godot/servers/rendering/renderer_rd/renderer_canvas_render_rd.cpp

3086 lines
118 KiB
C++

/**************************************************************************/
/* renderer_canvas_render_rd.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "renderer_canvas_render_rd.h"
#include "core/config/project_settings.h"
#include "core/math/geometry_2d.h"
#include "core/math/math_defs.h"
#include "core/math/math_funcs.h"
#include "core/math/transform_interpolator.h"
#include "renderer_compositor_rd.h"
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
#include "servers/rendering/renderer_rd/storage_rd/particles_storage.h"
#include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
#include "servers/rendering/rendering_server_default.h"
void RendererCanvasRenderRD::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) {
p_mat4[0] = p_transform.columns[0][0];
p_mat4[1] = p_transform.columns[0][1];
p_mat4[2] = 0;
p_mat4[3] = 0;
p_mat4[4] = p_transform.columns[1][0];
p_mat4[5] = p_transform.columns[1][1];
p_mat4[6] = 0;
p_mat4[7] = 0;
p_mat4[8] = 0;
p_mat4[9] = 0;
p_mat4[10] = 1;
p_mat4[11] = 0;
p_mat4[12] = p_transform.columns[2][0];
p_mat4[13] = p_transform.columns[2][1];
p_mat4[14] = 0;
p_mat4[15] = 1;
}
void RendererCanvasRenderRD::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) {
p_mat2x4[0] = p_transform.columns[0][0];
p_mat2x4[1] = p_transform.columns[1][0];
p_mat2x4[2] = 0;
p_mat2x4[3] = p_transform.columns[2][0];
p_mat2x4[4] = p_transform.columns[0][1];
p_mat2x4[5] = p_transform.columns[1][1];
p_mat2x4[6] = 0;
p_mat2x4[7] = p_transform.columns[2][1];
}
void RendererCanvasRenderRD::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) {
p_mat2x3[0] = p_transform.columns[0][0];
p_mat2x3[1] = p_transform.columns[0][1];
p_mat2x3[2] = p_transform.columns[1][0];
p_mat2x3[3] = p_transform.columns[1][1];
p_mat2x3[4] = p_transform.columns[2][0];
p_mat2x3[5] = p_transform.columns[2][1];
}
void RendererCanvasRenderRD::_update_transform_to_mat4(const Transform3D &p_transform, float *p_mat4) {
p_mat4[0] = p_transform.basis.rows[0][0];
p_mat4[1] = p_transform.basis.rows[1][0];
p_mat4[2] = p_transform.basis.rows[2][0];
p_mat4[3] = 0;
p_mat4[4] = p_transform.basis.rows[0][1];
p_mat4[5] = p_transform.basis.rows[1][1];
p_mat4[6] = p_transform.basis.rows[2][1];
p_mat4[7] = 0;
p_mat4[8] = p_transform.basis.rows[0][2];
p_mat4[9] = p_transform.basis.rows[1][2];
p_mat4[10] = p_transform.basis.rows[2][2];
p_mat4[11] = 0;
p_mat4[12] = p_transform.origin.x;
p_mat4[13] = p_transform.origin.y;
p_mat4[14] = p_transform.origin.z;
p_mat4[15] = 1;
}
RendererCanvasRender::PolygonID RendererCanvasRenderRD::request_polygon(const Vector<int> &p_indices, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, const Vector<int> &p_bones, const Vector<float> &p_weights) {
// Care must be taken to generate array formats
// in ways where they could be reused, so we will
// put single-occuring elements first, and repeated
// elements later. This way the generated formats are
// the same no matter the length of the arrays.
// This dramatically reduces the amount of pipeline objects
// that need to be created for these formats.
RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton();
uint32_t vertex_count = p_points.size();
uint32_t stride = 2; //vertices always repeat
if ((uint32_t)p_colors.size() == vertex_count || p_colors.size() == 1) {
stride += 4;
}
if ((uint32_t)p_uvs.size() == vertex_count) {
stride += 2;
}
if ((uint32_t)p_bones.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) {
stride += 4;
}
uint32_t buffer_size = stride * p_points.size();
Vector<uint8_t> polygon_buffer;
polygon_buffer.resize(buffer_size * sizeof(float));
Vector<RD::VertexAttribute> descriptions;
descriptions.resize(5);
Vector<RID> buffers;
buffers.resize(5);
{
uint8_t *r = polygon_buffer.ptrw();
float *fptr = reinterpret_cast<float *>(r);
uint32_t *uptr = reinterpret_cast<uint32_t *>(r);
uint32_t base_offset = 0;
{ //vertices
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_VERTEX;
vd.stride = stride * sizeof(float);
descriptions.write[0] = vd;
const Vector2 *points_ptr = p_points.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = points_ptr[i].x;
fptr[base_offset + i * stride + 1] = points_ptr[i].y;
}
base_offset += 2;
}
//colors
if ((uint32_t)p_colors.size() == vertex_count || p_colors.size() == 1) {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_COLOR;
vd.stride = stride * sizeof(float);
descriptions.write[1] = vd;
if (p_colors.size() == 1) {
Color color = p_colors[0];
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = color.r;
fptr[base_offset + i * stride + 1] = color.g;
fptr[base_offset + i * stride + 2] = color.b;
fptr[base_offset + i * stride + 3] = color.a;
}
} else {
const Color *color_ptr = p_colors.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = color_ptr[i].r;
fptr[base_offset + i * stride + 1] = color_ptr[i].g;
fptr[base_offset + i * stride + 2] = color_ptr[i].b;
fptr[base_offset + i * stride + 3] = color_ptr[i].a;
}
}
base_offset += 4;
} else {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = 0;
vd.location = RS::ARRAY_COLOR;
vd.stride = 0;
descriptions.write[1] = vd;
buffers.write[1] = mesh_storage->mesh_get_default_rd_buffer(RendererRD::MeshStorage::DEFAULT_RD_BUFFER_COLOR);
}
//uvs
if ((uint32_t)p_uvs.size() == vertex_count) {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_TEX_UV;
vd.stride = stride * sizeof(float);
descriptions.write[2] = vd;
const Vector2 *uv_ptr = p_uvs.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = uv_ptr[i].x;
fptr[base_offset + i * stride + 1] = uv_ptr[i].y;
}
base_offset += 2;
} else {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = 0;
vd.location = RS::ARRAY_TEX_UV;
vd.stride = 0;
descriptions.write[2] = vd;
buffers.write[2] = mesh_storage->mesh_get_default_rd_buffer(RendererRD::MeshStorage::DEFAULT_RD_BUFFER_TEX_UV);
}
//bones
if ((uint32_t)p_indices.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_BONES;
vd.stride = stride * sizeof(float);
descriptions.write[3] = vd;
const int *bone_ptr = p_bones.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
uint16_t *bone16w = (uint16_t *)&uptr[base_offset + i * stride];
bone16w[0] = bone_ptr[i * 4 + 0];
bone16w[1] = bone_ptr[i * 4 + 1];
bone16w[2] = bone_ptr[i * 4 + 2];
bone16w[3] = bone_ptr[i * 4 + 3];
}
base_offset += 2;
} else {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
vd.offset = 0;
vd.location = RS::ARRAY_BONES;
vd.stride = 0;
descriptions.write[3] = vd;
buffers.write[3] = mesh_storage->mesh_get_default_rd_buffer(RendererRD::MeshStorage::DEFAULT_RD_BUFFER_BONES);
}
//weights
if ((uint32_t)p_weights.size() == vertex_count * 4) {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_WEIGHTS;
vd.stride = stride * sizeof(float);
descriptions.write[4] = vd;
const float *weight_ptr = p_weights.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
uint16_t *weight16w = (uint16_t *)&uptr[base_offset + i * stride];
weight16w[0] = CLAMP(weight_ptr[i * 4 + 0] * 65535, 0, 65535);
weight16w[1] = CLAMP(weight_ptr[i * 4 + 1] * 65535, 0, 65535);
weight16w[2] = CLAMP(weight_ptr[i * 4 + 2] * 65535, 0, 65535);
weight16w[3] = CLAMP(weight_ptr[i * 4 + 3] * 65535, 0, 65535);
}
base_offset += 2;
} else {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = 0;
vd.location = RS::ARRAY_WEIGHTS;
vd.stride = 0;
descriptions.write[4] = vd;
buffers.write[4] = mesh_storage->mesh_get_default_rd_buffer(RendererRD::MeshStorage::DEFAULT_RD_BUFFER_WEIGHTS);
}
//check that everything is as it should be
ERR_FAIL_COND_V(base_offset != stride, 0); //bug
}
RD::VertexFormatID vertex_id = RD::get_singleton()->vertex_format_create(descriptions);
ERR_FAIL_COND_V(vertex_id == RD::INVALID_ID, 0);
PolygonBuffers pb;
pb.vertex_buffer = RD::get_singleton()->vertex_buffer_create(polygon_buffer.size(), polygon_buffer);
for (int i = 0; i < descriptions.size(); i++) {
if (buffers[i] == RID()) { //if put in vertex, use as vertex
buffers.write[i] = pb.vertex_buffer;
}
}
pb.vertex_array = RD::get_singleton()->vertex_array_create(p_points.size(), vertex_id, buffers);
pb.primitive_count = vertex_count;
if (p_indices.size()) {
//create indices, as indices were requested
Vector<uint8_t> index_buffer;
index_buffer.resize(p_indices.size() * sizeof(int32_t));
{
uint8_t *w = index_buffer.ptrw();
memcpy(w, p_indices.ptr(), sizeof(int32_t) * p_indices.size());
}
pb.index_buffer = RD::get_singleton()->index_buffer_create(p_indices.size(), RD::INDEX_BUFFER_FORMAT_UINT32, index_buffer);
pb.indices = RD::get_singleton()->index_array_create(pb.index_buffer, 0, p_indices.size());
pb.primitive_count = p_indices.size();
}
pb.vertex_format_id = vertex_id;
PolygonID id = polygon_buffers.last_id++;
polygon_buffers.polygons[id] = pb;
return id;
}
void RendererCanvasRenderRD::free_polygon(PolygonID p_polygon) {
PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon);
ERR_FAIL_NULL(pb_ptr);
PolygonBuffers &pb = *pb_ptr;
if (pb.indices.is_valid()) {
RD::get_singleton()->free(pb.indices);
}
if (pb.index_buffer.is_valid()) {
RD::get_singleton()->free(pb.index_buffer);
}
RD::get_singleton()->free(pb.vertex_array);
RD::get_singleton()->free(pb.vertex_buffer);
polygon_buffers.polygons.erase(p_polygon);
}
////////////////////
static RD::RenderPrimitive _primitive_type_to_render_primitive(RS::PrimitiveType p_primitive) {
switch (p_primitive) {
case RS::PRIMITIVE_POINTS:
return RD::RENDER_PRIMITIVE_POINTS;
case RS::PRIMITIVE_LINES:
return RD::RENDER_PRIMITIVE_LINES;
case RS::PRIMITIVE_LINE_STRIP:
return RD::RENDER_PRIMITIVE_LINESTRIPS;
case RS::PRIMITIVE_TRIANGLES:
return RD::RENDER_PRIMITIVE_TRIANGLES;
case RS::PRIMITIVE_TRIANGLE_STRIP:
return RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS;
default:
return RD::RENDER_PRIMITIVE_MAX;
}
}
_FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) {
static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 };
static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 1 };
return (p_indices - subtractor[p_primitive]) / divisor[p_primitive];
}
RID RendererCanvasRenderRD::_create_base_uniform_set(RID p_to_render_target, bool p_backbuffer) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
//re create canvas state
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 1;
u.append_id(state.canvas_state_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 2;
u.append_id(state.lights_uniform_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 3;
u.append_id(RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 4;
u.append_id(state.shadow_texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 5;
u.append_id(state.shadow_sampler);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 6;
RID screen;
if (p_backbuffer) {
screen = texture_storage->render_target_get_rd_texture(p_to_render_target);
} else {
screen = texture_storage->render_target_get_rd_backbuffer(p_to_render_target);
if (screen.is_null()) { //unallocated backbuffer
screen = RendererRD::TextureStorage::get_singleton()->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
}
}
u.append_id(screen);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 7;
RID sdf = texture_storage->render_target_get_sdf_texture(p_to_render_target);
u.append_id(sdf);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 9;
u.append_id(RendererRD::MaterialStorage::get_singleton()->global_shader_uniforms_get_storage_buffer());
uniforms.push_back(u);
}
uniforms.append_array(material_storage->samplers_rd_get_default().get_uniforms(SAMPLERS_BINDING_FIRST_INDEX));
RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, shader.default_version_rd_shader, BASE_UNIFORM_SET);
if (p_backbuffer) {
texture_storage->render_target_set_backbuffer_uniform_set(p_to_render_target, uniform_set);
} else {
texture_storage->render_target_set_framebuffer_uniform_set(p_to_render_target, uniform_set);
}
return uniform_set;
}
RID RendererCanvasRenderRD::_get_pipeline_specialization_or_ubershader(CanvasShaderData *p_shader_data, PipelineKey &r_pipeline_key, PushConstant &r_push_constant, RID p_mesh_instance, void *p_surface, uint32_t p_surface_index, RID *r_vertex_array) {
r_pipeline_key.ubershader = 0;
const uint32_t ubershader_iterations = 1;
while (r_pipeline_key.ubershader < ubershader_iterations) {
if (r_vertex_array != nullptr) {
RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton();
uint64_t input_mask = p_shader_data->get_vertex_input_mask(r_pipeline_key.variant, r_pipeline_key.ubershader);
if (p_mesh_instance.is_valid()) {
mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(p_mesh_instance, p_surface_index, input_mask, false, *r_vertex_array, r_pipeline_key.vertex_format_id);
} else {
mesh_storage->mesh_surface_get_vertex_arrays_and_format(p_surface, input_mask, false, *r_vertex_array, r_pipeline_key.vertex_format_id);
}
}
if (r_pipeline_key.ubershader) {
r_push_constant.shader_specialization = r_pipeline_key.shader_specialization;
r_pipeline_key.shader_specialization = {};
} else {
r_push_constant.shader_specialization = {};
}
bool wait_for_compilation = r_pipeline_key.ubershader || ubershader_iterations == 1;
RS::PipelineSource source = RS::PIPELINE_SOURCE_CANVAS;
RID pipeline = p_shader_data->pipeline_hash_map.get_pipeline(r_pipeline_key, r_pipeline_key.hash(), wait_for_compilation, source);
if (pipeline.is_valid()) {
return pipeline;
}
r_pipeline_key.ubershader++;
}
// This case should never be reached unless the shader wasn't available.
