mirror of
https://github.com/godotengine/godot.git
synced 2024-12-27 10:30:26 +08:00
3914 lines
159 KiB
C++
3914 lines
159 KiB
C++
/*************************************************************************/
|
|
/* renderer_scene_render_rd.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "renderer_scene_render_rd.h"
|
|
|
|
#include "core/config/project_settings.h"
|
|
#include "core/os/os.h"
|
|
#include "renderer_compositor_rd.h"
|
|
#include "servers/rendering/renderer_rd/environment/fog.h"
|
|
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
|
|
#include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
|
|
#include "servers/rendering/rendering_server_default.h"
|
|
#include "servers/rendering/storage/camera_attributes_storage.h"
|
|
|
|
void get_vogel_disk(float *r_kernel, int p_sample_count) {
|
|
const float golden_angle = 2.4;
|
|
|
|
for (int i = 0; i < p_sample_count; i++) {
|
|
float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
|
|
float theta = float(i) * golden_angle;
|
|
|
|
r_kernel[i * 4] = Math::cos(theta) * r;
|
|
r_kernel[i * 4 + 1] = Math::sin(theta) * r;
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::sdfgi_update(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
|
|
Ref<RenderSceneBuffersRD> rb = p_render_buffers;
|
|
ERR_FAIL_COND(rb.is_null());
|
|
Ref<RendererRD::GI::SDFGI> sdfgi;
|
|
if (rb->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
|
|
}
|
|
|
|
bool needs_sdfgi = p_environment.is_valid() && environment_get_sdfgi_enabled(p_environment);
|
|
|
|
if (!needs_sdfgi) {
|
|
if (sdfgi.is_valid()) {
|
|
// delete it
|
|
sdfgi.unref();
|
|
rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
|
|
}
|
|
return;
|
|
}
|
|
|
|
static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
|
|
uint32_t requested_history_size = history_frames_to_converge[gi.sdfgi_frames_to_converge];
|
|
|
|
if (sdfgi.is_valid() && (sdfgi->num_cascades != environment_get_sdfgi_cascades(p_environment) || sdfgi->min_cell_size != environment_get_sdfgi_min_cell_size(p_environment) || requested_history_size != sdfgi->history_size || sdfgi->uses_occlusion != environment_get_sdfgi_use_occlusion(p_environment) || sdfgi->y_scale_mode != environment_get_sdfgi_y_scale(p_environment))) {
|
|
//configuration changed, erase
|
|
sdfgi.unref();
|
|
rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
|
|
}
|
|
|
|
if (sdfgi.is_null()) {
|
|
// re-create
|
|
sdfgi = gi.create_sdfgi(p_environment, p_world_position, requested_history_size);
|
|
rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
|
|
} else {
|
|
//check for updates
|
|
sdfgi->update(p_environment, p_world_position);
|
|
}
|
|
}
|
|
|
|
int RendererSceneRenderRD::sdfgi_get_pending_region_count(const Ref<RenderSceneBuffers> &p_render_buffers) const {
|
|
Ref<RenderSceneBuffersRD> rb = p_render_buffers;
|
|
ERR_FAIL_COND_V(rb.is_null(), 0);
|
|
|
|
if (!rb->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
return 0;
|
|
}
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
|
|
|
|
int dirty_count = 0;
|
|
for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
|
|
const RendererRD::GI::SDFGI::Cascade &c = sdfgi->cascades[i];
|
|
|
|
if (c.dirty_regions == RendererRD::GI::SDFGI::Cascade::DIRTY_ALL) {
|
|
dirty_count++;
|
|
} else {
|
|
for (int j = 0; j < 3; j++) {
|
|
if (c.dirty_regions[j] != 0) {
|
|
dirty_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return dirty_count;
|
|
}
|
|
|
|
AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(const Ref<RenderSceneBuffers> &p_render_buffers, int p_region) const {
|
|
AABB bounds;
|
|
Vector3i from;
|
|
Vector3i size;
|
|
|
|
Ref<RenderSceneBuffersRD> rb = p_render_buffers;
|
|
ERR_FAIL_COND_V(rb.is_null(), AABB());
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
|
|
ERR_FAIL_COND_V(sdfgi.is_null(), AABB());
|
|
|
|
int c = sdfgi->get_pending_region_data(p_region, from, size, bounds);
|
|
ERR_FAIL_COND_V(c == -1, AABB());
|
|
return bounds;
|
|
}
|
|
|
|
uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(const Ref<RenderSceneBuffers> &p_render_buffers, int p_region) const {
|
|
AABB bounds;
|
|
Vector3i from;
|
|
Vector3i size;
|
|
|
|
