godot/modules/gltf/extensions/physics/gltf_document_extension_physics.cpp

731 lines
35 KiB
C++

/**************************************************************************/
/* gltf_document_extension_physics.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "gltf_document_extension_physics.h"
#include "scene/3d/physics/area_3d.h"
#include "scene/3d/physics/rigid_body_3d.h"
#include "scene/3d/physics/static_body_3d.h"
using GLTFShapeIndex = int64_t;
// Import process.
Error GLTFDocumentExtensionPhysics::import_preflight(Ref<GLTFState> p_state, Vector<String> p_extensions) {
if (!p_extensions.has("OMI_collider") && !p_extensions.has("OMI_physics_body") && !p_extensions.has("OMI_physics_shape")) {
return ERR_SKIP;
}
Dictionary state_json = p_state->get_json();
if (state_json.has("extensions")) {
Dictionary state_extensions = state_json["extensions"];
if (state_extensions.has("OMI_physics_shape")) {
Dictionary omi_physics_shape_ext = state_extensions["OMI_physics_shape"];
if (omi_physics_shape_ext.has("shapes")) {
Array state_shape_dicts = omi_physics_shape_ext["shapes"];
if (state_shape_dicts.size() > 0) {
Array state_shapes;
for (int i = 0; i < state_shape_dicts.size(); i++) {
state_shapes.push_back(GLTFPhysicsShape::from_dictionary(state_shape_dicts[i]));
}
p_state->set_additional_data(StringName("GLTFPhysicsShapes"), state_shapes);
}
}
#ifndef DISABLE_DEPRECATED
} else if (state_extensions.has("OMI_collider")) {
Dictionary omi_collider_ext = state_extensions["OMI_collider"];
if (omi_collider_ext.has("colliders")) {
Array state_collider_dicts = omi_collider_ext["colliders"];
if (state_collider_dicts.size() > 0) {
Array state_colliders;
for (int i = 0; i < state_collider_dicts.size(); i++) {
state_colliders.push_back(GLTFPhysicsShape::from_dictionary(state_collider_dicts[i]));
}
p_state->set_additional_data(StringName("GLTFPhysicsShapes"), state_colliders);
}
}
#endif // DISABLE_DEPRECATED
}
}
return OK;
}
Vector<String> GLTFDocumentExtensionPhysics::get_supported_extensions() {
Vector<String> ret;
ret.push_back("OMI_collider");
ret.push_back("OMI_physics_body");
ret.push_back("OMI_physics_shape");
return ret;
}
Error GLTFDocumentExtensionPhysics::parse_node_extensions(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Dictionary &p_extensions) {
#ifndef DISABLE_DEPRECATED
if (p_extensions.has("OMI_collider")) {
Dictionary node_collider_ext = p_extensions["OMI_collider"];
if (node_collider_ext.has("collider")) {
// "collider" is the index of the collider in the state colliders array.
int node_collider_index = node_collider_ext["collider"];
Array state_colliders = p_state->get_additional_data(StringName("GLTFPhysicsShapes"));
ERR_FAIL_INDEX_V_MSG(node_collider_index, state_colliders.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the collider index " + itos(node_collider_index) + " is not in the state colliders (size: " + itos(state_colliders.size()) + ").");
p_gltf_node->set_additional_data(StringName("GLTFPhysicsShape"), state_colliders[node_collider_index]);
} else {
p_gltf_node->set_additional_data(StringName("GLTFPhysicsShape"), GLTFPhysicsShape::from_dictionary(node_collider_ext));
}
}
#endif // DISABLE_DEPRECATED
if (p_extensions.has("OMI_physics_body")) {
Dictionary physics_body_ext = p_extensions["OMI_physics_body"];
if (physics_body_ext.has("collider")) {
Dictionary node_collider = physics_body_ext["collider"];
// "shape" is the index of the shape in the state shapes array.
int node_shape_index = node_collider.get("shape", -1);
if (node_shape_index != -1) {
Array state_shapes = p_state->get_additional_data(StringName("GLTFPhysicsShapes"));
ERR_FAIL_INDEX_V_MSG(node_shape_index, state_shapes.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the shape index " + itos(node_shape_index) + " is not in the state shapes (size: " + itos(state_shapes.size()) + ").");
p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShape"), state_shapes[node_shape_index]);
p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShapeIndex"), node_shape_index);
} else {
// If this node is a collider but does not have a collider
// shape, then it only serves to combine together shapes.
