge, EdgeUV2, EdgeHash> edges;
MeshInstance &mi = mesh_instances.write[m_i];
Vector2 uv_scale = Vector2(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height()) / Vector2(atlas_size);
Vector2 uv_offset = Vector2(mi.offset) / Vector2(atlas_size);
if (m_i == 0) {
bounds.position = mi.data.points[0];
}
for (int i = 0; i < mi.data.points.size(); i += 3) {
Vector3 vtxs[3] = { mi.data.points[i + 0], mi.data.points[i + 1], mi.data.points[i + 2] };
Vector2 uvs[3] = { mi.data.uv2[i + 0] * uv_scale + uv_offset, mi.data.uv2[i + 1] * uv_scale + uv_offset, mi.data.uv2[i + 2] * uv_scale + uv_offset };
Vector3 normal[3] = { mi.data.normal[i + 0], mi.data.normal[i + 1], mi.data.normal[i + 2] };
AABB taabb;
Triangle t;
t.slice = mi.slice;
for (int k = 0; k < 3; k++) {
bounds.expand_to(vtxs[k]);
Vertex v;
v.position[0] = vtxs[k].x;
v.position[1] = vtxs[k].y;
v.position[2] = vtxs[k].z;
v.uv[0] = uvs[k].x;
v.uv[1] = uvs[k].y;
v.normal_xy[0] = normal[k].x;
v.normal_xy[1] = normal[k].y;
v.normal_z = normal[k].z;
uint32_t *indexptr = vertex_map.getptr(v);
if (indexptr) {
t.indices[k] = *indexptr;
} else {
uint32_t new_index = vertex_map.size();
t.indices[k] = new_index;
vertex_map[v] = new_index;
vertex_array.push_back(v);
}
if (k == 0) {
taabb.position = vtxs[k];
} else {
taabb.expand_to(vtxs[k]);
}
}
//compute seams that will need to be blended later
for (int k = 0; k < 3; k++) {
int n = (k + 1) % 3;
Edge edge(vtxs[k], vtxs[n], normal[k], normal[n]);
Vector2i edge_indices(t.indices[k], t.indices[n]);
EdgeUV2 uv2(uvs[k], uvs[n], edge_indices);
if (edge.b == edge.a) {
continue; //degenerate, somehow
}
if (edge.b < edge.a) {
SWAP(edge.a, edge.b);
SWAP(edge.na, edge.nb);
SWAP(uv2.a, uv2.b);
SWAP(edge_indices.x, edge_indices.y);
}
EdgeUV2 *euv2 = edges.getptr(edge);
if (!euv2) {
edges[edge] = uv2;
} else {
if (*euv2 == uv2) {
continue; // seam shared UV space, no need to blend
}
if (euv2->seam_found) {
continue; //bad geometry
}
Seam seam;
seam.a = edge_indices;
seam.b = euv2->indices;
seam.slice = mi.slice;
seams.push_back(seam);
slice_seam_count.write[mi.slice]++;
euv2->seam_found = true;
}
}
t.min_bounds[0] = taabb.position.x;
t.min_bounds[1] = taabb.position.y;
t.min_bounds[2] = taabb.position.z;
t.max_bounds[0] = taabb.position.x + MAX(taabb.size.x, 0.0001);
t.max_bounds[1] = taabb.position.y + MAX(taabb.size.y, 0.0001);
t.max_bounds[2] = taabb.position.z + MAX(taabb.size.z, 0.0001);
t.pad0 = t.pad1 = 0; //make valgrind not complain
triangles.push_back(t);
slice_triangle_count.write[t.slice]++;
}
}
//also consider probe positions for bounds
for (int i = 0; i < probe_positions.size(); i++) {
Vector3 pp(probe_positions[i].position[0], probe_positions[i].position[1], probe_positions[i].position[2]);
bounds.expand_to(pp);
}
bounds.grow_by(0.1); //grow a bit to avoid numerical error
triangles.sort(); //sort by slice
seams.sort();
if (p_step_function) {
p_step_function(0.4, TTR("Optimizing acceleration structure"), p_bake_userdata, true);
}
//fill list of triangles in grid
LocalVector<TriangleSort> triangle_sort;
for (uint32_t i = 0; i < triangles.size(); i++) {
const Triangle &t = triangles[i];
Vector3 face[3] = {
Vector3(vertex_array[t.indices[0]].position[0], vertex_array[t.indices[0]].position[1], vertex_array[t.indices[0]].position[2]),
Vector3(vertex_array[t.indices[1]].position[0], vertex_array[t.indices[1]].position[1], vertex_array[t.indices[1]].position[2]),
Vector3(vertex_array[t.indices[2]].position[0], vertex_array[t.indices[2]].position[1], vertex_array[t.indices[2]].position[2])
};
_plot_triangle_into_triangle_index_list(grid_size, Vector3i(), bounds, face, i, triangle_sort, grid_size);
}
//sort it
triangle_sort.sort();
Vector<uint32_t> triangle_indices;
triangle_indices.resize(triangle_sort.size());
Vector<uint32_t> grid_indices;
grid_indices.resize(grid_size * grid_size * grid_size * 2);
memset(grid_indices.ptrw(), 0, grid_indices.size() * sizeof(uint32_t));
Vector<bool> solid;
solid.resize(grid_size * grid_size * grid_size);
memset(solid.ptrw(), 0, solid.size() * sizeof(bool));
{
uint32_t *tiw = triangle_indices.ptrw();
uint32_t last_cell = 0xFFFFFFFF;
uint32_t *giw = grid_indices.ptrw();
bool *solidw = solid.ptrw();
for (uint32_t i = 0; i < triangle_sort.size(); i++) {
uint32_t cell = triangle_sort[i].cell_index;
if (cell != last_cell) {
//cell changed, update pointer to indices
giw[cell * 2 + 1] = i;
solidw[cell] = true;
}
tiw[i] = triangle_sort[i].triangle_index;
giw[cell * 2]++; //update counter
last_cell = cell;
}
}
#if 0
for (int i = 0; i < grid_size; i++) {
for (int j = 0; j < grid_size; j++) {
for (int k = 0; k < grid_size; k++) {
uint32_t index = i * (grid_size * grid_size) + j * grid_size + k;
grid_indices.write[index * 2] = float(i) / grid_size * 255;
grid_indices.write[index * 2 + 1] = float(j) / grid_size * 255;
}
}
}
#endif
#if 0
for (int i = 0; i < grid_size; i++) {
Vector<uint8_t> grid_usage;
grid_usage.resize(grid_size * grid_size);
for (int j = 0; j < grid_usage.size(); j++) {
uint32_t ofs = i * grid_size * grid_size + j;
uint32_t count = grid_indices[ofs * 2];
grid_usage.write[j] = count > 0 ? 255 : 0;
}
Ref<Image> img;
