mirror of
https://github.com/godotengine/godot.git
synced 2025-01-06 17:37:18 +08:00
d03b7fbe09
* Made the Basis euler orders indexed via enum. * Node3D has a new rotation_order property to choose Euler rotation order. * Node3D has also a rotation_mode property to choose between Euler, Quaternion and Basis Exposing these modes as well as the order makes Godot a lot friendlier for animators, which can choose the best way to interpolate rotations. The new *Basis* mode makes the (exposed) transform property obsolete, so it was removed (can still be accessed by code of course).
1463 lines
50 KiB
C++
1463 lines
50 KiB
C++
/*************************************************************************/
|
|
/* lightmap_gi.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "lightmap_gi.h"
|
|
|
|
#include "core/io/config_file.h"
|
|
#include "core/math/delaunay_3d.h"
|
|
#include "lightmap_probe.h"
|
|
#include "scene/3d/mesh_instance_3d.h"
|
|
|
|
void LightmapGIData::add_user(const NodePath &p_path, const Rect2 &p_uv_scale, int p_slice_index, int32_t p_sub_instance) {
|
|
User user;
|
|
user.path = p_path;
|
|
user.uv_scale = p_uv_scale;
|
|
user.slice_index = p_slice_index;
|
|
user.sub_instance = p_sub_instance;
|
|
users.push_back(user);
|
|
}
|
|
|
|
int LightmapGIData::get_user_count() const {
|
|
return users.size();
|
|
}
|
|
|
|
NodePath LightmapGIData::get_user_path(int p_user) const {
|
|
ERR_FAIL_INDEX_V(p_user, users.size(), NodePath());
|
|
return users[p_user].path;
|
|
}
|
|
|
|
int32_t LightmapGIData::get_user_sub_instance(int p_user) const {
|
|
ERR_FAIL_INDEX_V(p_user, users.size(), -1);
|
|
return users[p_user].sub_instance;
|
|
}
|
|
|
|
Rect2 LightmapGIData::get_user_lightmap_uv_scale(int p_user) const {
|
|
ERR_FAIL_INDEX_V(p_user, users.size(), Rect2());
|
|
return users[p_user].uv_scale;
|
|
}
|
|
|
|
int LightmapGIData::get_user_lightmap_slice_index(int p_user) const {
|
|
ERR_FAIL_INDEX_V(p_user, users.size(), -1);
|
|
return users[p_user].slice_index;
|
|
}
|
|
|
|
void LightmapGIData::clear_users() {
|
|
users.clear();
|
|
}
|
|
|
|
void LightmapGIData::_set_user_data(const Array &p_data) {
|
|
ERR_FAIL_COND(p_data.size() <= 0);
|
|
ERR_FAIL_COND((p_data.size() % 4) != 0);
|
|
|
|
for (int i = 0; i < p_data.size(); i += 4) {
|
|
add_user(p_data[i + 0], p_data[i + 1], p_data[i + 2], p_data[i + 3]);
|
|
}
|
|
}
|
|
|
|
Array LightmapGIData::_get_user_data() const {
|
|
Array ret;
|
|
for (int i = 0; i < users.size(); i++) {
|
|
ret.push_back(users[i].path);
|
|
ret.push_back(users[i].uv_scale);
|
|
ret.push_back(users[i].slice_index);
|
|
ret.push_back(users[i].sub_instance);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
RID LightmapGIData::get_rid() const {
|
|
return lightmap;
|
|
}
|
|
|
|
void LightmapGIData::clear() {
|
|
users.clear();
|
|
}
|
|
|
|
void LightmapGIData::set_light_texture(const Ref<TextureLayered> &p_light_texture) {
|
|
light_texture = p_light_texture;
|
|
RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics);
|
|
}
|
|
|
|
Ref<TextureLayered> LightmapGIData::get_light_texture() const {
|
|
return light_texture;
|
|
}
|
|
|
|
void LightmapGIData::set_uses_spherical_harmonics(bool p_enable) {
|
|
uses_spherical_harmonics = p_enable;
|
|
RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics);
|
|
}
|
|
|
|
bool LightmapGIData::is_using_spherical_harmonics() const {
|
|
return uses_spherical_harmonics;
|
|
}
|
|
|
|
void LightmapGIData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {
|
|
if (p_points.size()) {
|
|
int pc = p_points.size();
|
|
ERR_FAIL_COND(pc * 9 != p_point_sh.size());
|
|
ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0);
|
|
ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0);
|
|
RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, p_points, p_point_sh, p_tetrahedra, p_bsp_tree);
|
|
RS::get_singleton()->lightmap_set_probe_bounds(lightmap, p_bounds);
|
|
RS::get_singleton()->lightmap_set_probe_interior(lightmap, p_interior);
|
|
} else {
|
|
RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, PackedVector3Array(), PackedColorArray(), PackedInt32Array(), PackedInt32Array());
|
|
RS::get_singleton()->lightmap_set_probe_bounds(lightmap, AABB());
|
|
RS::get_singleton()->lightmap_set_probe_interior(lightmap, false);
|
|
}
|
|
interior = p_interior;
|
|
bounds = p_bounds;
|
|
}
|
|
|
|
PackedVector3Array LightmapGIData::get_capture_points() const {
|
|
return RS::get_singleton()->lightmap_get_probe_capture_points(lightmap);
|
|
}
|
|
|
|
PackedColorArray LightmapGIData::get_capture_sh() const {
|
|
return RS::get_singleton()->lightmap_get_probe_capture_sh(lightmap);
|
|
}
|
|
|
|
PackedInt32Array LightmapGIData::get_capture_tetrahedra() const {
|
|
return RS::get_singleton()->lightmap_get_probe_capture_tetrahedra(lightmap);
|
|
}
|
|
|
|
PackedInt32Array LightmapGIData::get_capture_bsp_tree() const {
|
|
return RS::get_singleton()->lightmap_get_probe_capture_bsp_tree(lightmap);
|
|
}
|
|
|
|
AABB LightmapGIData::get_capture_bounds() const {
|
|
return bounds;
|
|
}
|
|
|
|
bool LightmapGIData::is_interior() const {
|
|
return interior;
|
|
}
|
|
|
|
void LightmapGIData::_set_probe_data(const Dictionary &p_data) {
|
|
ERR_FAIL_COND(!p_data.has("bounds"));
|
|
ERR_FAIL_COND(!p_data.has("points"));
|
|
ERR_FAIL_COND(!p_data.has("tetrahedra"));
|
|
ERR_FAIL_COND(!p_data.has("bsp"));
|
|
ERR_FAIL_COND(!p_data.has("sh"));
|
|
ERR_FAIL_COND(!p_data.has("interior"));
|
|
set_capture_data(p_data["bounds"], p_data["interior"], p_data["points"], p_data["sh"], p_data["tetrahedra"], p_data["bsp"]);
|
|
}
|
|
|
|
Dictionary LightmapGIData::_get_probe_data() const {
|
|
Dictionary d;
|
|
d["bounds"] = get_capture_bounds();
|
|
d["points"] = get_capture_points();
|
|
d["tetrahedra"] = get_capture_tetrahedra();
|
|
d["bsp"] = get_capture_bsp_tree();
|
|
d["sh"] = get_capture_sh();
|
|
d["interior"] = is_interior();
|
|
return d;
|
|
}
|
|
|
|
void LightmapGIData::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &LightmapGIData::_set_user_data);
|
|
ClassDB::bind_method(D_METHOD("_get_user_data"), &LightmapGIData::_get_user_data);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_light_texture", "light_texture"), &LightmapGIData::set_light_texture);
|
|
ClassDB::bind_method(D_METHOD("get_light_texture"), &LightmapGIData::get_light_texture);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics", "uses_spherical_harmonics"), &LightmapGIData::set_uses_spherical_harmonics);
|
|
ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics"), &LightmapGIData::is_using_spherical_harmonics);
