godot/scene/3d/physics_body.cpp
2017-06-25 07:55:01 +07:00

1398 lines
44 KiB
C++

/*************************************************************************/
/* physics_body.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "physics_body.h"
#include "method_bind_ext.gen.inc"
#include "scene/scene_string_names.h"
void PhysicsBody::_notification(int p_what) {
/*
switch(p_what) {
case NOTIFICATION_TRANSFORM_CHANGED: {
PhysicsServer::get_singleton()->body_set_state(get_rid(),PhysicsServer::BODY_STATE_TRANSFORM,get_global_transform());
} break;
}
*/
}
Vector3 PhysicsBody::get_linear_velocity() const {
return Vector3();
}
Vector3 PhysicsBody::get_angular_velocity() const {
return Vector3();
}
float PhysicsBody::get_inverse_mass() const {
return 0;
}
void PhysicsBody::set_collision_layer(uint32_t p_layer) {
collision_layer = p_layer;
PhysicsServer::get_singleton()->body_set_collision_layer(get_rid(), p_layer);
}
uint32_t PhysicsBody::get_collision_layer() const {
return collision_layer;
}
void PhysicsBody::set_collision_mask(uint32_t p_mask) {
collision_mask = p_mask;
PhysicsServer::get_singleton()->body_set_collision_mask(get_rid(), p_mask);
}
uint32_t PhysicsBody::get_collision_mask() const {
return collision_mask;
}
void PhysicsBody::set_collision_mask_bit(int p_bit, bool p_value) {
uint32_t mask = get_collision_mask();
if (p_value)
mask |= 1 << p_bit;
else
mask &= ~(1 << p_bit);
set_collision_mask(mask);
}
bool PhysicsBody::get_collision_mask_bit(int p_bit) const {
return get_collision_mask() & (1 << p_bit);
}
void PhysicsBody::set_collision_layer_bit(int p_bit, bool p_value) {
uint32_t mask = get_collision_layer();
if (p_value)
mask |= 1 << p_bit;
else
mask &= ~(1 << p_bit);
set_collision_layer(mask);
}
bool PhysicsBody::get_collision_layer_bit(int p_bit) const {
return get_collision_layer() & (1 << p_bit);
}
void PhysicsBody::add_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
PhysicsBody *physics_body = p_node->cast_to<PhysicsBody>();
if (!physics_body) {
ERR_EXPLAIN("Collision exception only works between two objects of PhysicsBody type");
}
ERR_FAIL_COND(!physics_body);
PhysicsServer::get_singleton()->body_add_collision_exception(get_rid(), physics_body->get_rid());
}
void PhysicsBody::remove_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
PhysicsBody *physics_body = p_node->cast_to<PhysicsBody>();
if (!physics_body) {
ERR_EXPLAIN("Collision exception only works between two objects of PhysicsBody type");
}
ERR_FAIL_COND(!physics_body);
PhysicsServer::get_singleton()->body_remove_collision_exception(get_rid(), physics_body->get_rid());
}
void PhysicsBody::_set_layers(uint32_t p_mask) {
set_collision_layer(p_mask);
set_collision_mask(p_mask);
}
uint32_t PhysicsBody::_get_layers() const {
return get_collision_layer();
}
void PhysicsBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_collision_layer", "layer"), &PhysicsBody::set_collision_layer);
ClassDB::bind_method(D_METHOD("get_collision_layer"), &PhysicsBody::get_collision_layer);
ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &PhysicsBody::set_collision_mask);
ClassDB::bind_method(D_METHOD("get_collision_mask"), &PhysicsBody::get_collision_mask);
ClassDB::bind_method(D_METHOD("set_collision_mask_bit", "bit", "value"), &PhysicsBody::set_collision_mask_bit);
ClassDB::bind_method(D_METHOD("get_collision_mask_bit", "bit"), &PhysicsBody::get_collision_mask_bit);
ClassDB::bind_method(D_METHOD("set_collision_layer_bit", "bit", "value"), &PhysicsBody::set_collision_layer_bit);
ClassDB::bind_method(D_METHOD("get_collision_layer_bit", "bit"), &PhysicsBody::get_collision_layer_bit);
ClassDB::bind_method(D_METHOD("_set_layers", "mask"), &PhysicsBody::_set_layers);
ClassDB::bind_method(D_METHOD("_get_layers"), &PhysicsBody::_get_layers);
ADD_GROUP("Collision", "collision_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_layer", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_layer", "get_collision_layer");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_mask", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_mask", "get_collision_mask");
}
PhysicsBody::PhysicsBody(PhysicsServer::BodyMode p_mode)
: CollisionObject(PhysicsServer::get_singleton()->body_create(p_mode), false) {
collision_layer = 1;
collision_mask = 1;
}
void StaticBody::set_friction(real_t p_friction) {
ERR_FAIL_COND(p_friction < 0 || p_friction > 1);
friction = p_friction;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, friction);
}
real_t StaticBody::get_friction() const {
return friction;
}
void StaticBody::set_bounce(real_t p_bounce) {
ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1);
bounce = p_bounce;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, bounce);
}
real_t StaticBody::get_bounce() const {
return bounce;
}
void StaticBody::set_constant_linear_velocity(const Vector3 &p_vel) {
constant_linear_velocity = p_vel;
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_LINEAR_VELOCITY, constant_linear_velocity);
}
void StaticBody::set_constant_angular_velocity(const Vector3 &p_vel) {
constant_angular_velocity = p_vel;