img.instantiate();
img->create(grid_size, grid_size, false, Image::FORMAT_L8, grid_usage);
img->save_png("res://grid_layer_" + itos(1000 + i).substr(1, 3) + ".png");
}
#endif
/*****************************/
/*** CREATE GPU STRUCTURES ***/
/*****************************/
lights.sort();
Vector<Vector2i> seam_buffer_vec;
seam_buffer_vec.resize(seams.size() * 2);
for (uint32_t i = 0; i < seams.size(); i++) {
seam_buffer_vec.write[i * 2 + 0] = seams[i].a;
seam_buffer_vec.write[i * 2 + 1] = seams[i].b;
}
{ //buffers
Vector<uint8_t> vb = vertex_array.to_byte_array();
vertex_buffer = rd->storage_buffer_create(vb.size(), vb);
Vector<uint8_t> tb = triangles.to_byte_array();
triangle_buffer = rd->storage_buffer_create(tb.size(), tb);
Vector<uint8_t> tib = triangle_indices.to_byte_array();
triangle_cell_indices_buffer = rd->storage_buffer_create(tib.size(), tib);
Vector<uint8_t> lb = lights.to_byte_array();
if (lb.size() == 0) {
lb.resize(sizeof(Light)); //even if no lights, the buffer must exist
}
lights_buffer = rd->storage_buffer_create(lb.size(), lb);
Vector<uint8_t> sb = seam_buffer_vec.to_byte_array();
if (sb.size() == 0) {
sb.resize(sizeof(Vector2i) * 2); //even if no seams, the buffer must exist
}
seams_buffer = rd->storage_buffer_create(sb.size(), sb);
Vector<uint8_t> pb = probe_positions.to_byte_array();
if (pb.size() == 0) {
pb.resize(sizeof(Probe));
}
probe_positions_buffer = rd->storage_buffer_create(pb.size(), pb);
}
{ //grid
RD::TextureFormat tf;
tf.width = grid_size;
tf.height = grid_size;
tf.depth = grid_size;
tf.texture_type = RD::TEXTURE_TYPE_3D;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
Vector<Vector<uint8_t>> texdata;
texdata.resize(1);
//grid and indices
tf.format = RD::DATA_FORMAT_R32G32_UINT;
texdata.write[0] = grid_indices.to_byte_array();
grid_texture = rd->texture_create(tf, RD::TextureView(), texdata);
}
}
void LightmapperRD::_raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector<int> slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform) {
Vector<RID> framebuffers;
for (int i = 0; i < atlas_slices; i++) {
RID slice_pos_tex = rd->texture_create_shared_from_slice(RD::TextureView(), position_tex, i, 0);
RID slice_unoc_tex = rd->texture_create_shared_from_slice(RD::TextureView(), unocclude_tex, i, 0);
RID slice_norm_tex = rd->texture_create_shared_from_slice(RD::TextureView(), normal_tex, i, 0);
Vector<RID> fb;
fb.push_back(slice_pos_tex);
fb.push_back(slice_norm_tex);
fb.push_back(slice_unoc_tex);
fb.push_back(raster_depth_buffer);
framebuffers.push_back(rd->framebuffer_create(fb));
}
RD::PipelineDepthStencilState ds;
ds.enable_depth_test = true;
ds.enable_depth_write = true;
ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does render same pixel twice
RID raster_pipeline = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0);
RID raster_pipeline_wire;
{
RD::PipelineRasterizationState rw;
rw.wireframe = true;
raster_pipeline_wire = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, rw, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0);
}
uint32_t triangle_offset = 0;
Vector<Color> clear_colors;
clear_colors.push_back(Color(0, 0, 0, 0));
clear_colors.push_back(Color(0, 0, 0, 0));
clear_colors.push_back(Color(0, 0, 0, 0));
for (int i = 0; i < atlas_slices; i++) {
RasterPushConstant raster_push_constant;
raster_push_constant.atlas_size[0] = atlas_size.x;
raster_push_constant.atlas_size[1] = atlas_size.y;
raster_push_constant.base_triangle = triangle_offset;
raster_push_constant.to_cell_offset[0] = bounds.position.x;
raster_push_constant.to_cell_offset[1] = bounds.position.y;
raster_push_constant.to_cell_offset[2] = bounds.position.z;
raster_push_constant.bias = p_bias;
raster_push_constant.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size);
raster_push_constant.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size);
raster_push_constant.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size);
raster_push_constant.grid_size[0] = grid_size;
raster_push_constant.grid_size[1] = grid_size;
raster_push_constant.grid_size[2] = grid_size;
raster_push_constant.uv_offset[0] = 0;
raster_push_constant.uv_offset[1] = 0;
RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i], RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
//draw opaque
rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline);
rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant));
rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
//draw wire
rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline_wire);
rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant));
rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
rd->draw_list_end();
triangle_offset += slice_triangle_count[i];
}
}
LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_denoiser, int p_bounces, float p_bias, int p_max_texture_size, bool p_bake_sh, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function, void *p_bake_userdata) {
if (p_step_function) {
p_step_function(0.0, TTR("Begin Bake"), p_bake_userdata, true);
}
bake_textures.clear();
int grid_size = 128;
/* STEP 1: Fetch material textures and compute the bounds */
