mirror of
https://github.com/godotengine/godot.git
synced 2024-11-27 09:16:35 +08:00
2346 lines
59 KiB
C++
2346 lines
59 KiB
C++
/**************************************************************************/
|
|
/* convex_hull.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
/*
|
|
* Based on Godot's patched VHACD-version of Bullet's btConvexHullComputer.
|
|
* See /thirdparty/vhacd/btConvexHullComputer.cpp at 64403ddcab9f1dca2408f0a412a22d899708bbb1
|
|
* In turn, based on /src/LinearMath/btConvexHullComputer.cpp in <https://github.com/bulletphysics/bullet3>
|
|
* at 73b217fb07e7e3ce126caeb28ab3c9ddd0718467
|
|
*
|
|
* Changes:
|
|
* - int32_t is consistently used instead of int in some cases
|
|
* - integrated patch db0d6c92927f5a1358b887f2645c11f3014f0e8a from Bullet (CWE-190 integer overflow in btConvexHullComputer)
|
|
* - adapted to Godot's code style
|
|
* - replaced Bullet's types (e.g. vectors) with Godot's
|
|
* - replaced custom Pool implementation with PagedAllocator
|
|
*/
|
|
|
|
/*
|
|
Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "convex_hull.h"
|
|
|
|
#include "core/error/error_macros.h"
|
|
#include "core/math/aabb.h"
|
|
#include "core/math/math_defs.h"
|
|
#include "core/os/memory.h"
|
|
#include "core/templates/oa_hash_map.h"
|
|
#include "core/templates/paged_allocator.h"
|
|
|
|
#include <string.h>
|
|
|
|
//#define DEBUG_CONVEX_HULL
|
|
//#define SHOW_ITERATIONS
|
|
|
|
// -- GODOT start --
|
|
// Assembly optimizations are not used at the moment.
|
|
//#define USE_X86_64_ASM
|
|
// -- GODOT end --
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
#define CHULL_ASSERT(m_cond) \
|
|
do { \
|
|
if (unlikely(!(m_cond))) { \
|
|
ERR_PRINT("Assertion \"" _STR(m_cond) "\" failed."); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define CHULL_ASSERT(m_cond) \
|
|
do { \
|
|
} while (0)
|
|
#endif
|
|
|
|
#if defined(DEBUG_CONVEX_HULL) || defined(SHOW_ITERATIONS)
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
// Convex hull implementation based on Preparata and Hong
|
|
// Ole Kniemeyer, MAXON Computer GmbH
|
|
class ConvexHullInternal {
|
|
public:
|
|
class Point64 {
|
|
public:
|
|
int64_t x;
|
|
int64_t y;
|
|
int64_t z;
|
|
|
|
Point64(int64_t p_x, int64_t p_y, int64_t p_z) {
|
|
x = p_x;
|
|
y = p_y;
|
|
z = p_z;
|
|
}
|
|
|
|
bool is_zero() {
|
|
return (x == 0) && (y == 0) && (z == 0);
|
|
}
|
|
|
|
int64_t dot(const Point64 &b) const {
|
|
return x * b.x + y * b.y + z * b.z;
|
|
}
|
|
};
|
|
|
|
class Point32 {
|
|
public:
|
|
int32_t x = 0;
|
|
int32_t y = 0;
|
|
int32_t z = 0;
|
|
int32_t index = -1;
|
|
|
|
Point32() {
|
|
}
|
|
|
|
Point32(int32_t p_x, int32_t p_y, int32_t p_z) {
|
|
x = p_x;
|
|
y = p_y;
|
|
z = p_z;
|
|
}
|
|
|
|
bool operator==(const Point32 &b) const {
|
|
return (x == b.x) && (y == b.y) && (z == b.z);
|
|
}
|
|
|
|
bool operator!=(const Point32 &b) const {
|
|
return (x != b.x) || (y != b.y) || (z != b.z);
|
|
}
|
|
|
|
bool is_zero() {
|
|
return (x == 0) && (y == 0) && (z == 0);
|
|
}
|
|
|
|
Point64 cross(const Point32 &b) const {
|
|
return Point64((int64_t)y * b.z - (int64_t)z * b.y, (int64_t)z * b.x - (int64_t)x * b.z, (int64_t)x * b.y - (int64_t)y * b.x);
|
|
}
|
|
|
|
Point64 cross(const Point64 &b) const {
|
|
return Point64(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x);
|
|
}
|
|
|
|
int64_t dot(const Point32 &b) const {
|
|
return (int64_t)x * b.x + (int64_t)y * b.y + (int64_t)z * b.z;
|
|
}
|
|
|
|
int64_t dot(const Point64 &b) const {
|
|
return x * b.x + y * b.y + z * b.z;
|
|
}
|
|
|
|
Point32 operator+(const Point32 &b) const {
|
|
return Point32(x + b.x, y + b.y, z + b.z);
|
|
}
|
|
|
|
Point32 operator-(const Point32 &b) const {
|
|
return Point32(x - b.x, y - b.y, z - b.z);
|
|
}
|
|
};
|
|
|
|
class Int128 {
|
|
public:
|
|
uint64_t low = 0;
|
|
uint64_t high = 0;
|
|
|
|
Int128() {
|
|
}
|
|
|
|
Int128(uint64_t p_low, uint64_t p_high) {
|
|
low = p_low;
|
|
high = p_high;
|
|
}
|
|
|
|
Int128(uint64_t p_low) {
|
|
low = p_low;
|
|
high = 0;
|
|
}
|
|
|
|
Int128(int64_t p_value) {
|
|
low = p_value;
|
|
if (p_value >= 0) {
|
|
high = 0;
|
|
} else {
|
|
high = (uint64_t)-1LL;
|
|
}
|
|
}
|
|
|
|
static Int128 mul(int64_t a, int64_t b);
|
|
|
|
static Int128 mul(uint64_t a, uint64_t b);
|
|
|
|
Int128 operator-() const {
|
|
return Int128((uint64_t) - (int64_t)low, ~high + (low == 0));
|
|
}
|
|
|
|
Int128 operator+(const Int128 &b) const {
|
|
#ifdef USE_X86_64_ASM
|
|
Int128 result;
|
|
__asm__("addq %[bl], %[rl]\n\t"
|
|
"adcq %[bh], %[rh]\n\t"
|
|
: [rl] "=r"(result.low), [rh] "=r"(result.high)
|
|
: "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high)
|
|
: "cc");
|
|
return result;
|
|
#else
|
|
uint64_t lo = low + b.low;
|
|
return Int128(lo, high + b.high + (lo < low));
|
|
#endif
|
|
}
|
|
|
|
Int128 operator-(const Int128 &b) const {
|
|
#ifdef USE_X86_64_ASM
|
|
Int128 result;
|
|
__asm__("subq %[bl], %[rl]\n\t"
|
|
"sbbq %[bh], %[rh]\n\t"
|
|
: [rl] "=r"(result.low), [rh] "=r"(result.high)
|
|
: "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high)
|
|
: "cc");
|
|
return result;
|
|
#else
|
|
return *this + -b;
|
|
#endif
|
|
}
|
|
|
|
Int128 &operator+=(const Int128 &b) {
|
|
#ifdef USE_X86_64_ASM
|
|
__asm__("addq %[bl], %[rl]\n\t"
|
|
"adcq %[bh], %[rh]\n\t"
|
|
: [rl] "=r"(low), [rh] "=r"(high)
|
|
: "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high)
|
|
: "cc");
|
|
#else
|
|
uint64_t lo = low + b.low;
|
|
if (lo < low) {
|
|
++high;
|
|
}
|
|
low = lo;
|
|
high += b.high;
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
Int128 &operator++() {
|
|
if (++low == 0) {
|
|
++high;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Int128 operator*(int64_t b) const;
|
|
|
|
real_t to_scalar() const {
|
|
return ((int64_t)high >= 0) ? real_t(high) * (real_t(0x100000000LL) * real_t(0x100000000LL)) + real_t(low) : -(-*this).to_scalar();
|
|
}
|
|
|
|
int32_t get_sign() const {
|
|
return ((int64_t)high < 0) ? -1 : ((high || low) ? 1 : 0);
|
|
}
|
|
|
|
bool operator<(const Int128 &b) const {
|
|
return (high < b.high) || ((high == b.high) && (low < b.low));
|
|
}
|
|
|
|
int32_t ucmp(const Int128 &b) const {
|
|
if (high < b.high) {
|
|
return -1;
|
|
}
|
|
if (high > b.high) {
|
|
return 1;
|
|
}
|
|
if (low < b.low) {
|
|
return -1;
|
|
}
|
|
if (low > b.low) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
class Rational64 {
|
|
private:
|
|
uint64_t numerator;
|
|
uint64_t denominator;
|
|
int32_t sign;
|
|
|
|
public:
|
|
Rational64(int64_t p_numerator, int64_t p_denominator) {
|
|
if (p_numerator > 0) {
|
|
sign = 1;
|
|
numerator = (uint64_t)p_numerator;
|
|
} else if (p_numerator < 0) {
|
|
sign = -1;
|
|
numerator = (uint64_t)-p_numerator;
|
|
} else {
|
|
sign = 0;
|
|
numerator = 0;
|
|
}
|
|
if (p_denominator > 0) {
|
|
denominator = (uint64_t)p_denominator;
|
|
} else if (p_denominator < 0) {
|
|
sign = -sign;
|
|
denominator = (uint64_t)-p_denominator;
|
|
} else {
|
|
denominator = 0;
|
|
}
|
|
}
|
|
|
|
bool is_negative_infinity() const {
|
|
return (sign < 0) && (denominator == 0);
|
|
}
|
|
|
|
bool is_nan() const {
|
|
return (sign == 0) && (denominator == 0);
|
|
}
|
|
|
|
int32_t compare(const Rational64 &b) const;
|
|
|
|
real_t to_scalar() const {
|
|
return sign * ((denominator == 0) ? FLT_MAX : (real_t)numerator / denominator);
|
|
}
|
|
};
|
|
|
|
class Rational128 {
|
|
private:
|
|
Int128 numerator;
|
|
Int128 denominator;
|
|
int32_t sign;
|
|
bool is_int_64;
|
|
|
|
public:
|
|
Rational128(int64_t p_value) {
|
|
if (p_value > 0) {
|
|
sign = 1;
|
|
this->numerator = p_value;
|
|
} else if (p_value < 0) {
|
|
sign = -1;
|
|
this->numerator = -p_value;