Ref<RenderSceneBuffersRD> rb = p_render_buffers;
|
|
ERR_FAIL_COND_V(rb.is_null(), -1);
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
|
|
ERR_FAIL_COND_V(sdfgi.is_null(), -1);
|
|
|
|
return sdfgi->get_pending_region_data(p_region, from, size, bounds);
|
|
}
|
|
|
|
RID RendererSceneRenderRD::sky_allocate() {
|
|
return sky.allocate_sky_rid();
|
|
}
|
|
void RendererSceneRenderRD::sky_initialize(RID p_rid) {
|
|
sky.initialize_sky_rid(p_rid);
|
|
}
|
|
|
|
void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
|
|
sky.sky_set_radiance_size(p_sky, p_radiance_size);
|
|
}
|
|
|
|
void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
|
|
sky.sky_set_mode(p_sky, p_mode);
|
|
}
|
|
|
|
void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
|
|
sky.sky_set_material(p_sky, p_material);
|
|
}
|
|
|
|
Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
|
|
return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size);
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
|
|
glow_bicubic_upscale = p_enable;
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) {
|
|
glow_high_quality = p_enable;
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
|
|
volumetric_fog_size = p_size;
|
|
volumetric_fog_depth = p_depth;
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
|
|
volumetric_fog_filter_active = p_enable;
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
|
|
gi.sdfgi_ray_count = p_ray_count;
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
|
|
gi.sdfgi_frames_to_converge = p_frames;
|
|
}
|
|
void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
|
|
gi.sdfgi_frames_to_update_light = p_update;
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
|
|
ssr_roughness_quality = p_quality;
|
|
}
|
|
|
|
RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const {
|
|
return ssr_roughness_quality;
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
|
|
ssao_quality = p_quality;
|
|
ssao_half_size = p_half_size;
|
|
ssao_adaptive_target = p_adaptive_target;
|
|
ssao_blur_passes = p_blur_passes;
|
|
ssao_fadeout_from = p_fadeout_from;
|
|
ssao_fadeout_to = p_fadeout_to;
|
|
}
|
|
|
|
void RendererSceneRenderRD::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
|
|
ssil_quality = p_quality;
|
|
ssil_half_size = p_half_size;
|
|
ssil_adaptive_target = p_adaptive_target;
|
|
ssil_blur_passes = p_blur_passes;
|
|
ssil_fadeout_from = p_fadeout_from;
|
|
ssil_fadeout_to = p_fadeout_to;
|
|
}
|
|
|
|
Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
|
|
ERR_FAIL_COND_V(p_env.is_null(), Ref<Image>());
|
|
|
|
RS::EnvironmentBG environment_background = environment_get_background(p_env);
|
|
|
|
if (environment_background == RS::ENV_BG_CAMERA_FEED || environment_background == RS::ENV_BG_CANVAS || environment_background == RS::ENV_BG_KEEP) {
|
|
return Ref<Image>(); //nothing to bake
|
|
}
|
|
|
|
RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(p_env);
|
|
|
|
bool use_ambient_light = false;
|
|
bool use_cube_map = false;
|
|
if (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && (environment_background == RS::ENV_BG_CLEAR_COLOR || environment_background == RS::ENV_BG_COLOR)) {
|
|
use_ambient_light = true;
|
|
} else {
|
|
use_cube_map = (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && environment_background == RS::ENV_BG_SKY) || ambient_source == RS::ENV_AMBIENT_SOURCE_SKY;
|
|
use_ambient_light = use_cube_map || ambient_source == RS::ENV_AMBIENT_SOURCE_COLOR;
|
|
}
|
|
use_cube_map = use_cube_map || (environment_background == RS::ENV_BG_SKY && environment_get_sky(p_env).is_valid());
|
|
|
|
Color ambient_color;
|
|
float ambient_color_sky_mix = 0.0;
|
|
if (use_ambient_light) {
|
|
ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_env);
|
|
const float ambient_energy = environment_get_ambient_light_energy(p_env);
|
|
ambient_color = environment_get_ambient_light(p_env);
|
|
ambient_color = ambient_color.srgb_to_linear();
|
|
ambient_color.r *= ambient_energy;
|
|
ambient_color.g *= ambient_energy;
|
|
ambient_color.b *= ambient_energy;
|
|
}
|
|
|
|
if (use_cube_map) {
|
|
Ref<Image> panorama = sky_bake_panorama(environment_get_sky(p_env), environment_get_bg_energy_multiplier(p_env), p_bake_irradiance, p_size);