AABB bounds;
Size2i atlas_size;
int atlas_slices;
Vector<Ref<Image>> albedo_images;
Vector<Ref<Image>> emission_images;
BakeError bake_error = _blit_meshes_into_atlas(p_max_texture_size, albedo_images, emission_images, bounds, atlas_size, atlas_slices, p_step_function, p_bake_userdata);
if (bake_error != BAKE_OK) {
return bake_error;
}
#ifdef DEBUG_TEXTURES
for (int i = 0; i < atlas_slices; i++) {
albedo_images[i]->save_png("res://0_albedo_" + itos(i) + ".png");
emission_images[i]->save_png("res://0_emission_" + itos(i) + ".png");
}
#endif
RenderingDevice *rd = RenderingDevice::get_singleton()->create_local_device();
RID albedo_array_tex;
RID emission_array_tex;
RID normal_tex;
RID position_tex;
RID unocclude_tex;
RID light_source_tex;
RID light_dest_tex;
RID light_accum_tex;
RID light_accum_tex2;
RID light_primary_dynamic_tex;
RID light_environment_tex;
#define FREE_TEXTURES \
rd->free(albedo_array_tex); \
rd->free(emission_array_tex); \
rd->free(normal_tex); \
rd->free(position_tex); \
rd->free(unocclude_tex); \
rd->free(light_source_tex); \
rd->free(light_accum_tex2); \
rd->free(light_accum_tex); \
rd->free(light_primary_dynamic_tex); \
rd->free(light_environment_tex);
{ // create all textures
Vector<Vector<uint8_t>> albedo_data;
Vector<Vector<uint8_t>> emission_data;
for (int i = 0; i < atlas_slices; i++) {
albedo_data.push_back(albedo_images[i]->get_data());
emission_data.push_back(emission_images[i]->get_data());
}
RD::TextureFormat tf;
tf.width = atlas_size.width;
tf.height = atlas_size.height;
tf.array_layers = atlas_slices;
tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
albedo_array_tex = rd->texture_create(tf, RD::TextureView(), albedo_data);
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
emission_array_tex = rd->texture_create(tf, RD::TextureView(), emission_data);
//this will be rastered to
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
normal_tex = rd->texture_create(tf, RD::TextureView());
tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
position_tex = rd->texture_create(tf, RD::TextureView());
unocclude_tex = rd->texture_create(tf, RD::TextureView());
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
light_source_tex = rd->texture_create(tf, RD::TextureView());
rd->texture_clear(light_source_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
light_primary_dynamic_tex = rd->texture_create(tf, RD::TextureView());
rd->texture_clear(light_primary_dynamic_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
if (p_bake_sh) {
tf.array_layers *= 4;
}
light_accum_tex = rd->texture_create(tf, RD::TextureView());
rd->texture_clear(light_accum_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers);
light_dest_tex = rd->texture_create(tf, RD::TextureView());
rd->texture_clear(light_dest_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers);
light_accum_tex2 = light_dest_tex;
//env
{
Ref<Image> panorama_tex;
if (p_environment_panorama.is_valid()) {
panorama_tex = p_environment_panorama;
panorama_tex->convert(Image::FORMAT_RGBAF);
} else {
panorama_tex.instantiate();
panorama_tex->create(8, 8, false, Image::FORMAT_RGBAF);
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
panorama_tex->set_pixel(i, j, Color(0, 0, 0, 1));
}
}
}
RD::TextureFormat tfp;
tfp.width = panorama_tex->get_width();
tfp.height = panorama_tex->get_height();
tfp.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
tfp.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
Vector<Vector<uint8_t>> tdata;
tdata.push_back(panorama_tex->get_data());
light_environment_tex = rd->texture_create(tfp, RD::TextureView(), tdata);
#ifdef DEBUG_TEXTURES
panorama_tex->save_exr("res://0_panorama.exr", false);
#endif
}
}
/* STEP 2: create the acceleration structure for the GPU*/
Vector<int> slice_triangle_count;
RID vertex_buffer;
RID triangle_buffer;
RID lights_buffer;
RID triangle_cell_indices_buffer;
RID grid_texture;
RID seams_buffer;
RID probe_positions_buffer;
Vector<int> slice_seam_count;
#define FREE_BUFFERS \
rd->free(vertex_buffer); \
rd->free(triangle_buffer); \
rd->free(lights_buffer); \
rd->free(triangle_cell_indices_buffer); \
rd->free(grid_texture); \
rd->free(seams_buffer); \
rd->free(probe_positions_buffer);
_create_acceleration_structures(rd, atlas_size, atlas_slices, bounds, grid_size, probe_positions, p_generate_probes, slice_triangle_count, slice_seam_count, vertex_buffer, triangle_buffer, lights_buffer, triangle_cell_indices_buffer, probe_positions_buffer, grid_texture, seams_buffer, p_step_function, p_bake_userdata);
if (p_step_function) {
p_step_function(0.47, TTR("Preparing shaders"), p_bake_userdata, true);
}
//shaders
Ref<RDShaderFile> raster_shader;
raster_shader.instantiate();
Error err = raster_shader->parse_versions_from_text(lm_raster_shader_glsl);
if (err != OK) {
raster_shader->print_errors("raster_shader");
FREE_TEXTURES
FREE_BUFFERS
memdelete(rd);
}
ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
RID rasterize_shader = rd->shader_create_from_spirv(raster_shader->get_spirv_stages());
ERR_FAIL_COND_V(rasterize_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //this is a bug check, though, should not happen