p_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundCollider"), true);
}
}
if (physics_body_ext.has("trigger")) {
Dictionary node_trigger = physics_body_ext["trigger"];
// "shape" is the index of the shape in the state shapes array.
int node_shape_index = node_trigger.get("shape", -1);
if (node_shape_index != -1) {
Array state_shapes = p_state->get_additional_data(StringName("GLTFPhysicsShapes"));
ERR_FAIL_INDEX_V_MSG(node_shape_index, state_shapes.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the shape index " + itos(node_shape_index) + " is not in the state shapes (size: " + itos(state_shapes.size()) + ").");
p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShape"), state_shapes[node_shape_index]);
p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"), node_shape_index);
} else {
// If this node is a trigger but does not have a trigger shape,
// then it's a trigger body, what Godot calls an Area3D node.
Ref<GLTFPhysicsBody> trigger_body;
trigger_body.instantiate();
trigger_body->set_body_type("trigger");
p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), trigger_body);
}
// If this node defines explicit member shape nodes, save this information.
if (node_trigger.has("nodes")) {
Array compound_trigger_nodes = node_trigger["nodes"];
p_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"), compound_trigger_nodes);
}
}
if (physics_body_ext.has("motion") || physics_body_ext.has("type")) {
p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), GLTFPhysicsBody::from_dictionary(physics_body_ext));
}
}
return OK;
}
bool _will_gltf_shape_become_subnode(Ref<GLTFState> p_state, const Ref<GLTFNode> p_gltf_node, GLTFNodeIndex p_gltf_node_index) {
if (p_gltf_node->has_additional_data(StringName("GLTFPhysicsBody"))) {
return true;
}
const TypedArray<GLTFNode> state_gltf_nodes = p_state->get_nodes();
const GLTFNodeIndex parent_index = p_gltf_node->get_parent();
if (parent_index == -1 || parent_index >= state_gltf_nodes.size()) {
return true;
}
const Ref<GLTFNode> parent_gltf_node = state_gltf_nodes[parent_index];
const Variant parent_body_maybe = parent_gltf_node->get_additional_data(StringName("GLTFPhysicsBody"));
if (parent_body_maybe.get_type() != Variant::NIL) {
Ref<GLTFPhysicsBody> parent_body = parent_body_maybe;
// If the parent matches the triggerness, then this node will be generated as a shape (CollisionShape3D).
// Otherwise, if there is a mismatch, a body will be generated for this node, and a subnode will also be generated for the shape.
if (parent_body->get_body_type() == "trigger") {
return p_gltf_node->has_additional_data(StringName("GLTFPhysicsColliderShape"));
} else {
return p_gltf_node->has_additional_data(StringName("GLTFPhysicsTriggerShape"));
}
}
if (parent_gltf_node->has_additional_data(StringName("GLTFPhysicsColliderShape"))) {
return false;
}
if (parent_gltf_node->has_additional_data(StringName("GLTFPhysicsTriggerShape"))) {
return false;
}
Variant compound_trigger_maybe = parent_gltf_node->has_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"));
if (compound_trigger_maybe.get_type() != Variant::NIL) {
Array compound_trigger_nodes = compound_trigger_maybe;
// Remember, JSON only has numbers, not integers, so must cast to double.
return !compound_trigger_nodes.has((double)p_gltf_node_index);
}
return true;
}
NodePath _get_scene_node_path_for_shape_index(Ref<GLTFState> p_state, const GLTFNodeIndex p_shape_index) {
TypedArray<GLTFNode> state_gltf_nodes = p_state->get_nodes();
for (GLTFNodeIndex node_index = 0; node_index < state_gltf_nodes.size(); node_index++) {
const Ref<GLTFNode> gltf_node = state_gltf_nodes[node_index];
ERR_CONTINUE(gltf_node.is_null());
// Check if this node has a shape index and if it matches the one we are looking for.