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_ANGULAR_VELOCITY, constant_angular_velocity);
}
Vector3 StaticBody::get_constant_linear_velocity() const {
return constant_linear_velocity;
}
Vector3 StaticBody::get_constant_angular_velocity() const {
return constant_angular_velocity;
}
void StaticBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_constant_linear_velocity", "vel"), &StaticBody::set_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("set_constant_angular_velocity", "vel"), &StaticBody::set_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("get_constant_linear_velocity"), &StaticBody::get_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("get_constant_angular_velocity"), &StaticBody::get_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &StaticBody::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &StaticBody::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &StaticBody::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &StaticBody::get_bounce);
ClassDB::bind_method(D_METHOD("add_collision_exception_with", "body:PhysicsBody"), &PhysicsBody::add_collision_exception_with);
ClassDB::bind_method(D_METHOD("remove_collision_exception_with", "body:PhysicsBody"), &PhysicsBody::remove_collision_exception_with);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_linear_velocity"), "set_constant_linear_velocity", "get_constant_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_angular_velocity"), "set_constant_angular_velocity", "get_constant_angular_velocity");
}
StaticBody::StaticBody()
: PhysicsBody(PhysicsServer::BODY_MODE_STATIC) {
bounce = 0;
friction = 1;
}
StaticBody::~StaticBody() {
}
void RigidBody::_body_enter_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = obj ? obj->cast_to<Node>() : NULL;
ERR_FAIL_COND(!node);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(E->get().in_tree);
E->get().in_tree = true;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
for (int i = 0; i < E->get().shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, p_id, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody::_body_exit_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = obj ? obj->cast_to<Node>() : NULL;
ERR_FAIL_COND(!node);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(!E->get().in_tree);
E->get().in_tree = false;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_exited, node);
for (int i = 0; i < E->get().shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, p_id, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody::_body_inout(int p_status, ObjectID p_instance, int p_body_shape, int p_local_shape) {
bool body_in = p_status == 1;
ObjectID objid = p_instance;
Object *obj = ObjectDB::get_instance(objid);
Node *node = obj ? obj->cast_to<Node>() : NULL;
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(objid);
ERR_FAIL_COND(!body_in && !E);
if (body_in) {
if (!E) {
E = contact_monitor->body_map.insert(objid, BodyState());
//E->get().rc=0;
E->get().in_tree = node && node->is_inside_tree();
if (node) {
node->connect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree, make_binds(objid));
node->connect(SceneStringNames::get_singleton()->tree_exited, this, SceneStringNames::get_singleton()->_body_exit_tree, make_binds(objid));
if (E->get().in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
}
}
}
//E->get().rc++;
if (node)
E->get().shapes.insert(ShapePair(p_body_shape, p_local_shape));
if (E->get().in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, objid, node, p_body_shape, p_local_shape);
}
} else {
//E->get().rc--;
if (node)
E->get().shapes.erase(ShapePair(p_body_shape, p_local_shape));
bool in_tree = E->get().in_tree;
if (E->get().shapes.empty()) {
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree);
node->disconnect(SceneStringNames::get_singleton()->tree_exited, this, SceneStringNames::get_singleton()->_body_exit_tree);
if (in_tree)
emit_signal(SceneStringNames::get_singleton()->body_exited, obj);
}
contact_monitor->body_map.erase(E);
}
if (node && in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, objid, obj, p_body_shape, p_local_shape);
}
}
}
struct _RigidBodyInOut {
ObjectID id;
int shape;
int local_shape;
};
void RigidBody::_direct_state_changed(Object *p_state) {
//eh.. fuck
#ifdef DEBUG_ENABLED
state = p_state->cast_to<PhysicsDirectBodyState>();
#else
state = (PhysicsDirectBodyState *)p_state; //trust it
#endif
set_ignore_transform_notification(true);
set_global_transform(state->get_transform());
linear_velocity = state->get_linear_velocity();
angular_velocity = state->get_angular_velocity();
if (sleeping != state->is_sleeping()) {
sleeping = state->is_sleeping();
emit_signal(SceneStringNames::get_singleton()->sleeping_state_changed);
}
if (get_script_instance())
get_script_instance()->call("_integrate_forces", state);
set_ignore_transform_notification(false);
if (contact_monitor) {
contact_monitor->locked = true;
//untag all
int rc = 0;
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
for (int i = 0; i < E->get().shapes.size(); i++) {
E->get().shapes[i].tagged = false;