|
|
if (use_ambient_light) {
|
|
for (int x = 0; x < p_size.width; x++) {
|
|
for (int y = 0; y < p_size.height; y++) {
|
|
panorama->set_pixel(x, y, ambient_color.lerp(panorama->get_pixel(x, y), ambient_color_sky_mix));
|
|
}
|
|
}
|
|
}
|
|
return panorama;
|
|
} else {
|
|
const float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_env);
|
|
Color panorama_color = ((environment_background == RS::ENV_BG_CLEAR_COLOR) ? RSG::texture_storage->get_default_clear_color() : environment_get_bg_color(p_env));
|
|
panorama_color = panorama_color.srgb_to_linear();
|
|
panorama_color.r *= bg_energy_multiplier;
|
|
panorama_color.g *= bg_energy_multiplier;
|
|
panorama_color.b *= bg_energy_multiplier;
|
|
|
|
if (use_ambient_light) {
|
|
panorama_color = ambient_color.lerp(panorama_color, ambient_color_sky_mix);
|
|
}
|
|
|
|
Ref<Image> panorama;
|
|
panorama.instantiate();
|
|
panorama->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
|
|
panorama->fill(panorama_color);
|
|
return panorama;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
RID RendererSceneRenderRD::fog_volume_instance_create(RID p_fog_volume) {
|
|
return RendererRD::Fog::get_singleton()->fog_volume_instance_create(p_fog_volume);
|
|
}
|
|
|
|
void RendererSceneRenderRD::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) {
|
|
RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
|
|
ERR_FAIL_COND(!fvi);
|
|
fvi->transform = p_transform;
|
|
}
|
|
void RendererSceneRenderRD::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) {
|
|
RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
|
|
ERR_FAIL_COND(!fvi);
|
|
fvi->active = p_active;
|
|
}
|
|
|
|
RID RendererSceneRenderRD::fog_volume_instance_get_volume(RID p_fog_volume_instance) const {
|
|
RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
|
|
ERR_FAIL_COND_V(!fvi, RID());
|
|
return fvi->volume;
|
|
}
|
|
|
|
Vector3 RendererSceneRenderRD::fog_volume_instance_get_position(RID p_fog_volume_instance) const {
|
|
RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
|
|
ERR_FAIL_COND_V(!fvi, Vector3());
|
|
|
|
return fvi->transform.get_origin();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
RID RendererSceneRenderRD::reflection_atlas_create() {
|
|
ReflectionAtlas ra;
|
|
ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count");
|
|
ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size");
|
|
|
|
if (is_clustered_enabled()) {
|
|
ra.cluster_builder = memnew(ClusterBuilderRD);
|
|
ra.cluster_builder->set_shared(&cluster_builder_shared);
|
|
ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID());
|
|
} else {
|
|
ra.cluster_builder = nullptr;
|
|
}
|
|
|
|
return reflection_atlas_owner.make_rid(ra);
|
|
}
|
|
|
|
void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
|
|
ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas);
|
|
ERR_FAIL_COND(!ra);
|
|
|
|
if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
|
|
return; //no changes
|
|
}
|
|
|
|
if (ra->cluster_builder) {
|
|
// only if we're using our cluster
|
|
ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID());
|
|
}
|
|
|
|
ra->size = p_reflection_size;
|
|
ra->count = p_reflection_count;
|
|
|
|
if (ra->reflection.is_valid()) {
|
|
//clear and invalidate everything
|
|
RD::get_singleton()->free(ra->reflection);
|
|
ra->reflection = RID();
|
|
RD::get_singleton()->free(ra->depth_buffer);
|
|
ra->depth_buffer = RID();
|
|
for (int i = 0; i < ra->reflections.size(); i++) {
|
|
ra->reflections.write[i].data.clear_reflection_data();
|
|
if (ra->reflections[i].owner.is_null()) {
|
|
continue;
|
|
}
|
|
reflection_probe_release_atlas_index(ra->reflections[i].owner);
|
|
//rp->atlasindex clear
|
|
}
|
|
|
|
ra->reflections.clear();
|
|
}
|
|
}
|
|
|
|
int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const {
|
|
ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas);
|
|
ERR_FAIL_COND_V(!ra, 0);
|
|
|
|
return ra->size;
|
|
}
|
|
|
|
////////////////////////
|
|
RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) {
|
|
ReflectionProbeInstance rpi;
|
|
rpi.probe = p_probe;
|
|
rpi.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE);
|
|
|
|