|
|
} else {
|
|
sign = 0;
|
|
this->numerator = (uint64_t)0;
|
|
}
|
|
this->denominator = (uint64_t)1;
|
|
is_int_64 = true;
|
|
}
|
|
|
|
Rational128(const Int128 &p_numerator, const Int128 &p_denominator) {
|
|
sign = p_numerator.get_sign();
|
|
if (sign >= 0) {
|
|
this->numerator = p_numerator;
|
|
} else {
|
|
this->numerator = -p_numerator;
|
|
}
|
|
int32_t dsign = p_denominator.get_sign();
|
|
if (dsign >= 0) {
|
|
this->denominator = p_denominator;
|
|
} else {
|
|
sign = -sign;
|
|
this->denominator = -p_denominator;
|
|
}
|
|
is_int_64 = false;
|
|
}
|
|
|
|
int32_t compare(const Rational128 &b) const;
|
|
|
|
int32_t compare(int64_t b) const;
|
|
|
|
real_t to_scalar() const {
|
|
return sign * ((denominator.get_sign() == 0) ? FLT_MAX : numerator.to_scalar() / denominator.to_scalar());
|
|
}
|
|
};
|
|
|
|
class PointR128 {
|
|
public:
|
|
Int128 x;
|
|
Int128 y;
|
|
Int128 z;
|
|
Int128 denominator;
|
|
|
|
PointR128() {
|
|
}
|
|
|
|
PointR128(Int128 p_x, Int128 p_y, Int128 p_z, Int128 p_denominator) {
|
|
x = p_x;
|
|
y = p_y;
|
|
z = p_z;
|
|
denominator = p_denominator;
|
|
}
|
|
|
|
real_t xvalue() const {
|
|
return x.to_scalar() / denominator.to_scalar();
|
|
}
|
|
|
|
real_t yvalue() const {
|
|
return y.to_scalar() / denominator.to_scalar();
|
|
}
|
|
|
|
real_t zvalue() const {
|
|
return z.to_scalar() / denominator.to_scalar();
|
|
}
|
|
};
|
|
|
|
class Edge;
|
|
class Face;
|
|
|
|
class Vertex {
|
|
public:
|
|
Vertex *next = nullptr;
|
|
Vertex *prev = nullptr;
|
|
Edge *edges = nullptr;
|
|
Face *first_nearby_face = nullptr;
|
|
Face *last_nearby_face = nullptr;
|
|
PointR128 point128;
|
|
Point32 point;
|
|
int32_t copy = -1;
|
|
|
|
Vertex() {
|
|
}
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
void print() {
|
|
printf("V%d (%d, %d, %d)", point.index, point.x, point.y, point.z);
|
|
}
|
|
|
|
void print_graph();
|
|
#endif
|
|
|
|
Point32 operator-(const Vertex &b) const {
|
|
return point - b.point;
|
|
}
|
|
|
|
Rational128 dot(const Point64 &b) const {
|
|
return (point.index >= 0) ? Rational128(point.dot(b)) : Rational128(point128.x * b.x + point128.y * b.y + point128.z * b.z, point128.denominator);
|
|
}
|
|
|
|
real_t xvalue() const {
|
|
return (point.index >= 0) ? real_t(point.x) : point128.xvalue();
|
|
}
|
|
|
|
real_t yvalue() const {
|
|
return (point.index >= 0) ? real_t(point.y) : point128.yvalue();
|
|
}
|
|
|
|
real_t zvalue() const {
|
|
return (point.index >= 0) ? real_t(point.z) : point128.zvalue();
|
|
}
|
|
|
|
void receive_nearby_faces(Vertex *p_src) {
|
|
if (last_nearby_face) {
|
|
last_nearby_face->next_with_same_nearby_vertex = p_src->first_nearby_face;
|
|
} else {
|
|
first_nearby_face = p_src->first_nearby_face;
|
|
}
|
|
if (p_src->last_nearby_face) {
|
|
last_nearby_face = p_src->last_nearby_face;
|
|
}
|
|
for (Face *f = p_src->first_nearby_face; f; f = f->next_with_same_nearby_vertex) {
|
|
CHULL_ASSERT(f->nearby_vertex == p_src);
|
|
f->nearby_vertex = this;
|
|
}
|
|
p_src->first_nearby_face = nullptr;
|
|
p_src->last_nearby_face = nullptr;
|
|
}
|
|
};
|
|
|
|
class Edge {
|
|
public:
|
|
Edge *next = nullptr;
|
|
Edge *prev = nullptr;
|
|
Edge *reverse = nullptr;
|
|
Vertex *target = nullptr;
|
|
Face *face = nullptr;
|
|
int32_t copy = -1;
|
|
|
|
void link(Edge *n) {
|
|
CHULL_ASSERT(reverse->target == n->reverse->target);
|
|
next = n;
|
|
n->prev = this;
|
|
}
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
void print() {
|
|
printf("E%p : %d -> %d, n=%p p=%p (0 %d\t%d\t%d) -> (%d %d %d)", this, reverse->target->point.index, target->point.index, next, prev,
|
|
reverse->target->point.x, reverse->target->point.y, reverse->target->point.z, target->point.x, target->point.y, target->point.z);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
class Face {
|
|
public:
|
|
Face *next = nullptr;
|
|
Vertex *nearby_vertex = nullptr;
|
|
Face *next_with_same_nearby_vertex = nullptr;
|
|
Point32 origin;
|
|
Point32 dir0;
|
|
Point32 dir1;
|
|
|
|
Face() {
|
|
}
|
|
|
|
void init(Vertex *p_a, const Vertex *p_b, const Vertex *p_c) {
|
|
nearby_vertex = p_a;
|
|
origin = p_a->point;
|
|
dir0 = *p_b - *p_a;
|
|
dir1 = *p_c - *p_a;
|
|
if (p_a->last_nearby_face) {
|
|
p_a->last_nearby_face->next_with_same_nearby_vertex = this;
|
|
} else {
|
|
p_a->first_nearby_face = this;
|
|
}
|
|
p_a->last_nearby_face = this;
|
|
}
|
|
|
|
Point64 get_normal() {
|
|
return dir0.cross(dir1);
|
|
}
|
|
};
|
|
|
|
template <typename UWord, typename UHWord>
|
|
class DMul {
|
|
private:
|
|
static uint32_t high(uint64_t p_value) {
|
|
return (uint32_t)(p_value >> 32);
|
|
}
|
|
|
|
static uint32_t low(uint64_t p_value) {
|
|
return (uint32_t)p_value;
|
|
}
|
|
|
|
static uint64_t mul(uint32_t a, uint32_t b) {
|
|
return (uint64_t)a * (uint64_t)b;
|
|
}
|
|
|
|
static void shl_half(uint64_t &p_value) {
|
|
p_value <<= 32;
|
|
}
|
|
|
|
static uint64_t high(Int128 p_value) {
|
|
return p_value.high;
|
|
}
|
|
|
|
static uint64_t low(Int128 p_value) {
|
|
return p_value.low;
|
|
}
|
|
|
|
static Int128 mul(uint64_t a, uint64_t b) {
|
|
return Int128::mul(a, b);
|
|
}
|
|
|
|
static void shl_half(Int128 &p_value) {
|
|
p_value.high = p_value.low;
|
|
p_value.low = 0;
|
|
}
|
|
|
|
public:
|
|
static void mul(UWord p_a, UWord p_b, UWord &r_low, UWord &r_high) {
|
|
UWord p00 = mul(low(p_a), low(p_b));
|
|
UWord p01 = mul(low(p_a), high(p_b));
|
|
UWord p10 = mul(high(p_a), low(p_b));
|
|
UWord p11 = mul(high(p_a), high(p_b));
|
|
UWord p0110 = UWord(low(p01)) + UWord(low(p10));
|
|
p11 += high(p01);
|
|
p11 += high(p10);
|
|
p11 += high(p0110);
|
|
shl_half(p0110);
|
|
p00 += p0110;
|
|
if (p00 < p0110) {
|
|
++p11;
|
|
}
|
|
r_low = p00;
|
|
r_high = p11;
|
|
}
|
|
};
|
|
|
|
private:
|
|
class IntermediateHull {
|
|
public:
|
|
Vertex *min_xy = nullptr;
|
|
Vertex *max_xy = nullptr;
|
|
Vertex *min_yx = nullptr;
|
|
Vertex *max_yx = nullptr;
|
|
|
|
IntermediateHull() {
|
|
}
|
|
};
|
|
|
|
enum Orientation { ORIENTATION_NONE,
|
|
ORIENTATION_CLOCKWISE,
|
|
ORIENTATION_COUNTER_CLOCKWISE };
|
|
|
|
Vector3 scaling;
|
|
Vector3 center;
|
|
PagedAllocator<Vertex> vertex_pool;
|
|
PagedAllocator<Edge> edge_pool;
|
|
PagedAllocator<Face> face_pool;
|
|
LocalVector<Vertex *> original_vertices;
|
|
int32_t merge_stamp = 0;
|
|
Vector3::Axis min_axis = Vector3::Axis::AXIS_X;
|
|
Vector3::Axis med_axis = Vector3::Axis::AXIS_X;
|
|
Vector3::Axis max_axis = Vector3::Axis::AXIS_X;
|
|
int32_t used_edge_pairs = 0;
|
|
int32_t max_used_edge_pairs = 0;
|
|
|
|
static Orientation get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t);
|
|
Edge *find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_ssxrxs, Rational64 &p_min_cot);
|
|
void find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, const Vertex *p_stop0, const Vertex *p_stop1);
|
|
|
|
Edge *new_edge_pair(Vertex *p_from, Vertex *p_to);
|
|
|
|
void remove_edge_pair(Edge *p_edge) {
|
|
Edge *n = p_edge->next;
|
|
Edge *r = p_edge->reverse;
|
|
|
|
CHULL_ASSERT(p_edge->target && r->target);
|
|
|
|
if (n != p_edge) {
|
|
n->prev = p_edge->prev;
|
|
p_edge->prev->next = n;
|
|
r->target->edges = n;
|
|
} else {
|
|
r->target->edges = nullptr;
|
|
}
|
|
|
|
n = r->next;
|
|
|
|
if (n != r) {
|
|
n->prev = r->prev;
|
|
r->prev->next = n;
|
|
p_edge->target->edges = n;
|
|
} else {
|
|
p_edge->target->edges = nullptr;
|
|
}
|
|
|
|
edge_pool.free(p_edge);
|
|
edge_pool.free(r);
|
|
used_edge_pairs--;
|
|
}
|
|
|
|
void compute_internal(int32_t p_start, int32_t p_end, IntermediateHull &r_result);
|
|
|
|
bool merge_projection(IntermediateHull &p_h0, IntermediateHull &p_h1, Vertex *&r_c0, Vertex *&r_c1);
|
|
|
|