rc++;
}
}
_RigidBodyInOut *toadd = (_RigidBodyInOut *)alloca(state->get_contact_count() * sizeof(_RigidBodyInOut));
int toadd_count = 0; //state->get_contact_count();
RigidBody_RemoveAction *toremove = (RigidBody_RemoveAction *)alloca(rc * sizeof(RigidBody_RemoveAction));
int toremove_count = 0;
//put the ones to add
for (int i = 0; i < state->get_contact_count(); i++) {
ObjectID obj = state->get_contact_collider_id(i);
int local_shape = state->get_contact_local_shape(i);
int shape = state->get_contact_collider_shape(i);
//bool found=false;
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(obj);
if (!E) {
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
ShapePair sp(shape, local_shape);
int idx = E->get().shapes.find(sp);
if (idx == -1) {
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
E->get().shapes[idx].tagged = true;
}
//put the ones to remove
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
for (int i = 0; i < E->get().shapes.size(); i++) {
if (!E->get().shapes[i].tagged) {
toremove[toremove_count].body_id = E->key();
toremove[toremove_count].pair = E->get().shapes[i];
toremove_count++;
}
}
}
//process remotions
for (int i = 0; i < toremove_count; i++) {
_body_inout(0, toremove[i].body_id, toremove[i].pair.body_shape, toremove[i].pair.local_shape);
}
//process aditions
for (int i = 0; i < toadd_count; i++) {
_body_inout(1, toadd[i].id, toadd[i].shape, toadd[i].local_shape);
}
contact_monitor->locked = false;
}
state = NULL;
}
void RigidBody::_notification(int p_what) {
}
void RigidBody::set_mode(Mode p_mode) {
mode = p_mode;
switch (p_mode) {
case MODE_RIGID: {
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_RIGID);
} break;
case MODE_STATIC: {
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_STATIC);
} break;
case MODE_CHARACTER: {
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_CHARACTER);
} break;
case MODE_KINEMATIC: {
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_KINEMATIC);
} break;
}
}
RigidBody::Mode RigidBody::get_mode() const {
return mode;
}
void RigidBody::set_mass(real_t p_mass) {
ERR_FAIL_COND(p_mass <= 0);
mass = p_mass;
_change_notify("mass");
_change_notify("weight");
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_MASS, mass);
}
real_t RigidBody::get_mass() const {
return mass;
}
void RigidBody::set_weight(real_t p_weight) {
set_mass(p_weight / 9.8);
}
real_t RigidBody::get_weight() const {
return mass * 9.8;
}
void RigidBody::set_friction(real_t p_friction) {
ERR_FAIL_COND(p_friction < 0 || p_friction > 1);
friction = p_friction;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, friction);
}
real_t RigidBody::get_friction() const {
return friction;
}
void RigidBody::set_bounce(real_t p_bounce) {
ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1);
bounce = p_bounce;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, bounce);
}
real_t RigidBody::get_bounce() const {
return bounce;
}
void RigidBody::set_gravity_scale(real_t p_gravity_scale) {
gravity_scale = p_gravity_scale;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_GRAVITY_SCALE, gravity_scale);
}
real_t RigidBody::get_gravity_scale() const {
return gravity_scale;
}
void RigidBody::set_linear_damp(real_t p_linear_damp) {
ERR_FAIL_COND(p_linear_damp < -1);
linear_damp = p_linear_damp;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_LINEAR_DAMP, linear_damp);
}
real_t RigidBody::get_linear_damp() const {
return linear_damp;
}
void RigidBody::set_angular_damp(real_t p_angular_damp) {
ERR_FAIL_COND(p_angular_damp < -1);
angular_damp = p_angular_damp;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_ANGULAR_DAMP, angular_damp);
}
real_t RigidBody::get_angular_damp() const {
return angular_damp;
}
void RigidBody::set_axis_velocity(const Vector3 &p_axis) {
Vector3 v = state ? state->get_linear_velocity() : linear_velocity;
Vector3 axis = p_axis.normalized();
v -= axis * axis.dot(v);
v += p_axis;
if (state) {
set_linear_velocity(v);
} else {
PhysicsServer::get_singleton()->body_set_axis_velocity(get_rid(), p_axis);
linear_velocity = v;
}
}
void RigidBody::set_linear_velocity(const Vector3 &p_velocity) {
linear_velocity = p_velocity;
if (state)
state->set_linear_velocity(linear_velocity);
else
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_LINEAR_VELOCITY, linear_velocity);
}
Vector3 RigidBody::get_linear_velocity() const {
return linear_velocity;
}
void RigidBody::set_angular_velocity(const Vector3 &p_velocity) {
angular_velocity = p_velocity;
if (state)
state->set_angular_velocity(angular_velocity);
else
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_ANGULAR_VELOCITY, angular_velocity);
}
Vector3 RigidBody::get_angular_velocity() const {
return angular_velocity;
}
void RigidBody::set_use_custom_integrator(bool p_enable) {
if (custom_integrator == p_enable)
return;
custom_integrator = p_enable;
PhysicsServer::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable);
}
bool RigidBody::is_using_custom_integrator() {
return custom_integrator;
}
void RigidBody::set_sleeping(bool p_sleeping) {
sleeping = p_sleeping;
