godot/modules/navigation/3d/nav_mesh_queries_3d.cpp
Rémi Verschelde 7f3a8d0b1b
Merge pull request #97928 from kiroxas/navImprovement
Improve `NavMeshQueries3D::polygons_get_closest_point_info` performance
2024-12-02 15:50:11 +01:00

766 lines
28 KiB
C++

/**************************************************************************/
/* nav_mesh_queries_3d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef _3D_DISABLED
#include "nav_mesh_queries_3d.h"
#include "../nav_base.h"
#include "core/math/geometry_3d.h"
#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
#define APPEND_METADATA(poly) \
if (r_path_types) { \
r_path_types->push_back(poly->owner->get_type()); \
} \
if (r_path_rids) { \
r_path_rids->push_back(poly->owner->get_self()); \
} \
if (r_path_owners) { \
r_path_owners->push_back(poly->owner->get_owner_id()); \
}
Vector3 NavMeshQueries3D::polygons_get_random_point(const LocalVector<gd::Polygon> &p_polygons, uint32_t p_navigation_layers, bool p_uniformly) {
const LocalVector<gd::Polygon> &region_polygons = p_polygons;
if (region_polygons.is_empty()) {
return Vector3();
}
if (p_uniformly) {
real_t accumulated_area = 0;
RBMap<real_t, uint32_t> region_area_map;
for (uint32_t rp_index = 0; rp_index < region_polygons.size(); rp_index++) {
const gd::Polygon &region_polygon = region_polygons[rp_index];
real_t polyon_area = region_polygon.surface_area;
if (polyon_area == 0.0) {
continue;
}
region_area_map[accumulated_area] = rp_index;
accumulated_area += polyon_area;
}
if (region_area_map.is_empty() || accumulated_area == 0) {
// All polygons have no real surface / no area.
return Vector3();
}
real_t region_area_map_pos = Math::random(real_t(0), accumulated_area);
RBMap<real_t, uint32_t>::Iterator region_E = region_area_map.find_closest(region_area_map_pos);
ERR_FAIL_COND_V(!region_E, Vector3());
uint32_t rrp_polygon_index = region_E->value;
ERR_FAIL_UNSIGNED_INDEX_V(rrp_polygon_index, region_polygons.size(), Vector3());
const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];
real_t accumulated_polygon_area = 0;
RBMap<real_t, uint32_t> polygon_area_map;
for (uint32_t rpp_index = 2; rpp_index < rr_polygon.points.size(); rpp_index++) {
real_t face_area = Face3(rr_polygon.points[0].pos, rr_polygon.points[rpp_index - 1].pos, rr_polygon.points[rpp_index].pos).get_area();
if (face_area == 0.0) {
continue;
}
polygon_area_map[accumulated_polygon_area] = rpp_index;
accumulated_polygon_area += face_area;
}
if (polygon_area_map.is_empty() || accumulated_polygon_area == 0) {
// All faces have no real surface / no area.
return Vector3();
}
real_t polygon_area_map_pos = Math::random(real_t(0), accumulated_polygon_area);
RBMap<real_t, uint32_t>::Iterator polygon_E = polygon_area_map.find_closest(polygon_area_map_pos);
ERR_FAIL_COND_V(!polygon_E, Vector3());
uint32_t rrp_face_index = polygon_E->value;
ERR_FAIL_UNSIGNED_INDEX_V(rrp_face_index, rr_polygon.points.size(), Vector3());
const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);
Vector3 face_random_position = face.get_random_point_inside();
return face_random_position;
} else {
uint32_t rrp_polygon_index = Math::random(int(0), region_polygons.size() - 1);
const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];
uint32_t rrp_face_index = Math::random(int(2), rr_polygon.points.size() - 1);
const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);
Vector3 face_random_position = face.get_random_point_inside();
return face_random_position;
}
}
Vector<Vector3> NavMeshQueries3D::polygons_get_path(const LocalVector<gd::Polygon> &p_polygons, Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners, const Vector3 &p_map_up, uint32_t p_link_polygons_size) {
// Clear metadata outputs.
if (r_path_types) {
r_path_types->clear();
}
if (r_path_rids) {
r_path_rids->clear();
}
if (r_path_owners) {
r_path_owners->clear();
}
// Find the start poly and the end poly on this map.