|
|
|
|
ClassDB::bind_method(D_METHOD("add_user", "path", "uv_scale", "slice_index", "sub_instance"), &LightmapGIData::add_user);
|
|
ClassDB::bind_method(D_METHOD("get_user_count"), &LightmapGIData::get_user_count);
|
|
ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &LightmapGIData::get_user_path);
|
|
ClassDB::bind_method(D_METHOD("clear_users"), &LightmapGIData::clear_users);
|
|
|
|
ClassDB::bind_method(D_METHOD("_set_probe_data", "data"), &LightmapGIData::_set_probe_data);
|
|
ClassDB::bind_method(D_METHOD("_get_probe_data"), &LightmapGIData::_get_probe_data);
|
|
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture", PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered"), "set_light_texture", "get_light_texture");
|
|
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics", "is_using_spherical_harmonics");
|
|
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data", "_get_user_data");
|
|
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data", "_get_probe_data");
|
|
}
|
|
|
|
LightmapGIData::LightmapGIData() {
|
|
lightmap = RS::get_singleton()->lightmap_create();
|
|
}
|
|
|
|
LightmapGIData::~LightmapGIData() {
|
|
RS::get_singleton()->free(lightmap);
|
|
}
|
|
|
|
///////////////////////////
|
|
|
|
void LightmapGI::_find_meshes_and_lights(Node *p_at_node, Vector<MeshesFound> &meshes, Vector<LightsFound> &lights, Vector<Vector3> &probes) {
|
|
MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node);
|
|
if (mi && mi->get_gi_mode() == GeometryInstance3D::GI_MODE_BAKED && mi->is_visible_in_tree()) {
|
|
Ref<Mesh> mesh = mi->get_mesh();
|
|
if (mesh.is_valid()) {
|
|
bool all_have_uv2_and_normal = true;
|
|
bool surfaces_found = false;
|
|
for (int i = 0; i < mesh->get_surface_count(); i++) {
|
|
if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
|
|
continue;
|
|
}
|
|
if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) {
|
|
all_have_uv2_and_normal = false;
|
|
break;
|
|
}
|
|
if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_NORMAL)) {
|
|
all_have_uv2_and_normal = false;
|
|
break;
|
|
}
|
|
surfaces_found = true;
|
|
}
|
|
|
|
if (surfaces_found && all_have_uv2_and_normal) {
|
|
//READY TO BAKE! size hint could be computed if not found, actually..
|
|
|
|
MeshesFound mf;
|
|
mf.xform = get_global_transform().affine_inverse() * mi->get_global_transform();
|
|
mf.node_path = get_path_to(mi);
|
|
mf.subindex = -1;
|
|
mf.mesh = mesh;
|
|
|
|
static const int lightmap_scale[GeometryInstance3D::LIGHTMAP_SCALE_MAX] = { 1, 2, 4, 8 };
|
|
mf.lightmap_scale = lightmap_scale[mi->get_lightmap_scale()];
|
|
|
|
Ref<Material> all_override = mi->get_material_override();
|
|
for (int i = 0; i < mesh->get_surface_count(); i++) {
|
|
if (all_override.is_valid()) {
|
|
mf.overrides.push_back(all_override);
|
|
} else {
|
|
mf.overrides.push_back(mi->get_surface_override_material(i));
|
|
}
|
|
}
|
|
|
|
meshes.push_back(mf);
|
|
}
|
|
}
|
|
}
|
|
|
|
Node3D *s = Object::cast_to<Node3D>(p_at_node);
|
|
|
|
if (!mi && s) {
|
|
Array bmeshes = p_at_node->call("get_bake_bmeshes");
|
|
if (bmeshes.size() && (bmeshes.size() & 1) == 0) {
|
|
Transform3D xf = get_global_transform().affine_inverse() * s->get_global_transform();
|
|
for (int i = 0; i < bmeshes.size(); i += 2) {
|
|
Ref<Mesh> mesh = bmeshes[i];
|
|
if (!mesh.is_valid()) {
|
|
continue;
|
|
}
|
|
|
|
MeshesFound mf;
|
|
|
|
Transform3D mesh_xf = bmeshes[i + 1];
|
|
mf.xform = xf * mesh_xf;
|
|
mf.node_path = get_path_to(s);
|
|
mf.subindex = i / 2;
|
|
mf.lightmap_scale = 1;
|
|
mf.mesh = mesh;
|
|
|
|
meshes.push_back(mf);
|
|
}
|
|
}
|
|
}
|
|
|
|
Light3D *light = Object::cast_to<Light3D>(p_at_node);
|
|
|
|
if (light && light->get_bake_mode() != Light3D::BAKE_DISABLED) {
|
|
LightsFound lf;
|
|
lf.xform = get_global_transform().affine_inverse() * light->get_global_transform();
|
|
lf.light = light;
|
|
lights.push_back(lf);
|
|
}
|
|
|
|
LightmapProbe *probe = Object::cast_to<LightmapProbe>(p_at_node);
|
|
|
|
if (probe) {
|
|
Transform3D xf = get_global_transform().affine_inverse() * probe->get_global_transform();
|
|
probes.push_back(xf.origin);
|
|
}
|
|
|
|
for (int i = 0; i < p_at_node->get_child_count(); i++) {
|
|
Node *child = p_at_node->get_child(i);
|
|
if (!child->get_owner()) {
|
|
continue; //maybe a helper
|
|
}
|
|
|
|
_find_meshes_and_lights(child, meshes, lights, probes);
|
|
}
|
|
}
|
|
|
|
int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const LocalVector<BSPSimplex> &p_simplices, const Plane &p_plane, uint32_t p_simplex) const {
|
|
int over = 0;
|
|
int under = 0;
|
|
int coplanar = 0;
|
|
const BSPSimplex &s = p_simplices[p_simplex];
|
|
for (int i = 0; i < 4; i++) {
|
|
const Vector3 v = p_points[s.vertices[i]];
|
|
if (p_plane.has_point(v)) { //coplanar
|
|
coplanar++;
|
|
} else if (p_plane.is_point_over(v)) {
|
|
over++;
|
|
} else {
|
|
under++;
|
|
}
|
|
}
|
|
|
|
ERR_FAIL_COND_V(under == 0 && over == 0, -2); //should never happen, we discarded flat simplices before, but in any case drop it from the bsp tree and throw an error
|
|
if (under == 0) {
|
|
return 1; // all over
|
|
} else if (over == 0) {
|
|
return -1; // all under
|
|
} else {
|
|
return 0; // crossing
|
|
}
|
|
}
|
|
|
|
//#define DEBUG_BSP
|
|
|
|
int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) {
|
|
//if we reach here, it means there is more than one simplex
|
|
int32_t node_index = (int32_t)bsp_nodes.size();
|
|
bsp_nodes.push_back(BSPNode());
|
|
|
|
//test with all the simplex planes
|
|
Plane best_plane;
|
|
float best_plane_score = -1.0;
|
|
|
|
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
|
|
const BSPSimplex &s = p_simplices[p_simplex_indices[i]];
|
|
for (int j = 0; j < 4; j++) {
|
|
uint32_t plane_index = s.planes[j];
|
|
if (planes_tested[plane_index] == node_index) {
|
|
continue; //tested this plane already
|
|
}
|
|
|
|
planes_tested[plane_index] = node_index;
|
|
|
|
static const int face_order[4][3] = {
|
|
{ 0, 1, 2 },
|
|
{ 0, 2, 3 },
|
|
{ 0, 1, 3 },
|
|
{ 1, 2, 3 }
|
|
};
|
|
|
|
// despite getting rid of plane duplicates, we should still use here the actual plane to avoid numerical error
|
|
// from thinking this same simplex is intersecting rather than on a side
|
|
Vector3 v0 = p_points[s.vertices[face_order[j][0]]];
|
|
Vector3 v1 = p_points[s.vertices[face_order[j][1]]];
|
|
Vector3 v2 = p_points[s.vertices[face_order[j][2]]];
|
|
|
|
Plane plane(v0, v1, v2);
|
|
|
|
//test with all the simplices
|
|
int over_count = 0;
|
|
int under_count = 0;