return RID();
}
void RendererCanvasRenderRD::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, Light *p_directional_light_list, const Transform2D &p_canvas_transform, RenderingServer::CanvasItemTextureFilter p_default_filter, RenderingServer::CanvasItemTextureRepeat p_default_repeat, bool p_snap_2d_vertices_to_pixel, bool &r_sdf_used, RenderingMethod::RenderInfo *r_render_info) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton();
r_sdf_used = false;
int item_count = 0;
//setup canvas state uniforms if needed
Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse();
//setup directional lights if exist
uint32_t light_count = 0;
uint32_t directional_light_count = 0;
{
Light *l = p_directional_light_list;
uint32_t index = 0;
while (l) {
if (index == state.max_lights_per_render) {
l->render_index_cache = -1;
l = l->next_ptr;
continue;
}
CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal);
if (!clight) { //unused or invalid texture
l->render_index_cache = -1;
l = l->next_ptr;
ERR_CONTINUE(!clight);
}
Vector2 canvas_light_dir = l->xform_cache.columns[1].normalized();
state.light_uniforms[index].position[0] = -canvas_light_dir.x;
state.light_uniforms[index].position[1] = -canvas_light_dir.y;
_update_transform_2d_to_mat2x4(clight->shadow.directional_xform, state.light_uniforms[index].shadow_matrix);
state.light_uniforms[index].height = l->height; //0..1 here
for (int i = 0; i < 4; i++) {
state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255));
state.light_uniforms[index].color[i] = l->color[i];
}
state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate
if (state.shadow_fb.is_valid()) {
state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth);
state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far;
state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset;
} else {
state.light_uniforms[index].shadow_pixel_size = 1.0;
state.light_uniforms[index].shadow_z_far_inv = 1.0;
state.light_uniforms[index].shadow_y_ofs = 0;
}
state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT;
state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT;
if (clight->shadow.enabled) {
state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW;
}
l->render_index_cache = index;
index++;
l = l->next_ptr;
}
light_count = index;
directional_light_count = light_count;
using_directional_lights = directional_light_count > 0;
}
//setup lights if exist
{
Light *l = p_light_list;
uint32_t index = light_count;
while (l) {
if (index == state.max_lights_per_render) {
l->render_index_cache = -1;
l = l->next_ptr;
continue;
}
CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal);
if (!clight) { //unused or invalid texture
l->render_index_cache = -1;
l = l->next_ptr;
ERR_CONTINUE(!clight);
}
Transform2D final_xform;
if (!RSG::canvas->_interpolation_data.interpolation_enabled || !l->interpolated) {
final_xform = l->xform_curr;
} else {
real_t f = Engine::get_singleton()->get_physics_interpolation_fraction();
TransformInterpolator::interpolate_transform_2d(l->xform_prev, l->xform_curr, final_xform, f);
}
// Convert light position to canvas coordinates, as all computation is done in canvas coordinates to avoid precision loss.
Vector2 canvas_light_pos = p_canvas_transform.xform(final_xform.get_origin());
state.light_uniforms[index].position[0] = canvas_light_pos.x;
state.light_uniforms[index].position[1] = canvas_light_pos.y;
_update_transform_2d_to_mat2x4(l->light_shader_xform.affine_inverse(), state.light_uniforms[index].matrix);
_update_transform_2d_to_mat2x4(l->xform_cache.affine_inverse(), state.light_uniforms[index].shadow_matrix);
state.light_uniforms[index].height = l->height * (p_canvas_transform.columns[0].length() + p_canvas_transform.columns[1].length()) * 0.5; //approximate height conversion to the canvas size, since all calculations are done in canvas coords to avoid precision loss
for (int i = 0; i < 4; i++) {
state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255));
state.light_uniforms[index].color[i] = l->color[i];
}
state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate
if (state.shadow_fb.is_valid()) {
state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth);
state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far;
state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset;
} else {
state.light_uniforms[index].shadow_pixel_size = 1.0;
state.light_uniforms[index].shadow_z_far_inv = 1.0;
state.light_uniforms[index].shadow_y_ofs = 0;
}
state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT;
state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT;
if (clight->shadow.enabled) {
state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW;
}
if (clight->texture.is_valid()) {
Rect2 atlas_rect = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture_rect(clight->texture);
state.light_uniforms[index].atlas_rect[0] = atlas_rect.position.x;
state.light_uniforms[index].atlas_rect[1] = atlas_rect.position.y;
state.light_uniforms[index].atlas_rect[2] = atlas_rect.size.width;
state.light_uniforms[index].atlas_rect[3] = atlas_rect.size.height;
} else {
state.light_uniforms[index].atlas_rect[0] = 0;
state.light_uniforms[index].atlas_rect[1] = 0;
state.light_uniforms[index].atlas_rect[2] = 0;
state.light_uniforms[index].atlas_rect[3] = 0;
}
l->render_index_cache = index;
index++;
l = l->next_ptr;
}
light_count = index;
}
if (light_count > 0) {
RD::get_singleton()->buffer_update(state.lights_uniform_buffer, 0, sizeof(LightUniform) * light_count, &state.light_uniforms[0]);
}
{
//update canvas state uniform buffer
State::Buffer state_buffer;
Size2i ssize = texture_storage->render_target_get_size(p_to_render_target);
Transform3D screen_transform;
screen_transform.translate_local(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f);
screen_transform.scale(Vector3(2.0f / ssize.width, 2.0f / ssize.height, 1.0f));
_update_transform_to_mat4(screen_transform, state_buffer.screen_transform);
_update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform);
Transform2D normal_transform = p_canvas_transform;
normal_transform.columns[0].normalize();
normal_transform.columns[1].normalize();
normal_transform.columns[2] = Vector2();
_update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform);
bool use_linear_colors = texture_storage->render_target_is_using_hdr(p_to_render_target);
Color modulate = p_modulate;
if (use_linear_colors) {
modulate = p_modulate.srgb_to_linear();
}
state_buffer.canvas_modulate[0] = modulate.r;
state_buffer.canvas_modulate[1] = modulate.g;
state_buffer.canvas_modulate[2] = modulate.b;
state_buffer.canvas_modulate[3] = modulate.a;
Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target);
state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x;
state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y;
state_buffer.time = state.time;
state_buffer.use_pixel_snap = p_snap_2d_vertices_to_pixel;
state_buffer.directional_light_count = directional_light_count;
Vector2 canvas_scale = p_canvas_transform.get_scale();
state_buffer.sdf_to_screen[0] = render_target_size.width / canvas_scale.x;
state_buffer.sdf_to_screen[1] = render_target_size.height / canvas_scale.y;
state_buffer.screen_to_sdf[0] = 1.0 / state_buffer.sdf_to_screen[0];
state_buffer.screen_to_sdf[1] = 1.0 / state_buffer.sdf_to_screen[1];
Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_to_render_target);
Rect2 sdf_tex_rect(sdf_rect.position / canvas_scale, sdf_rect.size / canvas_scale);
state_buffer.sdf_to_tex[0] = 1.0 / sdf_tex_rect.size.width;
state_buffer.sdf_to_tex[1] = 1.0 / sdf_tex_rect.size.height;
state_buffer.sdf_to_tex[2] = -sdf_tex_rect.position.x / sdf_tex_rect.size.width;
state_buffer.sdf_to_tex[3] = -sdf_tex_rect.position.y / sdf_tex_rect.size.height;
//print_line("w: " + itos(ssize.width) + " s: " + rtos(canvas_scale));
state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5);
RD::get_singleton()->buffer_update(state.canvas_state_buffer, 0, sizeof(State::Buffer), &state_buffer);
}
{ //default filter/repeat
default_filter = p_default_filter;
default_repeat = p_default_repeat;
}
Item *ci = p_item_list;
//fill the list until rendering is possible.
bool material_screen_texture_cached = false;
bool material_screen_texture_mipmaps_cached = false;
Rect2 back_buffer_rect;
bool backbuffer_copy = false;
bool backbuffer_gen_mipmaps = false;
Item *canvas_group_owner = nullptr;
bool skip_item = false;
state.last_instance_index = 0;
bool update_skeletons = false;
bool time_used = false;
bool backbuffer_cleared = false;
RenderTarget to_render_target;
to_render_target.render_target = p_to_render_target;
bool use_linear_colors = texture_storage->render_target_is_using_hdr(p_to_render_target);
to_render_target.base_flags = use_linear_colors ? FLAGS_CONVERT_ATTRIBUTES_TO_LINEAR : 0;
while (ci) {
if (ci->copy_back_buffer && canvas_group_owner == nullptr) {
backbuffer_copy = true;
if (ci->copy_back_buffer->full) {
back_buffer_rect = Rect2();
} else {
back_buffer_rect = ci->copy_back_buffer->rect;
}
}
RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material;
if (material.is_valid()) {
CanvasMaterialData *md = static_cast<CanvasMaterialData *>(material_storage->material_get_data(material, RendererRD::MaterialStorage::SHADER_TYPE_2D));
if (md && md->shader_data->is_valid()) {
if (md->shader_data->uses_screen_texture && canvas_group_owner == nullptr) {
if (!material_screen_texture_cached) {
backbuffer_copy = true;
back_buffer_rect = Rect2();
backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps;
} else if (!material_screen_texture_mipmaps_cached) {
backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps;
}
}
if (md->shader_data->uses_sdf) {
r_sdf_used = true;
}
if (md->shader_data->uses_time) {
time_used = true;
}
}
}
if (ci->skeleton.is_valid()) {
const Item::Command *c = ci->commands;
while (c) {
if (c->type == Item::Command::TYPE_MESH) {
const Item::CommandMesh *cm = static_cast<const Item::CommandMesh *>(c);
if (cm->mesh_instance.is_valid()) {
mesh_storage->mesh_instance_check_for_update(cm->mesh_instance);
mesh_storage->mesh_instance_set_canvas_item_transform(cm->mesh_instance, canvas_transform_inverse * ci->final_transform);
update_skeletons = true;
}
}
c = c->next;
}
}
if (ci->canvas_group_owner != nullptr) {
if (canvas_group_owner == nullptr) {
// Canvas group begins here, render until before this item
if (update_skeletons) {
mesh_storage->update_mesh_instances();
update_skeletons = false;
}
_render_batch_items(to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, false, r_render_info);
item_count = 0;
if (ci->canvas_group_owner->canvas_group->mode != RS::CANVAS_GROUP_MODE_TRANSPARENT) {
Rect2i group_rect = ci->canvas_group_owner->global_rect_cache;
texture_storage->render_target_copy_to_back_buffer(p_to_render_target, group_rect, false);
if (ci->canvas_group_owner->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) {
ci->canvas_group_owner->use_canvas_group = false;
items[item_count++] = ci->canvas_group_owner;
}
} else if (!backbuffer_cleared) {
texture_storage->render_target_clear_back_buffer(p_to_render_target, Rect2i(), Color(0, 0, 0, 0));
backbuffer_cleared = true;
}
backbuffer_copy = false;
canvas_group_owner = ci->canvas_group_owner; //continue until owner found
}
ci->canvas_group_owner = nullptr; //must be cleared
}
if (canvas_group_owner == nullptr && ci->canvas_group != nullptr && ci->canvas_group->mode != RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) {
skip_item = true;
}
if (ci == canvas_group_owner) {
if (update_skeletons) {
mesh_storage->update_mesh_instances();
update_skeletons = false;
}
_render_batch_items(to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, true, r_render_info);
item_count = 0;
if (ci->canvas_group->blur_mipmaps) {
texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, ci->global_rect_cache);
}
canvas_group_owner = nullptr;
// Backbuffer is dirty now and needs to be re-cleared if another CanvasGroup needs it.
backbuffer_cleared = false;
// Tell the renderer to paint this as a canvas group
ci->use_canvas_group = true;
} else {
ci->use_canvas_group = false;
}
if (backbuffer_copy) {
//render anything pending, including clearing if no items
if (update_skeletons) {
mesh_storage->update_mesh_instances();
update_skeletons = false;
}
_render_batch_items(to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, false, r_render_info);
item_count = 0;
texture_storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect, backbuffer_gen_mipmaps);
backbuffer_copy = false;
material_screen_texture_cached = true; // After a backbuffer copy, screen texture makes no further copies.
material_screen_texture_mipmaps_cached = backbuffer_gen_mipmaps;
backbuffer_gen_mipmaps = false;
}
if (backbuffer_gen_mipmaps) {
texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, back_buffer_rect);
backbuffer_gen_mipmaps = false;
material_screen_texture_mipmaps_cached = true;
}
if (skip_item) {
skip_item = false;
} else {
items[item_count++] = ci;
}
if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) {
if (update_skeletons) {
mesh_storage->update_mesh_instances();
update_skeletons = false;
}
_render_batch_items(to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, canvas_group_owner != nullptr, r_render_info);
//then reset
item_count = 0;
}
ci = ci->next;
}
if (time_used) {
RenderingServerDefault::redraw_request();
}
state.current_data_buffer_index = (state.current_data_buffer_index + 1) % state.canvas_instance_data_buffers.size();
state.current_instance_buffer_index = 0;
}
RID RendererCanvasRenderRD::light_create() {
CanvasLight canvas_light;
return canvas_light_owner.make_rid(canvas_light);
}
void RendererCanvasRenderRD::light_set_texture(RID p_rid, RID p_texture) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_NULL(cl);
if (cl->texture == p_texture) {
return;
}
ERR_FAIL_COND(p_texture.is_valid() && !texture_storage->owns_texture(p_texture));
if (cl->texture.is_valid()) {
texture_storage->texture_remove_from_decal_atlas(cl->texture);
}
cl->texture = p_texture;
if (cl->texture.is_valid()) {
texture_storage->texture_add_to_decal_atlas(cl->texture);
}
}
void RendererCanvasRenderRD::light_set_use_shadow(RID p_rid, bool p_enable) {
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_NULL(cl);
cl->shadow.enabled = p_enable;
}
void RendererCanvasRenderRD::_update_shadow_atlas() {
if (state.shadow_fb == RID()) {
//ah, we lack the shadow texture..