void merge(IntermediateHull &p_h0, IntermediateHull &p_h1);
|
|
|
|
Vector3 to_gd_vector(const Point32 &p_v);
|
|
|
|
Vector3 get_gd_normal(Face *p_face);
|
|
|
|
bool shift_face(Face *p_face, real_t p_amount, LocalVector<Vertex *> p_stack);
|
|
|
|
public:
|
|
~ConvexHullInternal() {
|
|
vertex_pool.reset(true);
|
|
edge_pool.reset(true);
|
|
face_pool.reset(true);
|
|
}
|
|
|
|
Vertex *vertex_list = nullptr;
|
|
|
|
void compute(const Vector3 *p_coords, int32_t p_count);
|
|
|
|
Vector3 get_coordinates(const Vertex *p_v);
|
|
|
|
real_t shrink(real_t amount, real_t p_clamp_amount);
|
|
};
|
|
|
|
ConvexHullInternal::Int128 ConvexHullInternal::Int128::operator*(int64_t b) const {
|
|
bool negative = (int64_t)high < 0;
|
|
Int128 a = negative ? -*this : *this;
|
|
if (b < 0) {
|
|
negative = !negative;
|
|
b = -b;
|
|
}
|
|
Int128 result = mul(a.low, (uint64_t)b);
|
|
result.high += a.high * (uint64_t)b;
|
|
return negative ? -result : result;
|
|
}
|
|
|
|
ConvexHullInternal::Int128 ConvexHullInternal::Int128::mul(int64_t a, int64_t b) {
|
|
Int128 result;
|
|
|
|
#ifdef USE_X86_64_ASM
|
|
__asm__("imulq %[b]"
|
|
: "=a"(result.low), "=d"(result.high)
|
|
: "0"(a), [b] "r"(b)
|
|
: "cc");
|
|
return result;
|
|
|
|
#else
|
|
bool negative = a < 0;
|
|
if (negative) {
|
|
a = -a;
|
|
}
|
|
if (b < 0) {
|
|
negative = !negative;
|
|
b = -b;
|
|
}
|
|
DMul<uint64_t, uint32_t>::mul((uint64_t)a, (uint64_t)b, result.low, result.high);
|
|
return negative ? -result : result;
|
|
#endif
|
|
}
|
|
|
|
ConvexHullInternal::Int128 ConvexHullInternal::Int128::mul(uint64_t a, uint64_t b) {
|
|
Int128 result;
|
|
|
|
#ifdef USE_X86_64_ASM
|
|
__asm__("mulq %[b]"
|
|
: "=a"(result.low), "=d"(result.high)
|
|
: "0"(a), [b] "r"(b)
|
|
: "cc");
|
|
|
|
#else
|
|
DMul<uint64_t, uint32_t>::mul(a, b, result.low, result.high);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
int32_t ConvexHullInternal::Rational64::compare(const Rational64 &b) const {
|
|
if (sign != b.sign) {
|
|
return sign - b.sign;
|
|
} else if (sign == 0) {
|
|
return 0;
|
|
}
|
|
|
|
#ifdef USE_X86_64_ASM
|
|
|
|
int32_t result;
|
|
int64_t tmp;
|
|
int64_t dummy;
|
|
__asm__("mulq %[bn]\n\t"
|
|
"movq %%rax, %[tmp]\n\t"
|
|
"movq %%rdx, %%rbx\n\t"
|
|
"movq %[tn], %%rax\n\t"
|
|
"mulq %[bd]\n\t"
|
|
"subq %[tmp], %%rax\n\t"
|
|
"sbbq %%rbx, %%rdx\n\t" // rdx:rax contains 128-bit-difference "numerator*b.denominator - b.numerator*denominator"
|
|
"setnsb %%bh\n\t" // bh=1 if difference is non-negative, bh=0 otherwise
|
|
"orq %%rdx, %%rax\n\t"
|
|
"setnzb %%bl\n\t" // bl=1 if difference if non-zero, bl=0 if it is zero
|
|
"decb %%bh\n\t" // now bx=0x0000 if difference is zero, 0xff01 if it is negative, 0x0001 if it is positive (i.e., same sign as difference)
|
|
"shll $16, %%ebx\n\t" // ebx has same sign as difference
|
|
: "=&b"(result), [tmp] "=&r"(tmp), "=a"(dummy)
|
|
: "a"(denominator), [bn] "g"(b.numerator), [tn] "g"(numerator), [bd] "g"(b.denominator)
|
|
: "%rdx", "cc");
|
|
// if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero)
|
|
// if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero)
|
|
return result ? result ^ sign : 0;
|
|
|
|
#else
|
|
|
|
return sign * Int128::mul(numerator, b.denominator).ucmp(Int128::mul(denominator, b.numerator));
|
|
|
|
#endif
|
|
}
|
|
|
|
int32_t ConvexHullInternal::Rational128::compare(const Rational128 &b) const {
|
|
if (sign != b.sign) {
|
|
return sign - b.sign;
|
|
} else if (sign == 0) {
|
|
return 0;
|
|
}
|
|
if (is_int_64) {
|
|
return -b.compare(sign * (int64_t)numerator.low);
|
|
}
|
|
|
|
Int128 nbd_low, nbd_high, dbn_low, dbn_high;
|
|
DMul<Int128, uint64_t>::mul(numerator, b.denominator, nbd_low, nbd_high);
|
|
DMul<Int128, uint64_t>::mul(denominator, b.numerator, dbn_low, dbn_high);
|
|
|
|
int32_t cmp = nbd_high.ucmp(dbn_high);
|
|
if (cmp) {
|
|
return cmp * sign;
|
|
}
|
|
return nbd_low.ucmp(dbn_low) * sign;
|
|
}
|
|
|
|
int32_t ConvexHullInternal::Rational128::compare(int64_t b) const {
|
|
if (is_int_64) {
|
|
int64_t a = sign * (int64_t)numerator.low;
|
|
return (a > b) ? 1 : ((a < b) ? -1 : 0);
|
|
}
|
|
if (b > 0) {
|
|
if (sign <= 0) {
|
|
return -1;
|
|
}
|
|
} else if (b < 0) {
|
|
if (sign >= 0) {
|
|
return 1;
|
|
}
|
|
b = -b;
|
|
} else {
|
|
return sign;
|
|
}
|
|
|
|
return numerator.ucmp(denominator * b) * sign;
|
|
}
|
|
|
|
ConvexHullInternal::Edge *ConvexHullInternal::new_edge_pair(Vertex *p_from, Vertex *p_to) {
|
|
CHULL_ASSERT(p_from && p_to);
|
|
Edge *e = edge_pool.alloc();
|
|
Edge *r = edge_pool.alloc();
|
|
e->reverse = r;
|
|
r->reverse = e;
|
|
e->copy = merge_stamp;
|
|
r->copy = merge_stamp;
|
|
e->target = p_to;
|
|
r->target = p_from;
|
|
e->face = nullptr;
|
|
r->face = nullptr;
|
|
used_edge_pairs++;
|
|
if (used_edge_pairs > max_used_edge_pairs) {
|
|
max_used_edge_pairs = used_edge_pairs;
|
|
}
|
|
return e;
|
|
}
|
|
|
|
bool ConvexHullInternal::merge_projection(IntermediateHull &r_h0, IntermediateHull &r_h1, Vertex *&r_c0, Vertex *&r_c1) {
|
|
Vertex *v0 = r_h0.max_yx;
|
|
Vertex *v1 = r_h1.min_yx;
|
|
if ((v0->point.x == v1->point.x) && (v0->point.y == v1->point.y)) {
|
|
CHULL_ASSERT(v0->point.z < v1->point.z);
|
|
Vertex *v1p = v1->prev;
|
|
if (v1p == v1) {
|
|
r_c0 = v0;
|
|
if (v1->edges) {
|
|
CHULL_ASSERT(v1->edges->next == v1->edges);
|
|
v1 = v1->edges->target;
|
|
CHULL_ASSERT(v1->edges->next == v1->edges);
|
|
}
|
|
r_c1 = v1;
|
|
return false;
|
|
}
|
|
Vertex *v1n = v1->next;
|
|
v1p->next = v1n;
|
|
v1n->prev = v1p;
|
|
if (v1 == r_h1.min_xy) {
|
|
if ((v1n->point.x < v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y < v1p->point.y))) {
|
|
r_h1.min_xy = v1n;
|
|
} else {
|
|
r_h1.min_xy = v1p;
|
|
}
|
|
}
|
|
if (v1 == r_h1.max_xy) {
|
|
if ((v1n->point.x > v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y > v1p->point.y))) {
|
|
r_h1.max_xy = v1n;
|
|
} else {
|
|
r_h1.max_xy = v1p;
|
|
}
|
|
}
|
|
}
|
|
|
|
v0 = r_h0.max_xy;
|
|
v1 = r_h1.max_xy;
|
|
Vertex *v00 = nullptr;
|
|
Vertex *v10 = nullptr;
|
|
int32_t sign = 1;
|
|
|
|
for (int32_t side = 0; side <= 1; side++) {
|
|
int32_t dx = (v1->point.x - v0->point.x) * sign;
|
|
if (dx > 0) {
|
|
while (true) {
|
|
int32_t dy = v1->point.y - v0->point.y;
|
|
|
|
Vertex *w0 = side ? v0->next : v0->prev;
|
|
if (w0 != v0) {
|
|
int32_t dx0 = (w0->point.x - v0->point.x) * sign;
|
|
int32_t dy0 = w0->point.y - v0->point.y;
|
|
if ((dy0 <= 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx <= dy * dx0)))) {
|
|
v0 = w0;
|
|
dx = (v1->point.x - v0->point.x) * sign;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
Vertex *w1 = side ? v1->next : v1->prev;
|
|
if (w1 != v1) {
|
|
int32_t dx1 = (w1->point.x - v1->point.x) * sign;
|
|
int32_t dy1 = w1->point.y - v1->point.y;
|
|
int32_t dxn = (w1->point.x - v0->point.x) * sign;
|
|
if ((dxn > 0) && (dy1 < 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx < dy * dx1)))) {
|
|
v1 = w1;
|
|
dx = dxn;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
} else if (dx < 0) {
|
|
while (true) {
|
|
int32_t dy = v1->point.y - v0->point.y;
|
|
|
|
Vertex *w1 = side ? v1->prev : v1->next;
|
|
if (w1 != v1) {
|
|
int32_t dx1 = (w1->point.x - v1->point.x) * sign;
|
|
int32_t dy1 = w1->point.y - v1->point.y;
|
|
if ((dy1 >= 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx <= dy * dx1)))) {
|
|
v1 = w1;
|
|
dx = (v1->point.x - v0->point.x) * sign;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
Vertex *w0 = side ? v0->prev : v0->next;
|
|
if (w0 != v0) {
|
|
int32_t dx0 = (w0->point.x - v0->point.x) * sign;
|
|
int32_t dy0 = w0->point.y - v0->point.y;
|
|
int32_t dxn = (v1->point.x - w0->point.x) * sign;
|
|