|
|
|
|
for (uint32_t k = 0; k < p_simplex_indices.size(); k++) {
|
|
int side = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[k]);
|
|
if (side == -2) {
|
|
continue; //this simplex is invalid, skip for now
|
|
} else if (side < 0) {
|
|
under_count++;
|
|
} else if (side > 0) {
|
|
over_count++;
|
|
}
|
|
}
|
|
|
|
if (under_count == 0 && over_count == 0) {
|
|
continue; //most likely precision issue with a flat simplex, do not try this plane
|
|
}
|
|
|
|
if (under_count > over_count) { //make sure under is always less than over, so we can compute the same ratio
|
|
SWAP(under_count, over_count);
|
|
}
|
|
|
|
float score = 0; //by default, score is 0 (worst)
|
|
if (over_count > 0) {
|
|
//give score mainly based on ratio (under / over), this means that this plane is splitting simplices a lot, but its balanced
|
|
score = float(under_count) / over_count;
|
|
}
|
|
|
|
//adjusting priority over least splits, probably not a great idea
|
|
//score *= Math::sqrt(float(over_count + under_count) / p_simplex_indices.size()); //also multiply score
|
|
|
|
if (score > best_plane_score) {
|
|
best_plane = plane;
|
|
best_plane_score = score;
|
|
}
|
|
}
|
|
}
|
|
|
|
LocalVector<int32_t> indices_over;
|
|
LocalVector<int32_t> indices_under;
|
|
|
|
//split again, but add to list
|
|
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
|
|
uint32_t index = p_simplex_indices[i];
|
|
int side = _bsp_get_simplex_side(p_points, p_simplices, best_plane, index);
|
|
|
|
if (side == -2) {
|
|
continue; //simplex sits on the plane, does not make sense to use it
|
|
}
|
|
if (side <= 0) {
|
|
indices_under.push_back(index);
|
|
}
|
|
|
|
if (side >= 0) {
|
|
indices_over.push_back(index);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_BSP
|
|
print_line("node " + itos(node_index) + " found plane: " + best_plane + " score:" + rtos(best_plane_score) + " - over " + itos(indices_over.size()) + " under " + itos(indices_under.size()) + " intersecting " + itos(intersecting));
|
|
#endif
|
|
|
|
if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) {
|
|
ERR_FAIL_COND_V(p_simplex_indices.size() <= 1, 0); //should not happen, this is a bug
|
|
|
|
// Failed to separate the tetrahedrons using planes
|
|
// this means Delaunay broke at some point.
|
|
// Luckily, because we are using tetrahedrons, we can resort to
|
|
// less precise but still working ways to generate the separating plane
|
|
// this will most likely look bad when interpolating, but at least it will not crash.
|
|
// and the arctifact will most likely also be very small, so too difficult to notice.
|
|
|
|
//find the longest axis
|
|
|
|
WARN_PRINT("Inconsistency found in triangulation while building BSP, probe interpolation quality may degrade a bit.");
|
|
|
|
LocalVector<Vector3> centers;
|
|
AABB bounds_all;
|
|
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
|
|
AABB bounds;
|
|
for (uint32_t j = 0; j < 4; j++) {
|
|
Vector3 p = p_points[p_simplices[p_simplex_indices[i]].vertices[j]];
|
|
if (j == 0) {
|
|
bounds.position = p;
|
|
} else {
|
|
bounds.expand_to(p);
|
|
}
|
|
}
|
|
if (i == 0) {
|
|
centers.push_back(bounds.get_center());
|
|
} else {
|
|
bounds_all.merge_with(bounds);
|
|
}
|
|
}
|
|
Vector3::Axis longest_axis = Vector3::Axis(bounds_all.get_longest_axis_index());
|
|
|
|
//find the simplex that will go under
|
|
uint32_t min_d_idx = 0xFFFFFFFF;
|
|
float min_d_dist = 1e20;
|
|
|
|
for (uint32_t i = 0; i < centers.size(); i++) {
|
|
if (centers[i][longest_axis] < min_d_dist) {
|
|
min_d_idx = i;
|
|
min_d_dist = centers[i][longest_axis];
|
|
}
|
|
}
|
|
//rebuild best_plane and over/under arrays
|
|
best_plane = Plane();
|
|
best_plane.normal[longest_axis] = 1.0;
|
|
best_plane.d = min_d_dist;
|
|
|
|
indices_under.clear();
|
|
indices_under.push_back(min_d_idx);
|
|
|
|
indices_over.clear();
|
|
|
|
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
|
|
if (i == min_d_idx) {
|
|
continue;
|
|
}
|
|
indices_over.push_back(p_simplex_indices[i]);
|
|
}
|
|
}
|
|
|
|
BSPNode node;
|
|
node.plane = best_plane;
|
|
|
|
if (indices_under.size() == 0) {
|
|
//nothing to do here
|
|
node.under = BSPNode::EMPTY_LEAF;
|
|
} else if (indices_under.size() == 1) {
|
|
node.under = -(indices_under[0] + 1);
|
|
} else {
|
|
node.under = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_under, bsp_nodes);
|
|
}
|
|
|
|
if (indices_over.size() == 0) {
|
|
//nothing to do here
|
|
node.over = BSPNode::EMPTY_LEAF;
|
|
} else if (indices_over.size() == 1) {
|
|
node.over = -(indices_over[0] + 1);
|
|
} else {
|
|
node.over = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_over, bsp_nodes);
|
|
}
|
|
|
|
bsp_nodes[node_index] = node;
|
|
|
|
return node_index;
|
|
}
|
|
|
|
bool LightmapGI::_lightmap_bake_step_function(float p_completion, const String &p_text, void *ud, bool p_refresh) {
|
|
BakeStepUD *bsud = (BakeStepUD *)ud;
|
|
bool ret = false;
|
|
if (bsud->func) {
|
|
ret = bsud->func(bsud->from_percent + p_completion * (bsud->to_percent - bsud->from_percent), p_text, bsud->ud, p_refresh);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void LightmapGI::_plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle) {
|
|
for (int i = 0; i < 8; i++) {
|
|
Vector3i pos = p_cell->offset;
|
|
uint32_t half_size = p_cell->size / 2;
|
|
if (i & 1) {
|
|
pos.x += half_size;
|
|
}
|
|
if (i & 2) {
|
|
pos.y += half_size;
|
|
}
|
|
if (i & 4) {
|
|
pos.z += half_size;
|
|
}
|
|
|
|
AABB subcell;
|
|
subcell.position = Vector3(pos) * p_cell_size;
|
|
subcell.size = Vector3(half_size, half_size, half_size) * p_cell_size;
|
|
|
|
if (!Geometry3D::triangle_box_overlap(subcell.get_center(), subcell.size * 0.5, p_triangle)) {
|
|
continue;
|
|
}
|
|
|
|
if (p_cell->children[i] == nullptr) {
|
|
GenProbesOctree *child = memnew(GenProbesOctree);
|
|
child->offset = pos;
|
|
child->size = half_size;
|
|
p_cell->children[i] = child;
|
|
}
|
|
|
|
if (half_size > 1) {
|
|
//still levels missing
|
|
_plot_triangle_into_octree(p_cell->children[i], p_cell_size, p_triangle);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LightmapGI::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool, Vector3iHash> &positions_used, const AABB &p_bounds) {
|
|
for (int i = 0; i < 8; i++) {
|
|
Vector3i pos = p_cell->offset;
|
|
if (i & 1) {
|
|
pos.x += p_cell->size;
|
|
}
|
|
if (i & 2) {
|
|
pos.y += p_cell->size;
|
|
}
|
|
if (i & 4) {
|
|
pos.z += p_cell->size;
|
|
}
|
|
|
|
if (p_cell->size == 1 && !positions_used.has(pos)) {
|
|
//new position to insert!