RD::get_singleton()->free(state.shadow_texture); //erase placeholder
Vector<RID> fb_textures;
{ //texture
RD::TextureFormat tf;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.width = state.shadow_texture_size;
tf.height = state.max_lights_per_render * 2;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
fb_textures.push_back(state.shadow_texture);
}
{
RD::TextureFormat tf;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.width = state.shadow_texture_size;
tf.height = state.max_lights_per_render * 2;
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
tf.format = RD::DATA_FORMAT_D32_SFLOAT;
//chunks to write
state.shadow_depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
fb_textures.push_back(state.shadow_depth_texture);
}
state.shadow_fb = RD::get_singleton()->framebuffer_create(fb_textures);
}
}
void RendererCanvasRenderRD::light_update_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) {
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_COND(!cl->shadow.enabled);
_update_shadow_atlas();
cl->shadow.z_far = p_far;
cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(state.max_lights_per_render * 2);
Vector<Color> cc;
cc.push_back(Color(p_far, p_far, p_far, 1.0));
for (int i = 0; i < 4; i++) {
//make sure it remains orthogonal, makes easy to read angle later
//light.basis.scale(Vector3(to_light.elements[0].length(),to_light.elements[1].length(),1));
Rect2i rect((state.shadow_texture_size / 4) * i, p_shadow_index * 2, (state.shadow_texture_size / 4), 2);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(state.shadow_fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc, 1.0, 0, rect);
Projection projection;
{
real_t fov = 90;
real_t nearp = p_near;
real_t farp = p_far;
real_t aspect = 1.0;
real_t ymax = nearp * Math::tan(Math::deg_to_rad(fov * 0.5));
real_t ymin = -ymax;
real_t xmin = ymin * aspect;
real_t xmax = ymax * aspect;
projection.set_frustum(xmin, xmax, ymin, ymax, nearp, farp);
}
Vector3 cam_target = Basis::from_euler(Vector3(0, 0, Math_TAU * ((i + 3) / 4.0))).xform(Vector3(0, 1, 0));
projection = projection * Projection(Transform3D().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse());
ShadowRenderPushConstant push_constant;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
push_constant.projection[y * 4 + x] = projection.columns[y][x];
}
}
static const Vector2 directions[4] = { Vector2(1, 0), Vector2(0, 1), Vector2(-1, 0), Vector2(0, -1) };
push_constant.direction[0] = directions[i].x;
push_constant.direction[1] = directions[i].y;
push_constant.z_far = p_far;
push_constant.pad = 0;
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder);
if (!co || co->index_array.is_null() || !(p_light_mask & instance->light_mask)) {
instance = instance->next;
continue;
}
_update_transform_2d_to_mat2x4(p_light_xform * instance->xform_cache, push_constant.modelview);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.render_pipelines[co->cull_mode]);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, co->index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
instance = instance->next;
}
RD::get_singleton()->draw_list_end();
}
}
void RendererCanvasRenderRD::light_update_directional_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_cull_distance, const Rect2 &p_clip_rect, LightOccluderInstance *p_occluders) {
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_COND(!cl->shadow.enabled);
_update_shadow_atlas();
Vector2 light_dir = p_light_xform.columns[1].normalized();
Vector2 center = p_clip_rect.get_center();
float to_edge_distance = ABS(light_dir.dot(p_clip_rect.get_support(-light_dir)) - light_dir.dot(center));
Vector2 from_pos = center - light_dir * (to_edge_distance + p_cull_distance);
float distance = to_edge_distance * 2.0 + p_cull_distance;
float half_size = p_clip_rect.size.length() * 0.5; //shadow length, must keep this no matter the angle
cl->shadow.z_far = distance;
cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(state.max_lights_per_render * 2);
Transform2D to_light_xform;
to_light_xform[2] = from_pos;
to_light_xform[1] = light_dir;
to_light_xform[0] = -light_dir.orthogonal();
to_light_xform.invert();
Vector<Color> cc;
cc.push_back(Color(1, 1, 1, 1));
Rect2i rect(0, p_shadow_index * 2, state.shadow_texture_size, 2);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(state.shadow_fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc, 1.0, 0, rect);
Projection projection;
projection.set_orthogonal(-half_size, half_size, -0.5, 0.5, 0.0, distance);
projection = projection * Projection(Transform3D().looking_at(Vector3(0, 1, 0), Vector3(0, 0, -1)).affine_inverse());
ShadowRenderPushConstant push_constant;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
push_constant.projection[y * 4 + x] = projection.columns[y][x];
}
}
push_constant.direction[0] = 0.0;
push_constant.direction[1] = 1.0;
push_constant.z_far = distance;
push_constant.pad = 0;
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder);
if (!co || co->index_array.is_null() || !(p_light_mask & instance->light_mask)) {
instance = instance->next;
continue;
}
_update_transform_2d_to_mat2x4(to_light_xform * instance->xform_cache, push_constant.modelview);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.render_pipelines[co->cull_mode]);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, co->index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
instance = instance->next;
}
RD::get_singleton()->draw_list_end();
Transform2D to_shadow;
to_shadow.columns[0].x = 1.0 / -(half_size * 2.0);
to_shadow.columns[2].x = 0.5;
cl->shadow.directional_xform = to_shadow * to_light_xform;
}
void RendererCanvasRenderRD::render_sdf(RID p_render_target, LightOccluderInstance *p_occluders) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RID fb = texture_storage->render_target_get_sdf_framebuffer(p_render_target);
Rect2i rect = texture_storage->render_target_get_sdf_rect(p_render_target);
Transform2D to_sdf;
to_sdf.columns[0] *= rect.size.width;
to_sdf.columns[1] *= rect.size.height;
to_sdf.columns[2] = rect.position;
Transform2D to_clip;
to_clip.columns[0] *= 2.0;
to_clip.columns[1] *= 2.0;
to_clip.columns[2] = -Vector2(1.0, 1.0);
to_clip = to_clip * to_sdf.affine_inverse();
Vector<Color> cc;
cc.push_back(Color(0, 0, 0, 0));
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc);
Projection projection;
ShadowRenderPushConstant push_constant;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
push_constant.projection[y * 4 + x] = projection.columns[y][x];
}
}
push_constant.direction[0] = 0.0;
push_constant.direction[1] = 0.0;
push_constant.z_far = 0;
push_constant.pad = 0;
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder);
if (!co || co->sdf_index_array.is_null() || !instance->sdf_collision) {
instance = instance->next;
continue;
}
_update_transform_2d_to_mat2x4(to_clip * instance->xform_cache, push_constant.modelview);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.sdf_render_pipelines[co->sdf_is_lines ? SHADOW_RENDER_SDF_LINES : SHADOW_RENDER_SDF_TRIANGLES]);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->sdf_vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, co->sdf_index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
instance = instance->next;
}
RD::get_singleton()->draw_list_end();
texture_storage->render_target_sdf_process(p_render_target); //done rendering, process it
}
RID RendererCanvasRenderRD::occluder_polygon_create() {
OccluderPolygon occluder;
occluder.line_point_count = 0;
occluder.sdf_point_count = 0;
occluder.sdf_index_count = 0;
occluder.cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED;
return occluder_polygon_owner.make_rid(occluder);
}
void RendererCanvasRenderRD::occluder_polygon_set_shape(RID p_occluder, const Vector<Vector2> &p_points, bool p_closed) {
OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder);
ERR_FAIL_NULL(oc);
Vector<Vector2> lines;
if (p_points.size()) {
int lc = p_points.size() * 2;
lines.resize(lc - (p_closed ? 0 : 2));
{
Vector2 *w = lines.ptrw();
const Vector2 *r = p_points.ptr();
int max = lc / 2;
if (!p_closed) {
max--;
}
for (int i = 0; i < max; i++) {
Vector2 a = r[i];
Vector2 b = r[(i + 1) % (lc / 2)];
w[i * 2 + 0] = a;
w[i * 2 + 1] = b;
}
}
}
if ((oc->line_point_count != lines.size() || lines.size() == 0) && oc->vertex_array.is_valid()) {
RD::get_singleton()->free(oc->vertex_array);
RD::get_singleton()->free(oc->vertex_buffer);
RD::get_singleton()->free(oc->index_array);
RD::get_singleton()->free(oc->index_buffer);
oc->vertex_array = RID();
oc->vertex_buffer = RID();
oc->index_array = RID();
oc->index_buffer = RID();
oc->line_point_count = lines.size();
}
if (lines.size()) {
oc->line_point_count = lines.size();
Vector<uint8_t> geometry;
Vector<uint8_t> indices;
int lc = lines.size();
geometry.resize(lc * 6 * sizeof(float));
indices.resize(lc * 3 * sizeof(uint16_t));
{
uint8_t *vw = geometry.ptrw();
float *vwptr = reinterpret_cast<float *>(vw);
uint8_t *iw = indices.ptrw();
uint16_t *iwptr = (uint16_t *)iw;
const Vector2 *lr = lines.ptr();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vwptr[i * 12 + 0] = lr[i * 2 + 0].x;
vwptr[i * 12 + 1] = lr[i * 2 + 0].y;
vwptr[i * 12 + 2] = POLY_HEIGHT;
vwptr[i * 12 + 3] = lr[i * 2 + 1].x;
vwptr[i * 12 + 4] = lr[i * 2 + 1].y;
vwptr[i * 12 + 5] = POLY_HEIGHT;
vwptr[i * 12 + 6] = lr[i * 2 + 1].x;
vwptr[i * 12 + 7] = lr[i * 2 + 1].y;
vwptr[i * 12 + 8] = -POLY_HEIGHT;
vwptr[i * 12 + 9] = lr[i * 2 + 0].x;
vwptr[i * 12 + 10] = lr[i * 2 + 0].y;
vwptr[i * 12 + 11] = -POLY_HEIGHT;
iwptr[i * 6 + 0] = i * 4 + 0;
iwptr[i * 6 + 1] = i * 4 + 1;
iwptr[i * 6 + 2] = i * 4 + 2;
iwptr[i * 6 + 3] = i * 4 + 2;
iwptr[i * 6 + 4] = i * 4 + 3;
iwptr[i * 6 + 5] = i * 4 + 0;
}
}
//if same buffer len is being set, just use buffer_update to avoid a pipeline flush
if (oc->vertex_array.is_null()) {
//create from scratch
//vertices
oc->vertex_buffer = RD::get_singleton()->vertex_buffer_create(lc * 6 * sizeof(float), geometry);
Vector<RID> buffer;
buffer.push_back(oc->vertex_buffer);
oc->vertex_array = RD::get_singleton()->vertex_array_create(4 * lc / 2, shadow_render.vertex_format, buffer);
//indices
oc->index_buffer = RD::get_singleton()->index_buffer_create(3 * lc, RD::INDEX_BUFFER_FORMAT_UINT16, indices);
oc->index_array = RD::get_singleton()->index_array_create(oc->index_buffer, 0, 3 * lc);
} else {
//update existing
const uint8_t *vr = geometry.ptr();
RD::get_singleton()->buffer_update(oc->vertex_buffer, 0, geometry.size(), vr);
const uint8_t *ir = indices.ptr();
RD::get_singleton()->buffer_update(oc->index_buffer, 0, indices.size(), ir);
}
}
// sdf
Vector<int> sdf_indices;
if (p_points.size()) {
if (p_closed) {
sdf_indices = Geometry2D::triangulate_polygon(p_points);
oc->sdf_is_lines = false;
} else {
int max = p_points.size();
sdf_indices.resize(max * 2);
int *iw = sdf_indices.ptrw();
for (int i = 0; i < max; i++) {
iw[i * 2 + 0] = i;
iw[i * 2 + 1] = (i + 1) % max;
}
oc->sdf_is_lines = true;
}
}
if (((oc->sdf_index_count != sdf_indices.size() && oc->sdf_point_count != p_points.size()) || p_points.size() == 0) && oc->sdf_vertex_array.is_valid()) {
RD::get_singleton()->free(oc->sdf_vertex_array);
RD::get_singleton()->free(oc->sdf_vertex_buffer);
RD::get_singleton()->free(oc->sdf_index_array);
RD::get_singleton()->free(oc->sdf_index_buffer);