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_SLEEPING, sleeping);
}
void RigidBody::set_can_sleep(bool p_active) {
can_sleep = p_active;
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_CAN_SLEEP, p_active);
}
bool RigidBody::is_able_to_sleep() const {
return can_sleep;
}
bool RigidBody::is_sleeping() const {
return sleeping;
}
void RigidBody::set_max_contacts_reported(int p_amount) {
max_contacts_reported = p_amount;
PhysicsServer::get_singleton()->body_set_max_contacts_reported(get_rid(), p_amount);
}
int RigidBody::get_max_contacts_reported() const {
return max_contacts_reported;
}
void RigidBody::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) {
PhysicsServer::get_singleton()->body_apply_impulse(get_rid(), p_pos, p_impulse);
}
void RigidBody::set_use_continuous_collision_detection(bool p_enable) {
ccd = p_enable;
PhysicsServer::get_singleton()->body_set_enable_continuous_collision_detection(get_rid(), p_enable);
}
bool RigidBody::is_using_continuous_collision_detection() const {
return ccd;
}
void RigidBody::set_contact_monitor(bool p_enabled) {
if (p_enabled == is_contact_monitor_enabled())
return;
if (!p_enabled) {
if (contact_monitor->locked) {
ERR_EXPLAIN("Can't disable contact monitoring during in/out callback. Use call_deferred(\"set_contact_monitor\",false) instead");
}
ERR_FAIL_COND(contact_monitor->locked);
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
//clean up mess
}
memdelete(contact_monitor);
contact_monitor = NULL;
} else {
contact_monitor = memnew(ContactMonitor);
contact_monitor->locked = false;
}
}
bool RigidBody::is_contact_monitor_enabled() const {
return contact_monitor != NULL;
}
void RigidBody::set_axis_lock(AxisLock p_lock) {
axis_lock = p_lock;
PhysicsServer::get_singleton()->body_set_axis_lock(get_rid(), PhysicsServer::BodyAxisLock(axis_lock));
}
RigidBody::AxisLock RigidBody::get_axis_lock() const {
return axis_lock;
}
Array RigidBody::get_colliding_bodies() const {
ERR_FAIL_COND_V(!contact_monitor, Array());
Array ret;
ret.resize(contact_monitor->body_map.size());
int idx = 0;
for (const Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
Object *obj = ObjectDB::get_instance(E->key());
if (!obj) {
ret.resize(ret.size() - 1); //ops
} else {
ret[idx++] = obj;
}
}
return ret;
}
void RigidBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mode", "mode"), &RigidBody::set_mode);
ClassDB::bind_method(D_METHOD("get_mode"), &RigidBody::get_mode);
ClassDB::bind_method(D_METHOD("set_mass", "mass"), &RigidBody::set_mass);
ClassDB::bind_method(D_METHOD("get_mass"), &RigidBody::get_mass);
ClassDB::bind_method(D_METHOD("set_weight", "weight"), &RigidBody::set_weight);
ClassDB::bind_method(D_METHOD("get_weight"), &RigidBody::get_weight);
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &RigidBody::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &RigidBody::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &RigidBody::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &RigidBody::get_bounce);
ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &RigidBody::set_linear_velocity);
ClassDB::bind_method(D_METHOD("get_linear_velocity"), &RigidBody::get_linear_velocity);
ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &RigidBody::set_angular_velocity);
ClassDB::bind_method(D_METHOD("get_angular_velocity"), &RigidBody::get_angular_velocity);
ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &RigidBody::set_gravity_scale);
ClassDB::bind_method(D_METHOD("get_gravity_scale"), &RigidBody::get_gravity_scale);
ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &RigidBody::set_linear_damp);
ClassDB::bind_method(D_METHOD("get_linear_damp"), &RigidBody::get_linear_damp);
ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &RigidBody::set_angular_damp);
ClassDB::bind_method(D_METHOD("get_angular_damp"), &RigidBody::get_angular_damp);
ClassDB::bind_method(D_METHOD("set_max_contacts_reported", "amount"), &RigidBody::set_max_contacts_reported);
ClassDB::bind_method(D_METHOD("get_max_contacts_reported"), &RigidBody::get_max_contacts_reported);
ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &RigidBody::set_use_custom_integrator);
ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &RigidBody::is_using_custom_integrator);
ClassDB::bind_method(D_METHOD("set_contact_monitor", "enabled"), &RigidBody::set_contact_monitor);
ClassDB::bind_method(D_METHOD("is_contact_monitor_enabled"), &RigidBody::is_contact_monitor_enabled);
ClassDB::bind_method(D_METHOD("set_use_continuous_collision_detection", "enable"), &RigidBody::set_use_continuous_collision_detection);
ClassDB::bind_method(D_METHOD("is_using_continuous_collision_detection"), &RigidBody::is_using_continuous_collision_detection);
ClassDB::bind_method(D_METHOD("set_axis_velocity", "axis_velocity"), &RigidBody::set_axis_velocity);
ClassDB::bind_method(D_METHOD("apply_impulse", "pos", "impulse"), &RigidBody::apply_impulse);
ClassDB::bind_method(D_METHOD("set_sleeping", "sleeping"), &RigidBody::set_sleeping);
ClassDB::bind_method(D_METHOD("is_sleeping"), &RigidBody::is_sleeping);
ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &RigidBody::set_can_sleep);
ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &RigidBody::is_able_to_sleep);
ClassDB::bind_method(D_METHOD("_direct_state_changed"), &RigidBody::_direct_state_changed);
ClassDB::bind_method(D_METHOD("_body_enter_tree"), &RigidBody::_body_enter_tree);
ClassDB::bind_method(D_METHOD("_body_exit_tree"), &RigidBody::_body_exit_tree);
ClassDB::bind_method(D_METHOD("set_axis_lock", "axis_lock"), &RigidBody::set_axis_lock);
ClassDB::bind_method(D_METHOD("get_axis_lock"), &RigidBody::get_axis_lock);
ClassDB::bind_method(D_METHOD("get_colliding_bodies"), &RigidBody::get_colliding_bodies);
BIND_VMETHOD(MethodInfo("_integrate_forces", PropertyInfo(Variant::OBJECT, "state:PhysicsDirectBodyState")));
ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Rigid,Static,Character,Kinematic"), "set_mode", "get_mode");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "mass", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01"), "set_mass", "get_mass");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "weight", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01", PROPERTY_USAGE_EDITOR), "set_weight", "get_weight");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "gravity_scale", PROPERTY_HINT_RANGE, "-128,128,0.01"), "set_gravity_scale", "get_gravity_scale");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "continuous_cd"), "set_use_continuous_collision_detection", "is_using_continuous_collision_detection");
ADD_PROPERTY(PropertyInfo(Variant::INT, "contacts_reported"), "set_max_contacts_reported", "get_max_contacts_reported");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "contact_monitor"), "set_contact_monitor", "is_contact_monitor_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sleeping"), "set_sleeping", "is_sleeping");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep");
ADD_PROPERTY(PropertyInfo(Variant::INT, "axis_lock", PROPERTY_HINT_ENUM, "Disabled,Lock X,Lock Y,Lock Z"), "set_axis_lock", "get_axis_lock");
ADD_GROUP("Linear", "linear_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity"), "set_linear_velocity", "get_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "linear_damp", PROPERTY_HINT_RANGE, "-1,128,0.01"), "set_linear_damp", "get_linear_damp");
ADD_GROUP("Angular", "angular_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "angular_velocity"), "set_angular_velocity", "get_angular_velocity");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "angular_damp", PROPERTY_HINT_RANGE, "-1,128,0.01"), "set_angular_damp", "get_angular_damp");
ADD_SIGNAL(MethodInfo("body_shape_entered", PropertyInfo(Variant::INT, "body_id"), PropertyInfo(Variant::OBJECT, "body"), PropertyInfo(Variant::INT, "body_shape"), PropertyInfo(Variant::INT, "local_shape")));
ADD_SIGNAL(MethodInfo("body_shape_exited", PropertyInfo(Variant::INT, "body_id"), PropertyInfo(Variant::OBJECT, "body"), PropertyInfo(Variant::INT, "body_shape"), PropertyInfo(Variant::INT, "local_shape")));
ADD_SIGNAL(MethodInfo("body_entered", PropertyInfo(Variant::OBJECT, "body")));
ADD_SIGNAL(MethodInfo("body_exited", PropertyInfo(Variant::OBJECT, "body")));
ADD_SIGNAL(MethodInfo("sleeping_state_changed"));
BIND_CONSTANT(MODE_STATIC);
BIND_CONSTANT(MODE_KINEMATIC);
BIND_CONSTANT(MODE_RIGID);
BIND_CONSTANT(MODE_CHARACTER);
}
RigidBody::RigidBody()
: PhysicsBody(PhysicsServer::BODY_MODE_RIGID) {
mode = MODE_RIGID;
bounce = 0;
mass = 1;
friction = 1;
max_contacts_reported = 0;
state = NULL;
gravity_scale = 1;
linear_damp = -1;
angular_damp = -1;
//angular_velocity=0;
sleeping = false;
ccd = false;
custom_integrator = false;
contact_monitor = NULL;
can_sleep = true;
axis_lock = AXIS_LOCK_DISABLED;
PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed");
}
RigidBody::~RigidBody() {
if (contact_monitor)
memdelete(contact_monitor);
}
//////////////////////////////////////////////////////
//////////////////////////
Variant KinematicBody::_get_collider() const {
ObjectID oid = get_collider();
if (oid == 0)
return Variant();
Object *obj = ObjectDB::get_instance(oid);
if (!obj)
return Variant();
Reference *ref = obj->cast_to<Reference>();
if (ref) {
return Ref<Reference>(ref);
}
return obj;
}
bool KinematicBody::_ignores_mode(PhysicsServer::BodyMode p_mode) const {
switch (p_mode) {
case PhysicsServer::BODY_MODE_STATIC: return !collide_static;
case PhysicsServer::BODY_MODE_KINEMATIC: return !collide_kinematic;
case PhysicsServer::BODY_MODE_RIGID: return !collide_rigid;
case PhysicsServer::BODY_MODE_CHARACTER: return !collide_character;
}
return true;
}
void KinematicBody::revert_motion() {
Transform gt = get_global_transform();
gt.origin -= travel; //I do hope this is correct.
travel = Vector3();
set_global_transform(gt);
}
Vector3 KinematicBody::get_travel() const {
return travel;
}
Vector3 KinematicBody::move(const Vector3 &p_motion) {
//give me back regular physics engine logic
//this is madness
//and most people using this function will think
//what it does is simpler than using physics
//this took about a week to get right..