|
|
Vector3 real_pos = p_bounds.position + Vector3(pos) * p_cell_size;
|
|
//see if a user submitted probe is too close
|
|
int ppcount = probe_positions.size();
|
|
const Vector3 *pp = probe_positions.ptr();
|
|
bool exists = false;
|
|
for (int j = 0; j < ppcount; j++) {
|
|
if (pp[j].is_equal_approx(real_pos)) {
|
|
exists = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!exists) {
|
|
new_probe_positions.push_back(real_pos);
|
|
}
|
|
|
|
positions_used[pos] = true;
|
|
}
|
|
|
|
if (p_cell->children[i] != nullptr) {
|
|
_gen_new_positions_from_octree(p_cell->children[i], p_cell_size, probe_positions, new_probe_positions, positions_used, p_bounds);
|
|
}
|
|
}
|
|
}
|
|
|
|
LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_path, Lightmapper::BakeStepFunc p_bake_step, void *p_bake_userdata) {
|
|
if (p_image_data_path == "") {
|
|
if (get_light_data().is_null()) {
|
|
return BAKE_ERROR_NO_SAVE_PATH;
|
|
}
|
|
|
|
p_image_data_path = get_light_data()->get_path();
|
|
if (!p_image_data_path.is_resource_file()) {
|
|
return BAKE_ERROR_NO_SAVE_PATH;
|
|
}
|
|
}
|
|
|
|
Ref<Lightmapper> lightmapper = Lightmapper::create();
|
|
ERR_FAIL_COND_V(lightmapper.is_null(), BAKE_ERROR_NO_LIGHTMAPPER);
|
|
|
|
BakeStepUD bsud;
|
|
bsud.func = p_bake_step;
|
|
bsud.ud = p_bake_userdata;
|
|
bsud.from_percent = 0.2;
|
|
bsud.to_percent = 0.8;
|
|
|
|
if (p_bake_step) {
|
|
p_bake_step(0.0, TTR("Finding meshes, lights and probes"), p_bake_userdata, true);
|
|
}
|
|
/* STEP 1, FIND MESHES, LIGHTS AND PROBES */
|
|
Vector<Lightmapper::MeshData> mesh_data;
|
|
Vector<LightsFound> lights_found;
|
|
Vector<Vector3> probes_found;
|
|
AABB bounds;
|
|
{
|
|
Vector<MeshesFound> meshes_found;
|
|
_find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), meshes_found, lights_found, probes_found);
|
|
|
|
if (meshes_found.size() == 0) {
|
|
return BAKE_ERROR_NO_MESHES;
|
|
}
|
|
// create mesh data for insert
|
|
|
|
//get the base material textures, help compute atlas size and bounds
|
|
for (int m_i = 0; m_i < meshes_found.size(); m_i++) {
|
|
if (p_bake_step) {
|
|
float p = (float)(m_i) / meshes_found.size();
|
|
p_bake_step(p * 0.1, vformat(TTR("Preparing geometry %d/%d"), m_i, meshes_found.size()), p_bake_userdata, false);
|
|
}
|
|
|
|
MeshesFound &mf = meshes_found.write[m_i];
|
|
|
|
Size2i lightmap_size = mf.mesh->get_lightmap_size_hint() * mf.lightmap_scale;
|
|
Vector<RID> overrides;
|
|
overrides.resize(mf.overrides.size());
|
|
for (int i = 0; i < mf.overrides.size(); i++) {
|
|
if (mf.overrides[i].is_valid()) {
|
|
overrides.write[i] = mf.overrides[i]->get_rid();
|
|
}
|
|
}
|
|
TypedArray<Image> images = RS::get_singleton()->bake_render_uv2(mf.mesh->get_rid(), overrides, lightmap_size);
|
|
|
|
ERR_FAIL_COND_V(images.is_empty(), BAKE_ERROR_CANT_CREATE_IMAGE);
|
|
|
|
Ref<Image> albedo = images[RS::BAKE_CHANNEL_ALBEDO_ALPHA];
|
|
Ref<Image> orm = images[RS::BAKE_CHANNEL_ORM];
|
|
|
|
//multiply albedo by metal
|
|
|
|
Lightmapper::MeshData md;
|
|
|
|
{
|
|
Dictionary d;
|
|
d["path"] = mf.node_path;
|
|
if (mf.subindex >= 0) {
|
|
d["subindex"] = mf.subindex;
|
|
}
|
|
md.userdata = d;
|
|
}
|
|
|
|
{
|
|
if (albedo->get_format() != Image::FORMAT_RGBA8) {
|
|
albedo->convert(Image::FORMAT_RGBA8);
|
|
}
|
|
if (orm->get_format() != Image::FORMAT_RGBA8) {
|
|
orm->convert(Image::FORMAT_RGBA8);
|
|
}
|
|
Vector<uint8_t> albedo_alpha = albedo->get_data();
|
|
Vector<uint8_t> orm_data = orm->get_data();
|
|
|
|
Vector<uint8_t> albedom;
|
|
uint32_t len = albedo_alpha.size();
|
|
albedom.resize(len);
|
|
const uint8_t *r_aa = albedo_alpha.ptr();
|
|
const uint8_t *r_orm = orm_data.ptr();
|
|
uint8_t *w_albedo = albedom.ptrw();
|
|
|
|
for (uint32_t i = 0; i < len; i += 4) {
|
|
w_albedo[i + 0] = uint8_t(CLAMP(float(r_aa[i + 0]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
|
|
w_albedo[i + 1] = uint8_t(CLAMP(float(r_aa[i + 1]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
|
|
w_albedo[i + 2] = uint8_t(CLAMP(float(r_aa[i + 2]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
|
|
w_albedo[i + 3] = 255;
|
|
}
|
|
|
|
md.albedo_on_uv2.instantiate();
|
|
md.albedo_on_uv2->create(lightmap_size.width, lightmap_size.height, false, Image::FORMAT_RGBA8, albedom);
|
|
}
|
|
|
|
md.emission_on_uv2 = images[RS::BAKE_CHANNEL_EMISSION];
|
|
if (md.emission_on_uv2->get_format() != Image::FORMAT_RGBAH) {
|
|
md.emission_on_uv2->convert(Image::FORMAT_RGBAH);
|
|
}
|
|
|
|
//get geometry
|
|
|
|
Basis normal_xform = mf.xform.basis.inverse().transposed();
|
|
|
|
for (int i = 0; i < mf.mesh->get_surface_count(); i++) {
|
|
if (mf.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
|
|
continue;
|
|
}
|
|
Array a = mf.mesh->surface_get_arrays(i);
|
|
|
|
Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
|
|
const Vector3 *vr = vertices.ptr();
|
|
Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV2];
|
|
const Vector2 *uvr = nullptr;
|
|
Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
|
|
const Vector3 *nr = nullptr;
|
|
Vector<int> index = a[Mesh::ARRAY_INDEX];
|
|
|
|
ERR_CONTINUE(uv.size() == 0);
|
|
ERR_CONTINUE(normals.size() == 0);
|
|
|
|
uvr = uv.ptr();
|
|
nr = normals.ptr();
|
|
|
|
int facecount;
|
|
const int *ir = nullptr;
|
|
|
|
if (index.size()) {
|
|
facecount = index.size() / 3;
|
|
ir = index.ptr();
|
|
} else {
|
|
facecount = vertices.size() / 3;
|
|
}
|
|
|
|
for (int j = 0; j < facecount; j++) {
|
|
uint32_t vidx[3];
|
|
|
|
if (ir) {
|
|
for (int k = 0; k < 3; k++) {
|
|
vidx[k] = ir[j * 3 + k];
|
|
}
|
|
} else {
|
|
for (int k = 0; k < 3; k++) {
|
|
vidx[k] = j * 3 + k;
|
|
}
|
|
}
|
|
|
|
for (int k = 0; k < 3; k++) {
|
|
Vector3 v = mf.xform.xform(vr[vidx[k]]);
|
|
if (bounds == AABB()) {
|
|
bounds.position = v;
|
|
} else {
|
|
bounds.expand_to(v);
|
|
}
|
|
md.points.push_back(v);
|
|
|
|
md.uv2.push_back(uvr[vidx[k]]);
|
|
md.normal.push_back(normal_xform.xform(nr[vidx[k]]).normalized());
|
|
}
|
|
}
|
|
}
|
|
|
|
mesh_data.push_back(md);
|
|
}
|
|
}
|
|
|
|
/* STEP 2, CREATE PROBES */
|
|
|
|
if (p_bake_step) {
|
|
p_bake_step(0.3, TTR("Creating probes"), p_bake_userdata, true);
|
|
}
|
|
|
|
//bounds need to include the user probes