oc->sdf_vertex_array = RID();
oc->sdf_vertex_buffer = RID();
oc->sdf_index_array = RID();
oc->sdf_index_buffer = RID();
oc->sdf_index_count = sdf_indices.size();
oc->sdf_point_count = p_points.size();
oc->sdf_is_lines = false;
}
if (sdf_indices.size()) {
if (oc->sdf_vertex_array.is_null()) {
//create from scratch
//vertices
#ifdef REAL_T_IS_DOUBLE
PackedFloat32Array float_points;
float_points.resize(p_points.size() * 2);
float *float_points_ptr = (float *)float_points.ptrw();
for (int i = 0; i < p_points.size(); i++) {
float_points_ptr[i * 2] = p_points[i].x;
float_points_ptr[i * 2 + 1] = p_points[i].y;
}
oc->sdf_vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_points.size() * 2 * sizeof(float), float_points.to_byte_array());
#else
oc->sdf_vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_points.size() * 2 * sizeof(float), p_points.to_byte_array());
#endif
oc->sdf_index_buffer = RD::get_singleton()->index_buffer_create(sdf_indices.size(), RD::INDEX_BUFFER_FORMAT_UINT32, sdf_indices.to_byte_array());
oc->sdf_index_array = RD::get_singleton()->index_array_create(oc->sdf_index_buffer, 0, sdf_indices.size());
Vector<RID> buffer;
buffer.push_back(oc->sdf_vertex_buffer);
oc->sdf_vertex_array = RD::get_singleton()->vertex_array_create(p_points.size(), shadow_render.sdf_vertex_format, buffer);
//indices
} else {
//update existing
#ifdef REAL_T_IS_DOUBLE
PackedFloat32Array float_points;
float_points.resize(p_points.size() * 2);
float *float_points_ptr = (float *)float_points.ptrw();
for (int i = 0; i < p_points.size(); i++) {
float_points_ptr[i * 2] = p_points[i].x;
float_points_ptr[i * 2 + 1] = p_points[i].y;
}
RD::get_singleton()->buffer_update(oc->sdf_vertex_buffer, 0, sizeof(float) * 2 * p_points.size(), float_points.ptr());
#else
RD::get_singleton()->buffer_update(oc->sdf_vertex_buffer, 0, sizeof(float) * 2 * p_points.size(), p_points.ptr());
#endif
RD::get_singleton()->buffer_update(oc->sdf_index_buffer, 0, sdf_indices.size() * sizeof(int32_t), sdf_indices.ptr());
}
}
}
void RendererCanvasRenderRD::occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) {
OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder);
ERR_FAIL_NULL(oc);
oc->cull_mode = p_mode;
}
void RendererCanvasRenderRD::CanvasShaderData::_clear_vertex_input_mask_cache() {
for (uint32_t i = 0; i < VERTEX_INPUT_MASKS_SIZE; i++) {
vertex_input_masks[i].store(0);
}
}
void RendererCanvasRenderRD::CanvasShaderData::_create_pipeline(PipelineKey p_pipeline_key) {
#if PRINT_PIPELINE_COMPILATION_KEYS
print_line(
"HASH:", p_pipeline_key.hash(),
"VERSION:", version,
"VARIANT:", p_pipeline_key.variant,
"FRAMEBUFFER:", p_pipeline_key.framebuffer_format_id,
"VERTEX:", p_pipeline_key.vertex_format_id,
"PRIMITIVE:", p_pipeline_key.render_primitive,
"SPEC PACKED #0:", p_pipeline_key.shader_specialization.packed_0,
"LCD:", p_pipeline_key.lcd_blend);
#endif
RendererRD::MaterialStorage::ShaderData::BlendMode blend_mode_rd = RendererRD::MaterialStorage::ShaderData::BlendMode(blend_mode);
RD::PipelineColorBlendState blend_state;
RD::PipelineColorBlendState::Attachment attachment;
uint32_t dynamic_state_flags = 0;
if (p_pipeline_key.lcd_blend) {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_CONSTANT_COLOR;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
dynamic_state_flags = RD::DYNAMIC_STATE_BLEND_CONSTANTS;
} else {
attachment = RendererRD::MaterialStorage::ShaderData::blend_mode_to_blend_attachment(blend_mode_rd);
}
blend_state.attachments.push_back(attachment);
// Convert the specialization from the key to pipeline specialization constants.
Vector<RD::PipelineSpecializationConstant> specialization_constants;
RD::PipelineSpecializationConstant sc;
sc.constant_id = 0;
sc.int_value = p_pipeline_key.shader_specialization.packed_0;
sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT;
specialization_constants.push_back(sc);
RID shader_rid = get_shader(p_pipeline_key.variant, p_pipeline_key.ubershader);
ERR_FAIL_COND(shader_rid.is_null());
RID pipeline = RD::get_singleton()->render_pipeline_create(shader_rid, p_pipeline_key.framebuffer_format_id, p_pipeline_key.vertex_format_id, p_pipeline_key.render_primitive, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), blend_state, dynamic_state_flags, 0, specialization_constants);
ERR_FAIL_COND(pipeline.is_null());
pipeline_hash_map.add_compiled_pipeline(p_pipeline_key.hash(), pipeline);
}
void RendererCanvasRenderRD::CanvasShaderData::set_code(const String &p_code) {
//compile
code = p_code;
ubo_size = 0;
uniforms.clear();
uses_screen_texture = false;
uses_screen_texture_mipmaps = false;
uses_sdf = false;
uses_time = false;
_clear_vertex_input_mask_cache();
if (code.is_empty()) {
return; //just invalid, but no error
}
ShaderCompiler::GeneratedCode gen_code;
blend_mode = BLEND_MODE_MIX;
ShaderCompiler::IdentifierActions actions;
actions.entry_point_stages["vertex"] = ShaderCompiler::STAGE_VERTEX;
actions.entry_point_stages["fragment"] = ShaderCompiler::STAGE_FRAGMENT;
actions.entry_point_stages["light"] = ShaderCompiler::STAGE_FRAGMENT;
actions.render_mode_values["blend_add"] = Pair<int *, int>(&blend_mode, BLEND_MODE_ADD);
actions.render_mode_values["blend_mix"] = Pair<int *, int>(&blend_mode, BLEND_MODE_MIX);
actions.render_mode_values["blend_sub"] = Pair<int *, int>(&blend_mode, BLEND_MODE_SUB);
actions.render_mode_values["blend_mul"] = Pair<int *, int>(&blend_mode, BLEND_MODE_MUL);
actions.render_mode_values["blend_premul_alpha"] = Pair<int *, int>(&blend_mode, BLEND_MODE_PREMULTIPLIED_ALPHA);
actions.render_mode_values["blend_disabled"] = Pair<int *, int>(&blend_mode, BLEND_MODE_DISABLED);
actions.usage_flag_pointers["texture_sdf"] = &uses_sdf;
actions.usage_flag_pointers["TIME"] = &uses_time;
actions.uniforms = &uniforms;
RendererCanvasRenderRD *canvas_singleton = static_cast<RendererCanvasRenderRD *>(RendererCanvasRender::singleton);
MutexLock lock(canvas_singleton->shader.mutex);
Error err = canvas_singleton->shader.compiler.compile(RS::SHADER_CANVAS_ITEM, code, &actions, path, gen_code);
ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
uses_screen_texture_mipmaps = gen_code.uses_screen_texture_mipmaps;
uses_screen_texture = gen_code.uses_screen_texture;
pipeline_hash_map.clear_pipelines();
if (version.is_null()) {
version = canvas_singleton->shader.canvas_shader.version_create();
}
#if 0
print_line("**compiling shader:");
print_line("**defines:\n");
for (int i = 0; i < gen_code.defines.size(); i++) {
print_line(gen_code.defines[i]);
}
HashMap<String, String>::Iterator el = gen_code.code.begin();
while (el) {
print_line("\n**code " + el->key + ":\n" + el->value);
++el;
}
print_line("\n**uniforms:\n" + gen_code.uniforms);
print_line("\n**vertex_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX]);
print_line("\n**fragment_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT]);
#endif
canvas_singleton->shader.canvas_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines);
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
}
bool RendererCanvasRenderRD::CanvasShaderData::is_animated() const {
return false;
}
bool RendererCanvasRenderRD::CanvasShaderData::casts_shadows() const {
return false;
}
RS::ShaderNativeSourceCode RendererCanvasRenderRD::CanvasShaderData::get_native_source_code() const {
RendererCanvasRenderRD *canvas_singleton = static_cast<RendererCanvasRenderRD *>(RendererCanvasRender::singleton);
MutexLock lock(canvas_singleton->shader.mutex);
return canvas_singleton->shader.canvas_shader.version_get_native_source_code(version);
}
RID RendererCanvasRenderRD::CanvasShaderData::get_shader(ShaderVariant p_shader_variant, bool p_ubershader) const {
if (version.is_valid()) {
uint32_t variant_index = p_shader_variant + (p_ubershader ? SHADER_VARIANT_MAX : 0);
RendererCanvasRenderRD *canvas_singleton = static_cast<RendererCanvasRenderRD *>(RendererCanvasRender::singleton);
MutexLock lock(canvas_singleton->shader.mutex);
return canvas_singleton->shader.canvas_shader.version_get_shader(version, variant_index);
} else {
return RID();
}
}
uint64_t RendererCanvasRenderRD::CanvasShaderData::get_vertex_input_mask(ShaderVariant p_shader_variant, bool p_ubershader) {
// Vertex input masks require knowledge of the shader. Since querying the shader can be expensive due to high contention and the necessary mutex, we cache the result instead.
uint32_t input_mask_index = p_shader_variant + (p_ubershader ? SHADER_VARIANT_MAX : 0);
uint64_t input_mask = vertex_input_masks[input_mask_index].load(std::memory_order_relaxed);
if (input_mask == 0) {
RID shader_rid = get_shader(p_shader_variant, p_ubershader);
ERR_FAIL_COND_V(shader_rid.is_null(), 0);
input_mask = RD::get_singleton()->shader_get_vertex_input_attribute_mask(shader_rid);
vertex_input_masks[input_mask_index].store(input_mask, std::memory_order_relaxed);
}
return input_mask;
}
bool RendererCanvasRenderRD::CanvasShaderData::is_valid() const {
RendererCanvasRenderRD *canvas_singleton = static_cast<RendererCanvasRenderRD *>(RendererCanvasRender::singleton);
MutexLock lock(canvas_singleton->shader.mutex);
return canvas_singleton->shader.canvas_shader.version_is_valid(version);
}
RendererCanvasRenderRD::CanvasShaderData::CanvasShaderData() {
RendererCanvasRenderRD *canvas_singleton = static_cast<RendererCanvasRenderRD *>(RendererCanvasRender::singleton);
pipeline_hash_map.set_creation_object_and_function(this, &CanvasShaderData::_create_pipeline);
pipeline_hash_map.set_compilations(&canvas_singleton->shader.pipeline_compilations[0], &canvas_singleton->shader.mutex);
}
RendererCanvasRenderRD::CanvasShaderData::~CanvasShaderData() {
pipeline_hash_map.clear_pipelines();
if (version.is_valid()) {
RendererCanvasRenderRD *canvas_singleton = static_cast<RendererCanvasRenderRD *>(RendererCanvasRender::singleton);
MutexLock lock(canvas_singleton->shader.mutex);
canvas_singleton->shader.canvas_shader.version_free(version);
}
}
RendererRD::MaterialStorage::ShaderData *RendererCanvasRenderRD::_create_shader_func() {
CanvasShaderData *shader_data = memnew(CanvasShaderData);
return shader_data;
}
bool RendererCanvasRenderRD::CanvasMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
RendererCanvasRenderRD *canvas_singleton = static_cast<RendererCanvasRenderRD *>(RendererCanvasRender::singleton);
MutexLock lock(canvas_singleton->shader.mutex);
RID shader_to_update = canvas_singleton->shader.canvas_shader.version_get_shader(shader_data->version, 0);
bool uniform_set_changed = update_parameters_uniform_set(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size, uniform_set, shader_to_update, MATERIAL_UNIFORM_SET, true, false);
bool uniform_set_srgb_changed = update_parameters_uniform_set(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size, uniform_set_srgb, shader_to_update, MATERIAL_UNIFORM_SET, false, false);
return uniform_set_changed || uniform_set_srgb_changed;
}
RendererCanvasRenderRD::CanvasMaterialData::~CanvasMaterialData() {
free_parameters_uniform_set(uniform_set);
free_parameters_uniform_set(uniform_set_srgb);
}
RendererRD::MaterialStorage::MaterialData *RendererCanvasRenderRD::_create_material_func(CanvasShaderData *p_shader) {
CanvasMaterialData *material_data = memnew(CanvasMaterialData);
material_data->shader_data = p_shader;
//update will happen later anyway so do nothing.