Variant shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex"));
if (shape_index_maybe.get_type() != Variant::INT) {
shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"));
if (shape_index_maybe.get_type() != Variant::INT) {
continue;
}
}
const GLTFShapeIndex shape_index = shape_index_maybe;
if (shape_index != p_shape_index) {
continue;
}
NodePath node_path = gltf_node->get_scene_node_path(p_state);
// At this point, we have found a node with the shape index we were looking for.
if (_will_gltf_shape_become_subnode(p_state, gltf_node, node_index)) {
Vector<StringName> sname_path = node_path.get_names();
sname_path.append(gltf_node->get_name() + "Shape");
node_path = NodePath(sname_path, false);
}
return node_path;
}
return NodePath();
}
Ref<GLTFObjectModelProperty> GLTFDocumentExtensionPhysics::import_object_model_property(Ref<GLTFState> p_state, const PackedStringArray &p_split_json_pointer, const TypedArray<NodePath> &p_partial_paths) {
Ref<GLTFObjectModelProperty> ret;
if (p_split_json_pointer.size() != 6) {
// The only properties this class cares about are exactly 6 levels deep.
return ret;
}
ret.instantiate();
const String &prop_name = p_split_json_pointer[5];
if (p_split_json_pointer[0] == "extensions" && p_split_json_pointer[2] == "shapes") {
if (p_split_json_pointer[1] == "OMI_physics_shape" || p_split_json_pointer[1] == "KHR_collision_shapes") {
const GLTFNodeIndex shape_index = p_split_json_pointer[3].to_int();
NodePath node_path = _get_scene_node_path_for_shape_index(p_state, shape_index);
if (node_path.is_empty()) {
return ret;
}
String godot_prop_name = prop_name;
if (prop_name == "size") {
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "height" || prop_name == "radius") {
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (prop_name == "radiusBottom" || prop_name == "radiusTop") {
godot_prop_name = "radius";
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else {
// Not something we handle, return without appending a NodePath.
return ret;
}
// Example: `A/B/C/CollisionShape3D:shape:radius`.
Vector<StringName> subnames;
subnames.append("shape");
subnames.append(godot_prop_name);
node_path = NodePath(node_path.get_names(), subnames, false);
ret->append_node_path(node_path);
}
} else if (p_split_json_pointer[0] == "nodes" && p_split_json_pointer[2] == "extensions" && p_split_json_pointer[4] == "motion") {
if (p_split_json_pointer[3] == "OMI_physics_body" || p_split_json_pointer[3] == "KHR_physics_rigid_bodies") {
const GLTFNodeIndex node_index = p_split_json_pointer[1].to_int();
const TypedArray<GLTFNode> all_gltf_nodes = p_state->get_nodes();
ERR_FAIL_INDEX_V_MSG(node_index, all_gltf_nodes.size(), ret, "GLTF Physics: The node index " + itos(node_index) + " is not in the state nodes (size: " + itos(all_gltf_nodes.size()) + ").");
const Ref<GLTFNode> gltf_node = all_gltf_nodes[node_index];
NodePath node_path;
if (p_partial_paths.is_empty()) {
node_path = gltf_node->get_scene_node_path(p_state);
} else {
// The path is already computed for us, just grab it.
node_path = p_partial_paths[0];
}
if (prop_name == "mass") {
ret->append_path_to_property(node_path, "mass");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (prop_name == "linearVelocity") {
ret->append_path_to_property(node_path, "linear_velocity");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "angularVelocity") {
ret->append_path_to_property(node_path, "angular_velocity");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "centerOfMass") {
ret->append_path_to_property(node_path, "center_of_mass");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "inertiaDiagonal") {
ret->append_path_to_property(node_path, "inertia");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "inertiaOrientation") {
WARN_PRINT("GLTF Physics: The 'inertiaOrientation' property is not supported by Godot.");
} else {
// Not something we handle, return without appending a NodePath.
return ret;
}
}
}
return ret;
}
void _setup_shape_mesh_resource_from_index_if_needed(Ref<GLTFState> p_state, Ref<GLTFPhysicsShape> p_gltf_shape) {
GLTFMeshIndex shape_mesh_index = p_gltf_shape->get_mesh_index();
if (shape_mesh_index == -1) {
return; // No mesh for this shape.