if ((dxn < 0) && (dy0 > 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx < dy * dx0)))) {
|
|
v0 = w0;
|
|
dx = dxn;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
} else {
|
|
int32_t x = v0->point.x;
|
|
int32_t y0 = v0->point.y;
|
|
Vertex *w0 = v0;
|
|
Vertex *t;
|
|
while (((t = side ? w0->next : w0->prev) != v0) && (t->point.x == x) && (t->point.y <= y0)) {
|
|
w0 = t;
|
|
y0 = t->point.y;
|
|
}
|
|
v0 = w0;
|
|
|
|
int32_t y1 = v1->point.y;
|
|
Vertex *w1 = v1;
|
|
while (((t = side ? w1->prev : w1->next) != v1) && (t->point.x == x) && (t->point.y >= y1)) {
|
|
w1 = t;
|
|
y1 = t->point.y;
|
|
}
|
|
v1 = w1;
|
|
}
|
|
|
|
if (side == 0) {
|
|
v00 = v0;
|
|
v10 = v1;
|
|
|
|
v0 = r_h0.min_xy;
|
|
v1 = r_h1.min_xy;
|
|
sign = -1;
|
|
}
|
|
}
|
|
|
|
v0->prev = v1;
|
|
v1->next = v0;
|
|
|
|
v00->next = v10;
|
|
v10->prev = v00;
|
|
|
|
if (r_h1.min_xy->point.x < r_h0.min_xy->point.x) {
|
|
r_h0.min_xy = r_h1.min_xy;
|
|
}
|
|
if (r_h1.max_xy->point.x >= r_h0.max_xy->point.x) {
|
|
r_h0.max_xy = r_h1.max_xy;
|
|
}
|
|
|
|
r_h0.max_yx = r_h1.max_yx;
|
|
|
|
r_c0 = v00;
|
|
r_c1 = v10;
|
|
|
|
return true;
|
|
}
|
|
|
|
void ConvexHullInternal::compute_internal(int32_t p_start, int32_t p_end, IntermediateHull &r_result) {
|
|
int32_t n = p_end - p_start;
|
|
switch (n) {
|
|
case 0:
|
|
r_result.min_xy = nullptr;
|
|
r_result.max_xy = nullptr;
|
|
r_result.min_yx = nullptr;
|
|
r_result.max_yx = nullptr;
|
|
return;
|
|
case 2: {
|
|
Vertex *v = original_vertices[p_start];
|
|
Vertex *w = original_vertices[p_start + 1];
|
|
if (v->point != w->point) {
|
|
int32_t dx = v->point.x - w->point.x;
|
|
int32_t dy = v->point.y - w->point.y;
|
|
|
|
if ((dx == 0) && (dy == 0)) {
|
|
if (v->point.z > w->point.z) {
|
|
Vertex *t = w;
|
|
w = v;
|
|
v = t;
|
|
}
|
|
CHULL_ASSERT(v->point.z < w->point.z);
|
|
v->next = v;
|
|
v->prev = v;
|
|
r_result.min_xy = v;
|
|
r_result.max_xy = v;
|
|
r_result.min_yx = v;
|
|
r_result.max_yx = v;
|
|
} else {
|
|
v->next = w;
|
|
v->prev = w;
|
|
w->next = v;
|
|
w->prev = v;
|
|
|
|
if ((dx < 0) || ((dx == 0) && (dy < 0))) {
|
|
r_result.min_xy = v;
|
|
r_result.max_xy = w;
|
|
} else {
|
|
r_result.min_xy = w;
|
|
r_result.max_xy = v;
|
|
}
|
|
|
|
if ((dy < 0) || ((dy == 0) && (dx < 0))) {
|
|
r_result.min_yx = v;
|
|
r_result.max_yx = w;
|
|
} else {
|
|
r_result.min_yx = w;
|
|
r_result.max_yx = v;
|
|
}
|
|
}
|
|
|
|
Edge *e = new_edge_pair(v, w);
|
|
e->link(e);
|
|
v->edges = e;
|
|
|
|
e = e->reverse;
|
|
e->link(e);
|
|
w->edges = e;
|
|
|
|
return;
|
|
}
|
|
[[fallthrough]];
|
|
}
|
|
case 1: {
|
|
Vertex *v = original_vertices[p_start];
|
|
v->edges = nullptr;
|
|
v->next = v;
|
|
v->prev = v;
|
|
|
|
r_result.min_xy = v;
|
|
r_result.max_xy = v;
|
|
r_result.min_yx = v;
|
|
r_result.max_yx = v;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
int32_t split0 = p_start + n / 2;
|
|
Point32 p = original_vertices[split0 - 1]->point;
|
|
int32_t split1 = split0;
|
|
while ((split1 < p_end) && (original_vertices[split1]->point == p)) {
|
|
split1++;
|
|
}
|
|
compute_internal(p_start, split0, r_result);
|
|
IntermediateHull hull1;
|
|
compute_internal(split1, p_end, hull1);
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("\n\nMerge\n");
|
|
r_result.print();
|
|
hull1.print();
|
|
#endif
|
|
merge(r_result, hull1);
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("\n Result\n");
|
|
r_result.print();
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
void ConvexHullInternal::IntermediateHull::print() {
|
|
printf(" Hull\n");
|
|
for (Vertex *v = min_xy; v;) {
|
|
printf(" ");
|
|
v->print();
|
|
if (v == max_xy) {
|
|
printf(" max_xy");
|
|
}
|
|
if (v == min_yx) {
|
|
printf(" min_yx");
|
|
}
|
|
if (v == max_yx) {
|
|
printf(" max_yx");
|
|
}
|
|
if (v->next->prev != v) {
|
|
printf(" Inconsistency");
|
|
}
|
|
printf("\n");
|
|
v = v->next;
|
|
if (v == min_xy) {
|
|
break;
|
|
}
|
|
}
|
|
if (min_xy) {
|
|
min_xy->copy = (min_xy->copy == -1) ? -2 : -1;
|
|
min_xy->print_graph();
|
|
}
|
|
}
|
|
|
|
void ConvexHullInternal::Vertex::print_graph() {
|
|
print();
|
|
printf("\nEdges\n");
|
|
Edge *e = edges;
|
|
if (e) {
|
|
do {
|
|
e->print();
|
|
printf("\n");
|
|
e = e->next;
|
|
} while (e != edges);
|
|
do {
|
|
Vertex *v = e->target;
|
|
if (v->copy != copy) {
|
|
v->copy = copy;
|
|
v->print_graph();
|
|
}
|
|
e = e->next;
|
|
} while (e != edges);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ConvexHullInternal::Orientation ConvexHullInternal::get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t) {
|
|
CHULL_ASSERT(p_prev->reverse->target == p_next->reverse->target);
|
|
if (p_prev->next == p_next) {
|
|
if (p_prev->prev == p_next) {
|
|
Point64 n = p_t.cross(p_s);
|
|
Point64 m = (*p_prev->target - *p_next->reverse->target).cross(*p_next->target - *p_next->reverse->target);
|
|
CHULL_ASSERT(!m.is_zero());
|
|
int64_t dot = n.dot(m);
|
|
CHULL_ASSERT(dot != 0);
|
|
return (dot > 0) ? ORIENTATION_COUNTER_CLOCKWISE : ORIENTATION_CLOCKWISE;
|
|
}
|
|
return ORIENTATION_COUNTER_CLOCKWISE;
|
|
} else if (p_prev->prev == p_next) {
|
|
return ORIENTATION_CLOCKWISE;
|
|
} else {
|
|
return ORIENTATION_NONE;
|
|
}
|
|
}
|
|
|
|
ConvexHullInternal::Edge *ConvexHullInternal::find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_sxrxs, Rational64 &p_min_cot) {
|
|
Edge *min_edge = nullptr;
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("find max edge for %d\n", p_start->point.index);
|
|
#endif
|
|
Edge *e = p_start->edges;
|
|
if (e) {
|
|
do {
|
|
if (e->copy > merge_stamp) {
|
|
Point32 t = *e->target - *p_start;
|
|
Rational64 cot(t.dot(p_sxrxs), t.dot(p_rxs));
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf(" Angle is %f (%d) for ", Math::atan(cot.to_scalar()), (int32_t)cot.is_nan());
|
|
e->print();
|
|
#endif
|
|
if (cot.is_nan()) {
|
|
CHULL_ASSERT(p_ccw ? (t.dot(p_s) < 0) : (t.dot(p_s) > 0));
|
|
} else {
|
|
int32_t cmp;
|
|
if (min_edge == nullptr) {
|
|
p_min_cot = cot;
|
|
min_edge = e;
|
|
} else if ((cmp = cot.compare(p_min_cot)) < 0) {
|
|
p_min_cot = cot;
|
|
min_edge = e;
|
|
} else if ((cmp == 0) && (p_ccw == (get_orientation(min_edge, e, p_s, t) == ORIENTATION_COUNTER_CLOCKWISE))) {
|
|
min_edge = e;
|
|
}
|
|
}
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
e = e->next;
|
|
} while (e != p_start->edges);
|
|
}
|
|
return min_edge;
|
|
}
|
|
|
|
void ConvexHullInternal::find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, const Vertex *p_stop0, const Vertex *p_stop1) {
|
|
Edge *start0 = p_e0;
|
|
Edge *start1 = p_e1;
|
|
Point32 et0 = start0 ? start0->target->point : p_c0->point;
|
|
Point32 et1 = start1 ? start1->target->point : p_c1->point;
|
|
Point32 s = p_c1->point - p_c0->point;
|
|
Point64 normal = ((start0 ? start0 : start1)->target->point - p_c0->point).cross(s);
|
|
int64_t dist = p_c0->point.dot(normal);
|
|
CHULL_ASSERT(!start1 || (start1->target->point.dot(normal) == dist));
|
|
Point64 perp = s.cross(normal);
|
|
CHULL_ASSERT(!perp.is_zero());
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf(" Advancing %d %d (%p %p, %d %d)\n", p_c0->point.index, p_c1->point.index, start0, start1, start0 ? start0->target->point.index : -1, start1 ? start1->target->point.index : -1);
|
|
#endif
|
|
|
|
int64_t max_dot0 = et0.dot(perp);
|
|
if (p_e0) {
|
|
while (p_e0->target != p_stop0) {
|
|
Edge *e = p_e0->reverse->prev;
|
|
if (e->target->point.dot(normal) < dist) {
|
|
break;
|
|
}
|
|
CHULL_ASSERT(e->target->point.dot(normal) == dist);
|
|
if (e->copy == merge_stamp) {
|
|
break;
|
|
}
|
|
int64_t dot = e->target->point.dot(perp);
|
|
if (dot <= max_dot0) {
|
|
break;
|
|
}
|
|
max_dot0 = dot;
|
|
p_e0 = e;
|
|
