mirror of
https://github.com/godotengine/godot.git
synced 2024-12-21 10:25:24 +08:00
199 lines
6.5 KiB
C++
199 lines
6.5 KiB
C++
/*************************************************************************/
|
|
/* vector2.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "vector2.h"
|
|
|
|
#include "core/math/vector2i.h"
|
|
#include "core/string/ustring.h"
|
|
|
|
real_t Vector2::angle() const {
|
|
return Math::atan2(y, x);
|
|
}
|
|
|
|
Vector2 Vector2::from_angle(const real_t p_angle) {
|
|
return Vector2(Math::cos(p_angle), Math::sin(p_angle));
|
|
}
|
|
|
|
real_t Vector2::length() const {
|
|
return Math::sqrt(x * x + y * y);
|
|
}
|
|
|
|
real_t Vector2::length_squared() const {
|
|
return x * x + y * y;
|
|
}
|
|
|
|
void Vector2::normalize() {
|
|
real_t l = x * x + y * y;
|
|
if (l != 0) {
|
|
l = Math::sqrt(l);
|
|
x /= l;
|
|
y /= l;
|
|
}
|
|
}
|
|
|
|
Vector2 Vector2::normalized() const {
|
|
Vector2 v = *this;
|
|
v.normalize();
|
|
return v;
|
|
}
|
|
|
|
bool Vector2::is_normalized() const {
|
|
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
|
|
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
|
|
}
|
|
|
|
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
|
|
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
|
|
}
|
|
|
|
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
|
|
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
|
|
}
|
|
|
|
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
|
|
return Math::atan2(cross(p_vector2), dot(p_vector2));
|
|
}
|
|
|
|
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
|
|
return (p_vector2 - *this).angle();
|
|
}
|
|
|
|
real_t Vector2::dot(const Vector2 &p_other) const {
|
|
return x * p_other.x + y * p_other.y;
|
|
}
|
|
|
|
real_t Vector2::cross(const Vector2 &p_other) const {
|
|
return x * p_other.y - y * p_other.x;
|
|
}
|
|
|
|
Vector2 Vector2::sign() const {
|
|
return Vector2(SIGN(x), SIGN(y));
|
|
}
|
|
|
|
Vector2 Vector2::floor() const {
|
|
return Vector2(Math::floor(x), Math::floor(y));
|
|
}
|
|
|
|
Vector2 Vector2::ceil() const {
|
|
return Vector2(Math::ceil(x), Math::ceil(y));
|
|
}
|
|
|
|
Vector2 Vector2::round() const {
|
|
return Vector2(Math::round(x), Math::round(y));
|
|
}
|
|
|
|
Vector2 Vector2::rotated(const real_t p_by) const {
|
|
real_t sine = Math::sin(p_by);
|
|
real_t cosi = Math::cos(p_by);
|
|
return Vector2(
|
|
x * cosi - y * sine,
|
|
x * sine + y * cosi);
|
|
}
|
|
|
|
Vector2 Vector2::posmod(const real_t p_mod) const {
|
|
return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
|
|
}
|
|
|
|
Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
|
|
return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
|
|
}
|
|
|
|
Vector2 Vector2::project(const Vector2 &p_to) const {
|
|
return p_to * (dot(p_to) / p_to.length_squared());
|
|
}
|
|
|
|
Vector2 Vector2::clamp(const Vector2 &p_min, const Vector2 &p_max) const {
|
|
return Vector2(
|
|
CLAMP(x, p_min.x, p_max.x),
|
|
CLAMP(y, p_min.y, p_max.y));
|
|
}
|
|
|
|
Vector2 Vector2::snapped(const Vector2 &p_step) const {
|
|
return Vector2(
|
|
Math::snapped(x, p_step.x),
|
|
Math::snapped(y, p_step.y));
|
|
}
|
|
|
|
Vector2 Vector2::limit_length(const real_t p_len) const {
|
|
const real_t l = length();
|
|
Vector2 v = *this;
|
|
if (l > 0 && p_len < l) {
|
|
v /= l;
|
|
v *= p_len;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const {
|
|
Vector2 res = *this;
|
|
res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
|
|
res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
|
|
return res;
|
|
}
|
|
|
|
Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
|
|
Vector2 v = *this;
|
|
Vector2 vd = p_to - v;
|
|
real_t len = vd.length();
|
|
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
|
|
}
|
|
|
|
// slide returns the component of the vector along the given plane, specified by its normal vector.
|
|
Vector2 Vector2::slide(const Vector2 &p_normal) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
|
|
#endif
|
|
return *this - p_normal * this->dot(p_normal);
|
|
}
|
|
|
|
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
|
|
return -reflect(p_normal);
|
|
}
|
|
|
|
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
|
|
#endif
|
|
return 2.0f * p_normal * this->dot(p_normal) - *this;
|
|
}
|
|
|
|
bool Vector2::is_equal_approx(const Vector2 &p_v) const {
|
|
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
|
|
}
|
|
|
|
Vector2::operator String() const {
|
|
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ")";
|
|
}
|
|
|
|
Vector2::operator Vector2i() const {
|
|
return Vector2i(x, y);
|
|
}
|