return material_data;
}
void RendererCanvasRenderRD::set_time(double p_time) {
state.time = p_time;
}
void RendererCanvasRenderRD::update() {
}
RendererCanvasRenderRD::RendererCanvasRenderRD() {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
{ //create default samplers
default_samplers.default_filter = RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR;
default_samplers.default_repeat = RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED;
}
{ //shader variants
String global_defines;
uint64_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE);
if (uniform_max_size < 65536) {
//Yes, you guessed right, ARM again
state.max_lights_per_render = 64;
global_defines += "#define MAX_LIGHTS 64\n";
} else {
state.max_lights_per_render = DEFAULT_MAX_LIGHTS_PER_RENDER;
global_defines += "#define MAX_LIGHTS " + itos(DEFAULT_MAX_LIGHTS_PER_RENDER) + "\n";
}
global_defines += "\n#define SAMPLERS_BINDING_FIRST_INDEX " + itos(SAMPLERS_BINDING_FIRST_INDEX) + "\n";
state.light_uniforms = memnew_arr(LightUniform, state.max_lights_per_render);
Vector<String> variants;
const uint32_t ubershader_iterations = 1;
for (uint32_t ubershader = 0; ubershader < ubershader_iterations; ubershader++) {
const String base_define = ubershader ? "\n#define UBERSHADER\n" : "";
variants.push_back(base_define + ""); // SHADER_VARIANT_QUAD
variants.push_back(base_define + "#define USE_NINEPATCH\n"); // SHADER_VARIANT_NINEPATCH
variants.push_back(base_define + "#define USE_PRIMITIVE\n"); // SHADER_VARIANT_PRIMITIVE
variants.push_back(base_define + "#define USE_PRIMITIVE\n#define USE_POINT_SIZE\n"); // SHADER_VARIANT_PRIMITIVE_POINTS
variants.push_back(base_define + "#define USE_ATTRIBUTES\n"); // SHADER_VARIANT_ATTRIBUTES
variants.push_back(base_define + "#define USE_ATTRIBUTES\n#define USE_POINT_SIZE\n"); // SHADER_VARIANT_ATTRIBUTES_POINTS
}
shader.canvas_shader.initialize(variants, global_defines);
shader.default_version_data = memnew(CanvasShaderData);
shader.default_version_data->version = shader.canvas_shader.version_create();
shader.default_version_data->blend_mode = RendererRD::MaterialStorage::ShaderData::BLEND_MODE_MIX;
shader.default_version_rd_shader = shader.default_version_data->get_shader(SHADER_VARIANT_QUAD, false);
}
{
//shader compiler
ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["VERTEX"] = "vertex";
actions.renames["LIGHT_VERTEX"] = "light_vertex";
actions.renames["SHADOW_VERTEX"] = "shadow_vertex";
actions.renames["UV"] = "uv";
actions.renames["POINT_SIZE"] = "point_size";
actions.renames["MODEL_MATRIX"] = "model_matrix";
actions.renames["CANVAS_MATRIX"] = "canvas_data.canvas_transform";
actions.renames["SCREEN_MATRIX"] = "canvas_data.screen_transform";
actions.renames["TIME"] = "canvas_data.time";
actions.renames["PI"] = _MKSTR(Math_PI);
actions.renames["TAU"] = _MKSTR(Math_TAU);
actions.renames["E"] = _MKSTR(Math_E);
actions.renames["AT_LIGHT_PASS"] = "false";
actions.renames["INSTANCE_CUSTOM"] = "instance_custom";
actions.renames["COLOR"] = "color";
actions.renames["NORMAL"] = "normal";
actions.renames["NORMAL_MAP"] = "normal_map";
actions.renames["NORMAL_MAP_DEPTH"] = "normal_map_depth";
actions.renames["TEXTURE"] = "color_texture";
actions.renames["TEXTURE_PIXEL_SIZE"] = "draw_data.color_texture_pixel_size";
actions.renames["NORMAL_TEXTURE"] = "normal_texture";
actions.renames["SPECULAR_SHININESS_TEXTURE"] = "specular_texture";
actions.renames["SPECULAR_SHININESS"] = "specular_shininess";
actions.renames["SCREEN_UV"] = "screen_uv";
actions.renames["SCREEN_PIXEL_SIZE"] = "canvas_data.screen_pixel_size";
actions.renames["FRAGCOORD"] = "gl_FragCoord";
actions.renames["POINT_COORD"] = "gl_PointCoord";
actions.renames["INSTANCE_ID"] = "gl_InstanceIndex";
actions.renames["VERTEX_ID"] = "gl_VertexIndex";
actions.renames["CUSTOM0"] = "custom0";
actions.renames["CUSTOM1"] = "custom1";
actions.renames["LIGHT_POSITION"] = "light_position";
actions.renames["LIGHT_DIRECTION"] = "light_direction";
actions.renames["LIGHT_IS_DIRECTIONAL"] = "is_directional";
actions.renames["LIGHT_COLOR"] = "light_color";
actions.renames["LIGHT_ENERGY"] = "light_energy";
actions.renames["LIGHT"] = "light";
actions.renames["SHADOW_MODULATE"] = "shadow_modulate";
actions.renames["texture_sdf"] = "texture_sdf";
actions.renames["texture_sdf_normal"] = "texture_sdf_normal";
actions.renames["sdf_to_screen_uv"] = "sdf_to_screen_uv";
actions.renames["screen_uv_to_sdf"] = "screen_uv_to_sdf";
actions.usage_defines["COLOR"] = "#define COLOR_USED\n";
actions.usage_defines["SCREEN_UV"] = "#define SCREEN_UV_USED\n";
actions.usage_defines["SCREEN_PIXEL_SIZE"] = "@SCREEN_UV";
actions.usage_defines["NORMAL"] = "#define NORMAL_USED\n";
actions.usage_defines["NORMAL_MAP"] = "#define NORMAL_MAP_USED\n";
actions.usage_defines["SPECULAR_SHININESS"] = "#define SPECULAR_SHININESS_USED\n";
actions.usage_defines["POINT_SIZE"] = "#define USE_POINT_SIZE\n";
actions.usage_defines["CUSTOM0"] = "#define CUSTOM0_USED\n";
actions.usage_defines["CUSTOM1"] = "#define CUSTOM1_USED\n";
actions.render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n";
actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n";
actions.render_mode_defines["light_only"] = "#define MODE_LIGHT_ONLY\n";
actions.render_mode_defines["world_vertex_coords"] = "#define USE_WORLD_VERTEX_COORDS\n";
actions.custom_samplers["TEXTURE"] = "texture_sampler";
actions.custom_samplers["NORMAL_TEXTURE"] = "texture_sampler";
actions.custom_samplers["SPECULAR_SHININESS_TEXTURE"] = "texture_sampler";
actions.base_texture_binding_index = 1;
actions.texture_layout_set = MATERIAL_UNIFORM_SET;
actions.base_uniform_string = "material.";
actions.default_filter = ShaderLanguage::FILTER_LINEAR;
actions.default_repeat = ShaderLanguage::REPEAT_DISABLE;
actions.base_varying_index = 5;
actions.global_buffer_array_variable = "global_shader_uniforms.data";
shader.compiler.initialize(actions);
}
{ //shadow rendering
Vector<String> versions;
versions.push_back("\n#define MODE_SHADOW\n"); //shadow
versions.push_back("\n#define MODE_SDF\n"); //sdf
shadow_render.shader.initialize(versions);
{
Vector<RD::AttachmentFormat> attachments;
RD::AttachmentFormat af_color;
af_color.format = RD::DATA_FORMAT_R32_SFLOAT;
af_color.usage_flags = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
attachments.push_back(af_color);
RD::AttachmentFormat af_depth;
af_depth.format = RD::DATA_FORMAT_D32_SFLOAT;
af_depth.usage_flags = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
attachments.push_back(af_depth);
shadow_render.framebuffer_format = RD::get_singleton()->framebuffer_format_create(attachments);
}
{
Vector<RD::AttachmentFormat> attachments;
RD::AttachmentFormat af_color;
af_color.format = RD::DATA_FORMAT_R8_UNORM;
af_color.usage_flags = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
attachments.push_back(af_color);
shadow_render.sdf_framebuffer_format = RD::get_singleton()->framebuffer_format_create(attachments);
}
//pipelines
Vector<RD::VertexAttribute> vf;
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
vd.stride = sizeof(float) * 3;
vd.location = 0;
vd.offset = 0;
vf.push_back(vd);
shadow_render.vertex_format = RD::get_singleton()->vertex_format_create(vf);
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.stride = sizeof(float) * 2;
vf.write[0] = vd;
shadow_render.sdf_vertex_format = RD::get_singleton()->vertex_format_create(vf);
shadow_render.shader_version = shadow_render.shader.version_create();
for (int i = 0; i < 3; i++) {
RD::PipelineRasterizationState rs;
rs.cull_mode = i == 0 ? RD::POLYGON_CULL_DISABLED : (i == 1 ? RD::POLYGON_CULL_FRONT : RD::POLYGON_CULL_BACK);
RD::PipelineDepthStencilState ds;
ds.enable_depth_write = true;
ds.enable_depth_test = true;
ds.depth_compare_operator = RD::COMPARE_OP_LESS;
shadow_render.render_pipelines[i] = RD::get_singleton()->render_pipeline_create(shadow_render.shader.version_get_shader(shadow_render.shader_version, SHADOW_RENDER_MODE_SHADOW), shadow_render.framebuffer_format, shadow_render.vertex_format, RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
}
for (int i = 0; i < 2; i++) {
shadow_render.sdf_render_pipelines[i] = RD::get_singleton()->render_pipeline_create(shadow_render.shader.version_get_shader(shadow_render.shader_version, SHADOW_RENDER_MODE_SDF), shadow_render.sdf_framebuffer_format, shadow_render.sdf_vertex_format, i == 0 ? RD::RENDER_PRIMITIVE_TRIANGLES : RD::RENDER_PRIMITIVE_LINES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_disabled(), 0);
}
}
{ //bindings
state.canvas_state_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(State::Buffer));
state.lights_uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(LightUniform) * state.max_lights_per_render);
RD::SamplerState shadow_sampler_state;
shadow_sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR;
shadow_sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
shadow_sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_REPEAT; //shadow wrap around
shadow_sampler_state.compare_op = RD::COMPARE_OP_GREATER;
shadow_sampler_state.enable_compare = true;
state.shadow_sampler = RD::get_singleton()->sampler_create(shadow_sampler_state);
}
{
//polygon buffers
polygon_buffers.last_id = 1;
}
{ // default index buffer
Vector<uint8_t> pv;
pv.resize(6 * 2);
{
uint8_t *w = pv.ptrw();
uint16_t *p16 = (uint16_t *)w;
p16[0] = 0;
p16[1] = 1;
p16[2] = 2;
p16[3] = 0;
p16[4] = 2;
p16[5] = 3;
}
shader.quad_index_buffer = RD::get_singleton()->index_buffer_create(6, RenderingDevice::INDEX_BUFFER_FORMAT_UINT16, pv);
shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 6);
}
{ //primitive
primitive_arrays.index_array[0] = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 1);
primitive_arrays.index_array[1] = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 2);
primitive_arrays.index_array[2] = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 3);
primitive_arrays.index_array[3] = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 6);
}
{
//default shadow texture to keep uniform set happy
RD::TextureFormat tf;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.width = 4;
tf.height = 4;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.append_id(RendererRD::MeshStorage::get_singleton()->get_default_rd_storage_buffer());
uniforms.push_back(u);
}
state.default_transforms_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, shader.default_version_rd_shader, TRANSFORMS_UNIFORM_SET);
}
default_canvas_texture = texture_storage->canvas_texture_allocate();
texture_storage->canvas_texture_initialize(default_canvas_texture);
RendererRD::TextureStorage::CanvasTextureInfo info = RendererRD::TextureStorage::get_singleton()->canvas_texture_get_info(default_canvas_texture, default_filter, default_repeat, false, false);
default_texture_info.diffuse = info.diffuse;
default_texture_info.normal = info.normal;
default_texture_info.specular = info.specular;
default_texture_info.sampler = info.sampler;
state.shadow_texture_size = GLOBAL_GET("rendering/2d/shadow_atlas/size");
//create functions for shader and material
material_storage->shader_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_2D, _create_shader_funcs);
material_storage->material_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_2D, _create_material_funcs);
state.time = 0;
{
default_canvas_group_shader = material_storage->shader_allocate();
material_storage->shader_initialize(default_canvas_group_shader);
material_storage->shader_set_code(default_canvas_group_shader, R"(
// Default CanvasGroup shader.
shader_type canvas_item;
render_mode unshaded;
uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest;
void fragment() {
vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0);
if (c.a > 0.0001) {
c.rgb /= c.a;
}
COLOR *= c;
}
)");
default_canvas_group_material = material_storage->material_allocate();
material_storage->material_initialize(default_canvas_group_material);
material_storage->material_set_shader(default_canvas_group_material, default_canvas_group_shader);
}
{
default_clip_children_shader = material_storage->shader_allocate();
material_storage->shader_initialize(default_clip_children_shader);
material_storage->shader_set_code(default_clip_children_shader, R"(
// Default clip children shader.
shader_type canvas_item;
render_mode unshaded;
uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest;
void fragment() {
vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0);
COLOR.rgb = c.rgb;
}
)");
default_clip_children_material = material_storage->material_allocate();
material_storage->material_initialize(default_clip_children_material);
material_storage->material_set_shader(default_clip_children_material, default_clip_children_shader);
}
{
state.max_instances_per_buffer = uint32_t(GLOBAL_GET("rendering/2d/batching/item_buffer_size"));
state.max_instance_buffer_size = state.max_instances_per_buffer * sizeof(InstanceData);
state.canvas_instance_data_buffers.resize(3);
state.canvas_instance_batches.reserve(200);
for (int i = 0; i < 3; i++) {
DataBuffer db;
db.instance_buffers.push_back(RD::get_singleton()->storage_buffer_create(state.max_instance_buffer_size));
state.canvas_instance_data_buffers[i] = db;
}
state.instance_data_array = memnew_arr(InstanceData, state.max_instances_per_buffer);
}
}
bool RendererCanvasRenderRD::free(RID p_rid) {
if (canvas_light_owner.owns(p_rid)) {
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_NULL_V(cl, false);
light_set_use_shadow(p_rid, false);
canvas_light_owner.free(p_rid);
} else if (occluder_polygon_owner.owns(p_rid)) {
occluder_polygon_set_shape(p_rid, Vector<Vector2>(), false);
occluder_polygon_owner.free(p_rid);
} else {
return false;
}
return true;
}
void RendererCanvasRenderRD::set_shadow_texture_size(int p_size) {
p_size = MAX(1, nearest_power_of_2_templated(p_size));
if (p_size == state.shadow_texture_size) {
return;
}
state.shadow_texture_size = p_size;
if (state.shadow_fb.is_valid()) {
RD::get_singleton()->free(state.shadow_texture);
RD::get_singleton()->free(state.shadow_depth_texture);
state.shadow_fb = RID();
{
//create a default shadow texture to keep uniform set happy (and that it gets erased when a new one is created)
RD::TextureFormat tf;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.width = 4;
tf.height = 4;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
}
}
void RendererCanvasRenderRD::set_debug_redraw(bool p_enabled, double p_time, const Color &p_color) {
debug_redraw = p_enabled;
debug_redraw_time = p_time;
debug_redraw_color = p_color;
}
uint32_t RendererCanvasRenderRD::get_pipeline_compilations(RS::PipelineSource p_source) {
RendererCanvasRenderRD *canvas_singleton = static_cast<RendererCanvasRenderRD *>(RendererCanvasRender::singleton);
MutexLock lock(canvas_singleton->shader.mutex);
return shader.pipeline_compilations[p_source];
}
void RendererCanvasRenderRD::_render_batch_items(RenderTarget p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, bool &r_sdf_used, bool p_to_backbuffer, RenderingMethod::RenderInfo *r_render_info) {
// Record batches
uint32_t instance_index = 0;
{
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
Item *current_clip = nullptr;
// Record Batches.