RID sampler;
{
RD::SamplerState s;
s.mag_filter = RD::SAMPLER_FILTER_LINEAR;
s.min_filter = RD::SAMPLER_FILTER_LINEAR;
s.max_lod = 0;
sampler = rd->sampler_create(s);
}
Vector<RD::Uniform> base_uniforms;
{
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.ids.push_back(vertex_buffer);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.ids.push_back(triangle_buffer);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 3;
u.ids.push_back(triangle_cell_indices_buffer);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 4;
u.ids.push_back(lights_buffer);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 5;
u.ids.push_back(seams_buffer);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 6;
u.ids.push_back(probe_positions_buffer);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 7;
u.ids.push_back(grid_texture);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 8;
u.ids.push_back(albedo_array_tex);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 9;
u.ids.push_back(emission_array_tex);
base_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.ids.push_back(sampler);
base_uniforms.push_back(u);
}
}
RID raster_base_uniform = rd->uniform_set_create(base_uniforms, rasterize_shader, 0);
RID raster_depth_buffer;
{
RD::TextureFormat tf;
tf.width = atlas_size.width;
tf.height = atlas_size.height;
tf.depth = 1;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
tf.format = RD::DATA_FORMAT_D32_SFLOAT;
raster_depth_buffer = rd->texture_create(tf, RD::TextureView());
}
rd->submit();
rd->sync();
/* STEP 3: Raster the geometry to UV2 coords in the atlas textures GPU*/
_raster_geometry(rd, atlas_size, atlas_slices, grid_size, bounds, p_bias, slice_triangle_count, position_tex, unocclude_tex, normal_tex, raster_depth_buffer, rasterize_shader, raster_base_uniform);
#ifdef DEBUG_TEXTURES
for (int i = 0; i < atlas_slices; i++) {
Vector<uint8_t> s = rd->texture_get_data(position_tex, i);
Ref<Image> img;
img.instantiate();
img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAF, s);
img->save_exr("res://1_position_" + itos(i) + ".exr", false);
s = rd->texture_get_data(normal_tex, i);
img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
img->save_exr("res://1_normal_" + itos(i) + ".exr", false);
}
#endif
#define FREE_RASTER_RESOURCES \
rd->free(rasterize_shader); \
rd->free(sampler); \
rd->free(raster_depth_buffer);
/* Plot direct light */
Ref<RDShaderFile> compute_shader;
compute_shader.instantiate();
err = compute_shader->parse_versions_from_text(lm_compute_shader_glsl, p_bake_sh ? "\n#define USE_SH_LIGHTMAPS\n" : "");
if (err != OK) {
FREE_TEXTURES
FREE_BUFFERS
FREE_RASTER_RESOURCES
memdelete(rd);
compute_shader->print_errors("compute_shader");
}
ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
// Unoccluder
RID compute_shader_unocclude = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("unocclude"));
ERR_FAIL_COND_V(compute_shader_unocclude.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen
RID compute_shader_unocclude_pipeline = rd->compute_pipeline_create(compute_shader_unocclude);
// Direct light
RID compute_shader_primary = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("primary"));
ERR_FAIL_COND_V(compute_shader_primary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen
RID compute_shader_primary_pipeline = rd->compute_pipeline_create(compute_shader_primary);
// Indirect light
RID compute_shader_secondary = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("secondary"));
ERR_FAIL_COND_V(compute_shader_secondary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
RID compute_shader_secondary_pipeline = rd->compute_pipeline_create(compute_shader_secondary);
// Dilate
RID compute_shader_dilate = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("dilate"));
ERR_FAIL_COND_V(compute_shader_dilate.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
RID compute_shader_dilate_pipeline = rd->compute_pipeline_create(compute_shader_dilate);
// Light probes
RID compute_shader_light_probes = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("light_probes"));
ERR_FAIL_COND_V(compute_shader_light_probes.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
RID compute_shader_light_probes_pipeline = rd->compute_pipeline_create(compute_shader_light_probes);
RID compute_base_uniform_set = rd->uniform_set_create(base_uniforms, compute_shader_primary, 0);
#define FREE_COMPUTE_RESOURCES \
rd->free(compute_shader_unocclude); \
rd->free(compute_shader_primary); \
rd->free(compute_shader_secondary); \
rd->free(compute_shader_dilate); \
rd->free(compute_shader_light_probes);
PushConstant push_constant;
{
//set defaults
push_constant.atlas_size[0] = atlas_size.width;
push_constant.atlas_size[1] = atlas_size.height;
push_constant.world_size[0] = bounds.size.x;
push_constant.world_size[1] = bounds.size.y;
push_constant.world_size[2] = bounds.size.z;
push_constant.to_cell_offset[0] = bounds.position.x;
push_constant.to_cell_offset[1] = bounds.position.y;
push_constant.to_cell_offset[2] = bounds.position.z;
push_constant.bias = p_bias;
push_constant.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size);