return reflection_probe_instance_owner.make_rid(rpi);
|
|
}
|
|
|
|
void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND(!rpi);
|
|
|
|
rpi->transform = p_transform;
|
|
rpi->dirty = true;
|
|
}
|
|
|
|
void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND(!rpi);
|
|
|
|
if (rpi->atlas.is_null()) {
|
|
return; //nothing to release
|
|
}
|
|
ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
|
|
ERR_FAIL_COND(!atlas);
|
|
ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
|
|
atlas->reflections.write[rpi->atlas_index].owner = RID();
|
|
rpi->atlas_index = -1;
|
|
rpi->atlas = RID();
|
|
}
|
|
|
|
bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, false);
|
|
|
|
if (rpi->rendering) {
|
|
return false;
|
|
}
|
|
|
|
if (rpi->dirty) {
|
|
return true;
|
|
}
|
|
|
|
if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
|
|
return true;
|
|
}
|
|
|
|
return rpi->atlas_index == -1;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, false);
|
|
|
|
return rpi->atlas.is_valid();
|
|
}
|
|
|
|
bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
|
|
ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas);
|
|
|
|
ERR_FAIL_COND_V(!atlas, false);
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, false);
|
|
|
|
RD::get_singleton()->draw_command_begin_label("Reflection probe render");
|
|
|
|
if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
|
|
WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
|
|
reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
|
|
}
|
|
|
|
if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
|
|
// Invalidate reflection atlas, need to regenerate
|
|
RD::get_singleton()->free(atlas->reflection);
|
|
atlas->reflection = RID();
|
|
|
|
for (int i = 0; i < atlas->reflections.size(); i++) {
|
|
if (atlas->reflections[i].owner.is_null()) {
|
|
continue;
|
|
}
|
|
reflection_probe_release_atlas_index(atlas->reflections[i].owner);
|
|
}
|
|
|
|
atlas->reflections.clear();
|
|
}
|
|
|
|
if (atlas->reflection.is_null()) {
|
|
int mipmaps = MIN(sky.roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
|
|
mipmaps = RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
|
|
{
|
|
//reflection atlas was unused, create:
|
|
RD::TextureFormat tf;
|
|
tf.array_layers = 6 * atlas->count;
|
|
tf.format = _render_buffers_get_color_format();
|
|
tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
|
|
tf.mipmaps = mipmaps;
|
|
tf.width = atlas->size;
|
|
tf.height = atlas->size;
|
|
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | (_render_buffers_can_be_storage() ? RD::TEXTURE_USAGE_STORAGE_BIT : 0);
|
|
|
|
atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
}
|
|
{
|
|
RD::TextureFormat tf;
|
|
tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
|
|
tf.width = atlas->size;
|
|
tf.height = atlas->size;
|
|
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
|
|
atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
}
|
|
atlas->reflections.resize(atlas->count);
|
|
for (int i = 0; i < atlas->count; i++) {
|
|
atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, sky.roughness_layers, _render_buffers_get_color_format());
|
|
for (int j = 0; j < 6; j++) {
|
|
atlas->reflections.write[i].fbs[j] = reflection_probe_create_framebuffer(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j], atlas->depth_buffer);
|
|
}
|
|
}
|
|
|
|
Vector<RID> fb;
|
|
fb.push_back(atlas->depth_buffer);
|
|
atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
|
|
}
|
|
|
|
if (rpi->atlas_index == -1) {
|
|
for (int i = 0; i < atlas->reflections.size(); i++) {
|
|
if (atlas->reflections[i].owner.is_null()) {
|
|
rpi->atlas_index = i;
|
|
break;
|
|
}
|
|
}
|
|
//find the one used last
|
|
if (rpi->atlas_index == -1) {
|
|
//everything is in use, find the one least used via LRU
|
|
uint64_t pass_min = 0;
|
|
|
|
for (int i = 0; i < atlas->reflections.size(); i++) {
|
|
ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.get_or_null(atlas->reflections[i].owner);
|
|
if (rpi2->last_pass < pass_min) {
|
|
pass_min = rpi2->last_pass;
|
|
rpi->atlas_index = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rpi->atlas_index != -1) { // should we fail if this is still -1 ?
