godot/modules/dds/texture_loader_dds.cpp

835 lines
23 KiB
C++

/**************************************************************************/
/* texture_loader_dds.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "texture_loader_dds.h"
#include "core/io/file_access.h"
#include "scene/resources/image_texture.h"
#define PF_FOURCC(s) ((uint32_t)(((s)[3] << 24U) | ((s)[2] << 16U) | ((s)[1] << 8U) | ((s)[0])))
// Reference: https://docs.microsoft.com/en-us/windows/win32/direct3ddds/dds-header
enum {
DDS_MAGIC = 0x20534444,
DDSD_PITCH = 0x00000008,
DDSD_LINEARSIZE = 0x00080000,
DDSD_MIPMAPCOUNT = 0x00020000,
DDPF_ALPHAPIXELS = 0x00000001,
DDPF_ALPHAONLY = 0x00000002,
DDPF_FOURCC = 0x00000004,
DDPF_RGB = 0x00000040,
DDPF_RG_SNORM = 0x00080000,
DDSC2_CUBEMAP = 0x200,
DDSC2_VOLUME = 0x200000,
DX10D_1D = 2,
DX10D_2D = 3,
DX10D_3D = 4,
};
enum DDSFourCC {
DDFCC_DXT1 = PF_FOURCC("DXT1"),
DDFCC_DXT2 = PF_FOURCC("DXT2"),
DDFCC_DXT3 = PF_FOURCC("DXT3"),
DDFCC_DXT4 = PF_FOURCC("DXT4"),
DDFCC_DXT5 = PF_FOURCC("DXT5"),
DDFCC_ATI1 = PF_FOURCC("ATI1"),
DDFCC_BC4U = PF_FOURCC("BC4U"),
DDFCC_ATI2 = PF_FOURCC("ATI2"),
DDFCC_BC5U = PF_FOURCC("BC5U"),
DDFCC_A2XY = PF_FOURCC("A2XY"),
DDFCC_DX10 = PF_FOURCC("DX10"),
DDFCC_R16F = 111,
DDFCC_RG16F = 112,
DDFCC_RGBA16F = 113,
DDFCC_R32F = 114,
DDFCC_RG32F = 115,
DDFCC_RGBA32F = 116
};
// Reference: https://learn.microsoft.com/en-us/windows/win32/api/dxgiformat/ne-dxgiformat-dxgi_format
enum DXGIFormat {
DXGI_R32G32B32A32_FLOAT = 2,
DXGI_R32G32B32_FLOAT = 6,
DXGI_R16G16B16A16_FLOAT = 10,
DXGI_R32G32_FLOAT = 16,
DXGI_R10G10B10A2_UNORM = 24,
DXGI_R8G8B8A8_UNORM = 28,
DXGI_R8G8B8A8_UNORM_SRGB = 29,
DXGI_R16G16_FLOAT = 34,
DXGI_R32_FLOAT = 41,
DXGI_R8G8_UNORM = 49,
DXGI_R16_FLOAT = 54,
DXGI_R8_UNORM = 61,
DXGI_A8_UNORM = 65,
DXGI_R9G9B9E5 = 67,
DXGI_BC1_UNORM = 71,
DXGI_BC1_UNORM_SRGB = 72,
DXGI_BC2_UNORM = 74,
DXGI_BC2_UNORM_SRGB = 75,
DXGI_BC3_UNORM = 77,
DXGI_BC3_UNORM_SRGB = 78,
DXGI_BC4_UNORM = 80,
DXGI_BC5_UNORM = 83,
DXGI_B5G6R5_UNORM = 85,
DXGI_B5G5R5A1_UNORM = 86,
DXGI_B8G8R8A8_UNORM = 87,
DXGI_BC6H_UF16 = 95,
DXGI_BC6H_SF16 = 96,
DXGI_BC7_UNORM = 98,
DXGI_BC7_UNORM_SRGB = 99,
DXGI_B4G4R4A4_UNORM = 115
};
// The legacy bitmasked format names here represent the actual data layout in the files,
// while their official names are flipped (e.g. RGBA8 layout is officially called ABGR8).