}
Ref<ImporterMesh> importer_mesh = p_gltf_shape->get_importer_mesh();
if (importer_mesh.is_valid()) {
return; // The mesh resource is already set up.
}
TypedArray<GLTFMesh> state_meshes = p_state->get_meshes();
ERR_FAIL_INDEX_MSG(shape_mesh_index, state_meshes.size(), "glTF Physics: When importing '" + p_state->get_scene_name() + "', the shape mesh index " + itos(shape_mesh_index) + " is not in the state meshes (size: " + itos(state_meshes.size()) + ").");
Ref<GLTFMesh> gltf_mesh = state_meshes[shape_mesh_index];
ERR_FAIL_COND(gltf_mesh.is_null());
importer_mesh = gltf_mesh->get_mesh();
ERR_FAIL_COND(importer_mesh.is_null());
p_gltf_shape->set_importer_mesh(importer_mesh);
}
#ifndef DISABLE_DEPRECATED
CollisionObject3D *_generate_shape_with_body(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Ref<GLTFPhysicsShape> p_physics_shape, Ref<GLTFPhysicsBody> p_physics_body) {
print_verbose("glTF: Creating shape with body for: " + p_gltf_node->get_name());
bool is_trigger = p_physics_shape->get_is_trigger();
// This method is used for the case where we must generate a parent body.
// This is can happen for multiple reasons. One possibility is that this
// glTF file is using OMI_collider but not OMI_physics_body, or at least
// this particular node is not using it. Another possibility is that the
// physics body information is set up on the same glTF node, not a parent.
CollisionObject3D *body;
if (p_physics_body.is_valid()) {
// This code is run when the physics body is on the same glTF node.
body = p_physics_body->to_node();
if (is_trigger && (p_physics_body->get_body_type() != "trigger")) {
// Edge case: If the body's trigger and the collider's trigger
// are in disagreement, we need to create another new body.
CollisionObject3D *child = _generate_shape_with_body(p_state, p_gltf_node, p_physics_shape, nullptr);
child->set_name(p_gltf_node->get_name() + (is_trigger ? String("Trigger") : String("Solid")));
body->add_child(child);
return body;
}
} else if (is_trigger) {
body = memnew(Area3D);
} else {
body = memnew(StaticBody3D);
}
CollisionShape3D *shape = p_physics_shape->to_node();
shape->set_name(p_gltf_node->get_name() + "Shape");
body->add_child(shape);
return body;
}
#endif // DISABLE_DEPRECATED
CollisionObject3D *_get_ancestor_collision_object(Node *p_scene_parent) {
// Note: Despite the name of the method, at the moment this only checks
// the direct parent. Only check more later if Godot adds support for it.
if (p_scene_parent) {
CollisionObject3D *co = Object::cast_to<CollisionObject3D>(p_scene_parent);
if (likely(co)) {
return co;
}
}
return nullptr;
}
Node3D *_generate_shape_node_and_body_if_needed(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Ref<GLTFPhysicsShape> p_physics_shape, CollisionObject3D *p_col_object, bool p_is_trigger) {
// If we need to generate a body node, do so.
CollisionObject3D *body_node = nullptr;
if (p_is_trigger || p_physics_shape->get_is_trigger()) {
// If the shape wants to be a trigger but it doesn't
// have an Area3D parent, we need to make one.
if (!Object::cast_to<Area3D>(p_col_object)) {
body_node = memnew(Area3D);
}
} else {
if (!Object::cast_to<PhysicsBody3D>(p_col_object)) {
body_node = memnew(StaticBody3D);
}
}
// Generate the shape node.
_setup_shape_mesh_resource_from_index_if_needed(p_state, p_physics_shape);
CollisionShape3D *shape_node = p_physics_shape->to_node(true);
if (body_node) {
shape_node->set_name(p_gltf_node->get_name() + "Shape");
body_node->add_child(shape_node);
return body_node;
}
return shape_node;
}
// Either add the child to the parent, or return the child if there is no parent.