push_constant.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size);
push_constant.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size);
push_constant.light_count = lights.size();
push_constant.grid_size = grid_size;
push_constant.atlas_slice = 0;
push_constant.region_ofs[0] = 0;
push_constant.region_ofs[1] = 0;
push_constant.environment_xform[0] = p_environment_transform.elements[0][0];
push_constant.environment_xform[1] = p_environment_transform.elements[1][0];
push_constant.environment_xform[2] = p_environment_transform.elements[2][0];
push_constant.environment_xform[3] = 0;
push_constant.environment_xform[4] = p_environment_transform.elements[0][1];
push_constant.environment_xform[5] = p_environment_transform.elements[1][1];
push_constant.environment_xform[6] = p_environment_transform.elements[2][1];
push_constant.environment_xform[7] = 0;
push_constant.environment_xform[8] = p_environment_transform.elements[0][2];
push_constant.environment_xform[9] = p_environment_transform.elements[1][2];
push_constant.environment_xform[10] = p_environment_transform.elements[2][2];
push_constant.environment_xform[11] = 0;
}
Vector3i group_size((atlas_size.x - 1) / 8 + 1, (atlas_size.y - 1) / 8 + 1, 1);
rd->submit();
rd->sync();
if (p_step_function) {
p_step_function(0.49, TTR("Un-occluding geometry"), p_bake_userdata, true);
}
/* UNOCCLUDE */
{
Vector<RD::Uniform> uniforms;
{
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 0;
u.ids.push_back(position_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.ids.push_back(unocclude_tex); //will be unused
uniforms.push_back(u);
}
}
RID unocclude_uniform_set = rd->uniform_set_create(uniforms, compute_shader_unocclude, 1);
RD::ComputeListID compute_list = rd->compute_list_begin();
rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_unocclude_pipeline);
rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
rd->compute_list_bind_uniform_set(compute_list, unocclude_uniform_set, 1);
for (int i = 0; i < atlas_slices; i++) {
push_constant.atlas_slice = i;
rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
//no barrier, let them run all together
}
rd->compute_list_end(); //done
}
if (p_step_function) {
p_step_function(0.5, TTR("Plot direct lighting"), p_bake_userdata, true);
}
/* PRIMARY (direct) LIGHT PASS */
{
Vector<RD::Uniform> uniforms;
{
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 0;
u.ids.push_back(light_source_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
u.ids.push_back(light_dest_tex); //will be unused
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
u.ids.push_back(position_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 3;
u.ids.push_back(normal_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 4;
u.ids.push_back(light_accum_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.ids.push_back(light_primary_dynamic_tex);
uniforms.push_back(u);
}
}
RID light_uniform_set = rd->uniform_set_create(uniforms, compute_shader_primary, 1);
RD::ComputeListID compute_list = rd->compute_list_begin();
rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_primary_pipeline);
rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
rd->compute_list_bind_uniform_set(compute_list, light_uniform_set, 1);
for (int i = 0; i < atlas_slices; i++) {
push_constant.atlas_slice = i;
rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
//no barrier, let them run all together
}
rd->compute_list_end(); //done
}
#ifdef DEBUG_TEXTURES
for (int i = 0; i < atlas_slices; i++) {
Vector<uint8_t> s = rd->texture_get_data(light_source_tex, i);
Ref<Image> img;
img.instantiate();
img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
img->save_exr("res://2_light_primary_" + itos(i) + ".exr", false);
}
#endif
/* SECONDARY (indirect) LIGHT PASS(ES) */
if (p_step_function) {
p_step_function(0.6, TTR("Integrate indirect lighting"), p_bake_userdata, true);
}
if (p_bounces > 0) {
Vector<RD::Uniform> uniforms;
{
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 0;
u.ids.push_back(light_dest_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
u.ids.push_back(light_source_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
u.ids.push_back(position_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 3;
u.ids.push_back(normal_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 4;
u.ids.push_back(light_accum_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.ids.push_back(unocclude_tex); //reuse unocclude tex
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 6;
u.ids.push_back(light_environment_tex);
uniforms.push_back(u);
}
}
RID secondary_uniform_set[2];
secondary_uniform_set[0] = rd->uniform_set_create(uniforms, compute_shader_secondary, 1);
uniforms.write[0].ids.write[0] = light_source_tex;
uniforms.write[1].ids.write[0] = light_dest_tex;
secondary_uniform_set[1] = rd->uniform_set_create(uniforms, compute_shader_secondary, 1);
switch (p_quality) {
case BAKE_QUALITY_LOW: {
push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/low_quality_ray_count");
} break;
case BAKE_QUALITY_MEDIUM: {
push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/medium_quality_ray_count");