// First item always forms its own batch.
bool batch_broken = false;
Batch *current_batch = _new_batch(batch_broken);
// Override the start position and index as we want to start from where we finished off last time.
current_batch->start = state.last_instance_index;
for (int i = 0; i < p_item_count; i++) {
Item *ci = items[i];
if (ci->final_clip_owner != current_batch->clip) {
current_batch = _new_batch(batch_broken);
current_batch->clip = ci->final_clip_owner;
current_clip = ci->final_clip_owner;
}
RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material;
if (ci->use_canvas_group) {
if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) {
material = default_clip_children_material;
} else {
if (material.is_null()) {
if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_ONLY) {
material = default_clip_children_material;
} else {
material = default_canvas_group_material;
}
}
}
}
if (material != current_batch->material) {
current_batch = _new_batch(batch_broken);
CanvasMaterialData *material_data = nullptr;
if (material.is_valid()) {
material_data = static_cast<CanvasMaterialData *>(material_storage->material_get_data(material, RendererRD::MaterialStorage::SHADER_TYPE_2D));
}
current_batch->material = material;
current_batch->material_data = material_data;
}
if (ci->repeat_source_item == nullptr || ci->repeat_size == Vector2()) {
Transform2D base_transform = p_canvas_transform_inverse * ci->final_transform;
_record_item_commands(ci, p_to_render_target, base_transform, current_clip, p_lights, instance_index, batch_broken, r_sdf_used, current_batch);
} else {
Point2 start_pos = ci->repeat_size * -(ci->repeat_times / 2);
Point2 offset;
int repeat_times_x = ci->repeat_size.x ? ci->repeat_times : 0;
int repeat_times_y = ci->repeat_size.y ? ci->repeat_times : 0;
for (int ry = 0; ry <= repeat_times_y; ry++) {
offset.y = start_pos.y + ry * ci->repeat_size.y;
for (int rx = 0; rx <= repeat_times_x; rx++) {
offset.x = start_pos.x + rx * ci->repeat_size.x;
Transform2D base_transform = ci->final_transform;
base_transform.columns[2] += ci->repeat_source_item->final_transform.basis_xform(offset);
base_transform = p_canvas_transform_inverse * base_transform;
_record_item_commands(ci, p_to_render_target, base_transform, current_clip, p_lights, instance_index, batch_broken, r_sdf_used, current_batch);
}
}
}
}
// Copy over remaining data needed for rendering.
if (instance_index > 0) {
RD::get_singleton()->buffer_update(
state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index],
state.last_instance_index * sizeof(InstanceData),
instance_index * sizeof(InstanceData),
state.instance_data_array);
}
}
if (state.canvas_instance_batches.is_empty()) {
// Nothing to render, just return.
return;
}
// Render batches
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RID framebuffer;
RID fb_uniform_set;
bool clear = false;
Vector<Color> clear_colors;
if (p_to_backbuffer) {
framebuffer = texture_storage->render_target_get_rd_backbuffer_framebuffer(p_to_render_target.render_target);
fb_uniform_set = texture_storage->render_target_get_backbuffer_uniform_set(p_to_render_target.render_target);
} else {
framebuffer = texture_storage->render_target_get_rd_framebuffer(p_to_render_target.render_target);
texture_storage->render_target_set_msaa_needs_resolve(p_to_render_target.render_target, false); // If MSAA is enabled, our framebuffer will be resolved!
if (texture_storage->render_target_is_clear_requested(p_to_render_target.render_target)) {
clear = true;
clear_colors.push_back(texture_storage->render_target_get_clear_request_color(p_to_render_target.render_target));
texture_storage->render_target_disable_clear_request(p_to_render_target.render_target);
}
// TODO: Obtain from framebuffer format eventually when this is implemented.
fb_uniform_set = texture_storage->render_target_get_framebuffer_uniform_set(p_to_render_target.render_target);
}
if (fb_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(fb_uniform_set)) {
fb_uniform_set = _create_base_uniform_set(p_to_render_target.render_target, p_to_backbuffer);
}
RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(framebuffer);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, clear ? RD::INITIAL_ACTION_CLEAR : RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_DISCARD, clear_colors);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, fb_uniform_set, BASE_UNIFORM_SET);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, state.default_transforms_uniform_set, TRANSFORMS_UNIFORM_SET);
Item *current_clip = nullptr;
state.current_batch_uniform_set = RID();
for (uint32_t i = 0; i <= state.current_batch_index; i++) {
Batch *current_batch = &state.canvas_instance_batches[i];
// Skipping when there is no instances.
if (current_batch->instance_count == 0) {
continue;
}
//setup clip
if (current_clip != current_batch->clip) {
current_clip = current_batch->clip;
if (current_clip) {
RD::get_singleton()->draw_list_enable_scissor(draw_list, current_clip->final_clip_rect);
} else {
RD::get_singleton()->draw_list_disable_scissor(draw_list);
}
}
CanvasShaderData *shader_data = shader.default_version_data;
CanvasMaterialData *material_data = current_batch->material_data;
if (material_data) {
if (material_data->shader_data->version.is_valid() && material_data->shader_data->is_valid()) {
shader_data = material_data->shader_data;
// Update uniform set.
RID uniform_set = texture_storage->render_target_is_using_hdr(p_to_render_target.render_target) ? material_data->uniform_set : material_data->uniform_set_srgb;
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { // Material may not have a uniform set.
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set, MATERIAL_UNIFORM_SET);
material_data->set_as_used();
}
}
}
_render_batch(draw_list, shader_data, fb_format, p_lights, current_batch, r_render_info);
}
RD::get_singleton()->draw_list_end();
state.current_batch_index = 0;
state.canvas_instance_batches.clear();
state.last_instance_index += instance_index;
}
void RendererCanvasRenderRD::_record_item_commands(const Item *p_item, RenderTarget p_render_target, const Transform2D &p_base_transform, Item *&r_current_clip, Light *p_lights, uint32_t &r_index, bool &r_batch_broken, bool &r_sdf_used, Batch *&r_current_batch) {
RenderingServer::CanvasItemTextureFilter texture_filter = p_item->texture_filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? default_filter : p_item->texture_filter;
RenderingServer::CanvasItemTextureRepeat texture_repeat = p_item->texture_repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? default_repeat : p_item->texture_repeat;
Transform2D base_transform = p_base_transform;
float world[6];
Transform2D draw_transform; // Used by transform command
_update_transform_2d_to_mat2x3(base_transform, world);
Color base_color = p_item->final_modulate;
bool use_linear_colors = bool(p_render_target.base_flags & FLAGS_CONVERT_ATTRIBUTES_TO_LINEAR);
uint32_t base_flags = p_render_target.base_flags;
bool reclip = false;
bool skipping = false;
// TODO: consider making lights a per-batch property and then baking light operations in the shader for better performance.
uint32_t lights[4] = { 0, 0, 0, 0 };
uint16_t light_count = 0;
{
Light *light = p_lights;
while (light) {
if (light->render_index_cache >= 0 && p_item->light_mask & light->item_mask && p_item->z_final >= light->z_min && p_item->z_final <= light->z_max && p_item->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) {
uint32_t light_index = light->render_index_cache;
lights[light_count >> 2] |= light_index << ((light_count & 3) * 8);
light_count++;
if (light_count == state.max_lights_per_item - 1) {
break;
}
}
light = light->next_ptr;
}
base_flags |= light_count << FLAGS_LIGHT_COUNT_SHIFT;
}
bool use_lighting = (light_count > 0 || using_directional_lights);
if (use_lighting != r_current_batch->use_lighting) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->use_lighting = use_lighting;
}
// new_instance_data should be called after the current_batch is set.
auto new_instance_data = [&]() -> InstanceData * {
InstanceData *instance_data = &state.instance_data_array[r_index];
// Zero out most fields.
for (int i = 0; i < 4; i++) {
instance_data->modulation[i] = 0.0;
instance_data->ninepatch_margins[i] = 0.0;
instance_data->src_rect[i] = 0.0;
instance_data->dst_rect[i] = 0.0;
}
instance_data->pad[0] = 0.0;
instance_data->pad[1] = 0.0;
instance_data->lights[0] = lights[0];
instance_data->lights[1] = lights[1];
instance_data->lights[2] = lights[2];
instance_data->lights[3] = lights[3];
for (int i = 0; i < 6; i++) {
instance_data->world[i] = world[i];
}
instance_data->flags = base_flags | r_current_batch->tex_info.flags; // Reset on each command for safety, keep canvas texture binding config.
instance_data->color_texture_pixel_size[0] = r_current_batch->tex_info.texpixel_size.width;
instance_data->color_texture_pixel_size[1] = r_current_batch->tex_info.texpixel_size.height;
instance_data->specular_shininess = r_current_batch->tex_info.specular_shininess;
return instance_data;
};
const Item::Command *c = p_item->commands;
while (c) {
if (skipping && c->type != Item::Command::TYPE_ANIMATION_SLICE) {
c = c->next;
continue;
}
switch (c->type) {
case Item::Command::TYPE_RECT: {
const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c);
// 1: If commands are different, start a new batch.
if (r_current_batch->command_type != Item::Command::TYPE_RECT) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->command_type = Item::Command::TYPE_RECT;
r_current_batch->command = c;
// default variant
r_current_batch->shader_variant = SHADER_VARIANT_QUAD;
r_current_batch->render_primitive = RD::RENDER_PRIMITIVE_TRIANGLES;
}
if (bool(rect->flags & CANVAS_RECT_TILE)) {
texture_repeat = RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED;
}
bool has_msdf = bool(rect->flags & CANVAS_RECT_MSDF);
TextureState tex_state(rect->texture, texture_filter, texture_repeat, has_msdf, use_linear_colors);
if (tex_state != r_current_batch->tex_info.state) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->tex_info.state = tex_state;
_prepare_batch_texture_info(r_current_batch, rect->texture);
}
Color modulated = rect->modulate * base_color;
if (use_linear_colors) {
modulated = modulated.srgb_to_linear();
}
bool has_blend = bool(rect->flags & CANVAS_RECT_LCD);
// Start a new batch if the blend mode has changed,
// or blend mode is enabled and the modulation has changed.
if (has_blend != r_current_batch->has_blend || (has_blend && modulated != r_current_batch->modulate)) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->has_blend = has_blend;
r_current_batch->modulate = modulated;
r_current_batch->shader_variant = SHADER_VARIANT_QUAD;
r_current_batch->render_primitive = RD::RENDER_PRIMITIVE_TRIANGLES;
}
InstanceData *instance_data = new_instance_data();
Rect2 src_rect;
Rect2 dst_rect;
if (rect->texture.is_valid()) {
src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * r_current_batch->tex_info.texpixel_size, rect->source.size * r_current_batch->tex_info.texpixel_size) : Rect2(0, 0, 1, 1);
dst_rect = Rect2(rect->rect.position, rect->rect.size);
if (dst_rect.size.width < 0) {
dst_rect.position.x += dst_rect.size.width;
dst_rect.size.width *= -1;
}
if (dst_rect.size.height < 0) {
dst_rect.position.y += dst_rect.size.height;
dst_rect.size.height *= -1;
}
if (rect->flags & CANVAS_RECT_FLIP_H) {
src_rect.size.x *= -1;
instance_data->flags |= FLAGS_FLIP_H;
}
if (rect->flags & CANVAS_RECT_FLIP_V) {
src_rect.size.y *= -1;
instance_data->flags |= FLAGS_FLIP_V;
}
if (rect->flags & CANVAS_RECT_TRANSPOSE) {
instance_data->flags |= FLAGS_TRANSPOSE_RECT;
}
if (rect->flags & CANVAS_RECT_CLIP_UV) {
instance_data->flags |= FLAGS_CLIP_RECT_UV;
}
} else {
dst_rect = Rect2(rect->rect.position, rect->rect.size);
if (dst_rect.size.width < 0) {
dst_rect.position.x += dst_rect.size.width;
dst_rect.size.width *= -1;
}
if (dst_rect.size.height < 0) {
dst_rect.position.y += dst_rect.size.height;
dst_rect.size.height *= -1;
}
src_rect = Rect2(0, 0, 1, 1);
}
if (has_msdf) {
instance_data->flags |= FLAGS_USE_MSDF;
instance_data->msdf[0] = rect->px_range; // Pixel range.
instance_data->msdf[1] = rect->outline; // Outline size.
instance_data->msdf[2] = 0.f; // Reserved.
instance_data->msdf[3] = 0.f; // Reserved.