//but is it right? who knows at this point..
colliding = false;
ERR_FAIL_COND_V(!is_inside_tree(), Vector3());
PhysicsDirectSpaceState *dss = PhysicsServer::get_singleton()->space_get_direct_state(get_world()->get_space());
ERR_FAIL_COND_V(!dss, Vector3());
const int max_shapes = 32;
Vector3 sr[max_shapes * 2];
int res_shapes;
Set<RID> exclude;
exclude.insert(get_rid());
//recover first
int recover_attempts = 4;
bool collided = false;
uint32_t mask = 0;
if (collide_static)
mask |= PhysicsDirectSpaceState::TYPE_MASK_STATIC_BODY;
if (collide_kinematic)
mask |= PhysicsDirectSpaceState::TYPE_MASK_KINEMATIC_BODY;
if (collide_rigid)
mask |= PhysicsDirectSpaceState::TYPE_MASK_RIGID_BODY;
if (collide_character)
mask |= PhysicsDirectSpaceState::TYPE_MASK_CHARACTER_BODY;
//print_line("motion: "+p_motion+" margin: "+rtos(margin));
//print_line("margin: "+rtos(margin));
float m = margin;
//m=0.001;
do {
//motion recover
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_set_as_trigger(i))
continue;
if (dss->collide_shape(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i), m, sr, max_shapes, res_shapes, exclude, get_collision_layer(), mask)) {
collided = true;
}
}
if (!collided)
break;
//print_line("have to recover");
Vector3 recover_motion;
bool all_outside = true;
for (int j = 0; j < 8; j++) {
for (int i = 0; i < res_shapes; i++) {
Vector3 a = sr[i * 2 + 0];
Vector3 b = sr[i * 2 + 1];
//print_line(String()+a+" -> "+b);
#if 0
float d = a.distance_to(b);
/*
if (d<margin)
continue;
*/
recover_motion+=(b-a)*0.2;
#else
float dist = a.distance_to(b);
if (dist > CMP_EPSILON) {
Vector3 norm = (b - a).normalized();
if (dist > margin * 0.5)
all_outside = false;
float adv = norm.dot(recover_motion);
//print_line(itos(i)+" dist: "+rtos(dist)+" adv: "+rtos(adv));
recover_motion += norm * MAX(dist - adv, 0) * 0.4;
}
#endif
}
}
if (recover_motion == Vector3()) {
collided = false;
break;
}
//print_line("**** RECOVER: "+recover_motion);
Transform gt = get_global_transform();
gt.origin += recover_motion;
set_global_transform(gt);
recover_attempts--;
if (all_outside)
break;
} while (recover_attempts);
//move second
float safe = 1.0;
float unsafe = 1.0;
int best_shape = -1;
PhysicsDirectSpaceState::ShapeRestInfo rest;
//print_line("pos: "+get_global_transform().origin);
//print_line("motion: "+p_motion);
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_set_as_trigger(i))
continue;
float lsafe, lunsafe;
PhysicsDirectSpaceState::ShapeRestInfo lrest;
bool valid = dss->cast_motion(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i), p_motion, 0, lsafe, lunsafe, exclude, get_collision_layer(), mask, &lrest);
//print_line("shape: "+itos(i)+" travel:"+rtos(ltravel));
if (!valid) {
safe = 0;
unsafe = 0;
best_shape = i; //sadly it's the best
//print_line("initial stuck");
break;
}
if (lsafe == 1.0) {
//print_line("initial free");
continue;
}
if (lsafe < safe) {
//print_line("initial at "+rtos(lsafe));
safe = lsafe;
safe = MAX(0, lsafe - 0.01);
unsafe = lunsafe;
best_shape = i;
rest = lrest;
}
}
//print_line("best shape: "+itos(best_shape)+" motion "+p_motion);
if (safe >= 1) {
//not collided
colliding = false;
} else {
colliding = true;
if (true || (safe == 0 && unsafe == 0)) { //use it always because it's more precise than GJK
//no advance, use rest info from collision
Transform ugt = get_global_transform();
ugt.origin += p_motion * unsafe;
PhysicsDirectSpaceState::ShapeRestInfo rest_info;
bool c2 = dss->rest_info(get_shape(best_shape)->get_rid(), ugt * get_shape_transform(best_shape), m, &rest, exclude, get_collision_layer(), mask);
if (!c2) {
//should not happen, but floating point precision is so weird..
colliding = false;
}
//print_line("Rest Travel: "+rest.normal);
}
if (colliding) {
collision = rest.point;
normal = rest.normal;
collider = rest.collider_id;
collider_vel = rest.linear_velocity;
collider_shape = rest.shape;
}
}
Vector3 motion = p_motion * safe;
/*
if (colliding)
motion+=normal*0.001;
*/
Transform gt = get_global_transform();
gt.origin += motion;
set_global_transform(gt);
travel = motion;
return p_motion - motion;
}
Vector3 KinematicBody::move_and_slide(const Vector3 &p_linear_velocity, const Vector3 &p_floor_direction, const Vector3 &p_ceil_direction, float p_slope_stop_min_velocity, int p_max_bounces, float p_floor_max_angle, float p_ceil_max_angle) {
/*
Things to note:
1. This function is basically the KinematicBody2D function ported over.
2. The 'travel' variable and stuff relating to it exists more or less for this function's sake.
3. Someone is going to have to document this, so here's an example for them:
vel = move_and_slide(vel, Vector3(0, 1, 0), Vector3(0, -1, 0), 0.1);
Very useful for FPS controllers so long as you control horizontal motion properly - even for Quake-style AABB colliders.