const gd::Polygon *begin_poly = nullptr;
const gd::Polygon *end_poly = nullptr;
Vector3 begin_point;
Vector3 end_point;
real_t begin_d = FLT_MAX;
real_t end_d = FLT_MAX;
// Find the initial poly and the end poly on this map.
for (const gd::Polygon &p : p_polygons) {
// Only consider the polygon if it in a region with compatible layers.
if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) {
continue;
}
// For each face check the distance between the origin/destination
for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
Vector3 point = face.get_closest_point_to(p_origin);
real_t distance_to_point = point.distance_to(p_origin);
if (distance_to_point < begin_d) {
begin_d = distance_to_point;
begin_poly = &p;
begin_point = point;
}
point = face.get_closest_point_to(p_destination);
distance_to_point = point.distance_to(p_destination);
if (distance_to_point < end_d) {
end_d = distance_to_point;
end_poly = &p;
end_point = point;
}
}
}
// Check for trivial cases
if (!begin_poly || !end_poly) {
return Vector<Vector3>();
}
if (begin_poly == end_poly) {
if (r_path_types) {
r_path_types->resize(2);
r_path_types->write[0] = begin_poly->owner->get_type();
r_path_types->write[1] = end_poly->owner->get_type();
}
if (r_path_rids) {
r_path_rids->resize(2);
(*r_path_rids)[0] = begin_poly->owner->get_self();
(*r_path_rids)[1] = end_poly->owner->get_self();
}
if (r_path_owners) {
r_path_owners->resize(2);
r_path_owners->write[0] = begin_poly->owner->get_owner_id();
r_path_owners->write[1] = end_poly->owner->get_owner_id();
}
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
// List of all reachable navigation polys.
LocalVector<gd::NavigationPoly> navigation_polys;
navigation_polys.resize(p_polygons.size() + p_link_polygons_size);
// Initialize the matching navigation polygon.
gd::NavigationPoly &begin_navigation_poly = navigation_polys[begin_poly->id];
begin_navigation_poly.poly = begin_poly;
begin_navigation_poly.entry = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
// Heap of polygons to travel next.
gd::Heap<gd::NavigationPoly *, gd::NavPolyTravelCostGreaterThan, gd::NavPolyHeapIndexer>
traversable_polys;
traversable_polys.reserve(p_polygons.size() * 0.25);
// This is an implementation of the A* algorithm.
int least_cost_id = begin_poly->id;
int prev_least_cost_id = -1;
bool found_route = false;
const gd::Polygon *reachable_end = nullptr;
real_t distance_to_reachable_end = FLT_MAX;
bool is_reachable = true;
while (true) {
// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
for (const gd::Edge &edge : navigation_polys[least_cost_id].poly->edges) {
// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
for (uint32_t connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
const gd::Edge::Connection &connection = edge.connections[connection_index];
// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
continue;
}
const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
real_t poly_enter_cost = 0.0;
real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
if (prev_least_cost_id != -1 && navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
}
prev_least_cost_id = least_cost_id;
Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;
// Check if the neighbor polygon has already been processed.
gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
if (neighbor_poly.poly != nullptr) {
// If the neighbor polygon hasn't been traversed yet and the new path leading to
// it is shorter, update the polygon.
if (neighbor_poly.traversable_poly_index < traversable_polys.size() &&
new_traveled_distance < neighbor_poly.traveled_distance) {
neighbor_poly.back_navigation_poly_id = least_cost_id;
neighbor_poly.back_navigation_edge = connection.edge;
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
neighbor_poly.traveled_distance = new_traveled_distance;
neighbor_poly.distance_to_destination =
new_entry.distance_to(end_point) *
neighbor_poly.poly->owner->get_travel_cost();
neighbor_poly.entry = new_entry;
// Update the priority of the polygon in the heap.
traversable_polys.shift(neighbor_poly.traversable_poly_index);
}
} else {
// Initialize the matching navigation polygon.
neighbor_poly.poly = connection.polygon;
neighbor_poly.back_navigation_poly_id = least_cost_id;
neighbor_poly.back_navigation_edge = connection.edge;
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
neighbor_poly.traveled_distance = new_traveled_distance;
neighbor_poly.distance_to_destination =
new_entry.distance_to(end_point) *
neighbor_poly.poly->owner->get_travel_cost();
neighbor_poly.entry = new_entry;
// Add the polygon to the heap of polygons to traverse next.