} break;
case BAKE_QUALITY_HIGH: {
push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/high_quality_ray_count");
} break;
case BAKE_QUALITY_ULTRA: {
push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/ultra_quality_ray_count");
} break;
}
push_constant.ray_count = CLAMP(push_constant.ray_count, 16, 8192);
int max_region_size = nearest_power_of_2_templated(int(GLOBAL_GET("rendering/lightmapping/bake_performance/region_size")));
int max_rays = GLOBAL_GET("rendering/lightmapping/bake_performance/max_rays_per_pass");
int x_regions = (atlas_size.width - 1) / max_region_size + 1;
int y_regions = (atlas_size.height - 1) / max_region_size + 1;
int ray_iterations = (push_constant.ray_count - 1) / max_rays + 1;
rd->submit();
rd->sync();
for (int b = 0; b < p_bounces; b++) {
int count = 0;
if (b > 0) {
SWAP(light_source_tex, light_dest_tex);
SWAP(secondary_uniform_set[0], secondary_uniform_set[1]);
}
for (int s = 0; s < atlas_slices; s++) {
push_constant.atlas_slice = s;
for (int i = 0; i < x_regions; i++) {
for (int j = 0; j < y_regions; j++) {
int x = i * max_region_size;
int y = j * max_region_size;
int w = MIN((i + 1) * max_region_size, atlas_size.width) - x;
int h = MIN((j + 1) * max_region_size, atlas_size.height) - y;
push_constant.region_ofs[0] = x;
push_constant.region_ofs[1] = y;
group_size = Vector3i((w - 1) / 8 + 1, (h - 1) / 8 + 1, 1);
for (int k = 0; k < ray_iterations; k++) {
RD::ComputeListID compute_list = rd->compute_list_begin();
rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_secondary_pipeline);
rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
rd->compute_list_bind_uniform_set(compute_list, secondary_uniform_set[0], 1);
push_constant.ray_from = k * max_rays;
push_constant.ray_to = MIN((k + 1) * max_rays, int32_t(push_constant.ray_count));
rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
rd->compute_list_end(); //done
rd->submit();
rd->sync();
count++;
if (p_step_function) {
int total = (atlas_slices * x_regions * y_regions * ray_iterations);
int percent = count * 100 / total;
float p = float(count) / total * 0.1;
p_step_function(0.6 + p, vformat(TTR("Bounce %d/%d: Integrate indirect lighting %d%%"), b + 1, p_bounces, percent), p_bake_userdata, false);
}
}
}
}
}
if (b == 0) {
// This disables the environment for subsequent bounces
push_constant.environment_xform[3] = -99.0f;
}
}
// Restore the correct environment transform
push_constant.environment_xform[3] = 0.0f;
}
/* LIGHPROBES */
RID light_probe_buffer;
if (probe_positions.size()) {
light_probe_buffer = rd->storage_buffer_create(sizeof(float) * 4 * 9 * probe_positions.size());
if (p_step_function) {
p_step_function(0.7, TTR("Baking lightprobes"), p_bake_userdata, true);
}
Vector<RD::Uniform> uniforms;
{
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(light_probe_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
u.ids.push_back(light_dest_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
u.ids.push_back(light_primary_dynamic_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 3;
u.ids.push_back(light_environment_tex);
uniforms.push_back(u);
}
}
RID light_probe_uniform_set = rd->uniform_set_create(uniforms, compute_shader_light_probes, 1);
switch (p_quality) {
case BAKE_QUALITY_LOW: {
push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/low_quality_probe_ray_count");
} break;
case BAKE_QUALITY_MEDIUM: {
push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/medium_quality_probe_ray_count");
} break;
case BAKE_QUALITY_HIGH: {
push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/high_quality_probe_ray_count");
} break;
case BAKE_QUALITY_ULTRA: {
push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/ultra_quality_probe_ray_count");
} break;
}
push_constant.atlas_size[0] = probe_positions.size();
push_constant.ray_count = CLAMP(push_constant.ray_count, 16, 8192);
int max_rays = GLOBAL_GET("rendering/lightmapping/bake_performance/max_rays_per_probe_pass");
int ray_iterations = (push_constant.ray_count - 1) / max_rays + 1;
for (int i = 0; i < ray_iterations; i++) {
RD::ComputeListID compute_list = rd->compute_list_begin();
rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_light_probes_pipeline);
rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
rd->compute_list_bind_uniform_set(compute_list, light_probe_uniform_set, 1);
push_constant.ray_from = i * max_rays;
push_constant.ray_to = MIN((i + 1) * max_rays, int32_t(push_constant.ray_count));
rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
rd->compute_list_dispatch(compute_list, (probe_positions.size() - 1) / 64 + 1, 1, 1);
rd->compute_list_end(); //done
rd->submit();
rd->sync();
if (p_step_function) {
int percent = i * 100 / ray_iterations;
float p = float(i) / ray_iterations * 0.1;
p_step_function(0.7 + p, vformat(TTR("Integrating light probes %d%%"), percent), p_bake_userdata, false);
}
}
push_constant.atlas_size[0] = atlas_size.x; //restore
}
#if 0
for (int i = 0; i < probe_positions.size(); i++) {
Ref<Image> img;
img.instantiate();
img->create(6, 4, false, Image::FORMAT_RGB8);
for (int j = 0; j < 6; j++) {