et0 = e->target->point;
|
|
}
|
|
}
|
|
|
|
int64_t max_dot1 = et1.dot(perp);
|
|
if (p_e1) {
|
|
while (p_e1->target != p_stop1) {
|
|
Edge *e = p_e1->reverse->next;
|
|
if (e->target->point.dot(normal) < dist) {
|
|
break;
|
|
}
|
|
CHULL_ASSERT(e->target->point.dot(normal) == dist);
|
|
if (e->copy == merge_stamp) {
|
|
break;
|
|
}
|
|
int64_t dot = e->target->point.dot(perp);
|
|
if (dot <= max_dot1) {
|
|
break;
|
|
}
|
|
max_dot1 = dot;
|
|
p_e1 = e;
|
|
et1 = e->target->point;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf(" Starting at %d %d\n", et0.index, et1.index);
|
|
#endif
|
|
|
|
int64_t dx = max_dot1 - max_dot0;
|
|
if (dx > 0) {
|
|
while (true) {
|
|
int64_t dy = (et1 - et0).dot(s);
|
|
|
|
if (p_e0 && (p_e0->target != p_stop0)) {
|
|
Edge *f0 = p_e0->next->reverse;
|
|
if (f0->copy > merge_stamp) {
|
|
int64_t dx0 = (f0->target->point - et0).dot(perp);
|
|
int64_t dy0 = (f0->target->point - et0).dot(s);
|
|
if ((dx0 == 0) ? (dy0 < 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) >= 0))) {
|
|
et0 = f0->target->point;
|
|
dx = (et1 - et0).dot(perp);
|
|
p_e0 = (p_e0 == start0) ? nullptr : f0;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_e1 && (p_e1->target != p_stop1)) {
|
|
Edge *f1 = p_e1->reverse->next;
|
|
if (f1->copy > merge_stamp) {
|
|
Point32 d1 = f1->target->point - et1;
|
|
if (d1.dot(normal) == 0) {
|
|
int64_t dx1 = d1.dot(perp);
|
|
int64_t dy1 = d1.dot(s);
|
|
int64_t dxn = (f1->target->point - et0).dot(perp);
|
|
if ((dxn > 0) && ((dx1 == 0) ? (dy1 < 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) > 0)))) {
|
|
p_e1 = f1;
|
|
et1 = p_e1->target->point;
|
|
dx = dxn;
|
|
continue;
|
|
}
|
|
} else {
|
|
CHULL_ASSERT((p_e1 == start1) && (d1.dot(normal) < 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
} else if (dx < 0) {
|
|
while (true) {
|
|
int64_t dy = (et1 - et0).dot(s);
|
|
|
|
if (p_e1 && (p_e1->target != p_stop1)) {
|
|
Edge *f1 = p_e1->prev->reverse;
|
|
if (f1->copy > merge_stamp) {
|
|
int64_t dx1 = (f1->target->point - et1).dot(perp);
|
|
int64_t dy1 = (f1->target->point - et1).dot(s);
|
|
if ((dx1 == 0) ? (dy1 > 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) <= 0))) {
|
|
et1 = f1->target->point;
|
|
dx = (et1 - et0).dot(perp);
|
|
p_e1 = (p_e1 == start1) ? nullptr : f1;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_e0 && (p_e0->target != p_stop0)) {
|
|
Edge *f0 = p_e0->reverse->prev;
|
|
if (f0->copy > merge_stamp) {
|
|
Point32 d0 = f0->target->point - et0;
|
|
if (d0.dot(normal) == 0) {
|
|
int64_t dx0 = d0.dot(perp);
|
|
int64_t dy0 = d0.dot(s);
|
|
int64_t dxn = (et1 - f0->target->point).dot(perp);
|
|
if ((dxn < 0) && ((dx0 == 0) ? (dy0 > 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) < 0)))) {
|
|
p_e0 = f0;
|
|
et0 = p_e0->target->point;
|
|
dx = dxn;
|
|
continue;
|
|
}
|
|
} else {
|
|
CHULL_ASSERT((p_e0 == start0) && (d0.dot(normal) < 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf(" Advanced edges to %d %d\n", et0.index, et1.index);
|
|
#endif
|
|
}
|
|
|
|
void ConvexHullInternal::merge(IntermediateHull &p_h0, IntermediateHull &p_h1) {
|
|
if (!p_h1.max_xy) {
|
|
return;
|
|
}
|
|
if (!p_h0.max_xy) {
|
|
p_h0 = p_h1;
|
|
return;
|
|
}
|
|
|
|
merge_stamp--;
|
|
|
|
Vertex *c0 = nullptr;
|
|
Edge *to_prev0 = nullptr;
|
|
Edge *first_new0 = nullptr;
|
|
Edge *pending_head0 = nullptr;
|
|
Edge *pending_tail0 = nullptr;
|
|
Vertex *c1 = nullptr;
|
|
Edge *to_prev1 = nullptr;
|
|
Edge *first_new1 = nullptr;
|
|
Edge *pending_head1 = nullptr;
|
|
Edge *pending_tail1 = nullptr;
|
|
Point32 prev_point;
|
|
|
|
if (merge_projection(p_h0, p_h1, c0, c1)) {
|
|
Point32 s = *c1 - *c0;
|
|
Point64 normal = Point32(0, 0, -1).cross(s);
|
|
Point64 t = s.cross(normal);
|
|
CHULL_ASSERT(!t.is_zero());
|
|
|
|
Edge *e = c0->edges;
|
|
Edge *start0 = nullptr;
|
|
if (e) {
|
|
do {
|
|
int64_t dot = (*e->target - *c0).dot(normal);
|
|
CHULL_ASSERT(dot <= 0);
|
|
if ((dot == 0) && ((*e->target - *c0).dot(t) > 0)) {
|
|
if (!start0 || (get_orientation(start0, e, s, Point32(0, 0, -1)) == ORIENTATION_CLOCKWISE)) {
|
|
start0 = e;
|
|
}
|
|
}
|
|
e = e->next;
|
|
} while (e != c0->edges);
|
|
}
|
|
|
|
e = c1->edges;
|
|
Edge *start1 = nullptr;
|
|
if (e) {
|
|
do {
|
|
int64_t dot = (*e->target - *c1).dot(normal);
|
|
CHULL_ASSERT(dot <= 0);
|
|
if ((dot == 0) && ((*e->target - *c1).dot(t) > 0)) {
|
|
if (!start1 || (get_orientation(start1, e, s, Point32(0, 0, -1)) == ORIENTATION_COUNTER_CLOCKWISE)) {
|
|
start1 = e;
|
|
}
|
|
}
|
|
e = e->next;
|
|
} while (e != c1->edges);
|
|
}
|
|
|
|
if (start0 || start1) {
|
|
find_edge_for_coplanar_faces(c0, c1, start0, start1, nullptr, nullptr);
|
|
if (start0) {
|
|
c0 = start0->target;
|
|
}
|
|
if (start1) {
|
|
c1 = start1->target;
|
|
}
|
|
}
|
|
|
|
prev_point = c1->point;
|
|
prev_point.z++;
|
|
} else {
|
|
prev_point = c1->point;
|
|
prev_point.x++;
|
|
}
|
|
|
|
Vertex *first0 = c0;
|
|
Vertex *first1 = c1;
|
|
bool first_run = true;
|
|
|
|
while (true) {
|
|
Point32 s = *c1 - *c0;
|
|
Point32 r = prev_point - c0->point;
|
|
Point64 rxs = r.cross(s);
|
|
Point64 sxrxs = s.cross(rxs);
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("\n Checking %d %d\n", c0->point.index, c1->point.index);
|
|
#endif
|
|
Rational64 min_cot0(0, 0);
|
|
Edge *min0 = find_max_angle(false, c0, s, rxs, sxrxs, min_cot0);
|
|
Rational64 min_cot1(0, 0);
|
|
Edge *min1 = find_max_angle(true, c1, s, rxs, sxrxs, min_cot1);
|
|
if (!min0 && !min1) {
|
|
Edge *e = new_edge_pair(c0, c1);
|
|
e->link(e);
|
|
c0->edges = e;
|
|
|
|
e = e->reverse;
|
|
e->link(e);
|
|
c1->edges = e;
|
|
return;
|
|
} else {
|
|
int32_t cmp = !min0 ? 1 : (!min1 ? -1 : min_cot0.compare(min_cot1));
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf(" -> Result %d\n", cmp);
|
|
#endif
|
|
if (first_run || ((cmp >= 0) ? !min_cot1.is_negative_infinity() : !min_cot0.is_negative_infinity())) {
|
|
Edge *e = new_edge_pair(c0, c1);
|
|
if (pending_tail0) {
|
|
pending_tail0->prev = e;
|
|
} else {
|
|
pending_head0 = e;
|
|
}
|
|
e->next = pending_tail0;
|
|
pending_tail0 = e;
|
|
|
|
e = e->reverse;
|
|
if (pending_tail1) {
|
|
pending_tail1->next = e;
|
|
} else {
|
|
pending_head1 = e;
|
|
}
|
|
e->prev = pending_tail1;
|
|
pending_tail1 = e;
|
|
}
|
|
|
|
Edge *e0 = min0;
|
|
Edge *e1 = min1;
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf(" Found min edges to %d %d\n", e0 ? e0->target->point.index : -1, e1 ? e1->target->point.index : -1);
|
|
#endif
|
|
|
|
if (cmp == 0) {
|
|
find_edge_for_coplanar_faces(c0, c1, e0, e1, nullptr, nullptr);
|
|
}
|
|
|
|
if ((cmp >= 0) && e1) {
|
|
if (to_prev1) {
|
|
for (Edge *e = to_prev1->next, *n = nullptr; e != min1; e = n) {
|
|
n = e->next;
|
|
remove_edge_pair(e);
|
|
}
|
|
}
|
|
|
|
if (pending_tail1) {
|
|
if (to_prev1) {
|
|
to_prev1->link(pending_head1);
|
|
} else {
|
|
min1->prev->link(pending_head1);
|
|
first_new1 = pending_head1;
|
|
}
|
|
pending_tail1->link(min1);
|
|
pending_head1 = nullptr;
|
|
pending_tail1 = nullptr;
|
|
} else if (!to_prev1) {
|
|
first_new1 = min1;
|
|
}
|
|
|
|
prev_point = c1->point;
|
|
c1 = e1->target;
|
|
to_prev1 = e1->reverse;
|
|
}
|
|
|
|
if ((cmp <= 0) && e0) {
|
|
if (to_prev0) {
|
|
for (Edge *e = to_prev0->prev, *n = nullptr; e != min0; e = n) {
|
|
n = e->prev;
|
|
remove_edge_pair(e);
|
|
}
|
|
}
|
|
|
|
if (pending_tail0) {
|
|
if (to_prev0) {
|
|
pending_head0->link(to_prev0);
|
|
} else {
|
|
pending_head0->link(min0->next);
|
|
first_new0 = pending_head0;
|
|
}
|
|
min0->link(pending_tail0);
|
|
pending_head0 = nullptr;
|
|
pending_tail0 = nullptr;
|
|
} else if (!to_prev0) {
|
|
first_new0 = min0;
|
|
}
|
|
|
|