|
|
atlas->reflections.write[rpi->atlas_index].owner = p_instance;
|
|
}
|
|
|
|
rpi->atlas = p_reflection_atlas;
|
|
rpi->rendering = true;
|
|
rpi->dirty = false;
|
|
rpi->processing_layer = 1;
|
|
rpi->processing_side = 0;
|
|
|
|
RD::get_singleton()->draw_command_end_label();
|
|
|
|
return true;
|
|
}
|
|
|
|
RID RendererSceneRenderRD::reflection_probe_create_framebuffer(RID p_color, RID p_depth) {
|
|
Vector<RID> fb;
|
|
fb.push_back(p_color);
|
|
fb.push_back(p_depth);
|
|
return RD::get_singleton()->framebuffer_create(fb);
|
|
}
|
|
|
|
bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, false);
|
|
ERR_FAIL_COND_V(!rpi->rendering, false);
|
|
ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
|
|
|
|
ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
|
|
if (!atlas || rpi->atlas_index == -1) {
|
|
//does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
|
|
rpi->rendering = false;
|
|
return false;
|
|
}
|
|
|
|
if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
|
|
// Using real time reflections, all roughness is done in one step
|
|
atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(false);
|
|
rpi->rendering = false;
|
|
rpi->processing_side = 0;
|
|
rpi->processing_layer = 1;
|
|
return true;
|
|
}
|
|
|
|
if (rpi->processing_layer > 1) {
|
|
atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, 10, rpi->processing_layer, sky.sky_ggx_samples_quality);
|
|
rpi->processing_layer++;
|
|
if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
|
|
rpi->rendering = false;
|
|
rpi->processing_side = 0;
|
|
rpi->processing_layer = 1;
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
} else {
|
|
atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, rpi->processing_side, rpi->processing_layer, sky.sky_ggx_samples_quality);
|
|
}
|
|
|
|
rpi->processing_side++;
|
|
if (rpi->processing_side == 6) {
|
|
rpi->processing_side = 0;
|
|
rpi->processing_layer++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, 0);
|
|
|
|
ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
|
|
ERR_FAIL_COND_V(!atlas, 0);
|
|
return atlas->size;
|
|
}
|
|
|
|
RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, RID());
|
|
ERR_FAIL_INDEX_V(p_index, 6, RID());
|
|
|
|
ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
|
|
ERR_FAIL_COND_V(!atlas, RID());
|
|
return atlas->reflections[rpi->atlas_index].fbs[p_index];
|
|
}
|
|
|
|
RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, RID());
|
|
ERR_FAIL_INDEX_V(p_index, 6, RID());
|
|
|
|
ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
|
|
ERR_FAIL_COND_V(!atlas, RID());
|
|
return atlas->depth_fb;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////
|
|
|
|
RID RendererSceneRenderRD::shadow_atlas_create() {
|
|
return shadow_atlas_owner.make_rid(ShadowAtlas());
|
|
}
|
|
|
|
void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) {
|
|
if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) {
|
|
RD::TextureFormat tf;
|
|
tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
|
|
tf.width = shadow_atlas->size;
|
|
tf.height = shadow_atlas->size;
|
|
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
|
|
|
|
shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
Vector<RID> fb_tex;
|
|
fb_tex.push_back(shadow_atlas->depth);
|
|
shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex);
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_COND(p_size < 0);
|
|
p_size = next_power_of_2(p_size);
