mirror of
https://github.com/godotengine/godot.git
synced 2025-01-12 20:22:49 +08:00
d95794ec8a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see".
302 lines
13 KiB
C++
302 lines
13 KiB
C++
/**************************************************************************/
|
|
/* test_basis.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TEST_BASIS_H
|
|
#define TEST_BASIS_H
|
|
|
|
#include "core/math/basis.h"
|
|
#include "core/math/random_number_generator.h"
|
|
|
|
#include "tests/test_macros.h"
|
|
|
|
namespace TestBasis {
|
|
|
|
Vector3 deg_to_rad(const Vector3 &p_rotation) {
|
|
return p_rotation / 180.0 * Math_PI;
|
|
}
|
|
|
|
Vector3 rad2deg(const Vector3 &p_rotation) {
|
|
return p_rotation / Math_PI * 180.0;
|
|
}
|
|
|
|
String get_rot_order_name(EulerOrder ro) {
|
|
switch (ro) {
|
|
case EulerOrder::XYZ:
|
|
return "XYZ";
|
|
case EulerOrder::XZY:
|
|
return "XZY";
|
|
case EulerOrder::YZX:
|
|
return "YZX";
|
|
case EulerOrder::YXZ:
|
|
return "YXZ";
|
|
case EulerOrder::ZXY:
|
|
return "ZXY";
|
|
case EulerOrder::ZYX:
|
|
return "ZYX";
|
|
default:
|
|
return "[Not supported]";
|
|
}
|
|
}
|
|
|
|
void test_rotation(Vector3 deg_original_euler, EulerOrder rot_order) {
|
|
// This test:
|
|
// 1. Converts the rotation vector from deg to rad.
|
|
// 2. Converts euler to basis.
|
|
// 3. Converts the above basis back into euler.
|
|
// 4. Converts the above euler into basis again.
|
|
// 5. Compares the basis obtained in step 2 with the basis of step 4
|
|
//
|
|
// The conversion "basis to euler", done in the step 3, may be different from
|
|
// the original euler, even if the final rotation are the same.
|
|
// This happens because there are more ways to represents the same rotation,
|
|
// both valid, using eulers.
|
|
// For this reason is necessary to convert that euler back to basis and finally
|
|
// compares it.
|
|
//
|
|
// In this way we can assert that both functions: basis to euler / euler to basis
|
|
// are correct.
|
|
|
|
// Euler to rotation
|
|
const Vector3 original_euler = deg_to_rad(deg_original_euler);
|
|
const Basis to_rotation = Basis::from_euler(original_euler, rot_order);
|
|
|
|
// Euler from rotation
|
|
const Vector3 euler_from_rotation = to_rotation.get_euler(rot_order);
|
|
const Basis rotation_from_computed_euler = Basis::from_euler(euler_from_rotation, rot_order);
|
|
|
|
Basis res = to_rotation.inverse() * rotation_from_computed_euler;
|
|
|
|
CHECK_MESSAGE((res.get_column(0) - Vector3(1.0, 0.0, 0.0)).length() <= 0.1, vformat("Fail due to X %s\n", String(res.get_column(0))).utf8().ptr());
|
|
CHECK_MESSAGE((res.get_column(1) - Vector3(0.0, 1.0, 0.0)).length() <= 0.1, vformat("Fail due to Y %s\n", String(res.get_column(1))).utf8().ptr());
|
|
CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Fail due to Z %s\n", String(res.get_column(2))).utf8().ptr());
|
|
|
|
// Double check `to_rotation` decomposing with XYZ rotation order.