prev_point = c0->point;
|
|
c0 = e0->target;
|
|
to_prev0 = e0->reverse;
|
|
}
|
|
}
|
|
|
|
if ((c0 == first0) && (c1 == first1)) {
|
|
if (to_prev0 == nullptr) {
|
|
pending_head0->link(pending_tail0);
|
|
c0->edges = pending_tail0;
|
|
} else {
|
|
for (Edge *e = to_prev0->prev, *n = nullptr; e != first_new0; e = n) {
|
|
n = e->prev;
|
|
remove_edge_pair(e);
|
|
}
|
|
if (pending_tail0) {
|
|
pending_head0->link(to_prev0);
|
|
first_new0->link(pending_tail0);
|
|
}
|
|
}
|
|
|
|
if (to_prev1 == nullptr) {
|
|
pending_tail1->link(pending_head1);
|
|
c1->edges = pending_tail1;
|
|
} else {
|
|
for (Edge *e = to_prev1->next, *n = nullptr; e != first_new1; e = n) {
|
|
n = e->next;
|
|
remove_edge_pair(e);
|
|
}
|
|
if (pending_tail1) {
|
|
to_prev1->link(pending_head1);
|
|
pending_tail1->link(first_new1);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
first_run = false;
|
|
}
|
|
}
|
|
|
|
struct PointComparator {
|
|
_FORCE_INLINE_ bool operator()(const ConvexHullInternal::Point32 &p, const ConvexHullInternal::Point32 &q) const {
|
|
return (p.y < q.y) || ((p.y == q.y) && ((p.x < q.x) || ((p.x == q.x) && (p.z < q.z))));
|
|
}
|
|
};
|
|
|
|
void ConvexHullInternal::compute(const Vector3 *p_coords, int32_t p_count) {
|
|
AABB aabb;
|
|
for (int32_t i = 0; i < p_count; i++) {
|
|
Vector3 p = p_coords[i];
|
|
if (i == 0) {
|
|
aabb.position = p;
|
|
} else {
|
|
aabb.expand_to(p);
|
|
}
|
|
}
|
|
|
|
Vector3 s = aabb.size;
|
|
max_axis = s.max_axis_index();
|
|
min_axis = s.min_axis_index();
|
|
if (min_axis == max_axis) {
|
|
min_axis = Vector3::Axis((max_axis + 1) % 3);
|
|
}
|
|
med_axis = Vector3::Axis(3 - max_axis - min_axis);
|
|
|
|
s /= real_t(10216);
|
|
if (((med_axis + 1) % 3) != max_axis) {
|
|
s *= -1;
|
|
}
|
|
scaling = s;
|
|
|
|
if (s[0] != 0) {
|
|
s[0] = real_t(1) / s[0];
|
|
}
|
|
if (s[1] != 0) {
|
|
s[1] = real_t(1) / s[1];
|
|
}
|
|
if (s[2] != 0) {
|
|
s[2] = real_t(1) / s[2];
|
|
}
|
|
|
|
center = aabb.position;
|
|
|
|
LocalVector<Point32> points;
|
|
points.resize(p_count);
|
|
for (int32_t i = 0; i < p_count; i++) {
|
|
Vector3 p = p_coords[i];
|
|
p = (p - center) * s;
|
|
points[i].x = (int32_t)p[med_axis];
|
|
points[i].y = (int32_t)p[max_axis];
|
|
points[i].z = (int32_t)p[min_axis];
|
|
points[i].index = i;
|
|
}
|
|
|
|
points.sort_custom<PointComparator>();
|
|
|
|
vertex_pool.reset(true);
|
|
original_vertices.resize(p_count);
|
|
for (int32_t i = 0; i < p_count; i++) {
|
|
Vertex *v = vertex_pool.alloc();
|
|
v->edges = nullptr;
|
|
v->point = points[i];
|
|
v->copy = -1;
|
|
original_vertices[i] = v;
|
|
}
|
|
|
|
points.clear();
|
|
|
|
edge_pool.reset(true);
|
|
|
|
used_edge_pairs = 0;
|
|
max_used_edge_pairs = 0;
|
|
|
|
merge_stamp = -3;
|
|
|
|
IntermediateHull hull;
|
|
compute_internal(0, p_count, hull);
|
|
vertex_list = hull.min_xy;
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("max. edges %d (3v = %d)", max_used_edge_pairs, 3 * p_count);
|
|
#endif
|
|
}
|
|
|
|
Vector3 ConvexHullInternal::to_gd_vector(const Point32 &p_v) {
|
|
Vector3 p;
|
|
p[med_axis] = real_t(p_v.x);
|
|
p[max_axis] = real_t(p_v.y);
|
|
p[min_axis] = real_t(p_v.z);
|
|
return p * scaling;
|
|
}
|
|
|
|
Vector3 ConvexHullInternal::get_gd_normal(Face *p_face) {
|
|
return to_gd_vector(p_face->dir0).cross(to_gd_vector(p_face->dir1)).normalized();
|
|
}
|
|
|
|
Vector3 ConvexHullInternal::get_coordinates(const Vertex *p_v) {
|
|
Vector3 p;
|
|
p[med_axis] = p_v->xvalue();
|
|
p[max_axis] = p_v->yvalue();
|
|
p[min_axis] = p_v->zvalue();
|
|
return p * scaling + center;
|
|
}
|
|
|
|
real_t ConvexHullInternal::shrink(real_t p_amount, real_t p_clamp_amount) {
|
|
if (!vertex_list) {
|
|
return 0;
|
|
}
|
|
int32_t stamp = --merge_stamp;
|
|
LocalVector<Vertex *> stack;
|
|
vertex_list->copy = stamp;
|
|
stack.push_back(vertex_list);
|
|
LocalVector<Face *> faces;
|
|
|
|
Point32 ref = vertex_list->point;
|
|
Int128 hull_center_x(0, 0);
|
|
Int128 hull_center_y(0, 0);
|
|
Int128 hull_center_z(0, 0);
|
|
Int128 volume(0, 0);
|
|
|
|
while (stack.size() > 0) {
|
|
Vertex *v = stack[stack.size() - 1];
|
|
stack.remove_at(stack.size() - 1);
|
|
Edge *e = v->edges;
|
|
if (e) {
|
|
do {
|
|
if (e->target->copy != stamp) {
|
|
e->target->copy = stamp;
|
|
stack.push_back(e->target);
|
|
}
|
|
if (e->copy != stamp) {
|
|
Face *face = face_pool.alloc();
|
|
face->init(e->target, e->reverse->prev->target, v);
|
|
faces.push_back(face);
|
|
Edge *f = e;
|
|
|
|
Vertex *a = nullptr;
|
|
Vertex *b = nullptr;
|
|
do {
|
|
if (a && b) {
|
|
int64_t vol = (v->point - ref).dot((a->point - ref).cross(b->point - ref));
|
|
CHULL_ASSERT(vol >= 0);
|
|
Point32 c = v->point + a->point + b->point + ref;
|
|
hull_center_x += vol * c.x;
|
|
hull_center_y += vol * c.y;
|
|
hull_center_z += vol * c.z;
|
|
volume += vol;
|
|
}
|
|
|
|
CHULL_ASSERT(f->copy != stamp);
|
|
f->copy = stamp;
|
|
f->face = face;
|
|
|
|
a = b;
|
|
b = f->target;
|
|
|
|
f = f->reverse->prev;
|
|
} while (f != e);
|
|
}
|
|
e = e->next;
|
|
} while (e != v->edges);
|
|
}
|
|
}
|
|
|
|
if (volume.get_sign() <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
Vector3 hull_center;
|
|
hull_center[med_axis] = hull_center_x.to_scalar();
|
|
hull_center[max_axis] = hull_center_y.to_scalar();
|
|
hull_center[min_axis] = hull_center_z.to_scalar();
|
|
hull_center /= 4 * volume.to_scalar();
|
|
hull_center *= scaling;
|
|
|
|
int32_t face_count = faces.size();
|
|
|
|
if (p_clamp_amount > 0) {
|
|
real_t min_dist = FLT_MAX;
|
|
for (int32_t i = 0; i < face_count; i++) {
|
|
Vector3 normal = get_gd_normal(faces[i]);
|
|
real_t dist = normal.dot(to_gd_vector(faces[i]->origin) - hull_center);
|
|
if (dist < min_dist) {
|
|
min_dist = dist;
|
|
}
|
|
}
|
|
|
|
if (min_dist <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
p_amount = MIN(p_amount, min_dist * p_clamp_amount);
|
|
}
|
|
|
|
uint32_t seed = 243703;
|
|
for (int32_t i = 0; i < face_count; i++, seed = 1664525 * seed + 1013904223) {
|
|
SWAP(faces[i], faces[seed % face_count]);
|
|
}
|
|
|
|
for (int32_t i = 0; i < face_count; i++) {
|
|
if (!shift_face(faces[i], p_amount, stack)) {
|
|
return -p_amount;
|
|
}
|
|
}
|
|
|
|
return p_amount;
|
|
}
|
|
|
|
bool ConvexHullInternal::shift_face(Face *p_face, real_t p_amount, LocalVector<Vertex *> p_stack) {
|
|
Vector3 orig_shift = get_gd_normal(p_face) * -p_amount;
|
|
if (scaling[0] != 0) {
|
|
orig_shift[0] /= scaling[0];
|
|
}
|
|
if (scaling[1] != 0) {
|
|
orig_shift[1] /= scaling[1];
|
|
}
|
|
if (scaling[2] != 0) {
|
|
orig_shift[2] /= scaling[2];
|
|
}
|
|
Point32 shift((int32_t)orig_shift[med_axis], (int32_t)orig_shift[max_axis], (int32_t)orig_shift[min_axis]);
|
|
if (shift.is_zero()) {
|
|
return true;
|
|
}
|
|
Point64 normal = p_face->get_normal();
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("\nShrinking p_face (%d %d %d) (%d %d %d) (%d %d %d) by (%d %d %d)\n",
|
|
p_face->origin.x, p_face->origin.y, p_face->origin.z, p_face->dir0.x, p_face->dir0.y, p_face->dir0.z, p_face->dir1.x, p_face->dir1.y, p_face->dir1.z, shift.x, shift.y, shift.z);
|
|
#endif
|
|
int64_t orig_dot = p_face->origin.dot(normal);
|
|
Point32 shifted_origin = p_face->origin + shift;
|
|
int64_t shifted_dot = shifted_origin.dot(normal);
|
|
CHULL_ASSERT(shifted_dot <= orig_dot);
|
|
if (shifted_dot >= orig_dot) {
|
|
return false;
|
|
}
|
|
|
|
Edge *intersection = nullptr;
|
|
|
|
Edge *start_edge = p_face->nearby_vertex->edges;
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Start edge is ");
|
|
start_edge->print();
|
|
printf(", normal is (%lld %lld %lld), shifted dot is %lld\n", normal.x, normal.y, normal.z, shifted_dot);
|
|
#endif
|
|