enum DDSFormat {
DDS_DXT1,
DDS_DXT3,
DDS_DXT5,
DDS_ATI1,
DDS_ATI2,
DDS_BC6U,
DDS_BC6S,
DDS_BC7,
DDS_R16F,
DDS_RG16F,
DDS_RGBA16F,
DDS_R32F,
DDS_RG32F,
DDS_RGB32F,
DDS_RGBA32F,
DDS_RGB9E5,
DDS_RGB8,
DDS_RGBA8,
DDS_BGR8,
DDS_BGRA8,
DDS_BGR5A1,
DDS_BGR565,
DDS_B2GR3,
DDS_B2GR3A8,
DDS_BGR10A2,
DDS_RGB10A2,
DDS_BGRA4,
DDS_LUMINANCE,
DDS_LUMINANCE_ALPHA,
DDS_LUMINANCE_ALPHA_4,
DDS_MAX
};
enum DDSType {
DDST_2D = 1,
DDST_CUBEMAP,
DDST_3D,
DDST_TYPE_MASK = 0x7F,
DDST_ARRAY = 0x80,
};
struct DDSFormatInfo {
const char *name = nullptr;
bool compressed = false;
uint32_t divisor = 0;
uint32_t block_size = 0;
Image::Format format = Image::Format::FORMAT_BPTC_RGBA;
};
static const DDSFormatInfo dds_format_info[DDS_MAX] = {
{ "DXT1/BC1", true, 4, 8, Image::FORMAT_DXT1 },
{ "DXT2/DXT3/BC2", true, 4, 16, Image::FORMAT_DXT3 },
{ "DXT4/DXT5/BC3", true, 4, 16, Image::FORMAT_DXT5 },
{ "ATI1/BC4", true, 4, 8, Image::FORMAT_RGTC_R },
{ "ATI2/A2XY/BC5", true, 4, 16, Image::FORMAT_RGTC_RG },
{ "BC6UF", true, 4, 16, Image::FORMAT_BPTC_RGBFU },
{ "BC6SF", true, 4, 16, Image::FORMAT_BPTC_RGBF },
{ "BC7", true, 4, 16, Image::FORMAT_BPTC_RGBA },
{ "R16F", false, 1, 2, Image::FORMAT_RH },
{ "RG16F", false, 1, 4, Image::FORMAT_RGH },
{ "RGBA16F", false, 1, 8, Image::FORMAT_RGBAH },
{ "R32F", false, 1, 4, Image::FORMAT_RF },
{ "RG32F", false, 1, 8, Image::FORMAT_RGF },
{ "RGB32F", false, 1, 12, Image::FORMAT_RGBF },
{ "RGBA32F", false, 1, 16, Image::FORMAT_RGBAF },
{ "RGB9E5", false, 1, 4, Image::FORMAT_RGBE9995 },
{ "RGB8", false, 1, 3, Image::FORMAT_RGB8 },
{ "RGBA8", false, 1, 4, Image::FORMAT_RGBA8 },
{ "BGR8", false, 1, 3, Image::FORMAT_RGB8 },
{ "BGRA8", false, 1, 4, Image::FORMAT_RGBA8 },
{ "BGR5A1", false, 1, 2, Image::FORMAT_RGBA8 },
{ "BGR565", false, 1, 2, Image::FORMAT_RGB8 },
{ "B2GR3", false, 1, 1, Image::FORMAT_RGB8 },
{ "B2GR3A8", false, 1, 2, Image::FORMAT_RGBA8 },
{ "BGR10A2", false, 1, 4, Image::FORMAT_RGBA8 },
{ "RGB10A2", false, 1, 4, Image::FORMAT_RGBA8 },
{ "BGRA4", false, 1, 2, Image::FORMAT_RGBA8 },
{ "GRAYSCALE", false, 1, 1, Image::FORMAT_L8 },
{ "GRAYSCALE_ALPHA", false, 1, 2, Image::FORMAT_LA8 },
{ "GRAYSCALE_ALPHA_4", false, 1, 1, Image::FORMAT_LA8 }
};
inline DDSFormat _dxgi_to_dds_format(uint32_t p_dxgi_format) {
switch (p_dxgi_format) {
case DXGI_R32G32B32A32_FLOAT: {
return DDS_RGBA32F;
}
case DXGI_R32G32B32_FLOAT: {
return DDS_RGB32F;
}
case DXGI_R16G16B16A16_FLOAT: {
return DDS_RGBA16F;
}
case DXGI_R32G32_FLOAT: {
return DDS_RG32F;
}
case DXGI_R10G10B10A2_UNORM: {
return DDS_RGB10A2;
}
case DXGI_R8G8B8A8_UNORM:
case DXGI_R8G8B8A8_UNORM_SRGB: {
return DDS_RGBA8;
}
case DXGI_R16G16_FLOAT: {
return DDS_RG16F;
}
case DXGI_R32_FLOAT: {
return DDS_R32F;
}
case DXGI_R8_UNORM:
case DXGI_A8_UNORM: {