|
|
const Vector3 euler_xyz_from_rotation = to_rotation.get_euler(EulerOrder::XYZ);
|
|
Basis rotation_from_xyz_computed_euler = Basis::from_euler(euler_xyz_from_rotation, EulerOrder::XYZ);
|
|
|
|
res = to_rotation.inverse() * rotation_from_xyz_computed_euler;
|
|
|
|
CHECK_MESSAGE((res.get_column(0) - Vector3(1.0, 0.0, 0.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to X %s\n", String(res.get_column(0))).utf8().ptr());
|
|
CHECK_MESSAGE((res.get_column(1) - Vector3(0.0, 1.0, 0.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to Y %s\n", String(res.get_column(1))).utf8().ptr());
|
|
CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to Z %s\n", String(res.get_column(2))).utf8().ptr());
|
|
|
|
INFO(vformat("Rotation order: %s\n.", get_rot_order_name(rot_order)).utf8().ptr());
|
|
INFO(vformat("Original Rotation: %s\n", String(deg_original_euler)).utf8().ptr());
|
|
INFO(vformat("Quaternion to rotation order: %s\n", String(rad2deg(euler_from_rotation))).utf8().ptr());
|
|
}
|
|
|
|
TEST_CASE("[Basis] Euler conversions") {
|
|
Vector<EulerOrder> euler_order_to_test;
|
|
euler_order_to_test.push_back(EulerOrder::XYZ);
|
|
euler_order_to_test.push_back(EulerOrder::XZY);
|
|
euler_order_to_test.push_back(EulerOrder::YZX);
|
|
euler_order_to_test.push_back(EulerOrder::YXZ);
|
|
euler_order_to_test.push_back(EulerOrder::ZXY);
|
|
euler_order_to_test.push_back(EulerOrder::ZYX);
|
|
|
|
Vector<Vector3> vectors_to_test;
|
|
|
|
// Test the special cases.
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.5, 0.5, 0.5));
|
|
vectors_to_test.push_back(Vector3(-0.5, -0.5, -0.5));
|
|
vectors_to_test.push_back(Vector3(40.0, 40.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(-40.0, -40.0, -40.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(0.0, -90.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 90.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, -30.0));
|
|
vectors_to_test.push_back(Vector3(0.0, -30.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(-30.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, 30.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 30.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(30.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.5, 50.0, 20.0));
|
|
vectors_to_test.push_back(Vector3(-0.5, -50.0, -20.0));
|
|
vectors_to_test.push_back(Vector3(0.5, 0.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(0.5, 0.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(360.0, 360.0, 360.0));
|
|
vectors_to_test.push_back(Vector3(-360.0, -360.0, -360.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 60.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 60.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, -60.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, -60.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 60.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 60.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, -60.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, -60.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(60.0, 90.0, -40.0));
|
|
vectors_to_test.push_back(Vector3(60.0, -90.0, -40.0));
|
|
vectors_to_test.push_back(Vector3(-60.0, -90.0, -40.0));
|
|
vectors_to_test.push_back(Vector3(-60.0, 90.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(60.0, 90.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(60.0, -90.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(-60.0, -90.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 90.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 90.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, -90.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, -90.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 90.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 90.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, -90.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(20.0, 150.0, 30.0));
|
|
vectors_to_test.push_back(Vector3(20.0, -150.0, 30.0));
|
|
vectors_to_test.push_back(Vector3(-120.0, -150.0, 30.0));
|
|
vectors_to_test.push_back(Vector3(-120.0, -150.0, -130.0));
|
|
vectors_to_test.push_back(Vector3(120.0, -150.0, -130.0));
|
|
vectors_to_test.push_back(Vector3(120.0, 150.0, -130.0));
|
|
vectors_to_test.push_back(Vector3(120.0, 150.0, 130.0));
|
|
|
|
for (int h = 0; h < euler_order_to_test.size(); h += 1) {
|
|
for (int i = 0; i < vectors_to_test.size(); i += 1) {
|
|
test_rotation(vectors_to_test[i], euler_order_to_test[h]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("[Stress][Basis] Euler conversions") {
|
|
Vector<EulerOrder> euler_order_to_test;
|
|
euler_order_to_test.push_back(EulerOrder::XYZ);
|
|
euler_order_to_test.push_back(EulerOrder::XZY);
|
|
euler_order_to_test.push_back(EulerOrder::YZX);
|
|
euler_order_to_test.push_back(EulerOrder::YXZ);
|
|
euler_order_to_test.push_back(EulerOrder::ZXY);
|
|
euler_order_to_test.push_back(EulerOrder::ZYX);
|
|
|
|
Vector<Vector3> vectors_to_test;
|
|
// Add 1000 random vectors with weirds numbers.