|
|
for (int i = 0; i < probes_found.size(); i++) {
|
|
bounds.expand_to(probes_found[i]);
|
|
}
|
|
|
|
bounds.grow_by(bounds.size.length() * 0.001);
|
|
|
|
if (gen_probes == GENERATE_PROBES_DISABLED) {
|
|
// generate 8 probes on bound endpoints
|
|
for (int i = 0; i < 8; i++) {
|
|
probes_found.push_back(bounds.get_endpoint(i));
|
|
}
|
|
} else {
|
|
// detect probes from geometry
|
|
static const int subdiv_values[6] = { 0, 4, 8, 16, 32 };
|
|
int subdiv = subdiv_values[gen_probes];
|
|
|
|
float subdiv_cell_size;
|
|
Vector3i bound_limit;
|
|
{
|
|
int longest_axis = bounds.get_longest_axis_index();
|
|
subdiv_cell_size = bounds.size[longest_axis] / subdiv;
|
|
int axis_n1 = (longest_axis + 1) % 3;
|
|
int axis_n2 = (longest_axis + 2) % 3;
|
|
|
|
bound_limit[longest_axis] = subdiv;
|
|
bound_limit[axis_n1] = int(Math::ceil(bounds.size[axis_n1] / subdiv_cell_size));
|
|
bound_limit[axis_n2] = int(Math::ceil(bounds.size[axis_n2] / subdiv_cell_size));
|
|
//compensate bounds
|
|
bounds.size[axis_n1] = bound_limit[axis_n1] * subdiv_cell_size;
|
|
bounds.size[axis_n2] = bound_limit[axis_n2] * subdiv_cell_size;
|
|
}
|
|
|
|
GenProbesOctree octree;
|
|
octree.size = subdiv;
|
|
|
|
for (int i = 0; i < mesh_data.size(); i++) {
|
|
if (p_bake_step) {
|
|
float p = (float)(i) / mesh_data.size();
|
|
p_bake_step(0.3 + p * 0.1, vformat(TTR("Creating probes from mesh %d/%d"), i, mesh_data.size()), p_bake_userdata, false);
|
|
}
|
|
|
|
for (int j = 0; j < mesh_data[i].points.size(); j += 3) {
|
|
Vector3 points[3] = { mesh_data[i].points[j + 0] - bounds.position, mesh_data[i].points[j + 1] - bounds.position, mesh_data[i].points[j + 2] - bounds.position };
|
|
_plot_triangle_into_octree(&octree, subdiv_cell_size, points);
|
|
}
|
|
}
|
|
|
|
LocalVector<Vector3> new_probe_positions;
|
|
HashMap<Vector3i, bool, Vector3iHash> positions_used;
|
|
for (uint32_t i = 0; i < 8; i++) { //insert bounding endpoints
|
|
Vector3i pos;
|
|
if (i & 1) {
|
|
pos.x += bound_limit.x;
|
|
}
|
|
if (i & 2) {
|
|
pos.y += bound_limit.y;
|
|
}
|
|
if (i & 4) {
|
|
pos.z += bound_limit.z;
|
|
}
|
|
|
|
positions_used[pos] = true;
|
|
Vector3 real_pos = bounds.position + Vector3(pos) * subdiv_cell_size; //use same formula for numerical stability
|
|
new_probe_positions.push_back(real_pos);
|
|
}
|
|
//skip first level, since probes are always added at bounds endpoints anyway (code above this)
|
|
for (int i = 0; i < 8; i++) {
|
|
if (octree.children[i]) {
|
|
_gen_new_positions_from_octree(octree.children[i], subdiv_cell_size, probes_found, new_probe_positions, positions_used, bounds);
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < new_probe_positions.size(); i++) {
|
|
probes_found.push_back(new_probe_positions[i]);
|
|
}
|
|
}
|
|
|
|
// Add everything to lightmapper
|
|
if (p_bake_step) {
|
|
p_bake_step(0.4, TTR("Preparing Lightmapper"), p_bake_userdata, true);
|
|
}
|
|
|
|
{
|
|
for (int i = 0; i < mesh_data.size(); i++) {
|
|
lightmapper->add_mesh(mesh_data[i]);
|
|
}
|
|
for (int i = 0; i < lights_found.size(); i++) {
|
|
Light3D *light = lights_found[i].light;
|
|
Transform3D xf = lights_found[i].xform;
|
|
|
|
if (Object::cast_to<DirectionalLight3D>(light)) {
|
|
DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light);
|
|
lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_SIZE));
|
|
} else if (Object::cast_to<OmniLight3D>(light)) {
|
|
OmniLight3D *l = Object::cast_to<OmniLight3D>(light);
|
|
lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE));
|
|
} else if (Object::cast_to<SpotLight3D>(light)) {
|
|
SpotLight3D *l = Object::cast_to<SpotLight3D>(light);
|
|
lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE));
|
|
}
|
|
}
|
|
for (int i = 0; i < probes_found.size(); i++) {
|
|
lightmapper->add_probe(probes_found[i]);
|
|
}
|
|
}
|
|
|
|
Ref<Image> environment_image;
|
|
Basis environment_transform;
|
|
|
|
// Add everything to lightmapper
|
|
if (environment_mode != ENVIRONMENT_MODE_DISABLED) {
|
|
if (p_bake_step) {
|
|
p_bake_step(4.1, TTR("Preparing Environment"), p_bake_userdata, true);
|
|
}
|
|
|
|
environment_transform = get_global_transform().basis;
|
|
|
|
switch (environment_mode) {
|
|
case ENVIRONMENT_MODE_DISABLED: {
|
|
//nothing
|
|
} break;
|
|
case ENVIRONMENT_MODE_SCENE: {
|
|
Ref<World3D> world = get_world_3d();
|
|
if (world.is_valid()) {
|
|
Ref<Environment> env = world->get_environment();
|
|
if (env.is_null()) {
|
|
env = world->get_fallback_environment();
|
|
}
|
|
|
|
if (env.is_valid()) {
|
|
environment_image = RS::get_singleton()->environment_bake_panorama(env->get_rid(), true, Size2i(128, 64));
|
|
}
|
|
}
|
|
} break;
|
|
case ENVIRONMENT_MODE_CUSTOM_SKY: {
|
|
if (environment_custom_sky.is_valid()) {
|
|
environment_image = RS::get_singleton()->sky_bake_panorama(environment_custom_sky->get_rid(), environment_custom_energy, true, Size2i(128, 64));
|
|
}
|
|
|
|
} break;
|
|
case ENVIRONMENT_MODE_CUSTOM_COLOR: {
|
|
environment_image.instantiate();
|
|
environment_image->create(128, 64, false, Image::FORMAT_RGBAF);
|
|
Color c = environment_custom_color;
|
|
c.r *= environment_custom_energy;
|
|
c.g *= environment_custom_energy;
|
|
c.b *= environment_custom_energy;
|
|
for (int i = 0; i < 128; i++) {
|
|
for (int j = 0; j < 64; j++) {
|
|
environment_image->set_pixel(i, j, c);
|
|
}
|
|
}
|
|
|
|
} break;
|
|
}
|
|
}
|
|
|
|
Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, bounces, bias, max_texture_size, directional, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud);
|
|
|
|
if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES) {
|
|
return BAKE_ERROR_MESHES_INVALID;
|
|
}
|
|
|
|
/* POSTBAKE: Save Textures */
|
|
|
|
Ref<TextureLayered> texture;
|
|
{
|
|
Vector<Ref<Image>> images;
|
|
for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) {
|
|
images.push_back(lightmapper->get_bake_texture(i));
|
|
}
|
|
//we assume they are all the same, so let's create a large one for saving
|
|
Ref<Image> large_image;
|
|
large_image.instantiate();
|
|
|
|
large_image->create(images[0]->get_width(), images[0]->get_height() * images.size(), false, images[0]->get_format());
|
|
|
|
for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) {