return DDS_LUMINANCE;
}
case DXGI_R16_FLOAT: {
return DDS_R16F;
}
case DXGI_R8G8_UNORM: {
return DDS_LUMINANCE_ALPHA;
}
case DXGI_R9G9B9E5: {
return DDS_RGB9E5;
}
case DXGI_BC1_UNORM:
case DXGI_BC1_UNORM_SRGB: {
return DDS_DXT1;
}
case DXGI_BC2_UNORM:
case DXGI_BC2_UNORM_SRGB: {
return DDS_DXT3;
}
case DXGI_BC3_UNORM:
case DXGI_BC3_UNORM_SRGB: {
return DDS_DXT5;
}
case DXGI_BC4_UNORM: {
return DDS_ATI1;
}
case DXGI_BC5_UNORM: {
return DDS_ATI2;
}
case DXGI_B5G6R5_UNORM: {
return DDS_BGR565;
}
case DXGI_B5G5R5A1_UNORM: {
return DDS_BGR5A1;
}
case DXGI_B8G8R8A8_UNORM: {
return DDS_BGRA8;
}
case DXGI_BC6H_UF16: {
return DDS_BC6U;
}
case DXGI_BC6H_SF16: {
return DDS_BC6S;
}
case DXGI_BC7_UNORM:
case DXGI_BC7_UNORM_SRGB: {
return DDS_BC7;
}
case DXGI_B4G4R4A4_UNORM: {
return DDS_BGRA4;
}
default: {
return DDS_MAX;
}
}
}
static Ref<Image> _dds_load_layer(Ref<FileAccess> p_file, DDSFormat p_dds_format, uint32_t p_width, uint32_t p_height, uint32_t p_mipmaps, uint32_t p_pitch, uint32_t p_flags, Vector<uint8_t> &r_src_data) {
const DDSFormatInfo &info = dds_format_info[p_dds_format];
uint32_t w = p_width;
uint32_t h = p_height;
if (info.compressed) {
// BC compressed.
w += w % info.divisor;
h += h % info.divisor;
if (w != p_width) {
WARN_PRINT(vformat("%s: DDS width '%d' is not divisible by %d. This is not allowed as per the DDS specification, attempting to load anyway.", p_file->get_path(), p_width, info.divisor));
}
if (h != p_height) {
WARN_PRINT(vformat("%s: DDS height '%d' is not divisible by %d. This is not allowed as per the DDS specification, attempting to load anyway.", p_file->get_path(), p_height, info.divisor));
}
uint32_t size = MAX(info.divisor, w) / info.divisor * MAX(info.divisor, h) / info.divisor * info.block_size;
if (p_flags & DDSD_LINEARSIZE) {
ERR_FAIL_COND_V_MSG(size != p_pitch, Ref<Resource>(), "DDS header flags specify that a linear size of the top-level image is present, but the specified size does not match the expected value.");
} else {
ERR_FAIL_COND_V_MSG(p_pitch != 0, Ref<Resource>(), "DDS header flags specify that no linear size will given for the top-level image, but a non-zero linear size value is present in the header.");
}
for (uint32_t i = 1; i < p_mipmaps; i++) {
w = MAX(1u, w >> 1);
h = MAX(1u, h >> 1);
uint32_t bsize = MAX(info.divisor, w) / info.divisor * MAX(info.divisor, h) / info.divisor * info.block_size;
size += bsize;
}
r_src_data.resize(size);
uint8_t *wb = r_src_data.ptrw();
p_file->get_buffer(wb, size);
} else {
// Generic uncompressed.
uint32_t size = p_width * p_height * info.block_size;
for (uint32_t i = 1; i < p_mipmaps; i++) {
w = (w + 1) >> 1;
h = (h + 1) >> 1;
size += w * h * info.block_size;
}
// Calculate the space these formats will take up after decoding.