Node3D *_add_physics_node_to_given_node(Node3D *p_current_node, Node3D *p_child, Ref<GLTFNode> p_gltf_node) {
if (!p_current_node) {
return p_child;
}
String suffix;
if (Object::cast_to<CollisionShape3D>(p_child)) {
suffix = "Shape";
} else if (Object::cast_to<Area3D>(p_child)) {
suffix = "Trigger";
} else {
suffix = "Collider";
}
p_child->set_name(p_gltf_node->get_name() + suffix);
p_current_node->add_child(p_child);
return p_current_node;
}
Array _get_ancestor_compound_trigger_nodes(Ref<GLTFState> p_state, TypedArray<GLTFNode> p_state_nodes, CollisionObject3D *p_ancestor_col_obj) {
GLTFNodeIndex ancestor_index = p_state->get_node_index(p_ancestor_col_obj);
ERR_FAIL_INDEX_V(ancestor_index, p_state_nodes.size(), Array());
Ref<GLTFNode> ancestor_gltf_node = p_state_nodes[ancestor_index];
Variant compound_trigger_nodes = ancestor_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"));
if (compound_trigger_nodes.is_array()) {
return compound_trigger_nodes;
}
Array ret;
ancestor_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"), ret);
return ret;
}
Node3D *GLTFDocumentExtensionPhysics::generate_scene_node(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Node *p_scene_parent) {
Ref<GLTFPhysicsBody> gltf_physics_body = p_gltf_node->get_additional_data(StringName("GLTFPhysicsBody"));
#ifndef DISABLE_DEPRECATED
// This deprecated code handles OMI_collider (which we internally name "GLTFPhysicsShape").
Ref<GLTFPhysicsShape> gltf_physics_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsShape"));
if (gltf_physics_shape.is_valid()) {
_setup_shape_mesh_resource_from_index_if_needed(p_state, gltf_physics_shape);
// If this glTF node specifies both a shape and a body, generate both.
if (gltf_physics_body.is_valid()) {
return _generate_shape_with_body(p_state, p_gltf_node, gltf_physics_shape, gltf_physics_body);
}
CollisionObject3D *ancestor_col_obj = _get_ancestor_collision_object(p_scene_parent);
if (gltf_physics_shape->get_is_trigger()) {
// If the shape wants to be a trigger and it already has a
// trigger parent, we only need to make the shape node.
if (Object::cast_to<Area3D>(ancestor_col_obj)) {
return gltf_physics_shape->to_node(true);
}
} else if (ancestor_col_obj != nullptr) {
// If the shape has a valid parent, only make the shape node.
return gltf_physics_shape->to_node(true);
}
// Otherwise, we need to create a new body.
return _generate_shape_with_body(p_state, p_gltf_node, gltf_physics_shape, nullptr);
}
#endif // DISABLE_DEPRECATED
Node3D *ret = nullptr;
CollisionObject3D *ancestor_col_obj = nullptr;
Ref<GLTFPhysicsShape> gltf_physics_collider_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape"));
Ref<GLTFPhysicsShape> gltf_physics_trigger_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape"));
if (gltf_physics_body.is_valid()) {
ancestor_col_obj = gltf_physics_body->to_node();
ret = ancestor_col_obj;
} else {
ancestor_col_obj = _get_ancestor_collision_object(p_scene_parent);
if (Object::cast_to<Area3D>(ancestor_col_obj) && gltf_physics_trigger_shape.is_valid()) {
// At this point, we found an ancestor Area3D node. But do we want to use it for this trigger shape?
TypedArray<GLTFNode> state_nodes = p_state->get_nodes();
GLTFNodeIndex self_index = state_nodes.find(p_gltf_node);
Array compound_trigger_nodes = _get_ancestor_compound_trigger_nodes(p_state, state_nodes, ancestor_col_obj);
// Check if the ancestor specifies compound trigger nodes, and if this node is in there.