|
|
large_image->blit_rect(images[i], Rect2(0, 0, images[i]->get_width(), images[i]->get_height()), Point2(0, images[i]->get_height() * i));
|
|
}
|
|
|
|
String base_path = p_image_data_path.get_basename() + ".exr";
|
|
|
|
Ref<ConfigFile> config;
|
|
|
|
config.instantiate();
|
|
if (FileAccess::exists(base_path + ".import")) {
|
|
config->load(base_path + ".import");
|
|
}
|
|
|
|
config->set_value("remap", "importer", "2d_array_texture");
|
|
config->set_value("remap", "type", "StreamTexture2DArray");
|
|
if (!config->has_section_key("params", "compress/mode")) {
|
|
config->set_value("params", "compress/mode", 2); //user may want another compression, so leave it be
|
|
}
|
|
config->set_value("params", "compress/channel_pack", 1);
|
|
config->set_value("params", "mipmaps/generate", false);
|
|
config->set_value("params", "slices/horizontal", 1);
|
|
config->set_value("params", "slices/vertical", images.size());
|
|
|
|
config->save(base_path + ".import");
|
|
|
|
Error err = large_image->save_exr(base_path, false);
|
|
ERR_FAIL_COND_V(err, BAKE_ERROR_CANT_CREATE_IMAGE);
|
|
ResourceLoader::import(base_path);
|
|
Ref<Texture> t = ResourceLoader::load(base_path); //if already loaded, it will be updated on refocus?
|
|
ERR_FAIL_COND_V(t.is_null(), BAKE_ERROR_CANT_CREATE_IMAGE);
|
|
texture = t;
|
|
}
|
|
|
|
/* POSTBAKE: Save Light Data */
|
|
|
|
Ref<LightmapGIData> data;
|
|
if (get_light_data().is_valid()) {
|
|
data = get_light_data();
|
|
set_light_data(Ref<LightmapGIData>()); //clear
|
|
data->clear();
|
|
} else {
|
|
data.instantiate();
|
|
}
|
|
|
|
data->set_light_texture(texture);
|
|
data->set_uses_spherical_harmonics(directional);
|
|
|
|
for (int i = 0; i < lightmapper->get_bake_mesh_count(); i++) {
|
|
Dictionary d = lightmapper->get_bake_mesh_userdata(i);
|
|
NodePath np = d["path"];
|
|
int32_t subindex = -1;
|
|
if (d.has("subindex")) {
|
|
subindex = d["subindex"];
|
|
}
|
|
|
|
Rect2 uv_scale = lightmapper->get_bake_mesh_uv_scale(i);
|
|
int slice_index = lightmapper->get_bake_mesh_texture_slice(i);
|
|
data->add_user(np, uv_scale, slice_index, subindex);
|
|
}
|
|
|
|
{
|
|
// create tetrahedrons
|
|
Vector<Vector3> points;
|
|
Vector<Color> sh;
|
|
points.resize(lightmapper->get_bake_probe_count());
|
|
sh.resize(lightmapper->get_bake_probe_count() * 9);
|
|
for (int i = 0; i < lightmapper->get_bake_probe_count(); i++) {
|
|
points.write[i] = lightmapper->get_bake_probe_point(i);
|
|
Vector<Color> colors = lightmapper->get_bake_probe_sh(i);
|
|
ERR_CONTINUE(colors.size() != 9);
|
|
for (int j = 0; j < 9; j++) {
|
|
sh.write[i * 9 + j] = colors[j];
|
|
}
|
|
}
|
|
|
|
//Obtain solved simplices
|
|
|
|
if (p_bake_step) {
|
|
p_bake_step(0.8, TTR("Generating Probe Volumes"), p_bake_userdata, true);
|
|
}
|
|
Vector<Delaunay3D::OutputSimplex> solved_simplices = Delaunay3D::tetrahedralize(points);
|
|
|
|
LocalVector<BSPSimplex> bsp_simplices;
|
|
LocalVector<Plane> bsp_planes;
|
|
LocalVector<int32_t> bsp_simplex_indices;
|
|
PackedInt32Array tetrahedrons;
|
|
|
|
for (int i = 0; i < solved_simplices.size(); i++) {
|
|
//Prepare a special representation of the simplex, which uses a BSP Tree
|
|
BSPSimplex bsp_simplex;
|
|
for (int j = 0; j < 4; j++) {
|
|
bsp_simplex.vertices[j] = solved_simplices[i].points[j];
|
|
}
|
|
for (int j = 0; j < 4; j++) {
|
|
static const int face_order[4][3] = {
|
|
{ 0, 1, 2 },
|
|
{ 0, 2, 3 },
|
|
{ 0, 1, 3 },
|
|
{ 1, 2, 3 }
|
|
};
|
|
Vector3 a = points[solved_simplices[i].points[face_order[j][0]]];
|
|
Vector3 b = points[solved_simplices[i].points[face_order[j][1]]];
|
|
Vector3 c = points[solved_simplices[i].points[face_order[j][2]]];
|
|
|
|
//store planes in an array, but ensure they are reused, to speed up processing
|
|
|
|
Plane p(a, b, c);
|
|
int plane_index = -1;
|
|
for (uint32_t k = 0; k < bsp_planes.size(); k++) {
|
|
if (bsp_planes[k].is_equal_approx_any_side(p)) {
|
|
plane_index = k;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (plane_index == -1) {
|
|
plane_index = bsp_planes.size();
|
|
bsp_planes.push_back(p);
|
|
}
|
|
|
|
bsp_simplex.planes[j] = plane_index;
|
|
|
|
//also fill simplex array
|
|
tetrahedrons.push_back(solved_simplices[i].points[j]);
|
|
}
|
|
|
|
bsp_simplex_indices.push_back(bsp_simplices.size());
|
|
bsp_simplices.push_back(bsp_simplex);
|
|
}
|
|
|
|
//#define DEBUG_SIMPLICES_AS_OBJ_FILE
|
|
#ifdef DEBUG_SIMPLICES_AS_OBJ_FILE
|
|
{
|
|
FileAccessRef f = FileAccess::open("res://bsp.obj", FileAccess::WRITE);
|
|
for (uint32_t i = 0; i < bsp_simplices.size(); i++) {
|
|
f->store_line("o Simplex" + itos(i));
|
|
for (int j = 0; j < 4; j++) {
|
|
f->store_line(vformat("v %f %f %f", points[bsp_simplices[i].vertices[j]].x, points[bsp_simplices[i].vertices[j]].y, points[bsp_simplices[i].vertices[j]].z));
|
|
}
|
|
static const int face_order[4][3] = {
|
|
{ 1, 2, 3 },
|
|
{ 1, 3, 4 },
|
|
{ 1, 2, 4 },
|
|
{ 2, 3, 4 }
|
|
};
|
|
|
|
for (int j = 0; j < 4; j++) {
|
|
f->store_line(vformat("f %d %d %d", 4 * i + face_order[j][0], 4 * i + face_order[j][1], 4 * i + face_order[j][2]));
|
|
}
|
|
}
|
|
f->close();
|
|
}
|
|
#endif
|
|
|
|
LocalVector<BSPNode> bsp_nodes;
|
|
LocalVector<int32_t> planes_tested;
|
|
planes_tested.resize(bsp_planes.size());
|
|
for (uint32_t i = 0; i < planes_tested.size(); i++) {
|
|
planes_tested[i] = 0x7FFFFFFF;
|
|
}
|
|
|
|
if (p_bake_step) {
|
|
p_bake_step(0.9, TTR("Generating Probe Acceleration Structures"), p_bake_userdata, true);
|
|
}
|
|
|
|
_compute_bsp_tree(points, bsp_planes, planes_tested, bsp_simplices, bsp_simplex_indices, bsp_nodes);
|
|
|
|
PackedInt32Array bsp_array;
|
|
bsp_array.resize(bsp_nodes.size() * 6); // six 32 bits values used for each BSP node
|
|
{
|
|
float *fptr = (float *)bsp_array.ptrw();
|
|
int32_t *iptr = (int32_t *)bsp_array.ptrw();
|
|
for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
|
|
fptr[i * 6 + 0] = bsp_nodes[i].plane.normal.x;
|
|
fptr[i * 6 + 1] = bsp_nodes[i].plane.normal.y;
|
|
fptr[i * 6 + 2] = bsp_nodes[i].plane.normal.z;
|
|
fptr[i * 6 + 3] = bsp_nodes[i].plane.d;
|
|
iptr[i * 6 + 4] = bsp_nodes[i].over;
|
|
iptr[i * 6 + 5] = bsp_nodes[i].under;
|
|
}
|
|
//#define DEBUG_BSP_TREE