switch (p_dds_format) {
case DDS_BGR565:
size = size * 3 / 2;
break;
case DDS_BGR5A1:
case DDS_BGRA4:
case DDS_B2GR3A8:
case DDS_LUMINANCE_ALPHA_4:
size = size * 2;
break;
case DDS_B2GR3:
size = size * 3;
break;
default:
break;
}
r_src_data.resize(size);
uint8_t *wb = r_src_data.ptrw();
p_file->get_buffer(wb, size);
switch (p_dds_format) {
case DDS_BGR5A1: {
// To RGBA8.
int colcount = size / 4;
for (int i = colcount - 1; i >= 0; i--) {
int src_ofs = i * 2;
int dst_ofs = i * 4;
uint8_t a = wb[src_ofs + 1] & 0x80;
uint8_t b = wb[src_ofs] & 0x1F;
uint8_t g = (wb[src_ofs] >> 5) | ((wb[src_ofs + 1] & 0x3) << 3);
uint8_t r = (wb[src_ofs + 1] >> 2) & 0x1F;
wb[dst_ofs + 0] = r << 3;
wb[dst_ofs + 1] = g << 3;
wb[dst_ofs + 2] = b << 3;
wb[dst_ofs + 3] = a ? 255 : 0;
}
} break;
case DDS_BGR565: {
// To RGB8.
int colcount = size / 3;
for (int i = colcount - 1; i >= 0; i--) {
int src_ofs = i * 2;
int dst_ofs = i * 3;
uint8_t b = wb[src_ofs] & 0x1F;
uint8_t g = (wb[src_ofs] >> 5) | ((wb[src_ofs + 1] & 0x7) << 3);
uint8_t r = wb[src_ofs + 1] >> 3;
wb[dst_ofs + 0] = r << 3;
wb[dst_ofs + 1] = g << 2;
wb[dst_ofs + 2] = b << 3;
}
} break;
case DDS_BGRA4: {
// To RGBA8.
int colcount = size / 4;
for (int i = colcount - 1; i >= 0; i--) {
int src_ofs = i * 2;
int dst_ofs = i * 4;
uint8_t b = wb[src_ofs] & 0x0F;
uint8_t g = wb[src_ofs] & 0xF0;
uint8_t r = wb[src_ofs + 1] & 0x0F;
uint8_t a = wb[src_ofs + 1] & 0xF0;
wb[dst_ofs] = (r << 4) | r;
wb[dst_ofs + 1] = g | (g >> 4);
wb[dst_ofs + 2] = (b << 4) | b;
wb[dst_ofs + 3] = a | (a >> 4);
}
} break;
case DDS_B2GR3: {
// To RGB8.
int colcount = size / 3;
for (int i = colcount - 1; i >= 0; i--) {
int src_ofs = i;
int dst_ofs = i * 3;
uint8_t b = (wb[src_ofs] & 0x3) << 6;
uint8_t g = (wb[src_ofs] & 0x1C) << 3;
uint8_t r = (wb[src_ofs] & 0xE0);
wb[dst_ofs] = r;
wb[dst_ofs + 1] = g;
wb[dst_ofs + 2] = b;
}
} break;
case DDS_B2GR3A8: {
// To RGBA8.
int colcount = size / 4;
for (int i = colcount - 1; i >= 0; i--) {
int src_ofs = i * 2;
int dst_ofs = i * 4;
uint8_t b = (wb[src_ofs] & 0x3) << 6;
uint8_t g = (wb[src_ofs] & 0x1C) << 3;
uint8_t r = (wb[src_ofs] & 0xE0);
uint8_t a = wb[src_ofs + 1];
wb[dst_ofs] = r;
wb[dst_ofs + 1] = g;
wb[dst_ofs + 2] = b;
wb[dst_ofs + 3] = a;
}
} break;
case DDS_RGB10A2: {
// To RGBA8.
int colcount = size / 4;
for (int i = 0; i < colcount; i++) {
int ofs = i * 4;
uint32_t w32 = uint32_t(wb[ofs + 0]) | (uint32_t(wb[ofs + 1]) << 8) | (uint32_t(wb[ofs + 2]) << 16) | (uint32_t(wb[ofs + 3]) << 24);
// This method follows the 'standard' way of decoding 10-bit dds files,
// which means the ones created with DirectXTex will be loaded incorrectly.
uint8_t a = (w32 & 0xc0000000) >> 24;
uint8_t r = (w32 & 0x3ff) >> 2;
uint8_t g = (w32 & 0xffc00) >> 12;
uint8_t b = (w32 & 0x3ff00000) >> 22;
wb[ofs + 0] = r;
wb[ofs + 1] = g;
wb[ofs + 2] = b;
wb[ofs + 3] = a == 0xc0 ? 255 : a; // 0xc0 should be opaque.
