mirror of
https://github.com/godotengine/godot.git
synced 2025-01-12 20:22:49 +08:00
767e374dce
Since Embree v3.13.0 supports AARCH64, switch back to the official repo instead of using Embree-aarch64. `thirdparty/embree/patches/godot-changes.patch` should now contain an accurate diff of the changes done to the library.
227 lines
9.6 KiB
C++
227 lines
9.6 KiB
C++
// Copyright 2009-2021 Intel Corporation
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
#pragma once
|
|
|
|
#include "patch.h"
|
|
|
|
namespace embree
|
|
{
|
|
namespace isa
|
|
{
|
|
template<typename Vertex, typename Vertex_t = Vertex>
|
|
struct FeatureAdaptiveEval
|
|
{
|
|
public:
|
|
|
|
typedef PatchT<Vertex,Vertex_t> Patch;
|
|
typedef typename Patch::Ref Ref;
|
|
typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
|
|
typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing;
|
|
typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
|
|
typedef BSplinePatchT<Vertex,Vertex_t> BSplinePatch;
|
|
typedef BezierPatchT<Vertex,Vertex_t> BezierPatch;
|
|
typedef GregoryPatchT<Vertex,Vertex_t> GregoryPatch;
|
|
typedef BilinearPatchT<Vertex,Vertex_t> BilinearPatch;
|
|
typedef BezierCurveT<Vertex> BezierCurve;
|
|
|
|
public:
|
|
|
|
FeatureAdaptiveEval (const HalfEdge* edge, const char* vertices, size_t stride, const float u, const float v,
|
|
Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv)
|
|
: P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv)
|
|
{
|
|
switch (edge->patch_type) {
|
|
case HalfEdge::BILINEAR_PATCH: BilinearPatch(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
|
|
case HalfEdge::REGULAR_QUAD_PATCH: RegularPatchT(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
|
|
#if PATCH_USE_GREGORY == 2
|
|
case HalfEdge::IRREGULAR_QUAD_PATCH: GregoryPatch(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
|
|
#endif
|
|
default: {
|
|
GeneralCatmullClarkPatch patch(edge,vertices,stride);
|
|
eval(patch,Vec2f(u,v),0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
FeatureAdaptiveEval (CatmullClarkPatch& patch, const float u, const float v, float dscale, size_t depth,
|
|
Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv)
|
|
: P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv)
|
|
{
|
|
eval(patch,Vec2f(u,v),dscale,depth);
|
|
}
|
|
|
|
void eval_general_quad(const GeneralCatmullClarkPatch& patch, array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE>& patches, const Vec2f& uv, size_t depth)
|
|
{
|
|
float u = uv.x, v = uv.y;
|
|
if (v < 0.5f) {
|
|
if (u < 0.5f) {
|
|
#if PATCH_USE_GREGORY == 2
|
|
BezierCurve borders[2]; patch.getLimitBorder(borders,0);
|
|
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
|
|
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
|
|
eval(patches[0],Vec2f(2.0f*u,2.0f*v),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
|
|
#else
|
|
eval(patches[0],Vec2f(2.0f*u,2.0f*v),2.0f,depth+1);
|
|
#endif
|
|
if (dPdu && dPdv) {
|
|
const Vertex dpdx = *dPdu, dpdy = *dPdv;
|
|
*dPdu = dpdx; *dPdv = dpdy;
|
|
}
|
|
}
|
|
else {
|
|
#if PATCH_USE_GREGORY == 2
|
|
BezierCurve borders[2]; patch.getLimitBorder(borders,1);
|
|
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
|
|
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
|
|
eval(patches[1],Vec2f(2.0f*v,2.0f-2.0f*u),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
|
|
#else
|
|
eval(patches[1],Vec2f(2.0f*v,2.0f-2.0f*u),2.0f,depth+1);
|
|
#endif
|
|
if (dPdu && dPdv) {
|
|
const Vertex dpdx = *dPdu, dpdy = *dPdv;
|
|
*dPdu = -dpdy; *dPdv = dpdx;
|
|
}
|
|
}
|
|
} else {
|
|
if (u > 0.5f) {
|
|
#if PATCH_USE_GREGORY == 2
|
|
BezierCurve borders[2]; patch.getLimitBorder(borders,2);
|
|
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
|
|
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
|
|
eval(patches[2],Vec2f(2.0f-2.0f*u,2.0f-2.0f*v),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
|
|
#else
|
|
eval(patches[2],Vec2f(2.0f-2.0f*u,2.0f-2.0f*v),2.0f,depth+1);
|
|
#endif
|
|
if (dPdu && dPdv) {
|
|
const Vertex dpdx = *dPdu, dpdy = *dPdv;
|
|
*dPdu = -dpdx; *dPdv = -dpdy;
|
|
}
|
|
}
|
|
else {
|
|
#if PATCH_USE_GREGORY == 2
|
|