Vector<uint8_t> s = rd->texture_get_data(lightprobe_tex, i * 6 + j);
Ref<Image> img2;
img2.instantiate();
img2->create(2, 2, false, Image::FORMAT_RGBAF, s);
img2->convert(Image::FORMAT_RGB8);
img->blit_rect(img2, Rect2(0, 0, 2, 2), Point2((j % 3) * 2, (j / 3) * 2));
}
img->save_png("res://3_light_probe_" + itos(i) + ".png");
}
#endif
/* DENOISE */
if (p_use_denoiser) {
if (p_step_function) {
p_step_function(0.8, TTR("Denoising"), p_bake_userdata, true);
}
Ref<LightmapDenoiser> denoiser = LightmapDenoiser::create();
if (denoiser.is_valid()) {
for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
Ref<Image> img;
img.instantiate();
img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
Ref<Image> denoised = denoiser->denoise_image(img);
if (denoised != img) {
denoised->convert(Image::FORMAT_RGBAH);
Vector<uint8_t> ds = denoised->get_data();
denoised.unref(); //avoid copy on write
{ //restore alpha
uint32_t count = s.size() / 2; //uint16s
const uint16_t *src = (const uint16_t *)s.ptr();
uint16_t *dst = (uint16_t *)ds.ptrw();
for (uint32_t j = 0; j < count; j += 4) {
dst[j + 3] = src[j + 3];
}
}
rd->texture_update(light_accum_tex, i, ds);
}
}
}
}
#ifdef DEBUG_TEXTURES
for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
Ref<Image> img;
img.instantiate();
img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
img->save_exr("res://4_light_secondary_" + itos(i) + ".exr", false);
}
#endif
/* DILATE LIGHTMAP */
{
SWAP(light_accum_tex, light_accum_tex2);
Vector<RD::Uniform> uniforms;
{
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 0;
u.ids.push_back(light_accum_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
u.ids.push_back(light_accum_tex2);
uniforms.push_back(u);
}
}
RID dilate_uniform_set = rd->uniform_set_create(uniforms, compute_shader_dilate, 1);
RD::ComputeListID compute_list = rd->compute_list_begin();
rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_dilate_pipeline);
rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
rd->compute_list_bind_uniform_set(compute_list, dilate_uniform_set, 1);
push_constant.region_ofs[0] = 0;
push_constant.region_ofs[1] = 0;
group_size = Vector3i((atlas_size.x - 1) / 8 + 1, (atlas_size.y - 1) / 8 + 1, 1); //restore group size
for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
push_constant.atlas_slice = i;
rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
//no barrier, let them run all together
}
rd->compute_list_end();
}
#ifdef DEBUG_TEXTURES
for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
Ref<Image> img;
img.instantiate();
img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
img->convert(Image::FORMAT_RGBA8);
img->save_png("res://5_dilated_" + itos(i) + ".png");
}
#endif
/* BLEND SEAMS */
//shaders
Ref<RDShaderFile> blendseams_shader;
blendseams_shader.instantiate();
err = blendseams_shader->parse_versions_from_text(lm_blendseams_shader_glsl);
if (err != OK) {
FREE_TEXTURES
FREE_BUFFERS
FREE_RASTER_RESOURCES
FREE_COMPUTE_RESOURCES
memdelete(rd);
blendseams_shader->print_errors("blendseams_shader");
}
ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
RID blendseams_line_raster_shader = rd->shader_create_from_spirv(blendseams_shader->get_spirv_stages("lines"));
ERR_FAIL_COND_V(blendseams_line_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
RID blendseams_triangle_raster_shader = rd->shader_create_from_spirv(blendseams_shader->get_spirv_stages("triangles"));
ERR_FAIL_COND_V(blendseams_triangle_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
#define FREE_BLENDSEAMS_RESOURCES \
rd->free(blendseams_line_raster_shader); \
rd->free(blendseams_triangle_raster_shader);
{
//pre copy
for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
rd->texture_copy(light_accum_tex, light_accum_tex2, Vector3(), Vector3(), Vector3(atlas_size.width, atlas_size.height, 1), 0, 0, i, i);
}
Vector<RID> framebuffers;
for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
RID slice_tex = rd->texture_create_shared_from_slice(RD::TextureView(), light_accum_tex, i, 0);
Vector<RID> fb;
fb.push_back(slice_tex);
fb.push_back(raster_depth_buffer);
framebuffers.push_back(rd->framebuffer_create(fb));
}
Vector<RD::Uniform> uniforms;
{
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 0;
u.ids.push_back(light_accum_tex2);
uniforms.push_back(u);
}
}
RID blendseams_raster_uniform = rd->uniform_set_create(uniforms, blendseams_line_raster_shader, 1);
bool debug = false;
RD::PipelineColorBlendState bs = RD::PipelineColorBlendState::create_blend(1);
bs.attachments.write[0].src_alpha_blend_factor = RD::BLEND_FACTOR_ZERO;
bs.attachments.write[0].dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
RD::PipelineDepthStencilState ds;
ds.enable_depth_test = true;
ds.enable_depth_write = true;
ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does not render same pixel twice, this avoids wrong blending
RID blendseams_line_raster_pipeline = rd->render_pipeline_create(blendseams_line_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_LINES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0);
RID blendseams_triangle_raster_pipeline = rd->render_pipeline_create(blendseams_triangle_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0);