}
} break;
case DDS_BGR10A2: {
// To RGBA8.
int colcount = size / 4;
for (int i = 0; i < colcount; i++) {
int ofs = i * 4;
uint32_t w32 = uint32_t(wb[ofs + 0]) | (uint32_t(wb[ofs + 1]) << 8) | (uint32_t(wb[ofs + 2]) << 16) | (uint32_t(wb[ofs + 3]) << 24);
// This method follows the 'standard' way of decoding 10-bit dds files,
// which means the ones created with DirectXTex will be loaded incorrectly.
uint8_t a = (w32 & 0xc0000000) >> 24;
uint8_t r = (w32 & 0x3ff00000) >> 22;
uint8_t g = (w32 & 0xffc00) >> 12;
uint8_t b = (w32 & 0x3ff) >> 2;
wb[ofs + 0] = r;
wb[ofs + 1] = g;
wb[ofs + 2] = b;
wb[ofs + 3] = a == 0xc0 ? 255 : a; // 0xc0 should be opaque.
}
} break;
// Channel-swapped.
case DDS_BGRA8: {
// To RGBA8.
int colcount = size / 4;
for (int i = 0; i < colcount; i++) {
SWAP(wb[i * 4 + 0], wb[i * 4 + 2]);
}
} break;
case DDS_BGR8: {
// To RGB8.
int colcount = size / 3;
for (int i = 0; i < colcount; i++) {
SWAP(wb[i * 3 + 0], wb[i * 3 + 2]);
}
} break;
// Grayscale.
case DDS_LUMINANCE_ALPHA_4: {
// To LA8.
int colcount = size / 2;
for (int i = colcount - 1; i >= 0; i--) {
int src_ofs = i;
int dst_ofs = i * 2;
uint8_t l = wb[src_ofs] & 0x0F;
uint8_t a = wb[src_ofs] & 0xF0;
wb[dst_ofs] = (l << 4) | l;
wb[dst_ofs + 1] = a | (a >> 4);
}
} break;
default: {
}
}
}
return memnew(Image(p_width, p_height, p_mipmaps > 1, info.format, r_src_data));
}
Ref<Resource> ResourceFormatDDS::load(const String &p_path, const String &p_original_path, Error *r_error, bool p_use_sub_threads, float *r_progress, CacheMode p_cache_mode) {
if (r_error) {
*r_error = ERR_CANT_OPEN;
}
Error err;
Ref<FileAccess> f = FileAccess::open(p_path, FileAccess::READ, &err);
if (f.is_null()) {
return Ref<Resource>();
}
Ref<FileAccess> fref(f);
if (r_error) {
*r_error = ERR_FILE_CORRUPT;
}
ERR_FAIL_COND_V_MSG(err != OK, Ref<Resource>(), vformat("Unable to open DDS texture file '%s'.", p_path));
uint32_t magic = f->get_32();
uint32_t hsize = f->get_32();
uint32_t flags = f->get_32();
uint32_t height = f->get_32();
uint32_t width = f->get_32();
uint32_t pitch = f->get_32();
uint32_t depth = f->get_32();
uint32_t mipmaps = f->get_32();
// Skip reserved.
for (int i = 0; i < 11; i++) {
f->get_32();
}
// Validate.
// We don't check DDSD_CAPS or DDSD_PIXELFORMAT, as they're mandatory when writing,
// but non-mandatory when reading (as some writers don't set them).
if (magic != DDS_MAGIC || hsize != 124) {
ERR_FAIL_V_MSG(Ref<Resource>(), vformat("Invalid or unsupported DDS texture file '%s'.", p_path));
}
/* uint32_t format_size = */ f->get_32();
uint32_t format_flags = f->get_32();
uint32_t format_fourcc = f->get_32();
uint32_t format_rgb_bits = f->get_32();
uint32_t format_red_mask = f->get_32();
uint32_t format_green_mask = f->get_32();
uint32_t format_blue_mask = f->get_32();
uint32_t format_alpha_mask = f->get_32();
/* uint32_t caps_1 = */ f->get_32();
uint32_t caps_2 = f->get_32();
/* uint32_t caps_3 = */ f->get_32();
/* uint32_t caps_4 = */ f->get_32();
// Skip reserved.
