godot/doc/classes/Vector3.xml
Rémi Verschelde 4c5dd51eb9 Sync classref with current source
Also fix binding of Basis.slerp
2018-05-28 14:53:15 +02:00

274 lines
8.0 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector3" category="Built-In Types" version="3.1">
<brief_description>
Vector class, which performs basic 3D vector math operations.
</brief_description>
<description>
Vector3 is one of the core classes of the engine, and includes several built-in helper functions to perform basic vector math operations.
</description>
<tutorials>
http://docs.godotengine.org/en/3.0/tutorials/math/index.html
</tutorials>
<demos>
</demos>
<methods>
<method name="Vector3">
<return type="Vector3">
</return>
<argument index="0" name="x" type="float">
</argument>
<argument index="1" name="y" type="float">
</argument>
<argument index="2" name="z" type="float">
</argument>
<description>
Returns a Vector3 with the given components.
</description>
</method>
<method name="abs">
<return type="Vector3">
</return>
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="angle_to">
<return type="float">
</return>
<argument index="0" name="to" type="Vector3">
</argument>
<description>
Returns the minimum angle to the given vector.
</description>
</method>
<method name="bounce">
<return type="Vector3">
</return>
<argument index="0" name="n" type="Vector3">
</argument>
<description>
Returns the vector "bounced off" from a plane defined by the given normal.
</description>
</method>
<method name="ceil">
<return type="Vector3">
</return>
<description>
Returns a new vector with all components rounded up.
</description>
</method>
<method name="cross">
<return type="Vector3">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the cross product with [code]b[/code].
</description>
</method>
<method name="cubic_interpolate">
<return type="Vector3">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<argument index="1" name="pre_a" type="Vector3">
</argument>
<argument index="2" name="post_b" type="Vector3">
</argument>
<argument index="3" name="t" type="float">
</argument>
<description>
Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount (t). (t) should be a float of 0.0-1.0, a percentage of how far along the interpolation is.
</description>
</method>
<method name="distance_squared_to">
<return type="float">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the squared distance to [code]b[/code]. Prefer this function over [method distance_to] if you need to sort vectors or need the squared distance for some formula.
</description>
</method>
<method name="distance_to">
<return type="float">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the distance to [code]b[/code].
</description>
</method>
<method name="dot">
<return type="float">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the dot product with [code]b[/code].
</description>
</method>
<method name="floor">
<return type="Vector3">
</return>
<description>
Returns a new vector with all components rounded down.
</description>
</method>
<method name="inverse">
<return type="Vector3">
</return>
<description>
Returns the inverse of the vector. This is the same as [code]Vector3( 1.0 / v.x, 1.0 / v.y, 1.0 / v.z )[/code].
</description>
</method>
<method name="is_normalized">
<return type="bool">
</return>
<description>
Returns [code]true[/code] if the vector is normalized.
</description>
</method>
<method name="length">
<return type="float">
</return>
<description>
Returns the vector's length.
</description>
</method>
<method name="length_squared">
<return type="float">
</return>
<description>
Returns the vector's length squared. Prefer this function over [method length] if you need to sort vectors or need the squared length for some formula.
</description>
</method>
<method name="linear_interpolate">
<return type="Vector3">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], a percentage of how far along the interpolation is.
</description>
</method>
<method name="max_axis">
<return type="int">
</return>
<description>
Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants.
</description>
</method>
<method name="min_axis">
<return type="int">
</return>
<description>
Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants.
</description>
</method>
<method name="normalized">
<return type="Vector3">
</return>
<description>
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
</description>
</method>
<method name="outer">
<return type="Basis">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the outer product with [code]b[/code].
</description>
</method>
<method name="reflect">
<return type="Vector3">
</return>
<argument index="0" name="n" type="Vector3">
</argument>
<description>
Returns the vector reflected from a plane defined by the given normal.
</description>
</method>
<method name="rotated">
<return type="Vector3">
</return>
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="phi" type="float">
</argument>
<description>
Rotates the vector around a given axis by [code]phi[/code] radians. The axis must be a normalized vector.
</description>
</method>
<method name="round">
<return type="Vector3">
</return>
<description>
</description>
</method>
<method name="slerp">
<return type="Vector3">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Returns the result of SLERP between this vector and "b", by amount "t". "t" should be a float of 0.0-1.0, a percentage of how far along the interpolation is.
Both vectors need to be normalized.
</description>
</method>
<method name="slide">
<return type="Vector3">
</return>
<argument index="0" name="n" type="Vector3">
</argument>
<description>
Returns the component of the vector along a plane defined by the given normal.
</description>
</method>
<method name="snapped">
<return type="Vector3">
</return>
<argument index="0" name="by" type="Vector3">
</argument>
<description>
Returns a copy of the vector, snapped to the lowest neared multiple.
</description>
</method>
<method name="to_diagonal_matrix">
<return type="Basis">
</return>
<description>
Returns a diagonal matrix with the vector as main diagonal.
</description>
</method>
</methods>
<members>
<member name="x" type="float" setter="" getter="">
The vector's x component.
</member>
<member name="y" type="float" setter="" getter="">
The vector's y component.
</member>
<member name="z" type="float" setter="" getter="">
The vector's z component.
</member>
</members>
<constants>
<constant name="AXIS_X" value="0">
Enumerated value for the X axis. Returned by [method max_axis] and [method min_axis].
</constant>
<constant name="AXIS_Y" value="1">
Enumerated value for the Y axis.
</constant>
<constant name="AXIS_Z" value="2">
Enumerated value for the Z axis.
</constant>
</constants>
</class>