Rational128 opt_dot = p_face->nearby_vertex->dot(normal);
|
|
int32_t cmp = opt_dot.compare(shifted_dot);
|
|
#ifdef SHOW_ITERATIONS
|
|
int32_t n = 0;
|
|
#endif
|
|
if (cmp >= 0) {
|
|
Edge *e = start_edge;
|
|
do {
|
|
#ifdef SHOW_ITERATIONS
|
|
n++;
|
|
#endif
|
|
Rational128 dot = e->target->dot(normal);
|
|
CHULL_ASSERT(dot.compare(orig_dot) <= 0);
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Moving downwards, edge is ");
|
|
e->print();
|
|
printf(", dot is %f (%f %lld)\n", (float)dot.to_scalar(), (float)opt_dot.to_scalar(), shifted_dot);
|
|
#endif
|
|
if (dot.compare(opt_dot) < 0) {
|
|
int32_t c = dot.compare(shifted_dot);
|
|
opt_dot = dot;
|
|
e = e->reverse;
|
|
start_edge = e;
|
|
if (c < 0) {
|
|
intersection = e;
|
|
break;
|
|
}
|
|
cmp = c;
|
|
}
|
|
e = e->prev;
|
|
} while (e != start_edge);
|
|
|
|
if (!intersection) {
|
|
return false;
|
|
}
|
|
} else {
|
|
Edge *e = start_edge;
|
|
do {
|
|
#ifdef SHOW_ITERATIONS
|
|
n++;
|
|
#endif
|
|
Rational128 dot = e->target->dot(normal);
|
|
CHULL_ASSERT(dot.compare(orig_dot) <= 0);
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Moving upwards, edge is ");
|
|
e->print();
|
|
printf(", dot is %f (%f %lld)\n", (float)dot.to_scalar(), (float)opt_dot.to_scalar(), shifted_dot);
|
|
#endif
|
|
if (dot.compare(opt_dot) > 0) {
|
|
cmp = dot.compare(shifted_dot);
|
|
if (cmp >= 0) {
|
|
intersection = e;
|
|
break;
|
|
}
|
|
opt_dot = dot;
|
|
e = e->reverse;
|
|
start_edge = e;
|
|
}
|
|
e = e->prev;
|
|
} while (e != start_edge);
|
|
|
|
if (!intersection) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
#ifdef SHOW_ITERATIONS
|
|
printf("Needed %d iterations to find initial intersection\n", n);
|
|
#endif
|
|
|
|
if (cmp == 0) {
|
|
Edge *e = intersection->reverse->next;
|
|
#ifdef SHOW_ITERATIONS
|
|
n = 0;
|
|
#endif
|
|
while (e->target->dot(normal).compare(shifted_dot) <= 0) {
|
|
#ifdef SHOW_ITERATIONS
|
|
n++;
|
|
#endif
|
|
e = e->next;
|
|
if (e == intersection->reverse) {
|
|
return true;
|
|
}
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Checking for outwards edge, current edge is ");
|
|
e->print();
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
#ifdef SHOW_ITERATIONS
|
|
printf("Needed %d iterations to check for complete containment\n", n);
|
|
#endif
|
|
}
|
|
|
|
Edge *first_intersection = nullptr;
|
|
Edge *face_edge = nullptr;
|
|
Edge *first_face_edge = nullptr;
|
|
|
|
#ifdef SHOW_ITERATIONS
|
|
int32_t m = 0;
|
|
#endif
|
|
while (true) {
|
|
#ifdef SHOW_ITERATIONS
|
|
m++;
|
|
#endif
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Intersecting edge is ");
|
|
intersection->print();
|
|
printf("\n");
|
|
#endif
|
|
if (cmp == 0) {
|
|
Edge *e = intersection->reverse->next;
|
|
start_edge = e;
|
|
#ifdef SHOW_ITERATIONS
|
|
n = 0;
|
|
#endif
|
|
while (true) {
|
|
#ifdef SHOW_ITERATIONS
|
|
n++;
|
|
#endif
|
|
if (e->target->dot(normal).compare(shifted_dot) >= 0) {
|
|
break;
|
|
}
|
|
intersection = e->reverse;
|
|
e = e->next;
|
|
if (e == start_edge) {
|
|
return true;
|
|
}
|
|
}
|
|
#ifdef SHOW_ITERATIONS
|
|
printf("Needed %d iterations to advance intersection\n", n);
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Advanced intersecting edge to ");
|
|
intersection->print();
|
|
printf(", cmp = %d\n", cmp);
|
|
#endif
|
|
|
|
if (!first_intersection) {
|
|
first_intersection = intersection;
|
|
} else if (intersection == first_intersection) {
|
|
break;
|
|
}
|
|
|
|
int32_t prev_cmp = cmp;
|
|
Edge *prev_intersection = intersection;
|
|
Edge *prev_face_edge = face_edge;
|
|
|
|
Edge *e = intersection->reverse;
|
|
#ifdef SHOW_ITERATIONS
|
|
n = 0;
|
|
#endif
|
|
while (true) {
|
|
#ifdef SHOW_ITERATIONS
|
|
n++;
|
|
#endif
|
|
e = e->reverse->prev;
|
|
CHULL_ASSERT(e != intersection->reverse);
|
|
cmp = e->target->dot(normal).compare(shifted_dot);
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Testing edge ");
|
|
e->print();
|
|
printf(" -> cmp = %d\n", cmp);
|
|
#endif
|
|
if (cmp >= 0) {
|
|
intersection = e;
|
|
break;
|
|
}
|
|
}
|
|
#ifdef SHOW_ITERATIONS
|
|
printf("Needed %d iterations to find other intersection of p_face\n", n);
|
|
#endif
|
|
|
|
if (cmp > 0) {
|
|
Vertex *removed = intersection->target;
|
|
e = intersection->reverse;
|
|
if (e->prev == e) {
|
|
removed->edges = nullptr;
|
|
} else {
|
|
removed->edges = e->prev;
|
|
e->prev->link(e->next);
|
|
e->link(e);
|
|
}
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("1: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z);
|
|
#endif
|
|
|
|
Point64 n0 = intersection->face->get_normal();
|
|
Point64 n1 = intersection->reverse->face->get_normal();
|
|
int64_t m00 = p_face->dir0.dot(n0);
|
|
int64_t m01 = p_face->dir1.dot(n0);
|
|
int64_t m10 = p_face->dir0.dot(n1);
|
|
int64_t m11 = p_face->dir1.dot(n1);
|
|
int64_t r0 = (intersection->face->origin - shifted_origin).dot(n0);
|
|
int64_t r1 = (intersection->reverse->face->origin - shifted_origin).dot(n1);
|
|
Int128 det = Int128::mul(m00, m11) - Int128::mul(m01, m10);
|
|
CHULL_ASSERT(det.get_sign() != 0);
|
|
Vertex *v = vertex_pool.alloc();
|
|
v->point.index = -1;
|
|
v->copy = -1;
|
|
v->point128 = PointR128(Int128::mul(p_face->dir0.x * r0, m11) - Int128::mul(p_face->dir0.x * r1, m01) + Int128::mul(p_face->dir1.x * r1, m00) - Int128::mul(p_face->dir1.x * r0, m10) + det * shifted_origin.x,
|
|
Int128::mul(p_face->dir0.y * r0, m11) - Int128::mul(p_face->dir0.y * r1, m01) + Int128::mul(p_face->dir1.y * r1, m00) - Int128::mul(p_face->dir1.y * r0, m10) + det * shifted_origin.y,
|
|
Int128::mul(p_face->dir0.z * r0, m11) - Int128::mul(p_face->dir0.z * r1, m01) + Int128::mul(p_face->dir1.z * r1, m00) - Int128::mul(p_face->dir1.z * r0, m10) + det * shifted_origin.z,
|
|
det);
|
|
v->point.x = (int32_t)v->point128.xvalue();
|
|
v->point.y = (int32_t)v->point128.yvalue();
|
|
v->point.z = (int32_t)v->point128.zvalue();
|
|
intersection->target = v;
|
|
v->edges = e;
|
|
|
|
p_stack.push_back(v);
|
|
p_stack.push_back(removed);
|
|
p_stack.push_back(nullptr);
|
|
}
|
|
|
|
if (cmp || prev_cmp || (prev_intersection->reverse->next->target != intersection->target)) {
|
|
face_edge = new_edge_pair(prev_intersection->target, intersection->target);
|
|
if (prev_cmp == 0) {
|
|
face_edge->link(prev_intersection->reverse->next);
|
|
}
|
|
if ((prev_cmp == 0) || prev_face_edge) {
|
|
prev_intersection->reverse->link(face_edge);
|
|
}
|
|
if (cmp == 0) {
|
|
intersection->reverse->prev->link(face_edge->reverse);
|
|
}
|
|
face_edge->reverse->link(intersection->reverse);
|
|
} else {
|
|
face_edge = prev_intersection->reverse->next;
|
|
}
|
|
|
|
if (prev_face_edge) {
|
|
if (prev_cmp > 0) {
|
|
face_edge->link(prev_face_edge->reverse);
|
|
} else if (face_edge != prev_face_edge->reverse) {
|
|
p_stack.push_back(prev_face_edge->target);
|
|
while (face_edge->next != prev_face_edge->reverse) {
|
|
Vertex *removed = face_edge->next->target;
|
|
remove_edge_pair(face_edge->next);
|
|
p_stack.push_back(removed);
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("2: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z);
|
|
#endif
|
|
}
|
|
p_stack.push_back(nullptr);
|
|
}
|
|
}
|
|
face_edge->face = p_face;
|
|
face_edge->reverse->face = intersection->face;
|
|
|
|
if (!first_face_edge) {
|
|
first_face_edge = face_edge;
|
|
}
|
|
}
|
|
#ifdef SHOW_ITERATIONS
|
|
printf("Needed %d iterations to process all intersections\n", m);
|
|
#endif
|
|
|
|
if (cmp > 0) {
|
|
first_face_edge->reverse->target = face_edge->target;
|
|
first_intersection->reverse->link(first_face_edge);
|
|
first_face_edge->link(face_edge->reverse);
|
|
} else if (first_face_edge != face_edge->reverse) {
|
|