BezierCurve borders[2]; patch.getLimitBorder(borders,3);
|
|
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
|
|
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
|
|
eval(patches[3],Vec2f(2.0f-2.0f*v,2.0f*u),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
|
|
#else
|
|
eval(patches[3],Vec2f(2.0f-2.0f*v,2.0f*u),2.0f,depth+1);
|
|
#endif
|
|
if (dPdu && dPdv) {
|
|
const Vertex dpdx = *dPdu, dpdy = *dPdv;
|
|
*dPdu = dpdy; *dPdv = -dpdx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
__forceinline bool final(const CatmullClarkPatch& patch, const typename CatmullClarkRing::Type type, size_t depth)
|
|
{
|
|
const int max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
|
|
//#if PATCH_MIN_RESOLUTION
|
|
// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=(size_t)max_eval_depth;
|
|
//#else
|
|
return depth>=(size_t)max_eval_depth;
|
|
//#endif
|
|
}
|
|
|
|
void eval(CatmullClarkPatch& patch, Vec2f uv, float dscale, size_t depth,
|
|
BezierCurve* border0 = nullptr, BezierCurve* border1 = nullptr, BezierCurve* border2 = nullptr, BezierCurve* border3 = nullptr)
|
|
{
|
|
while (true)
|
|
{
|
|
typename CatmullClarkPatch::Type ty = patch.type();
|
|
|
|
if (unlikely(final(patch,ty,depth)))
|
|
{
|
|
if (ty & CatmullClarkRing::TYPE_REGULAR) {
|
|
RegularPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
|
|
PATCH_DEBUG_SUBDIVISION(234423,c,c,-1);
|
|
return;
|
|
} else {
|
|
IrregularFillPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
|
|
PATCH_DEBUG_SUBDIVISION(34534,c,-1,c);
|
|
return;
|
|
}
|
|
}
|
|
else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
|
|
assert(depth > 0);
|
|
RegularPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
|
|
PATCH_DEBUG_SUBDIVISION(43524,c,c,-1);
|
|
return;
|
|
}
|
|
#if PATCH_USE_GREGORY == 2
|
|
else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
|
|
assert(depth > 0);
|
|
GregoryPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
|
|
PATCH_DEBUG_SUBDIVISION(23498,c,-1,c);
|
|
return;
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
array_t<CatmullClarkPatch,4> patches;
|
|
patch.subdivide(patches); // FIXME: only have to generate one of the patches
|
|
|
|
const float u = uv.x, v = uv.y;
|
|
if (v < 0.5f) {
|
|
if (u < 0.5f) { patch = patches[0]; uv = Vec2f(2.0f*u,2.0f*v); dscale *= 2.0f; }
|
|
else { patch = patches[1]; uv = Vec2f(2.0f*u-1.0f,2.0f*v); dscale *= 2.0f; }
|
|
} else {
|
|
if (u > 0.5f) { patch = patches[2]; uv = Vec2f(2.0f*u-1.0f,2.0f*v-1.0f); dscale *= 2.0f; }
|
|
else { patch = patches[3]; uv = Vec2f(2.0f*u,2.0f*v-1.0f); dscale *= 2.0f; }
|
|
}
|
|
depth++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void eval(const GeneralCatmullClarkPatch& patch, const Vec2f& uv, const size_t depth)
|
|
{
|
|
/* convert into standard quad patch if possible */
|
|
if (likely(patch.isQuadPatch()))
|
|
{
|
|
CatmullClarkPatch qpatch; patch.init(qpatch);
|
|
return eval(qpatch,uv,1.0f,depth);
|
|
}
|
|
|
|
/* subdivide patch */
|
|
unsigned N;
|
|
array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE> patches;
|
|
patch.subdivide(patches,N); // FIXME: only have to generate one of the patches
|
|
|
|
/* parametrization for quads */
|
|
if (N == 4)
|
|
eval_general_quad(patch,patches,uv,depth);
|
|
|
|
/* parametrization for arbitrary polygons */
|
|
else
|
|
{
|
|
const unsigned l = (unsigned) floor(0.5f*uv.x); const float u = 2.0f*frac(0.5f*uv.x)-0.5f;
|
|
const unsigned h = (unsigned) floor(0.5f*uv.y); const float v = 2.0f*frac(0.5f*uv.y)-0.5f;
|
|
const unsigned i = 4*h+l; assert(i<N);
|
|
if (i >= N) return;
|
|
|
|
#if PATCH_USE_GREGORY == 2
|
|
BezierCurve borders[2]; patch.getLimitBorder(borders,i);
|
|
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
|
|
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
|
|
eval(patches[i],Vec2f(u,v),1.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
|
|
#else
|
|
eval(patches[i],Vec2f(u,v),1.0f,depth+1);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
private:
|
|
Vertex* const P;
|
|
Vertex* const dPdu;
|
|
Vertex* const dPdv;
|
|
Vertex* const ddPdudu;
|
|
Vertex* const ddPdvdv;
|
|
Vertex* const ddPdudv;
|
|
};
|
|
}
|
|
}
|