The slope stop system is... rather weird, and it's correct operation depends on what scale your game is built on,
but as far as I can tell in theory it's suppposed to be a way of turning impassable slopes into invisible walls.
It can also be a pain, since there's a better-known way of defining such things: "let gravity do the work".
If you don't like it, set it to positive infinity.
4. Might be a bug somewhere else in physics: When there are two CollisionShape nodes with a shared Shape, only one is considered, I think.
Test this further.
*/
Vector3 motion = (move_and_slide_floor_velocity + p_linear_velocity) * get_fixed_process_delta_time();
Vector3 lv = p_linear_velocity;
move_and_slide_on_floor = false;
move_and_slide_on_ceiling = false;
move_and_slide_on_wall = false;
move_and_slide_colliders.clear();
move_and_slide_floor_velocity = Vector3();
while (p_max_bounces) {
motion = move(motion);
if (is_colliding()) {
bool hit_horizontal = false; //hit floor or ceiling
if (p_floor_direction != Vector3()) {
if (get_collision_normal().dot(p_floor_direction) >= Math::cos(p_floor_max_angle)) { //floor
hit_horizontal = true;
move_and_slide_on_floor = true;
move_and_slide_floor_velocity = get_collider_velocity();
//Note: These two lines are the only lines that really changed between 3D/2D, see if it can't be reused somehow???
Vector2 hz_velocity = Vector2(lv.x - move_and_slide_floor_velocity.x, lv.z - move_and_slide_floor_velocity.z);
if (get_travel().length() < 1 && hz_velocity.length() < p_slope_stop_min_velocity) {
revert_motion();
return Vector3();
}
}
}
if (p_ceil_direction != Vector3()) {
if (get_collision_normal().dot(p_ceil_direction) >= Math::cos(p_ceil_max_angle)) { //ceiling
hit_horizontal = true;
move_and_slide_on_ceiling = true;
}
}
//if it hit something but didn't hit a floor or ceiling, it is by default a wall
//(this imitates the pre-specifiable-ceiling logic more or less, except ceiling is optional)
if (!hit_horizontal) {
move_and_slide_on_wall = true;
}
Vector3 n = get_collision_normal();
motion = motion.slide(n);
lv = lv.slide(n);
Variant collider = _get_collider();
if (collider.get_type() != Variant::NIL) {
move_and_slide_colliders.push_back(collider);
}
} else {
break;
}
p_max_bounces--;
if (motion == Vector3())
break;
}
return lv;
}
bool KinematicBody::is_move_and_slide_on_floor() const {
return move_and_slide_on_floor;
}
bool KinematicBody::is_move_and_slide_on_wall() const {
return move_and_slide_on_wall;
}
bool KinematicBody::is_move_and_slide_on_ceiling() const {
return move_and_slide_on_ceiling;
}
Array KinematicBody::get_move_and_slide_colliders() const {
return move_and_slide_colliders;
}
Vector3 KinematicBody::move_to(const Vector3 &p_position) {
return move(p_position - get_global_transform().origin);
}
bool KinematicBody::can_teleport_to(const Vector3 &p_position) {
ERR_FAIL_COND_V(!is_inside_tree(), false);
PhysicsDirectSpaceState *dss = PhysicsServer::get_singleton()->space_get_direct_state(get_world()->get_space());
ERR_FAIL_COND_V(!dss, false);
uint32_t mask = 0;
if (collide_static)
mask |= PhysicsDirectSpaceState::TYPE_MASK_STATIC_BODY;
if (collide_kinematic)
mask |= PhysicsDirectSpaceState::TYPE_MASK_KINEMATIC_BODY;
if (collide_rigid)
mask |= PhysicsDirectSpaceState::TYPE_MASK_RIGID_BODY;
if (collide_character)
mask |= PhysicsDirectSpaceState::TYPE_MASK_CHARACTER_BODY;
Transform xform = get_global_transform();
xform.origin = p_position;
Set<RID> exclude;
exclude.insert(get_rid());
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_set_as_trigger(i))
continue;
bool col = dss->intersect_shape(get_shape(i)->get_rid(), xform * get_shape_transform(i), 0, NULL, 1, exclude, get_collision_layer(), mask);
if (col)
return false;
}
return true;
}
bool KinematicBody::is_colliding() const {
ERR_FAIL_COND_V(!is_inside_tree(), false);
return colliding;
}
Vector3 KinematicBody::get_collision_pos() const {
ERR_FAIL_COND_V(!colliding, Vector3());
return collision;
}
Vector3 KinematicBody::get_collision_normal() const {
ERR_FAIL_COND_V(!colliding, Vector3());
return normal;
}
Vector3 KinematicBody::get_collider_velocity() const {
return collider_vel;
}
ObjectID KinematicBody::get_collider() const {
ERR_FAIL_COND_V(!colliding, 0);
return collider;
}
int KinematicBody::get_collider_shape() const {
ERR_FAIL_COND_V(!colliding, -1);
return collider_shape;
}
void KinematicBody::set_collide_with_static_bodies(bool p_enable) {
collide_static = p_enable;
}
bool KinematicBody::can_collide_with_static_bodies() const {
return collide_static;
}
void KinematicBody::set_collide_with_rigid_bodies(bool p_enable) {
collide_rigid = p_enable;