|
|
|
|
if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) {
|
|
return;
|
|
}
|
|
|
|
// erasing atlas
|
|
if (shadow_atlas->depth.is_valid()) {
|
|
RD::get_singleton()->free(shadow_atlas->depth);
|
|
shadow_atlas->depth = RID();
|
|
}
|
|
for (int i = 0; i < 4; i++) {
|
|
//clear subdivisions
|
|
shadow_atlas->quadrants[i].shadows.clear();
|
|
shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
|
|
}
|
|
|
|
//erase shadow atlas reference from lights
|
|
for (const KeyValue<RID, uint32_t> &E : shadow_atlas->shadow_owners) {
|
|
LightInstance *li = light_instance_owner.get_or_null(E.key);
|
|
ERR_CONTINUE(!li);
|
|
li->shadow_atlases.erase(p_atlas);
|
|
}
|
|
|
|
//clear owners
|
|
shadow_atlas->shadow_owners.clear();
|
|
|
|
shadow_atlas->size = p_size;
|
|
shadow_atlas->use_16_bits = p_16_bits;
|
|
}
|
|
|
|
void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_INDEX(p_quadrant, 4);
|
|
ERR_FAIL_INDEX(p_subdivision, 16384);
|
|
|
|
uint32_t subdiv = next_power_of_2(p_subdivision);
|
|
if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
|
|
subdiv <<= 1;
|
|
}
|
|
|
|
subdiv = int(Math::sqrt((float)subdiv));
|
|
|
|
//obtain the number that will be x*x
|
|
|
|
if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
|
|
return;
|
|
}
|
|
|
|
//erase all data from quadrant
|
|
for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
|
|
if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
|
|
shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
|
|
LightInstance *li = light_instance_owner.get_or_null(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
|
|
ERR_CONTINUE(!li);
|
|
li->shadow_atlases.erase(p_atlas);
|
|
}
|
|
}
|
|
|
|
shadow_atlas->quadrants[p_quadrant].shadows.clear();
|
|
shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
|
|
shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
|
|
|
|
//cache the smallest subdiv (for faster allocation in light update)
|
|
|
|
shadow_atlas->smallest_subdiv = 1 << 30;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
if (shadow_atlas->quadrants[i].subdivision) {
|
|
shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
|
|
}
|
|
}
|
|
|
|
if (shadow_atlas->smallest_subdiv == 1 << 30) {
|
|
shadow_atlas->smallest_subdiv = 0;
|
|
}
|
|
|
|
//resort the size orders, simple bublesort for 4 elements..
|
|
|
|
int swaps = 0;
|
|
do {
|
|
swaps = 0;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
|
|
SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
|
|
swaps++;
|
|
}
|
|
}
|
|
} while (swaps > 0);
|
|
}
|
|
|
|
bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
|
|
for (int i = p_quadrant_count - 1; i >= 0; i--) {
|
|
int qidx = p_in_quadrants[i];
|
|
|
|
if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
|
|
return false;
|
|
}
|
|
|
|
//look for an empty space
|
|
int sc = shadow_atlas->quadrants[qidx].shadows.size();
|
|
const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
|
|
|
|
int found_free_idx = -1; //found a free one
|
|
int found_used_idx = -1; //found existing one, must steal it
|
|
uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
|
|
|
|
for (int j = 0; j < sc; j++) {
|
|
if (!sarr[j].owner.is_valid()) {
|
|
found_free_idx = j;
|
|
break;
|
|
}
|
|
|
|
LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
|
|
ERR_CONTINUE(!sli);
|
|
|
|
if (sli->last_scene_pass != scene_pass) {
|
|
//was just allocated, don't kill it so soon, wait a bit..