|
|
RandomNumberGenerator rng;
|
|
for (int _ = 0; _ < 1000; _ += 1) {
|
|
vectors_to_test.push_back(Vector3(
|
|
rng.randf_range(-1800, 1800),
|
|
rng.randf_range(-1800, 1800),
|
|
rng.randf_range(-1800, 1800)));
|
|
}
|
|
|
|
for (int h = 0; h < euler_order_to_test.size(); h += 1) {
|
|
for (int i = 0; i < vectors_to_test.size(); i += 1) {
|
|
test_rotation(vectors_to_test[i], euler_order_to_test[h]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("[Basis] Set axis angle") {
|
|
Vector3 axis;
|
|
real_t angle;
|
|
real_t pi = (real_t)Math_PI;
|
|
|
|
// Testing the singularity when the angle is 0°.
|
|
Basis identity(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
|
identity.get_axis_angle(axis, angle);
|
|
CHECK(angle == 0);
|
|
|
|
// Testing the singularity when the angle is 180°.
|
|
Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1);
|
|
singularityPi.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(pi));
|
|
|
|
// Testing reversing the an axis (of an 30° angle).
|
|
float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0));
|
|
Basis z_positive(cos30deg, -0.5, 0, 0.5, cos30deg, 0, 0, 0, 1);
|
|
Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1);
|
|
|
|
z_positive.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
|
|
CHECK(axis == Vector3(0, 0, 1));
|
|
|
|
z_negative.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
|
|
CHECK(axis == Vector3(0, 0, -1));
|
|
|
|
// Testing a rotation of 90° on x-y-z.
|
|
Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0);
|
|
x90deg.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(pi / (real_t)2));
|
|
CHECK(axis == Vector3(1, 0, 0));
|
|
|
|
Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0);
|
|
y90deg.get_axis_angle(axis, angle);
|
|
CHECK(axis == Vector3(0, 1, 0));
|
|
|
|
Basis z90deg(0, -1, 0, 1, 0, 0, 0, 0, 1);
|
|
z90deg.get_axis_angle(axis, angle);
|
|
CHECK(axis == Vector3(0, 0, 1));
|
|
|
|
// Regression test: checks that the method returns a small angle (not 0).
|
|
Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad.
|
|
tiny.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(0.001).epsilon(0.0001));
|
|
|
|
// Regression test: checks that the method returns an angle which is a number (not NaN)
|
|
Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024);
|
|
bugNan.get_axis_angle(axis, angle);
|
|
CHECK(!Math::is_nan(angle));
|
|
}
|
|
|
|
TEST_CASE("[Basis] Finite number checks") {
|
|
const Vector3 x(0, 1, 2);
|
|
const Vector3 infinite(NAN, NAN, NAN);
|
|
|
|
CHECK_MESSAGE(
|
|
Basis(x, x, x).is_finite(),
|
|
"Basis with all components finite should be finite");
|
|
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(infinite, x, x).is_finite(),
|
|
"Basis with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(x, infinite, x).is_finite(),
|
|
"Basis with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(x, x, infinite).is_finite(),
|
|
"Basis with one component infinite should not be finite.");
|
|
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(infinite, infinite, x).is_finite(),
|
|
"Basis with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(infinite, x, infinite).is_finite(),
|
|
"Basis with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(x, infinite, infinite).is_finite(),
|
|
"Basis with two components infinite should not be finite.");
|
|
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(infinite, infinite, infinite).is_finite(),
|
|
"Basis with three components infinite should not be finite.");
|
|
}
|
|
|
|
} // namespace TestBasis
|
|
|
|
#endif // TEST_BASIS_H
|