|
|
#ifdef DEBUG_BSP_TREE
|
|
FileAccessRef f = FileAccess::open("res://bsp.txt", FileAccess::WRITE);
|
|
for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
|
|
f->store_line(itos(i) + " - plane: " + bsp_nodes[i].plane + " over: " + itos(bsp_nodes[i].over) + " under: " + itos(bsp_nodes[i].under));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Obtain the colors from the images, they will be re-created as cubemaps on the server, depending on the driver */
|
|
|
|
data->set_capture_data(bounds, interior, points, sh, tetrahedrons, bsp_array);
|
|
/* Compute a BSP tree of the simplices, so it's easy to find the exact one */
|
|
}
|
|
|
|
Error err = ResourceSaver::save(p_image_data_path, data);
|
|
data->set_path(p_image_data_path);
|
|
|
|
if (err != OK) {
|
|
return BAKE_ERROR_CANT_CREATE_IMAGE;
|
|
}
|
|
|
|
set_light_data(data);
|
|
|
|
return BAKE_ERROR_OK;
|
|
}
|
|
|
|
void LightmapGI::_notification(int p_what) {
|
|
if (p_what == NOTIFICATION_POST_ENTER_TREE) {
|
|
if (light_data.is_valid()) {
|
|
_assign_lightmaps();
|
|
}
|
|
}
|
|
|
|
if (p_what == NOTIFICATION_EXIT_TREE) {
|
|
if (light_data.is_valid()) {
|
|
_clear_lightmaps();
|
|
}
|
|
}
|
|
}
|
|
|
|
void LightmapGI::_assign_lightmaps() {
|
|
ERR_FAIL_COND(!light_data.is_valid());
|
|
|
|
for (int i = 0; i < light_data->get_user_count(); i++) {
|
|
Node *node = get_node(light_data->get_user_path(i));
|
|
int instance_idx = light_data->get_user_sub_instance(i);
|
|
if (instance_idx >= 0) {
|
|
RID instance = node->call("get_bake_mesh_instance", instance_idx);
|
|
if (instance.is_valid()) {
|
|
RS::get_singleton()->instance_geometry_set_lightmap(instance, get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
|
|
}
|
|
} else {
|
|
VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
|
|
ERR_CONTINUE(!vi);
|
|
RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
void LightmapGI::_clear_lightmaps() {
|
|
ERR_FAIL_COND(!light_data.is_valid());
|
|
for (int i = 0; i < light_data->get_user_count(); i++) {
|
|
Node *node = get_node(light_data->get_user_path(i));
|
|
int instance_idx = light_data->get_user_sub_instance(i);
|
|
if (instance_idx >= 0) {
|
|
RID instance = node->call("get_bake_mesh_instance", instance_idx);
|
|
if (instance.is_valid()) {
|
|
RS::get_singleton()->instance_geometry_set_lightmap(instance, RID(), Rect2(), 0);
|
|
}
|
|
} else {
|
|
VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
|
|
ERR_CONTINUE(!vi);
|
|
RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), RID(), Rect2(), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LightmapGI::set_light_data(const Ref<LightmapGIData> &p_data) {
|
|
if (light_data.is_valid()) {
|
|
if (is_inside_tree()) {
|
|
_clear_lightmaps();
|
|
}
|
|
set_base(RID());
|
|
}
|
|
light_data = p_data;
|
|
|
|
if (light_data.is_valid()) {
|
|
set_base(light_data->get_rid());
|
|
if (is_inside_tree()) {
|
|
_assign_lightmaps();
|
|
}
|
|
}
|
|
|
|
update_gizmos();
|
|
}
|
|
|
|
Ref<LightmapGIData> LightmapGI::get_light_data() const {
|
|
return light_data;
|
|
}
|
|
|
|
void LightmapGI::set_bake_quality(BakeQuality p_quality) {
|
|
bake_quality = p_quality;
|
|
}
|
|
|
|
LightmapGI::BakeQuality LightmapGI::get_bake_quality() const {
|
|
return bake_quality;
|
|
}
|
|
|
|
AABB LightmapGI::get_aabb() const {
|
|
return AABB();
|
|
}
|
|
|
|
Vector<Face3> LightmapGI::get_faces(uint32_t p_usage_flags) const {
|
|
return Vector<Face3>();
|
|
}
|
|
|
|
void LightmapGI::set_use_denoiser(bool p_enable) {
|
|
use_denoiser = p_enable;
|
|
}
|
|
|
|
bool LightmapGI::is_using_denoiser() const {
|
|
return use_denoiser;
|
|
}
|
|
|
|
void LightmapGI::set_directional(bool p_enable) {
|
|
directional = p_enable;
|
|
}
|
|
|
|
bool LightmapGI::is_directional() const {
|
|
return directional;
|
|
}
|
|
|
|
void LightmapGI::set_interior(bool p_enable) {
|
|
interior = p_enable;
|
|
}
|
|
|
|
bool LightmapGI::is_interior() const {
|
|
return interior;
|
|
}
|
|
|
|
void LightmapGI::set_environment_mode(EnvironmentMode p_mode) {
|
|
environment_mode = p_mode;
|
|
notify_property_list_changed();
|
|
}
|
|
|
|
LightmapGI::EnvironmentMode LightmapGI::get_environment_mode() const {
|
|
return environment_mode;
|
|
}
|
|
|
|
void LightmapGI::set_environment_custom_sky(const Ref<Sky> &p_sky) {
|
|
environment_custom_sky = p_sky;
|
|
}
|
|
|
|
Ref<Sky> LightmapGI::get_environment_custom_sky() const {
|
|
return environment_custom_sky;
|
|
}
|
|
|
|
void LightmapGI::set_environment_custom_color(const Color &p_color) {
|
|
environment_custom_color = p_color;
|
|
}
|
|
|
|
Color LightmapGI::get_environment_custom_color() const {
|
|
return environment_custom_color;
|
|
}
|
|
|
|
void LightmapGI::set_environment_custom_energy(float p_energy) {
|
|
environment_custom_energy = p_energy;
|
|
}
|
|
|
|
float LightmapGI::get_environment_custom_energy() const {
|
|
return environment_custom_energy;
|
|
}
|
|
|
|
void LightmapGI::set_bounces(int p_bounces) {
|
|
ERR_FAIL_COND(p_bounces < 0 || p_bounces > 16);
|
|
bounces = p_bounces;
|
|
}
|
|
|
|
int LightmapGI::get_bounces() const {
|
|
return bounces;
|
|
}
|
|
|
|
void LightmapGI::set_bias(float p_bias) {
|
|
ERR_FAIL_COND(p_bias < 0.00001);
|
|
bias = p_bias;
|
|
}
|
|
|
|
float LightmapGI::get_bias() const {
|
|
return bias;
|
|
}
|
|
|
|
void LightmapGI::set_max_texture_size(int p_size) {
|
|
ERR_FAIL_COND(p_size < 2048);
|
|
max_texture_size = p_size;
|
|
}
|
|
|
|
int LightmapGI::get_max_texture_size() const {
|
|
return max_texture_size;
|
|
}
|
|
|
|
void LightmapGI::set_generate_probes(GenerateProbes p_generate_probes) {
|
|
gen_probes = p_generate_probes;
|
|
}
|
|
|
|
LightmapGI::GenerateProbes LightmapGI::get_generate_probes() const {
|
|
return gen_probes;
|
|
}
|
|
|
|
void LightmapGI::_validate_property(PropertyInfo &property) const {
|
|
if (property.name == "environment_custom_sky" && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
|
|
property.usage = PROPERTY_USAGE_NONE;
|
|
}
|
|
if (property.name == "environment_custom_color" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR) {
|
|
property.usage = PROPERTY_USAGE_NONE;
|
|
}
|
|
if (property.name == "environment_custom_energy" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