f->get_32();
if (f->get_position() < 128) {
f->seek(128);
}
uint32_t layer_count = 1;
uint32_t dds_type = DDST_2D;
if (caps_2 & DDSC2_CUBEMAP) {
dds_type = DDST_CUBEMAP;
layer_count *= 6;
} else if (caps_2 & DDSC2_VOLUME) {
dds_type = DDST_3D;
layer_count = depth;
}
DDSFormat dds_format = DDS_MAX;
if (format_flags & DDPF_FOURCC) {
// FourCC formats.
switch (format_fourcc) {
case DDFCC_DXT1: {
dds_format = DDS_DXT1;
} break;
case DDFCC_DXT2:
case DDFCC_DXT3: {
dds_format = DDS_DXT3;
} break;
case DDFCC_DXT4:
case DDFCC_DXT5: {
dds_format = DDS_DXT5;
} break;
case DDFCC_ATI1:
case DDFCC_BC4U: {
dds_format = DDS_ATI1;
} break;
case DDFCC_ATI2:
case DDFCC_BC5U:
case DDFCC_A2XY: {
dds_format = DDS_ATI2;
} break;
case DDFCC_R16F: {
dds_format = DDS_R16F;
} break;
case DDFCC_RG16F: {
dds_format = DDS_RG16F;
} break;
case DDFCC_RGBA16F: {
dds_format = DDS_RGBA16F;
} break;
case DDFCC_R32F: {
dds_format = DDS_R32F;
} break;
case DDFCC_RG32F: {
dds_format = DDS_RG32F;
} break;
case DDFCC_RGBA32F: {
dds_format = DDS_RGBA32F;
} break;
case DDFCC_DX10: {
uint32_t dxgi_format = f->get_32();
uint32_t dimension = f->get_32();
/* uint32_t misc_flags_1 = */ f->get_32();
uint32_t array_size = f->get_32();
/* uint32_t misc_flags_2 = */ f->get_32();
if (dimension == DX10D_3D) {
dds_type = DDST_3D;
layer_count = depth;
}
if (array_size > 1) {
layer_count *= array_size;
dds_type |= DDST_ARRAY;
}
dds_format = _dxgi_to_dds_format(dxgi_format);
} break;
default: {
ERR_FAIL_V_MSG(Ref<Resource>(), vformat("Unrecognized or unsupported FourCC in DDS '%s'.", p_path));
}
}
} else if (format_flags & DDPF_RGB) {
// Channel-bitmasked formats.
if (format_flags & DDPF_ALPHAPIXELS) {
// With alpha.
if (format_rgb_bits == 32 && format_red_mask == 0xff0000 && format_green_mask == 0xff00 && format_blue_mask == 0xff && format_alpha_mask == 0xff000000) {
dds_format = DDS_BGRA8;
} else if (format_rgb_bits == 32 && format_red_mask == 0xff && format_green_mask == 0xff00 && format_blue_mask == 0xff0000 && format_alpha_mask == 0xff000000) {
dds_format = DDS_RGBA8;
} else if (format_rgb_bits == 16 && format_red_mask == 0x00007c00 && format_green_mask == 0x000003e0 && format_blue_mask == 0x0000001f && format_alpha_mask == 0x00008000) {
dds_format = DDS_BGR5A1;
} else if (format_rgb_bits == 32 && format_red_mask == 0x3ff00000 && format_green_mask == 0xffc00 && format_blue_mask == 0x3ff && format_alpha_mask == 0xc0000000) {
dds_format = DDS_BGR10A2;
} else if (format_rgb_bits == 32 && format_red_mask == 0x3ff && format_green_mask == 0xffc00 && format_blue_mask == 0x3ff00000 && format_alpha_mask == 0xc0000000) {
dds_format = DDS_RGB10A2;
} else if (format_rgb_bits == 16 && format_red_mask == 0xf00 && format_green_mask == 0xf0 && format_blue_mask == 0xf && format_alpha_mask == 0xf000) {
dds_format = DDS_BGRA4;
} else if (format_rgb_bits == 16 && format_red_mask == 0xe0 && format_green_mask == 0x1c && format_blue_mask == 0x3 && format_alpha_mask == 0xff00) {
dds_format = DDS_B2GR3A8;
}
} else {
// Without alpha.