// Remember that JSON does not have integers, only "number", aka double-precision floats.
if (compound_trigger_nodes.size() > 0 && !compound_trigger_nodes.has(double(self_index))) {
// If the compound trigger we found is not the intended user of
// this shape node, then we need to create a new Area3D node.
ancestor_col_obj = memnew(Area3D);
ret = ancestor_col_obj;
}
} else if (!Object::cast_to<PhysicsBody3D>(ancestor_col_obj)) {
if (p_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundCollider"))) {
// If the glTF file wants this node to group solid shapes together,
// and there is no parent body, we need to create a static body.
ancestor_col_obj = memnew(StaticBody3D);
ret = ancestor_col_obj;
}
}
}
// Add the shapes to the tree. When an ancestor body is present, use it.
// If an explicit body was specified, it has already been generated and
// set above. If there is no ancestor body, we will either generate an
// Area3D or StaticBody3D implicitly, so prefer an Area3D as the base
// node for best compatibility with signal connections to this node.
bool is_ancestor_col_obj_solid = Object::cast_to<PhysicsBody3D>(ancestor_col_obj);
if (is_ancestor_col_obj_solid && gltf_physics_collider_shape.is_valid()) {
Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_collider_shape, ancestor_col_obj, false);
ret = _add_physics_node_to_given_node(ret, child, p_gltf_node);
}
if (gltf_physics_trigger_shape.is_valid()) {
Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_trigger_shape, ancestor_col_obj, true);
ret = _add_physics_node_to_given_node(ret, child, p_gltf_node);
}
if (!is_ancestor_col_obj_solid && gltf_physics_collider_shape.is_valid()) {
Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_collider_shape, ancestor_col_obj, false);
ret = _add_physics_node_to_given_node(ret, child, p_gltf_node);
}
return ret;
}
// Export process.
bool _are_all_faces_equal(const Vector<Face3> &p_a, const Vector<Face3> &p_b) {
if (p_a.size() != p_b.size()) {
return false;
}
for (int i = 0; i < p_a.size(); i++) {
const Vector3 *a_vertices = p_a[i].vertex;
const Vector3 *b_vertices = p_b[i].vertex;
for (int j = 0; j < 3; j++) {
if (!a_vertices[j].is_equal_approx(b_vertices[j])) {
return false;
}
}
}
return true;
}
GLTFMeshIndex _get_or_insert_mesh_in_state(Ref<GLTFState> p_state, Ref<ImporterMesh> p_mesh) {
ERR_FAIL_COND_V(p_mesh.is_null(), -1);
TypedArray<GLTFMesh> state_meshes = p_state->get_meshes();
Vector<Face3> mesh_faces = p_mesh->get_faces();
// De-duplication: If the state already has the mesh we need, use that one.
for (GLTFMeshIndex i = 0; i < state_meshes.size(); i++) {
Ref<GLTFMesh> state_gltf_mesh = state_meshes[i];
ERR_CONTINUE(state_gltf_mesh.is_null());
Ref<ImporterMesh> state_importer_mesh = state_gltf_mesh->get_mesh();
ERR_CONTINUE(state_importer_mesh.is_null());
if (state_importer_mesh == p_mesh) {
return i;
}
if (_are_all_faces_equal(state_importer_mesh->get_faces(), mesh_faces)) {
return i;
}
}
// After the loop, we have checked that the mesh is not equal to any of the
// meshes in the state. So we insert a new mesh into the state mesh array.
Ref<GLTFMesh> gltf_mesh;
gltf_mesh.instantiate();
gltf_mesh->set_mesh(p_mesh);
GLTFMeshIndex mesh_index = state_meshes.size();
state_meshes.push_back(gltf_mesh);
p_state->set_meshes(state_meshes);
return mesh_index;
}
void GLTFDocumentExtensionPhysics::convert_scene_node(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Node *p_scene_node) {
if (cast_to<CollisionShape3D>(p_scene_node)) {
CollisionShape3D *godot_shape = Object::cast_to<CollisionShape3D>(p_scene_node);
Ref<GLTFPhysicsShape> gltf_shape = GLTFPhysicsShape::from_node(godot_shape);
ERR_FAIL_COND_MSG(gltf_shape.is_null(), "glTF Physics: Could not convert CollisionShape3D to GLTFPhysicsShape. Does it have a valid Shape3D?");
{
Ref<ImporterMesh> importer_mesh = gltf_shape->get_importer_mesh();
if (importer_mesh.is_valid()) {
gltf_shape->set_mesh_index(_get_or_insert_mesh_in_state(p_state, importer_mesh));
}
}
CollisionObject3D *ancestor_col_obj = _get_ancestor_collision_object(p_scene_node->get_parent());
if (cast_to<Area3D>(ancestor_col_obj)) {
p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShape"), gltf_shape);
// Write explicit member shape nodes to the ancestor compound trigger node.