|
|
property.usage = PROPERTY_USAGE_NONE;
|
|
}
|
|
VisualInstance3D::_validate_property(property);
|
|
}
|
|
|
|
void LightmapGI::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("set_light_data", "data"), &LightmapGI::set_light_data);
|
|
ClassDB::bind_method(D_METHOD("get_light_data"), &LightmapGI::get_light_data);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &LightmapGI::set_bake_quality);
|
|
ClassDB::bind_method(D_METHOD("get_bake_quality"), &LightmapGI::get_bake_quality);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_bounces", "bounces"), &LightmapGI::set_bounces);
|
|
ClassDB::bind_method(D_METHOD("get_bounces"), &LightmapGI::get_bounces);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_generate_probes", "subdivision"), &LightmapGI::set_generate_probes);
|
|
ClassDB::bind_method(D_METHOD("get_generate_probes"), &LightmapGI::get_generate_probes);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_bias", "bias"), &LightmapGI::set_bias);
|
|
ClassDB::bind_method(D_METHOD("get_bias"), &LightmapGI::get_bias);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_environment_mode", "mode"), &LightmapGI::set_environment_mode);
|
|
ClassDB::bind_method(D_METHOD("get_environment_mode"), &LightmapGI::get_environment_mode);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_environment_custom_sky", "sky"), &LightmapGI::set_environment_custom_sky);
|
|
ClassDB::bind_method(D_METHOD("get_environment_custom_sky"), &LightmapGI::get_environment_custom_sky);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_environment_custom_color", "color"), &LightmapGI::set_environment_custom_color);
|
|
ClassDB::bind_method(D_METHOD("get_environment_custom_color"), &LightmapGI::get_environment_custom_color);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_environment_custom_energy", "energy"), &LightmapGI::set_environment_custom_energy);
|
|
ClassDB::bind_method(D_METHOD("get_environment_custom_energy"), &LightmapGI::get_environment_custom_energy);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_max_texture_size", "max_texture_size"), &LightmapGI::set_max_texture_size);
|
|
ClassDB::bind_method(D_METHOD("get_max_texture_size"), &LightmapGI::get_max_texture_size);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_use_denoiser", "use_denoiser"), &LightmapGI::set_use_denoiser);
|
|
ClassDB::bind_method(D_METHOD("is_using_denoiser"), &LightmapGI::is_using_denoiser);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_interior", "enable"), &LightmapGI::set_interior);
|
|
ClassDB::bind_method(D_METHOD("is_interior"), &LightmapGI::is_interior);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_directional", "directional"), &LightmapGI::set_directional);
|
|
ClassDB::bind_method(D_METHOD("is_directional"), &LightmapGI::is_directional);
|
|
|
|
// ClassDB::bind_method(D_METHOD("bake", "from_node"), &LightmapGI::bake, DEFVAL(Variant()));
|
|
|
|
ADD_GROUP("Tweaks", "");
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "quality", PROPERTY_HINT_ENUM, "Low,Medium,High,Ultra"), "set_bake_quality", "get_bake_quality");
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces", PROPERTY_HINT_RANGE, "0,16,1"), "set_bounces", "get_bounces");
|
|
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional"), "set_directional", "is_directional");
|
|
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
|
|
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser"), "set_use_denoiser", "is_using_denoiser");
|
|
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias", PROPERTY_HINT_RANGE, "0.00001,0.1,0.00001,or_greater"), "set_bias", "get_bias");
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "max_texture_size"), "set_max_texture_size", "get_max_texture_size");
|
|
ADD_GROUP("Environment", "environment_");
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "environment_mode", PROPERTY_HINT_ENUM, "Disabled,Scene,Custom Sky,Custom Color"), "set_environment_mode", "get_environment_mode");
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment_custom_sky", PROPERTY_HINT_RESOURCE_TYPE, "Sky"), "set_environment_custom_sky", "get_environment_custom_sky");
|
|
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "environment_custom_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_environment_custom_color", "get_environment_custom_color");
|
|
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "environment_custom_energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_environment_custom_energy", "get_environment_custom_energy");
|
|
ADD_GROUP("Gen Probes", "generate_probes_");
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "generate_probes_subdiv", PROPERTY_HINT_ENUM, "Disabled,4,8,16,32"), "set_generate_probes", "get_generate_probes");
|
|
ADD_GROUP("Data", "");
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "LightmapGIData"), "set_light_data", "get_light_data");
|
|
|
|
BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW);
|
|
BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM);
|
|
BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH);
|
|
BIND_ENUM_CONSTANT(BAKE_QUALITY_ULTRA);
|
|
|
|
BIND_ENUM_CONSTANT(GENERATE_PROBES_DISABLED);
|
|
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_4);
|
|
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_8);
|
|
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_16);
|
|
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_32);
|
|
|
|
BIND_ENUM_CONSTANT(BAKE_ERROR_OK);
|
|
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_LIGHTMAPPER);
|
|
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SAVE_PATH);
|
|
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_MESHES);
|
|
BIND_ENUM_CONSTANT(BAKE_ERROR_MESHES_INVALID);
|
|
BIND_ENUM_CONSTANT(BAKE_ERROR_CANT_CREATE_IMAGE);
|
|
BIND_ENUM_CONSTANT(BAKE_ERROR_USER_ABORTED);
|
|
|
|
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_DISABLED);
|
|
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_SCENE);
|
|
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_SKY);
|
|
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_COLOR);
|
|
}
|
|
|
|
LightmapGI::LightmapGI() {
|
|
}
|