if (format_rgb_bits == 24 && format_red_mask == 0xff0000 && format_green_mask == 0xff00 && format_blue_mask == 0xff) {
dds_format = DDS_BGR8;
} else if (format_rgb_bits == 24 && format_red_mask == 0xff && format_green_mask == 0xff00 && format_blue_mask == 0xff0000) {
dds_format = DDS_RGB8;
} else if (format_rgb_bits == 16 && format_red_mask == 0x0000f800 && format_green_mask == 0x000007e0 && format_blue_mask == 0x0000001f) {
dds_format = DDS_BGR565;
} else if (format_rgb_bits == 8 && format_red_mask == 0xe0 && format_green_mask == 0x1c && format_blue_mask == 0x3) {
dds_format = DDS_B2GR3;
}
}
} else {
// Other formats.
if (format_flags & DDPF_ALPHAONLY && format_rgb_bits == 8 && format_alpha_mask == 0xff) {
// Alpha only.
dds_format = DDS_LUMINANCE;
}
}
// Depending on the writer, luminance formats may or may not have the DDPF_RGB or DDPF_LUMINANCE flags defined,
// so we check for these formats after everything else failed.
if (dds_format == DDS_MAX) {
if (format_flags & DDPF_ALPHAPIXELS) {
// With alpha.
if (format_rgb_bits == 16 && format_red_mask == 0xff && format_alpha_mask == 0xff00) {
dds_format = DDS_LUMINANCE_ALPHA;
} else if (format_rgb_bits == 8 && format_red_mask == 0xf && format_alpha_mask == 0xf0) {
dds_format = DDS_LUMINANCE_ALPHA_4;
}
} else {
// Without alpha.
if (format_rgb_bits == 8 && format_red_mask == 0xff) {
dds_format = DDS_LUMINANCE;
}
}
}
// No format detected, error.
if (dds_format == DDS_MAX) {
ERR_FAIL_V_MSG(Ref<Resource>(), vformat("Unrecognized or unsupported color layout in DDS '%s'.", p_path));
}
if (!(flags & DDSD_MIPMAPCOUNT)) {
mipmaps = 1;
}
Vector<uint8_t> src_data;
Vector<Ref<Image>> images;
images.resize(layer_count);
for (uint32_t i = 0; i < layer_count; i++) {
images.write[i] = _dds_load_layer(f, dds_format, width, height, mipmaps, pitch, flags, src_data);
}
if ((dds_type & DDST_TYPE_MASK) == DDST_2D) {
if (dds_type & DDST_ARRAY) {
Ref<Texture2DArray> texture = memnew(Texture2DArray());
texture->create_from_images(images);
if (r_error) {
*r_error = OK;
}
return texture;
} else {
if (r_error) {
*r_error = OK;
}
return ImageTexture::create_from_image(images[0]);
}
} else if ((dds_type & DDST_TYPE_MASK) == DDST_CUBEMAP) {
ERR_FAIL_COND_V(layer_count % 6 != 0, Ref<Resource>());
if (dds_type & DDST_ARRAY) {
Ref<CubemapArray> texture = memnew(CubemapArray());
texture->create_from_images(images);
if (r_error) {
*r_error = OK;
}
return texture;
} else {
Ref<Cubemap> texture = memnew(Cubemap());
texture->create_from_images(images);
if (r_error) {
*r_error = OK;
}
return texture;
}
} else if ((dds_type & DDST_TYPE_MASK) == DDST_3D) {
Ref<ImageTexture3D> texture = memnew(ImageTexture3D());
texture->create(images[0]->get_format(), width, height, layer_count, mipmaps > 1, images);
if (r_error) {
*r_error = OK;
}
return texture;
}
return Ref<Resource>();
}
void ResourceFormatDDS::get_recognized_extensions(List<String> *p_extensions) const {
p_extensions->push_back("dds");
}
bool ResourceFormatDDS::handles_type(const String &p_type) const {
return ClassDB::is_parent_class(p_type, "Texture");
}
String ResourceFormatDDS::get_resource_type(const String &p_path) const {
if (p_path.get_extension().to_lower() == "dds") {
return "Texture";
}
return "";
}