traversable_polys.push(&neighbor_poly);
}
}
}
// When the heap of traversable polygons is empty at this point it means the end polygon is
// unreachable.
if (traversable_polys.is_empty()) {
// Thus use the further reachable polygon
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
is_reachable = false;
if (reachable_end == nullptr) {
// The path is not found and there is not a way out.
break;
}
// Set as end point the furthest reachable point.
end_poly = reachable_end;
end_d = FLT_MAX;
for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_destination);
real_t dpoint = spoint.distance_to(p_destination);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
}
}
// Search all faces of start polygon as well.
bool closest_point_on_start_poly = false;
for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_destination);
real_t dpoint = spoint.distance_to(p_destination);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
closest_point_on_start_poly = true;
}
}
if (closest_point_on_start_poly) {
// No point to run PostProcessing when start and end convex polygon is the same.
if (r_path_types) {
r_path_types->resize(2);
r_path_types->write[0] = begin_poly->owner->get_type();
r_path_types->write[1] = begin_poly->owner->get_type();
}
if (r_path_rids) {
r_path_rids->resize(2);
(*r_path_rids)[0] = begin_poly->owner->get_self();
(*r_path_rids)[1] = begin_poly->owner->get_self();
}
if (r_path_owners) {
r_path_owners->resize(2);
r_path_owners->write[0] = begin_poly->owner->get_owner_id();
r_path_owners->write[1] = begin_poly->owner->get_owner_id();
}
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
for (gd::NavigationPoly &nav_poly : navigation_polys) {
nav_poly.poly = nullptr;
}
navigation_polys[begin_poly->id].poly = begin_poly;
least_cost_id = begin_poly->id;
prev_least_cost_id = -1;
reachable_end = nullptr;
continue;
}
// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
least_cost_id = traversable_polys.pop()->poly->id;
// Store the farthest reachable end polygon in case our goal is not reachable.
if (is_reachable) {
real_t distance = navigation_polys[least_cost_id].entry.distance_to(p_destination);
if (distance_to_reachable_end > distance) {
distance_to_reachable_end = distance;
reachable_end = navigation_polys[least_cost_id].poly;
}
}
// Check if we reached the end
if (navigation_polys[least_cost_id].poly == end_poly) {
found_route = true;
break;
}
}
// We did not find a route but we have both a start polygon and an end polygon at this point.
// Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon.
if (!found_route) {
end_d = FLT_MAX;
// Search all faces of the start polygon for the closest point to our target position.
for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_destination);
real_t dpoint = spoint.distance_to(p_destination);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
}
}
if (r_path_types) {
r_path_types->resize(2);
r_path_types->write[0] = begin_poly->owner->get_type();
r_path_types->write[1] = begin_poly->owner->get_type();
}
if (r_path_rids) {
r_path_rids->resize(2);
(*r_path_rids)[0] = begin_poly->owner->get_self();
(*r_path_rids)[1] = begin_poly->owner->get_self();
}
if (r_path_owners) {
r_path_owners->resize(2);
r_path_owners->write[0] = begin_poly->owner->get_owner_id();
r_path_owners->write[1] = begin_poly->owner->get_owner_id();
}
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
Vector<Vector3> path;
// Optimize the path.
if (p_optimize) {
// Set the apex poly/point to the end point
gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
Vector3 back_pathway[2] = { apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end };
const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(end_point, back_pathway);
if (end_point.is_equal_approx(back_edge_closest_point)) {
// The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing.
// At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon.
if (apex_poly->back_navigation_poly_id != -1) {
apex_poly = &navigation_polys[apex_poly->back_navigation_poly_id];
}
}
Vector3 apex_point = end_point;
gd::NavigationPoly *left_poly = apex_poly;
Vector3 left_portal = apex_point;
gd::NavigationPoly *right_poly = apex_poly;
Vector3 right_portal = apex_point;
gd::NavigationPoly *p = apex_poly;
path.push_back(end_point);
APPEND_METADATA(end_poly);
while (p) {
// Set left and right points of the pathway between polygons.