}
bool KinematicBody::can_collide_with_rigid_bodies() const {
return collide_rigid;
}
void KinematicBody::set_collide_with_kinematic_bodies(bool p_enable) {
collide_kinematic = p_enable;
}
bool KinematicBody::can_collide_with_kinematic_bodies() const {
return collide_kinematic;
}
void KinematicBody::set_collide_with_character_bodies(bool p_enable) {
collide_character = p_enable;
}
bool KinematicBody::can_collide_with_character_bodies() const {
return collide_character;
}
void KinematicBody::set_collision_margin(float p_margin) {
margin = p_margin;
}
float KinematicBody::get_collision_margin() const {
return margin;
}
void KinematicBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("move", "rel_vec"), &KinematicBody::move);
ClassDB::bind_method(D_METHOD("move_to", "position"), &KinematicBody::move_to);
ClassDB::bind_method(D_METHOD("move_and_slide", "linear_velocity", "floor_normal", "ceil_normal", "slope_stop_min_velocity", "max_bounces", "floor_max_angle", "ceil_max_angle"), &KinematicBody::move_and_slide, DEFVAL(Vector3(0, 0, 0)), DEFVAL(Vector3(0, 0, 0)), DEFVAL(5), DEFVAL(4), DEFVAL(Math::deg2rad((float)45)), DEFVAL(Math::deg2rad((float)45)));
ClassDB::bind_method(D_METHOD("can_teleport_to", "position"), &KinematicBody::can_teleport_to);
ClassDB::bind_method(D_METHOD("is_colliding"), &KinematicBody::is_colliding);
ClassDB::bind_method(D_METHOD("get_collision_pos"), &KinematicBody::get_collision_pos);
ClassDB::bind_method(D_METHOD("get_collision_normal"), &KinematicBody::get_collision_normal);
ClassDB::bind_method(D_METHOD("get_collider_velocity"), &KinematicBody::get_collider_velocity);
ClassDB::bind_method(D_METHOD("get_collider:Variant"), &KinematicBody::_get_collider);
ClassDB::bind_method(D_METHOD("get_collider_shape"), &KinematicBody::get_collider_shape);
ClassDB::bind_method(D_METHOD("set_collide_with_static_bodies", "enable"), &KinematicBody::set_collide_with_static_bodies);
ClassDB::bind_method(D_METHOD("can_collide_with_static_bodies"), &KinematicBody::can_collide_with_static_bodies);
ClassDB::bind_method(D_METHOD("set_collide_with_kinematic_bodies", "enable"), &KinematicBody::set_collide_with_kinematic_bodies);
ClassDB::bind_method(D_METHOD("can_collide_with_kinematic_bodies"), &KinematicBody::can_collide_with_kinematic_bodies);
ClassDB::bind_method(D_METHOD("set_collide_with_rigid_bodies", "enable"), &KinematicBody::set_collide_with_rigid_bodies);
ClassDB::bind_method(D_METHOD("can_collide_with_rigid_bodies"), &KinematicBody::can_collide_with_rigid_bodies);
ClassDB::bind_method(D_METHOD("set_collide_with_character_bodies", "enable"), &KinematicBody::set_collide_with_character_bodies);
ClassDB::bind_method(D_METHOD("can_collide_with_character_bodies"), &KinematicBody::can_collide_with_character_bodies);
ClassDB::bind_method(D_METHOD("set_collision_margin", "pixels"), &KinematicBody::set_collision_margin);
ClassDB::bind_method(D_METHOD("get_collision_margin", "pixels"), &KinematicBody::get_collision_margin);
ClassDB::bind_method(D_METHOD("get_travel"), &KinematicBody::get_travel);
ClassDB::bind_method(D_METHOD("revert_motion"), &KinematicBody::revert_motion);
ClassDB::bind_method(D_METHOD("get_move_and_slide_colliders"), &KinematicBody::get_move_and_slide_colliders);
ClassDB::bind_method(D_METHOD("is_move_and_slide_on_floor"), &KinematicBody::is_move_and_slide_on_floor);
ClassDB::bind_method(D_METHOD("is_move_and_slide_on_ceiling"), &KinematicBody::is_move_and_slide_on_ceiling);
ClassDB::bind_method(D_METHOD("is_move_and_slide_on_wall"), &KinematicBody::is_move_and_slide_on_wall);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "collide_with/static"), "set_collide_with_static_bodies", "can_collide_with_static_bodies");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "collide_with/kinematic"), "set_collide_with_kinematic_bodies", "can_collide_with_kinematic_bodies");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "collide_with/rigid"), "set_collide_with_rigid_bodies", "can_collide_with_rigid_bodies");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "collide_with/character"), "set_collide_with_character_bodies", "can_collide_with_character_bodies");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "collision/margin", PROPERTY_HINT_RANGE, "0.001,256,0.001"), "set_collision_margin", "get_collision_margin");
}
KinematicBody::KinematicBody()
: PhysicsBody(PhysicsServer::BODY_MODE_KINEMATIC) {
collide_static = true;
collide_rigid = true;
collide_kinematic = true;
collide_character = true;
colliding = false;
collider = 0;
margin = 0.001;
collider_shape = 0;
}
KinematicBody::~KinematicBody() {
}