} else if (rect->flags & CANVAS_RECT_LCD) {
instance_data->flags |= FLAGS_USE_LCD;
}
instance_data->modulation[0] = modulated.r;
instance_data->modulation[1] = modulated.g;
instance_data->modulation[2] = modulated.b;
instance_data->modulation[3] = modulated.a;
instance_data->src_rect[0] = src_rect.position.x;
instance_data->src_rect[1] = src_rect.position.y;
instance_data->src_rect[2] = src_rect.size.width;
instance_data->src_rect[3] = src_rect.size.height;
instance_data->dst_rect[0] = dst_rect.position.x;
instance_data->dst_rect[1] = dst_rect.position.y;
instance_data->dst_rect[2] = dst_rect.size.width;
instance_data->dst_rect[3] = dst_rect.size.height;
_add_to_batch(r_index, r_batch_broken, r_current_batch);
} break;
case Item::Command::TYPE_NINEPATCH: {
const Item::CommandNinePatch *np = static_cast<const Item::CommandNinePatch *>(c);
if (r_current_batch->command_type != Item::Command::TYPE_NINEPATCH) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->command_type = Item::Command::TYPE_NINEPATCH;
r_current_batch->command = c;
r_current_batch->has_blend = false;
r_current_batch->shader_variant = SHADER_VARIANT_NINEPATCH;
r_current_batch->render_primitive = RD::RENDER_PRIMITIVE_TRIANGLES;
}
TextureState tex_state(np->texture, texture_filter, texture_repeat, false, use_linear_colors);
if (tex_state != r_current_batch->tex_info.state) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->tex_info.state = tex_state;
_prepare_batch_texture_info(r_current_batch, np->texture);
}
InstanceData *instance_data = new_instance_data();
Rect2 src_rect;
Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y);
if (np->texture.is_null()) {
src_rect = Rect2(0, 0, 1, 1);
} else {
if (np->source != Rect2()) {
src_rect = Rect2(np->source.position.x * r_current_batch->tex_info.texpixel_size.width, np->source.position.y * r_current_batch->tex_info.texpixel_size.height, np->source.size.x * r_current_batch->tex_info.texpixel_size.width, np->source.size.y * r_current_batch->tex_info.texpixel_size.height);
instance_data->color_texture_pixel_size[0] = 1.0 / np->source.size.width;
instance_data->color_texture_pixel_size[1] = 1.0 / np->source.size.height;
} else {
src_rect = Rect2(0, 0, 1, 1);
}
}
Color modulated = np->color * base_color;
if (use_linear_colors) {
modulated = modulated.srgb_to_linear();
}
instance_data->modulation[0] = modulated.r;
instance_data->modulation[1] = modulated.g;
instance_data->modulation[2] = modulated.b;
instance_data->modulation[3] = modulated.a;
instance_data->src_rect[0] = src_rect.position.x;
instance_data->src_rect[1] = src_rect.position.y;
instance_data->src_rect[2] = src_rect.size.width;
instance_data->src_rect[3] = src_rect.size.height;
instance_data->dst_rect[0] = dst_rect.position.x;
instance_data->dst_rect[1] = dst_rect.position.y;
instance_data->dst_rect[2] = dst_rect.size.width;
instance_data->dst_rect[3] = dst_rect.size.height;
instance_data->flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT;
instance_data->flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT;
if (np->draw_center) {
instance_data->flags |= FLAGS_NINEPACH_DRAW_CENTER;
}
instance_data->ninepatch_margins[0] = np->margin[SIDE_LEFT];
instance_data->ninepatch_margins[1] = np->margin[SIDE_TOP];
instance_data->ninepatch_margins[2] = np->margin[SIDE_RIGHT];
instance_data->ninepatch_margins[3] = np->margin[SIDE_BOTTOM];
_add_to_batch(r_index, r_batch_broken, r_current_batch);
} break;
case Item::Command::TYPE_POLYGON: {
const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(c);
// Polygon's can't be batched, so always create a new batch
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->command_type = Item::Command::TYPE_POLYGON;
r_current_batch->has_blend = false;
r_current_batch->command = c;
TextureState tex_state(polygon->texture, texture_filter, texture_repeat, false, use_linear_colors);
if (tex_state != r_current_batch->tex_info.state) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->tex_info.state = tex_state;
_prepare_batch_texture_info(r_current_batch, polygon->texture);
}
// pipeline variant
{
ERR_CONTINUE(polygon->primitive < 0 || polygon->primitive >= RS::PRIMITIVE_MAX);
r_current_batch->shader_variant = polygon->primitive == RS::PRIMITIVE_POINTS ? SHADER_VARIANT_ATTRIBUTES_POINTS : SHADER_VARIANT_ATTRIBUTES;
r_current_batch->render_primitive = _primitive_type_to_render_primitive(polygon->primitive);
}
InstanceData *instance_data = new_instance_data();
Color color = base_color;
if (use_linear_colors) {
color = color.srgb_to_linear();
}
instance_data->modulation[0] = color.r;
instance_data->modulation[1] = color.g;
instance_data->modulation[2] = color.b;
instance_data->modulation[3] = color.a;
_add_to_batch(r_index, r_batch_broken, r_current_batch);
} break;
case Item::Command::TYPE_PRIMITIVE: {
const Item::CommandPrimitive *primitive = static_cast<const Item::CommandPrimitive *>(c);
if (primitive->point_count != r_current_batch->primitive_points || r_current_batch->command_type != Item::Command::TYPE_PRIMITIVE) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->command_type = Item::Command::TYPE_PRIMITIVE;
r_current_batch->has_blend = false;
r_current_batch->command = c;
r_current_batch->primitive_points = primitive->point_count;
ERR_CONTINUE(primitive->point_count == 0 || primitive->point_count > 4);
switch (primitive->point_count) {
case 1:
r_current_batch->shader_variant = SHADER_VARIANT_PRIMITIVE_POINTS;
r_current_batch->render_primitive = RD::RENDER_PRIMITIVE_POINTS;
break;
case 2:
r_current_batch->shader_variant = SHADER_VARIANT_PRIMITIVE;
r_current_batch->render_primitive = RD::RENDER_PRIMITIVE_LINES;
break;
case 3:
case 4:
r_current_batch->shader_variant = SHADER_VARIANT_PRIMITIVE;
r_current_batch->render_primitive = RD::RENDER_PRIMITIVE_TRIANGLES;
break;
default:
// Unknown point count.
break;
};
TextureState tex_state(primitive->texture, texture_filter, texture_repeat, false, use_linear_colors);
if (tex_state != r_current_batch->tex_info.state) {
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->tex_info.state = tex_state;
_prepare_batch_texture_info(r_current_batch, primitive->texture);
}
}
InstanceData *instance_data = new_instance_data();
for (uint32_t j = 0; j < MIN(3u, primitive->point_count); j++) {
instance_data->points[j * 2 + 0] = primitive->points[j].x;
instance_data->points[j * 2 + 1] = primitive->points[j].y;
instance_data->uvs[j * 2 + 0] = primitive->uvs[j].x;
instance_data->uvs[j * 2 + 1] = primitive->uvs[j].y;
Color col = primitive->colors[j] * base_color;
if (use_linear_colors) {
col = col.srgb_to_linear();
}
instance_data->colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r);
instance_data->colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b);
}
_add_to_batch(r_index, r_batch_broken, r_current_batch);
if (primitive->point_count == 4) {
instance_data = new_instance_data();
for (uint32_t j = 0; j < 3; j++) {
int offset = j == 0 ? 0 : 1;
// Second triangle in the quad. Uses vertices 0, 2, 3.
instance_data->points[j * 2 + 0] = primitive->points[j + offset].x;
instance_data->points[j * 2 + 1] = primitive->points[j + offset].y;
instance_data->uvs[j * 2 + 0] = primitive->uvs[j + offset].x;
instance_data->uvs[j * 2 + 1] = primitive->uvs[j + offset].y;
Color col = primitive->colors[j] * base_color;
if (use_linear_colors) {
col = col.srgb_to_linear();
}
instance_data->colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r);
instance_data->colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b);
}
_add_to_batch(r_index, r_batch_broken, r_current_batch);
}
} break;
case Item::Command::TYPE_MESH:
case Item::Command::TYPE_MULTIMESH:
case Item::Command::TYPE_PARTICLES: {
// Mesh's can't be batched, so always create a new batch
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->command = c;
r_current_batch->command_type = c->type;
r_current_batch->has_blend = false;
InstanceData *instance_data = nullptr;
Color modulate(1, 1, 1, 1);
if (c->type == Item::Command::TYPE_MESH) {
const Item::CommandMesh *m = static_cast<const Item::CommandMesh *>(c);
TextureState tex_state(m->texture, texture_filter, texture_repeat, false, use_linear_colors);
r_current_batch->tex_info.state = tex_state;
_prepare_batch_texture_info(r_current_batch, m->texture);
instance_data = new_instance_data();
r_current_batch->mesh_instance_count = 1;
_update_transform_2d_to_mat2x3(base_transform * draw_transform * m->transform, instance_data->world);
modulate = m->modulate;
} else if (c->type == Item::Command::TYPE_MULTIMESH) {
RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton();
const Item::CommandMultiMesh *mm = static_cast<const Item::CommandMultiMesh *>(c);
RID multimesh = mm->multimesh;
if (mesh_storage->multimesh_get_transform_format(multimesh) != RS::MULTIMESH_TRANSFORM_2D) {
break;
}
r_current_batch->mesh_instance_count = mesh_storage->multimesh_get_instances_to_draw(multimesh);
if (r_current_batch->mesh_instance_count == 0) {
break;
}
TextureState tex_state(mm->texture, texture_filter, texture_repeat, false, use_linear_colors);
r_current_batch->tex_info.state = tex_state;
_prepare_batch_texture_info(r_current_batch, mm->texture);
instance_data = new_instance_data();
instance_data->flags |= 1; // multimesh, trails disabled
if (mesh_storage->multimesh_uses_colors(mm->multimesh)) {
instance_data->flags |= FLAGS_INSTANCING_HAS_COLORS;
}
if (mesh_storage->multimesh_uses_custom_data(mm->multimesh)) {
instance_data->flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA;
}
} else if (c->type == Item::Command::TYPE_PARTICLES) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton();
const Item::CommandParticles *pt = static_cast<const Item::CommandParticles *>(c);
TextureState tex_state(pt->texture, texture_filter, texture_repeat, false, use_linear_colors);
r_current_batch->tex_info.state = tex_state;
_prepare_batch_texture_info(r_current_batch, pt->texture);
instance_data = new_instance_data();
uint32_t divisor = 1;
r_current_batch->mesh_instance_count = particles_storage->particles_get_amount(pt->particles, divisor);
instance_data->flags |= (divisor & FLAGS_INSTANCING_MASK);
r_current_batch->mesh_instance_count /= divisor;
RID particles = pt->particles;
instance_data->flags |= FLAGS_INSTANCING_HAS_COLORS;
instance_data->flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA;
if (particles_storage->particles_has_collision(particles) && texture_storage->render_target_is_sdf_enabled(p_render_target.render_target)) {
// Pass collision information.