Vector3 left = p->back_navigation_edge_pathway_start;
Vector3 right = p->back_navigation_edge_pathway_end;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(p_map_up) < 0) {
SWAP(left, right);
}
bool skip = false;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(p_map_up) >= 0) {
//process
if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(p_map_up) > 0) {
left_poly = p;
left_portal = left;
} else {
clip_path(navigation_polys, path, apex_poly, right_portal, right_poly, r_path_types, r_path_rids, r_path_owners, p_map_up);
apex_point = right_portal;
p = right_poly;
left_poly = p;
apex_poly = p;
left_portal = apex_point;
right_portal = apex_point;
path.push_back(apex_point);
APPEND_METADATA(apex_poly->poly);
skip = true;
}
}
if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(p_map_up) <= 0) {
//process
if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(p_map_up) < 0) {
right_poly = p;
right_portal = right;
} else {
clip_path(navigation_polys, path, apex_poly, left_portal, left_poly, r_path_types, r_path_rids, r_path_owners, p_map_up);
apex_point = left_portal;
p = left_poly;
right_poly = p;
apex_poly = p;
right_portal = apex_point;
left_portal = apex_point;
path.push_back(apex_point);
APPEND_METADATA(apex_poly->poly);
}
}
// Go to the previous polygon.
if (p->back_navigation_poly_id != -1) {
p = &navigation_polys[p->back_navigation_poly_id];
} else {
// The end
p = nullptr;
}
}
// If the last point is not the begin point, add it to the list.
if (path[path.size() - 1] != begin_point) {
path.push_back(begin_point);
APPEND_METADATA(begin_poly);
}
path.reverse();
if (r_path_types) {
r_path_types->reverse();
}
if (r_path_rids) {
r_path_rids->reverse();
}
if (r_path_owners) {
r_path_owners->reverse();
}
} else {
path.push_back(end_point);
APPEND_METADATA(end_poly);
// Add mid points
int np_id = least_cost_id;
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
if (navigation_polys[np_id].back_navigation_edge != -1) {
int prev = navigation_polys[np_id].back_navigation_edge;
int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
path.push_back(point);
APPEND_METADATA(navigation_polys[np_id].poly);
} else {
path.push_back(navigation_polys[np_id].entry);
APPEND_METADATA(navigation_polys[np_id].poly);
}
np_id = navigation_polys[np_id].back_navigation_poly_id;
}
path.push_back(begin_point);
APPEND_METADATA(begin_poly);
path.reverse();
if (r_path_types) {
r_path_types->reverse();
}
if (r_path_rids) {
r_path_rids->reverse();
}
if (r_path_owners) {
r_path_owners->reverse();
}
}
// Ensure post conditions (path arrays MUST match in size).
CRASH_COND(r_path_types && path.size() != r_path_types->size());
CRASH_COND(r_path_rids && path.size() != r_path_rids->size());
CRASH_COND(r_path_owners && path.size() != r_path_owners->size());
return path;
}
Vector3 NavMeshQueries3D::polygons_get_closest_point_to_segment(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) {
bool use_collision = p_use_collision;
Vector3 closest_point;
real_t closest_point_distance = FLT_MAX;
for (const gd::Polygon &polygon : p_polygons) {
// For each face check the distance to the segment.
for (size_t point_id = 2; point_id < polygon.points.size(); point_id += 1) {
const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos);
Vector3 intersection_point;
if (face.intersects_segment(p_from, p_to, &intersection_point)) {
const real_t d = p_from.distance_to(intersection_point);
if (!use_collision) {
closest_point = intersection_point;
use_collision = true;
closest_point_distance = d;
} else if (closest_point_distance > d) {
closest_point = intersection_point;
closest_point_distance = d;
}
}
// If segment does not itersect face, check the distance from segment's endpoints.
else if (!use_collision) {
const Vector3 p_from_closest = face.get_closest_point_to(p_from);
const real_t d_p_from = p_from.distance_to(p_from_closest);
if (closest_point_distance > d_p_from) {
closest_point = p_from_closest;
closest_point_distance = d_p_from;
}
const Vector3 p_to_closest = face.get_closest_point_to(p_to);
const real_t d_p_to = p_to.distance_to(p_to_closest);
if (closest_point_distance > d_p_to) {
closest_point = p_to_closest;
closest_point_distance = d_p_to;
}
}
}
// Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment.