TypedArray<GLTFNode> state_nodes = p_state->get_nodes();
GLTFNodeIndex self_index = state_nodes.size(); // The current p_gltf_node will be inserted next.
Array compound_trigger_nodes = _get_ancestor_compound_trigger_nodes(p_state, p_state->get_nodes(), ancestor_col_obj);
compound_trigger_nodes.push_back(double(self_index));
} else {
p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShape"), gltf_shape);
}
} else if (cast_to<CollisionObject3D>(p_scene_node)) {
CollisionObject3D *godot_body = Object::cast_to<CollisionObject3D>(p_scene_node);
p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), GLTFPhysicsBody::from_node(godot_body));
}
}
Array _get_or_create_state_shapes_in_state(Ref<GLTFState> p_state) {
Dictionary state_json = p_state->get_json();
Dictionary state_extensions;
if (state_json.has("extensions")) {
state_extensions = state_json["extensions"];
} else {
state_json["extensions"] = state_extensions;
}
Dictionary omi_physics_shape_ext;
if (state_extensions.has("OMI_physics_shape")) {
omi_physics_shape_ext = state_extensions["OMI_physics_shape"];
} else {
state_extensions["OMI_physics_shape"] = omi_physics_shape_ext;
p_state->add_used_extension("OMI_physics_shape");
}
Array state_shapes;
if (omi_physics_shape_ext.has("shapes")) {
state_shapes = omi_physics_shape_ext["shapes"];
} else {
omi_physics_shape_ext["shapes"] = state_shapes;
}
return state_shapes;
}
GLTFShapeIndex _export_node_shape(Ref<GLTFState> p_state, Ref<GLTFPhysicsShape> p_physics_shape) {
Array state_shapes = _get_or_create_state_shapes_in_state(p_state);
GLTFShapeIndex size = state_shapes.size();
Dictionary shape_property;
Dictionary shape_dict = p_physics_shape->to_dictionary();
for (GLTFShapeIndex i = 0; i < size; i++) {
Dictionary other = state_shapes[i];
if (other == shape_dict) {
// De-duplication: If we already have an identical shape,
// set the shape index to the existing one and return.
return i;
}
}
// If we don't have an identical shape, add it to the array.
state_shapes.push_back(shape_dict);
return size;
}
Error GLTFDocumentExtensionPhysics::export_preserialize(Ref<GLTFState> p_state) {
// Note: Need to do _export_node_shape before exporting animations, so export_node is too late.
TypedArray<GLTFNode> state_gltf_nodes = p_state->get_nodes();
for (Ref<GLTFNode> gltf_node : state_gltf_nodes) {
Ref<GLTFPhysicsShape> collider_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape"));
if (collider_shape.is_valid()) {
GLTFShapeIndex collider_shape_index = _export_node_shape(p_state, collider_shape);
gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShapeIndex"), collider_shape_index);
}
Ref<GLTFPhysicsShape> trigger_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape"));
if (trigger_shape.is_valid()) {
GLTFShapeIndex trigger_shape_index = _export_node_shape(p_state, trigger_shape);
gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"), trigger_shape_index);
}
}
return OK;
}
Ref<GLTFObjectModelProperty> GLTFDocumentExtensionPhysics::export_object_model_property(Ref<GLTFState> p_state, const NodePath &p_node_path, const Node *p_godot_node, GLTFNodeIndex p_gltf_node_index, const Object *p_target_object, int p_target_depth) {
Ref<GLTFObjectModelProperty> ret;
const Vector<StringName> &path_subnames = p_node_path.get_subnames();
if (path_subnames.is_empty()) {
return ret;
}
ret.instantiate();
const StringName &node_prop = path_subnames[0];
if (Object::cast_to<RigidBody3D>(p_target_object)) {
if (path_subnames.size() != 1) {
return ret;
}
// Example: `/nodes/0/extensions/OMI_physics_body/motion/mass`
PackedStringArray split_json_pointer;
split_json_pointer.append("nodes");
split_json_pointer.append(itos(p_gltf_node_index));
split_json_pointer.append("extensions");
split_json_pointer.append("OMI_physics_body");
split_json_pointer.append("motion");
if (node_prop == StringName("mass")) {
split_json_pointer.append("mass");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (node_prop == StringName("linear_velocity")) {
split_json_pointer.append("linearVelocity");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (node_prop == StringName("angular_velocity")) {
split_json_pointer.append("angularVelocity");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (node_prop == StringName("center_of_mass")) {
split_json_pointer.append("centerOfMass");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (node_prop == StringName("inertia")) {
split_json_pointer.append("inertiaDiagonal");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else {
// Not something we handle, return without setting the JSON pointer.