Transform2D xform = p_item->final_transform;
RID sdf_texture = texture_storage->render_target_get_sdf_texture(p_render_target.render_target);
Rect2 to_screen;
{
Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_render_target.render_target);
to_screen.size = Vector2(1.0 / sdf_rect.size.width, 1.0 / sdf_rect.size.height);
to_screen.position = -sdf_rect.position * to_screen.size;
}
particles_storage->particles_set_canvas_sdf_collision(pt->particles, true, xform, to_screen, sdf_texture);
} else {
particles_storage->particles_set_canvas_sdf_collision(pt->particles, false, Transform2D(), Rect2(), RID());
}
r_sdf_used |= particles_storage->particles_has_collision(particles);
}
Color modulated = modulate * base_color;
if (use_linear_colors) {
modulated = modulated.srgb_to_linear();
}
instance_data->modulation[0] = modulated.r;
instance_data->modulation[1] = modulated.g;
instance_data->modulation[2] = modulated.b;
instance_data->modulation[3] = modulated.a;
_add_to_batch(r_index, r_batch_broken, r_current_batch);
} break;
case Item::Command::TYPE_TRANSFORM: {
const Item::CommandTransform *transform = static_cast<const Item::CommandTransform *>(c);
draw_transform = transform->xform;
_update_transform_2d_to_mat2x3(base_transform * transform->xform, world);
} break;
case Item::Command::TYPE_CLIP_IGNORE: {
const Item::CommandClipIgnore *ci = static_cast<const Item::CommandClipIgnore *>(c);
if (r_current_clip) {
if (ci->ignore != reclip) {
r_current_batch = _new_batch(r_batch_broken);
if (ci->ignore) {
r_current_batch->clip = nullptr;
reclip = true;
} else {
r_current_batch->clip = r_current_clip;
reclip = false;
}
}
}
} break;
case Item::Command::TYPE_ANIMATION_SLICE: {
const Item::CommandAnimationSlice *as = static_cast<const Item::CommandAnimationSlice *>(c);
double current_time = RSG::rasterizer->get_total_time();
double local_time = Math::fposmod(current_time - as->offset, as->animation_length);
skipping = !(local_time >= as->slice_begin && local_time < as->slice_end);
RenderingServerDefault::redraw_request(); // animation visible means redraw request
} break;
}
c = c->next;
r_batch_broken = false;
}
if (r_current_clip && reclip) {
// will make it re-enable clipping if needed afterwards
r_current_clip = nullptr;
}
}
void RendererCanvasRenderRD::_render_batch(RD::DrawListID p_draw_list, CanvasShaderData *p_shader_data, RenderingDevice::FramebufferFormatID p_framebuffer_format, Light *p_lights, Batch const *p_batch, RenderingMethod::RenderInfo *r_render_info) {
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache);
ERR_FAIL_NULL(p_batch->command);
{
RD::Uniform u_diffuse(RD::UNIFORM_TYPE_TEXTURE, 0, p_batch->tex_info.diffuse);
RD::Uniform u_normal(RD::UNIFORM_TYPE_TEXTURE, 1, p_batch->tex_info.normal);
RD::Uniform u_specular(RD::UNIFORM_TYPE_TEXTURE, 2, p_batch->tex_info.specular);
RD::Uniform u_sampler(RD::UNIFORM_TYPE_SAMPLER, 3, p_batch->tex_info.sampler);
RD::Uniform u_instance_data(RD::UNIFORM_TYPE_STORAGE_BUFFER, 4, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[p_batch->instance_buffer_index]);
RID uniform_set = uniform_set_cache->get_cache(shader.default_version_rd_shader, BATCH_UNIFORM_SET, u_diffuse, u_normal, u_specular, u_sampler, u_instance_data);
if (state.current_batch_uniform_set != uniform_set) {
state.current_batch_uniform_set = uniform_set;
RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, uniform_set, BATCH_UNIFORM_SET);
}
}
RID pipeline;
PipelineKey pipeline_key;
PushConstant push_constant;
pipeline_key.framebuffer_format_id = p_framebuffer_format;
pipeline_key.variant = p_batch->shader_variant;
pipeline_key.render_primitive = p_batch->render_primitive;
pipeline_key.shader_specialization.use_lighting = p_batch->use_lighting;
pipeline_key.lcd_blend = p_batch->has_blend;
switch (p_batch->command_type) {
case Item::Command::TYPE_RECT:
case Item::Command::TYPE_NINEPATCH: {
pipeline = _get_pipeline_specialization_or_ubershader(p_shader_data, pipeline_key, push_constant);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
if (p_batch->has_blend) {
RD::get_singleton()->draw_list_set_blend_constants(p_draw_list, p_batch->modulate);
}
push_constant.base_instance_index = p_batch->start;
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, shader.quad_index_array);
RD::get_singleton()->draw_list_draw(p_draw_list, true, p_batch->instance_count);
if (r_render_info) {
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += p_batch->instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += 2 * p_batch->instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
} break;
case Item::Command::TYPE_POLYGON: {
const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(p_batch->command);
PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id);
ERR_FAIL_NULL(pb);
pipeline_key.vertex_format_id = pb->vertex_format_id;
pipeline = _get_pipeline_specialization_or_ubershader(p_shader_data, pipeline_key, push_constant);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
push_constant.base_instance_index = p_batch->start;
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_vertex_array(p_draw_list, pb->vertex_array);
if (pb->indices.is_valid()) {
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, pb->indices);
}
RD::get_singleton()->draw_list_draw(p_draw_list, pb->indices.is_valid());
if (r_render_info) {
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME]++;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(polygon->primitive, pb->primitive_count);
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
} break;
case Item::Command::TYPE_PRIMITIVE: {
const Item::CommandPrimitive *primitive = static_cast<const Item::CommandPrimitive *>(p_batch->command);
pipeline = _get_pipeline_specialization_or_ubershader(p_shader_data, pipeline_key, push_constant);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
push_constant.base_instance_index = p_batch->start;
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, primitive_arrays.index_array[MIN(3u, primitive->point_count) - 1]);
uint32_t instance_count = p_batch->instance_count;
RD::get_singleton()->draw_list_draw(p_draw_list, true, instance_count);
if (r_render_info) {
const RenderingServer::PrimitiveType rs_primitive[5] = { RS::PRIMITIVE_POINTS, RS::PRIMITIVE_POINTS, RS::PRIMITIVE_LINES, RS::PRIMITIVE_TRIANGLES, RS::PRIMITIVE_TRIANGLES };
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(rs_primitive[p_batch->primitive_points], p_batch->primitive_points) * instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
} break;
case Item::Command::TYPE_MESH:
case Item::Command::TYPE_MULTIMESH:
case Item::Command::TYPE_PARTICLES: {
RendererRD::MeshStorage *mesh_storage = RendererRD::MeshStorage::get_singleton();
RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton();
RID mesh;
RID mesh_instance;
if (p_batch->command_type == Item::Command::TYPE_MESH) {
const Item::CommandMesh *m = static_cast<const Item::CommandMesh *>(p_batch->command);
mesh = m->mesh;
mesh_instance = m->mesh_instance;
} else if (p_batch->command_type == Item::Command::TYPE_MULTIMESH) {
const Item::CommandMultiMesh *mm = static_cast<const Item::CommandMultiMesh *>(p_batch->command);
RID multimesh = mm->multimesh;
mesh = mesh_storage->multimesh_get_mesh(multimesh);
RID uniform_set = mesh_storage->multimesh_get_2d_uniform_set(multimesh, shader.default_version_rd_shader, TRANSFORMS_UNIFORM_SET);
RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, uniform_set, TRANSFORMS_UNIFORM_SET);
} else if (p_batch->command_type == Item::Command::TYPE_PARTICLES) {
const Item::CommandParticles *pt = static_cast<const Item::CommandParticles *>(p_batch->command);
RID particles = pt->particles;
mesh = particles_storage->particles_get_draw_pass_mesh(particles, 0);
ERR_BREAK(particles_storage->particles_get_mode(particles) != RS::PARTICLES_MODE_2D);
particles_storage->particles_request_process(particles);
if (particles_storage->particles_is_inactive(particles)) {
break;
}
RenderingServerDefault::redraw_request(); // Active particles means redraw request.
int dpc = particles_storage->particles_get_draw_passes(particles);
if (dpc == 0) {
break; // Nothing to draw.
}
RID uniform_set = particles_storage->particles_get_instance_buffer_uniform_set(pt->particles, shader.default_version_rd_shader, TRANSFORMS_UNIFORM_SET);
RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, uniform_set, TRANSFORMS_UNIFORM_SET);
}
if (mesh.is_null()) {
break;
}
uint32_t surf_count = mesh_storage->mesh_get_surface_count(mesh);
for (uint32_t j = 0; j < surf_count; j++) {
void *surface = mesh_storage->mesh_get_surface(mesh, j);
RS::PrimitiveType primitive = mesh_storage->mesh_surface_get_primitive(surface);
ERR_CONTINUE(primitive < 0 || primitive >= RS::PRIMITIVE_MAX);
RID vertex_array;
pipeline_key.variant = primitive == RS::PRIMITIVE_POINTS ? SHADER_VARIANT_ATTRIBUTES_POINTS : SHADER_VARIANT_ATTRIBUTES;
pipeline_key.render_primitive = _primitive_type_to_render_primitive(primitive);
pipeline_key.vertex_format_id = RD::INVALID_FORMAT_ID;
pipeline = _get_pipeline_specialization_or_ubershader(p_shader_data, pipeline_key, push_constant, mesh_instance, surface, j, &vertex_array);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
push_constant.base_instance_index = p_batch->start;
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RID index_array = mesh_storage->mesh_surface_get_index_array(surface, 0);
if (index_array.is_valid()) {
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, index_array);
}
RD::get_singleton()->draw_list_bind_vertex_array(p_draw_list, vertex_array);
RD::get_singleton()->draw_list_draw(p_draw_list, index_array.is_valid(), p_batch->mesh_instance_count);
if (r_render_info) {
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME]++;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(primitive, mesh_storage->mesh_surface_get_vertices_drawn_count(surface)) * p_batch->mesh_instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
}
} break;
case Item::Command::TYPE_TRANSFORM:
case Item::Command::TYPE_CLIP_IGNORE:
case Item::Command::TYPE_ANIMATION_SLICE: {
// Can ignore these as they only impact batch creation.
} break;
}
}
RendererCanvasRenderRD::Batch *RendererCanvasRenderRD::_new_batch(bool &r_batch_broken) {
if (state.canvas_instance_batches.size() == 0) {
state.canvas_instance_batches.push_back(Batch());
return state.canvas_instance_batches.ptr();
}
if (r_batch_broken || state.canvas_instance_batches[state.current_batch_index].instance_count == 0) {
return &state.canvas_instance_batches[state.current_batch_index];
}
r_batch_broken = true;
// Copy the properties of the current batch, we will manually update the things that changed.
Batch new_batch = state.canvas_instance_batches[state.current_batch_index];
new_batch.instance_count = 0;
new_batch.start = state.canvas_instance_batches[state.current_batch_index].start + state.canvas_instance_batches[state.current_batch_index].instance_count;
new_batch.instance_buffer_index = state.current_instance_buffer_index;
state.current_batch_index++;
state.canvas_instance_batches.push_back(new_batch);
return &state.canvas_instance_batches[state.current_batch_index];
}
void RendererCanvasRenderRD::_add_to_batch(uint32_t &r_index, bool &r_batch_broken, Batch *&r_current_batch) {
r_current_batch->instance_count++;
r_index++;
if (r_index + state.last_instance_index >= state.max_instances_per_buffer) {
// Copy over all data needed for rendering right away
// then go back to recording item commands.
RD::get_singleton()->buffer_update(
state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index],
state.last_instance_index * sizeof(InstanceData),
r_index * sizeof(InstanceData),
state.instance_data_array);
_allocate_instance_buffer();
r_index = 0;
state.last_instance_index = 0;
r_batch_broken = false; // Force a new batch to be created
r_current_batch = _new_batch(r_batch_broken);
r_current_batch->start = 0;
}
}
void RendererCanvasRenderRD::_allocate_instance_buffer() {
state.current_instance_buffer_index++;
if (state.current_instance_buffer_index < state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) {
// We already allocated another buffer in a previous frame, so we can just use it.
return;
}
// Allocate a new buffer.
RID buf = RD::get_singleton()->storage_buffer_create(state.max_instance_buffer_size);
state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.push_back(buf);
}
void RendererCanvasRenderRD::_prepare_batch_texture_info(Batch *p_current_batch, RID p_texture) const {
if (p_texture.is_null()) {
p_texture = default_canvas_texture;
}
RendererRD::TextureStorage::CanvasTextureInfo info =
RendererRD::TextureStorage::get_singleton()->canvas_texture_get_info(
p_texture,
p_current_batch->tex_info.state.texture_filter(),
p_current_batch->tex_info.state.texture_repeat(),
p_current_batch->tex_info.state.linear_colors(),
p_current_batch->tex_info.state.texture_is_data());
// something odd happened
if (info.is_null()) {
_prepare_batch_texture_info(p_current_batch, default_canvas_texture);
return;
}
p_current_batch->tex_info.diffuse = info.diffuse;
p_current_batch->tex_info.normal = info.normal;
p_current_batch->tex_info.specular = info.specular;
p_current_batch->tex_info.sampler = info.sampler;
// cache values to be copied to instance data
if (info.specular_color.a < 0.999) {
p_current_batch->tex_info.flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED;
}
if (info.use_normal) {
p_current_batch->tex_info.flags |= FLAGS_DEFAULT_NORMAL_MAP_USED;
}
uint8_t a = uint8_t(CLAMP(info.specular_color.a * 255.0, 0.0, 255.0));
uint8_t b = uint8_t(CLAMP(info.specular_color.b * 255.0, 0.0, 255.0));
uint8_t g = uint8_t(CLAMP(info.specular_color.g * 255.0, 0.0, 255.0));
uint8_t r = uint8_t(CLAMP(info.specular_color.r * 255.0, 0.0, 255.0));
p_current_batch->tex_info.specular_shininess = uint32_t(a) << 24 | uint32_t(b) << 16 | uint32_t(g) << 8 | uint32_t(r);
p_current_batch->tex_info.texpixel_size = Vector2(1.0 / float(info.size.width), 1.0 / float(info.size.height));
}
RendererCanvasRenderRD::~RendererCanvasRenderRD() {
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
//canvas state
material_storage->material_free(default_canvas_group_material);
material_storage->shader_free(default_canvas_group_shader);
material_storage->material_free(default_clip_children_material);
material_storage->shader_free(default_clip_children_shader);
{
if (state.canvas_state_buffer.is_valid()) {
RD::get_singleton()->free(state.canvas_state_buffer);
}
memdelete_arr(state.light_uniforms);
RD::get_singleton()->free(state.lights_uniform_buffer);
}
//shadow rendering
{
shadow_render.shader.version_free(shadow_render.shader_version);
//this will also automatically clear all pipelines
RD::get_singleton()->free(state.shadow_sampler);
}
//buffers
{
RD::get_singleton()->free(shader.quad_index_array);
RD::get_singleton()->free(shader.quad_index_buffer);
//primitives are erase by dependency
}
if (state.shadow_fb.is_valid()) {
RD::get_singleton()->free(state.shadow_depth_texture);
}
RD::get_singleton()->free(state.shadow_texture);
memdelete_arr(state.instance_data_array);
for (uint32_t i = 0; i < state.canvas_instance_data_buffers.size(); i++) {
for (uint32_t j = 0; j < state.canvas_instance_data_buffers[i].instance_buffers.size(); j++) {
RD::get_singleton()->free(state.canvas_instance_data_buffers[i].instance_buffers[j]);
}
}
RendererRD::TextureStorage::get_singleton()->canvas_texture_free(default_canvas_texture);
//pipelines don't need freeing, they are all gone after shaders are gone
memdelete(shader.default_version_data);
}