if (!use_collision) {
for (size_t point_id = 0; point_id < polygon.points.size(); point_id += 1) {
Vector3 a, b;
Geometry3D::get_closest_points_between_segments(
p_from,
p_to,
polygon.points[point_id].pos,
polygon.points[(point_id + 1) % polygon.points.size()].pos,
a,
b);
const real_t d = a.distance_to(b);
if (d < closest_point_distance) {
closest_point_distance = d;
closest_point = b;
}
}
}
}
return closest_point;
}
Vector3 NavMeshQueries3D::polygons_get_closest_point(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
return cp.point;
}
Vector3 NavMeshQueries3D::polygons_get_closest_point_normal(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
return cp.normal;
}
gd::ClosestPointQueryResult NavMeshQueries3D::polygons_get_closest_point_info(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
gd::ClosestPointQueryResult result;
real_t closest_point_distance_squared = FLT_MAX;
for (const gd::Polygon &polygon : p_polygons) {
Vector3 plane_normal = (polygon.points[1].pos - polygon.points[0].pos).cross(polygon.points[2].pos - polygon.points[0].pos);
Vector3 closest_on_polygon;
real_t closest = FLT_MAX;
bool inside = true;
Vector3 previous = polygon.points[polygon.points.size() - 1].pos;
for (size_t point_id = 0; point_id < polygon.points.size(); ++point_id) {
Vector3 edge = polygon.points[point_id].pos - previous;
Vector3 to_point = p_point - previous;
Vector3 edge_to_point_pormal = edge.cross(to_point);
bool clockwise = edge_to_point_pormal.dot(plane_normal) > 0;
// If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge.
if (!clockwise) {
inside = false;
real_t point_projected_on_edge = edge.dot(to_point);
real_t edge_square = edge.length_squared();
if (point_projected_on_edge > edge_square) {
real_t distance = polygon.points[point_id].pos.distance_squared_to(p_point);
if (distance < closest) {
closest_on_polygon = polygon.points[point_id].pos;
closest = distance;
}
} else if (point_projected_on_edge < 0.f) {
real_t distance = previous.distance_squared_to(p_point);
if (distance < closest) {
closest_on_polygon = previous;
closest = distance;
}
} else {
// If we project on this edge, this will be the closest point.
real_t percent = point_projected_on_edge / edge_square;
closest_on_polygon = previous + percent * edge;
break;
}
}
previous = polygon.points[point_id].pos;
}
if (inside) {
Vector3 plane_normalized = plane_normal.normalized();
real_t distance = plane_normalized.dot(p_point - polygon.points[0].pos);
real_t distance_squared = distance * distance;
if (distance_squared < closest_point_distance_squared) {
closest_point_distance_squared = distance_squared;
result.point = p_point - plane_normalized * distance;
result.normal = plane_normal;
result.owner = polygon.owner->get_self();
if (Math::is_zero_approx(distance)) {
break;
}
}
} else {
real_t distance = closest_on_polygon.distance_squared_to(p_point);
if (distance < closest_point_distance_squared) {
closest_point_distance_squared = distance;
result.point = closest_on_polygon;
result.normal = plane_normal;
result.owner = polygon.owner->get_self();
}
}
}
return result;
}
RID NavMeshQueries3D::polygons_get_closest_point_owner(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
return cp.owner;
}
void NavMeshQueries3D::clip_path(const LocalVector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners, const Vector3 &p_map_up) {
Vector3 from = path[path.size() - 1];
if (from.is_equal_approx(p_to_point)) {
return;
}
Plane cut_plane;
cut_plane.normal = (from - p_to_point).cross(p_map_up);
if (cut_plane.normal == Vector3()) {
return;
}
cut_plane.normal.normalize();
cut_plane.d = cut_plane.normal.dot(from);
while (from_poly != p_to_poly) {
Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
if (!pathway_start.is_equal_approx(pathway_end)) {
Vector3 inters;
if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
path.push_back(inters);
APPEND_METADATA(from_poly->poly);
}
}
}
}
}
#endif // _3D_DISABLED