p_stack.push_back(face_edge->target);
|
|
while (first_face_edge->next != face_edge->reverse) {
|
|
Vertex *removed = first_face_edge->next->target;
|
|
remove_edge_pair(first_face_edge->next);
|
|
p_stack.push_back(removed);
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("3: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z);
|
|
#endif
|
|
}
|
|
p_stack.push_back(nullptr);
|
|
}
|
|
|
|
CHULL_ASSERT(p_stack.size() > 0);
|
|
vertex_list = p_stack[0];
|
|
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Removing part\n");
|
|
#endif
|
|
#ifdef SHOW_ITERATIONS
|
|
n = 0;
|
|
#endif
|
|
uint32_t pos = 0;
|
|
while (pos < p_stack.size()) {
|
|
uint32_t end = p_stack.size();
|
|
while (pos < end) {
|
|
Vertex *kept = p_stack[pos++];
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
kept->print();
|
|
#endif
|
|
bool deeper = false;
|
|
Vertex *removed;
|
|
while ((removed = p_stack[pos++]) != nullptr) {
|
|
#ifdef SHOW_ITERATIONS
|
|
n++;
|
|
#endif
|
|
kept->receive_nearby_faces(removed);
|
|
while (removed->edges) {
|
|
if (!deeper) {
|
|
deeper = true;
|
|
p_stack.push_back(kept);
|
|
}
|
|
p_stack.push_back(removed->edges->target);
|
|
remove_edge_pair(removed->edges);
|
|
}
|
|
}
|
|
if (deeper) {
|
|
p_stack.push_back(nullptr);
|
|
}
|
|
}
|
|
}
|
|
#ifdef SHOW_ITERATIONS
|
|
printf("Needed %d iterations to remove part\n", n);
|
|
#endif
|
|
|
|
p_stack.clear();
|
|
p_face->origin = shifted_origin;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int32_t get_vertex_copy(ConvexHullInternal::Vertex *p_vertex, LocalVector<ConvexHullInternal::Vertex *> &p_vertices) {
|
|
int32_t index = p_vertex->copy;
|
|
if (index < 0) {
|
|
index = p_vertices.size();
|
|
p_vertex->copy = index;
|
|
p_vertices.push_back(p_vertex);
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Vertex %d gets index *%d\n", p_vertex->point.index, index);
|
|
#endif
|
|
}
|
|
return index;
|
|
}
|
|
|
|
real_t ConvexHullComputer::compute(const Vector3 *p_coords, int32_t p_count, real_t p_shrink, real_t p_shrink_clamp) {
|
|
if (p_count <= 0) {
|
|
vertices.clear();
|
|
edges.clear();
|
|
faces.clear();
|
|
return 0;
|
|
}
|
|
|
|
ConvexHullInternal hull;
|
|
hull.compute(p_coords, p_count);
|
|
|
|
real_t shift = 0;
|
|
if ((p_shrink > 0) && ((shift = hull.shrink(p_shrink, p_shrink_clamp)) < 0)) {
|
|
vertices.clear();
|
|
edges.clear();
|
|
faces.clear();
|
|
return shift;
|
|
}
|
|
|
|
vertices.clear();
|
|
edges.clear();
|
|
faces.clear();
|
|
|
|
LocalVector<ConvexHullInternal::Vertex *> old_vertices;
|
|
get_vertex_copy(hull.vertex_list, old_vertices);
|
|
int32_t copied = 0;
|
|
while (copied < (int32_t)old_vertices.size()) {
|
|
ConvexHullInternal::Vertex *v = old_vertices[copied];
|
|
vertices.push_back(hull.get_coordinates(v));
|
|
ConvexHullInternal::Edge *first_edge = v->edges;
|
|
if (first_edge) {
|
|
int32_t first_copy = -1;
|
|
int32_t prev_copy = -1;
|
|
ConvexHullInternal::Edge *e = first_edge;
|
|
do {
|
|
if (e->copy < 0) {
|
|
int32_t s = edges.size();
|
|
edges.push_back(Edge());
|
|
edges.push_back(Edge());
|
|
Edge *c = &edges[s];
|
|
Edge *r = &edges[s + 1];
|
|
e->copy = s;
|
|
e->reverse->copy = s + 1;
|
|
c->reverse = 1;
|
|
r->reverse = -1;
|
|
c->target_vertex = get_vertex_copy(e->target, old_vertices);
|
|
r->target_vertex = copied;
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf(" CREATE: Vertex *%d has edge to *%d\n", copied, c->get_target_vertex());
|
|
#endif
|
|
}
|
|
if (prev_copy >= 0) {
|
|
edges[e->copy].next = prev_copy - e->copy;
|
|
} else {
|
|
first_copy = e->copy;
|
|
}
|
|
prev_copy = e->copy;
|
|
e = e->next;
|
|
} while (e != first_edge);
|
|
edges[first_copy].next = prev_copy - first_copy;
|
|
}
|
|
copied++;
|
|
}
|
|
|
|
for (int32_t i = 0; i < copied; i++) {
|
|
ConvexHullInternal::Vertex *v = old_vertices[i];
|
|
ConvexHullInternal::Edge *first_edge = v->edges;
|
|
if (first_edge) {
|
|
ConvexHullInternal::Edge *e = first_edge;
|
|
do {
|
|
if (e->copy >= 0) {
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf("Vertex *%d has edge to *%d\n", i, edges[e->copy].get_target_vertex());
|
|
#endif
|
|
faces.push_back(e->copy);
|
|
ConvexHullInternal::Edge *f = e;
|
|
do {
|
|
#ifdef DEBUG_CONVEX_HULL
|
|
printf(" Face *%d\n", edges[f->copy].get_target_vertex());
|
|
#endif
|
|
f->copy = -1;
|
|
f = f->reverse->prev;
|
|
} while (f != e);
|
|
}
|
|
e = e->next;
|
|
} while (e != first_edge);
|
|
}
|
|
}
|
|
|
|
return shift;
|
|
}
|
|
|
|
Error ConvexHullComputer::convex_hull(const Vector<Vector3> &p_points, Geometry3D::MeshData &r_mesh) {
|
|
r_mesh = Geometry3D::MeshData(); // clear
|
|
|
|
if (p_points.size() == 0) {
|
|
return FAILED; // matches QuickHull
|
|
}
|
|
|
|
ConvexHullComputer ch;
|
|
ch.compute(p_points.ptr(), p_points.size(), -1.0, -1.0);
|
|
|
|
r_mesh.vertices = ch.vertices;
|
|
|
|
// Tag which face each edge belongs to
|
|
LocalVector<int32_t> edge_faces;
|
|
edge_faces.resize(ch.edges.size());
|
|
|
|
for (uint32_t i = 0; i < ch.edges.size(); i++) {
|
|
edge_faces[i] = -1;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < ch.faces.size(); i++) {
|
|
const Edge *e_start = &ch.edges[ch.faces[i]];
|
|
const Edge *e = e_start;
|
|
do {
|
|
int64_t ofs = e - ch.edges.ptr();
|
|
edge_faces[ofs] = i;
|
|
|
|
e = e->get_next_edge_of_face();
|
|
} while (e != e_start);
|
|
}
|
|
|
|
// Copy the edges over. There's two "half-edges" for every edge, so we pick only one of them.
|
|
r_mesh.edges.resize(ch.edges.size() / 2);
|
|
OAHashMap<uint64_t, int32_t> edge_map(ch.edges.size() * 4); // The higher the capacity, the faster the insert
|
|
|
|
uint32_t edges_copied = 0;
|
|
for (uint32_t i = 0; i < ch.edges.size(); i++) {
|
|
ERR_CONTINUE(edge_faces[i] == -1); // Sanity check
|
|
|
|
uint32_t a = (&ch.edges[i])->get_source_vertex();
|
|
uint32_t b = (&ch.edges[i])->get_target_vertex();
|
|
if (a < b) { // Copy only the "canonical" edge. For the reverse edge, this will be false.
|
|
ERR_BREAK(edges_copied >= (uint32_t)r_mesh.edges.size());
|
|
r_mesh.edges[edges_copied].vertex_a = a;
|
|
r_mesh.edges[edges_copied].vertex_b = b;
|
|
r_mesh.edges[edges_copied].face_a = edge_faces[i];
|
|
r_mesh.edges[edges_copied].face_b = -1;
|
|
|
|
uint64_t key = a;
|
|
key <<= 32;
|
|
key |= b;
|
|
edge_map.insert(key, edges_copied);
|
|
|
|
edges_copied++;
|
|
} else {
|
|
uint64_t key = b;
|
|
key <<= 32;
|
|
key |= a;
|
|
int32_t index;
|
|
if (!edge_map.lookup(key, index)) {
|
|
ERR_PRINT("Invalid edge");
|
|
} else {
|
|
r_mesh.edges[index].face_b = edge_faces[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (edges_copied != (uint32_t)r_mesh.edges.size()) {
|
|
ERR_PRINT("Invalid edge count.");
|
|
}
|
|
|
|
r_mesh.faces.resize(ch.faces.size());
|
|
for (uint32_t i = 0; i < ch.faces.size(); i++) {
|
|
const Edge *e_start = &ch.edges[ch.faces[i]];
|
|
const Edge *e = e_start;
|
|
Geometry3D::MeshData::Face &face = r_mesh.faces[i];
|
|
|
|
do {
|
|
face.indices.push_back(e->get_target_vertex());
|
|
|
|
e = e->get_next_edge_of_face();
|
|
} while (e != e_start);
|
|
|
|
// reverse indices: Godot wants clockwise, but this is counter-clockwise
|
|
if (face.indices.size() > 2) {
|
|
// reverse all but the first index.
|
|
int *indices = face.indices.ptr();
|
|
for (uint32_t c = 0; c < (face.indices.size() - 1) / 2; c++) {
|
|
SWAP(indices[c + 1], indices[face.indices.size() - 1 - c]);
|
|
}
|
|
}
|
|
|
|
// compute normal
|
|
if (face.indices.size() >= 3) {
|
|
face.plane = Plane(r_mesh.vertices[face.indices[0]], r_mesh.vertices[face.indices[1]], r_mesh.vertices[face.indices[2]]);
|
|
} else {
|
|
WARN_PRINT("Too few vertices per face.");
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|