uint32_t seam_offset = 0;
uint32_t triangle_offset = 0;
Vector<Color> clear_colors;
clear_colors.push_back(Color(0, 0, 0, 1));
for (int i = 0; i < atlas_slices; i++) {
int subslices = (p_bake_sh ? 4 : 1);
if (slice_seam_count[i] == 0) {
continue;
}
for (int k = 0; k < subslices; k++) {
RasterSeamsPushConstant seams_push_constant;
seams_push_constant.slice = uint32_t(i * subslices + k);
seams_push_constant.debug = debug;
RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
rd->draw_list_bind_uniform_set(draw_list, blendseams_raster_uniform, 1);
const int uv_offset_count = 9;
static const Vector3 uv_offsets[uv_offset_count] = {
Vector3(0, 0, 0.5), //using zbuffer, so go inwards-outwards
Vector3(0, 1, 0.2),
Vector3(0, -1, 0.2),
Vector3(1, 0, 0.2),
Vector3(-1, 0, 0.2),
Vector3(-1, -1, 0.1),
Vector3(1, -1, 0.1),
Vector3(1, 1, 0.1),
Vector3(-1, 1, 0.1),
};
/* step 1 use lines to blend the edges */
{
seams_push_constant.base_index = seam_offset;
rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline);
seams_push_constant.uv_offset[0] = uv_offsets[0].x / float(atlas_size.width);
seams_push_constant.uv_offset[1] = uv_offsets[0].y / float(atlas_size.height);
seams_push_constant.blend = uv_offsets[0].z;
rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4);
}
/* step 2 use triangles to mask the interior */
{
seams_push_constant.base_index = triangle_offset;
rd->draw_list_bind_render_pipeline(draw_list, blendseams_triangle_raster_pipeline);
seams_push_constant.blend = 0; //do not draw them, just fill the z-buffer so its used as a mask
rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
}
/* step 3 blend around the triangle */
rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline);
for (int j = 1; j < uv_offset_count; j++) {
seams_push_constant.base_index = seam_offset;
seams_push_constant.uv_offset[0] = uv_offsets[j].x / float(atlas_size.width);
seams_push_constant.uv_offset[1] = uv_offsets[j].y / float(atlas_size.height);
seams_push_constant.blend = uv_offsets[0].z;
rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4);
}
rd->draw_list_end();
}
seam_offset += slice_seam_count[i];
triangle_offset += slice_triangle_count[i];
}
}
#ifdef DEBUG_TEXTURES
for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
Ref<Image> img;
img.instantiate();
img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
img->save_exr("res://5_blendseams" + itos(i) + ".exr", false);
}
#endif
if (p_step_function) {
p_step_function(0.9, TTR("Retrieving textures"), p_bake_userdata, true);
}
for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
Ref<Image> img;
img.instantiate();
img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
img->convert(Image::FORMAT_RGBH); //remove alpha
bake_textures.push_back(img);
}
if (probe_positions.size() > 0) {
probe_values.resize(probe_positions.size() * 9);
Vector<uint8_t> probe_data = rd->buffer_get_data(light_probe_buffer);
memcpy(probe_values.ptrw(), probe_data.ptr(), probe_data.size());
rd->free(light_probe_buffer);
#ifdef DEBUG_TEXTURES
{
Ref<Image> img2;
img2.instantiate();
img2->create(probe_values.size(), 1, false, Image::FORMAT_RGBAF, probe_data);
img2->save_exr("res://6_lightprobes.exr", false);
}
#endif
}
FREE_TEXTURES
FREE_BUFFERS
FREE_RASTER_RESOURCES
FREE_COMPUTE_RESOURCES
FREE_BLENDSEAMS_RESOURCES
memdelete(rd);
return BAKE_OK;
}
int LightmapperRD::get_bake_texture_count() const {
return bake_textures.size();
}
Ref<Image> LightmapperRD::get_bake_texture(int p_index) const {
ERR_FAIL_INDEX_V(p_index, bake_textures.size(), Ref<Image>());
return bake_textures[p_index];
}
int LightmapperRD::get_bake_mesh_count() const {
return mesh_instances.size();
}
Variant LightmapperRD::get_bake_mesh_userdata(int p_index) const {
ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant());
return mesh_instances[p_index].data.userdata;
}
Rect2 LightmapperRD::get_bake_mesh_uv_scale(int p_index) const {
ERR_FAIL_COND_V(bake_textures.size() == 0, Rect2());
Rect2 uv_ofs;
Vector2 atlas_size = Vector2(bake_textures[0]->get_width(), bake_textures[0]->get_height());
uv_ofs.position = Vector2(mesh_instances[p_index].offset) / atlas_size;
uv_ofs.size = Vector2(mesh_instances[p_index].data.albedo_on_uv2->get_width(), mesh_instances[p_index].data.albedo_on_uv2->get_height()) / atlas_size;
return uv_ofs;
}
int LightmapperRD::get_bake_mesh_texture_slice(int p_index) const {
ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant());
return mesh_instances[p_index].slice;
}
int LightmapperRD::get_bake_probe_count() const {
return probe_positions.size();
}
Vector3 LightmapperRD::get_bake_probe_point(int p_probe) const {
ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Variant());
return Vector3(probe_positions[p_probe].position[0], probe_positions[p_probe].position[1], probe_positions[p_probe].position[2]);
}
Vector<Color> LightmapperRD::get_bake_probe_sh(int p_probe) const {
ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Vector<Color>());
Vector<Color> ret;
ret.resize(9);
memcpy(ret.ptrw(), &probe_values[p_probe * 9], sizeof(Color) * 9);
return ret;
}
LightmapperRD::LightmapperRD() {
}