return ret;
}
ret->set_json_pointers({ split_json_pointer });
} else if (Object::cast_to<CollisionShape3D>(p_godot_node)) {
if (path_subnames.size() != 2) {
return ret;
}
// Example: `/extensions/OMI_physics_shape/shapes/0/box/size`
PackedStringArray split_json_pointer;
split_json_pointer.append("extensions");
split_json_pointer.append("OMI_physics_shape");
split_json_pointer.append("shapes");
TypedArray<GLTFNode> state_gltf_nodes = p_state->get_nodes();
ERR_FAIL_INDEX_V(p_gltf_node_index, state_gltf_nodes.size(), ret);
Ref<GLTFNode> gltf_node = state_gltf_nodes[p_gltf_node_index];
Variant shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex"));
String shape_type;
if (shape_index_maybe.get_type() == Variant::INT) {
Ref<GLTFPhysicsShape> collider_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape"));
shape_type = collider_shape->get_shape_type();
} else {
shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"));
if (shape_index_maybe.get_type() == Variant::INT) {
Ref<GLTFPhysicsShape> trigger_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape"));
shape_type = trigger_shape->get_shape_type();
}
}
ERR_FAIL_COND_V(shape_index_maybe.get_type() != Variant::INT, ret);
GLTFShapeIndex shape_index = shape_index_maybe;
split_json_pointer.append(itos(shape_index));
split_json_pointer.append(shape_type);
const StringName &shape_prop = path_subnames[1];
if (shape_prop == StringName("size")) {
split_json_pointer.append("size");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (shape_prop == StringName("radius")) {
split_json_pointer.append("radius");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (shape_prop == StringName("height")) {
split_json_pointer.append("height");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else {
// Not something we handle, return without setting the JSON pointer.
return ret;
}
ret->set_json_pointers({ split_json_pointer });
}
return ret;
}
Error GLTFDocumentExtensionPhysics::export_node(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Dictionary &r_node_json, Node *p_node) {
Dictionary physics_body_ext;
Ref<GLTFPhysicsBody> physics_body = p_gltf_node->get_additional_data(StringName("GLTFPhysicsBody"));
if (physics_body.is_valid()) {
physics_body_ext = physics_body->to_dictionary();
Variant compound_trigger_nodes = p_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"));
if (compound_trigger_nodes.is_array()) {
Dictionary trigger_property = physics_body_ext.get_or_add("trigger", {});
trigger_property["nodes"] = compound_trigger_nodes;
}
}
Variant collider_shape_index = p_gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex"));
if (collider_shape_index.get_type() == Variant::INT) {
Dictionary collider_dict;
collider_dict["shape"] = collider_shape_index;
physics_body_ext["collider"] = collider_dict;
}
Variant trigger_shape_index = p_gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"));
if (trigger_shape_index.get_type() == Variant::INT) {
Dictionary trigger_dict = physics_body_ext.get_or_add("trigger", {});
trigger_dict["shape"] = trigger_shape_index;
}
if (!physics_body_ext.is_empty()) {
Dictionary node_extensions = r_node_json["extensions"];
node_extensions["OMI_physics_body"] = physics_body_ext;
p_state->add_used_extension("OMI_physics_body");
}
return OK;
}