|
|
if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
|
|
continue;
|
|
}
|
|
|
|
if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
|
|
found_used_idx = j;
|
|
min_pass = sli->last_scene_pass;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found_free_idx == -1 && found_used_idx == -1) {
|
|
continue; //nothing found
|
|
}
|
|
|
|
if (found_free_idx == -1 && found_used_idx != -1) {
|
|
found_free_idx = found_used_idx;
|
|
}
|
|
|
|
r_quadrant = qidx;
|
|
r_shadow = found_free_idx;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::_shadow_atlas_find_omni_shadows(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
|
|
for (int i = p_quadrant_count - 1; i >= 0; i--) {
|
|
int qidx = p_in_quadrants[i];
|
|
|
|
if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
|
|
return false;
|
|
}
|
|
|
|
//look for an empty space
|
|
int sc = shadow_atlas->quadrants[qidx].shadows.size();
|
|
const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
|
|
|
|
int found_idx = -1;
|
|
uint64_t min_pass = 0; // sum of currently selected spots, try to get the least recently used pair
|
|
|
|
for (int j = 0; j < sc - 1; j++) {
|
|
uint64_t pass = 0;
|
|
|
|
if (sarr[j].owner.is_valid()) {
|
|
LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
|
|
ERR_CONTINUE(!sli);
|
|
|
|
if (sli->last_scene_pass == scene_pass) {
|
|
continue;
|
|
}
|
|
|
|
//was just allocated, don't kill it so soon, wait a bit..
|
|
if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
|
|
continue;
|
|
}
|
|
pass += sli->last_scene_pass;
|
|
}
|
|
|
|
if (sarr[j + 1].owner.is_valid()) {
|
|
LightInstance *sli = light_instance_owner.get_or_null(sarr[j + 1].owner);
|
|
ERR_CONTINUE(!sli);
|
|
|
|
if (sli->last_scene_pass == scene_pass) {
|
|
continue;
|
|
}
|
|
|
|
//was just allocated, don't kill it so soon, wait a bit..
|
|
if (p_tick - sarr[j + 1].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
|
|
continue;
|
|
}
|
|
pass += sli->last_scene_pass;
|
|
}
|
|
|
|
if (found_idx == -1 || pass < min_pass) {
|
|
found_idx = j;
|
|
min_pass = pass;
|
|
|
|
// we found two empty spots, no need to check the rest
|
|
if (pass == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found_idx == -1) {
|
|
continue; //nothing found
|
|
}
|
|
|
|
r_quadrant = qidx;
|
|
r_shadow = found_idx;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) {
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
|
|
ERR_FAIL_COND_V(!shadow_atlas, false);
|
|
|
|
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
|
|
ERR_FAIL_COND_V(!li, false);
|
|
|
|
if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t quad_size = shadow_atlas->size >> 1;
|
|
int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
|
|
|
|
int valid_quadrants[4];
|
|
int valid_quadrant_count = 0;
|
|
int best_size = -1; //best size found
|
|
int best_subdiv = -1; //subdiv for the best size
|
|
|
|
//find the quadrants this fits into, and the best possible size it can fit into
|
|
for (int i = 0; i < 4; i++) {
|
|
int q = shadow_atlas->size_order[i];
|
|
int sd = shadow_atlas->quadrants[q].subdivision;
|
|
if (sd == 0) {
|
|
continue; //unused
|
|
}
|
|
|
|
int max_fit = quad_size / sd;
|
|
|
|
if (best_size != -1 && max_fit > best_size) {
|
|
break; //too large
|
|
}
|
|
|
|
valid_quadrants[valid_quadrant_count++] = q;
|
|
best_subdiv = sd;
|
|
|
|
if (max_fit >= desired_fit) {
|
|
best_size = max_fit;
|
|
}
|
|
}
|
|
|
|
ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
|
|
|
|
uint64_t tick = OS::get_singleton()->get_ticks_msec();
|
|
|
|
uint32_t old_key = ShadowAtlas::SHADOW_INVALID;
|
|
uint32_t old_quadrant = ShadowAtlas::SHADOW_INVALID;
|
|
uint32_t old_shadow = ShadowAtlas::SHADOW_INVALID;
|
|
int old_subdivision = -1;
|
|
|
|
bool should_realloc = false;
|
|
bool should_redraw = false;
|
|
|
|
if (shadow_atlas->shadow_owners.has(p_light_instance)) {
|
|
old_key = shadow_atlas->shadow_owners[p_light_instance];
|
|
old_quadrant = (old_key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
|
|
old_shadow = old_key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
should_realloc = shadow_atlas->quadrants[old_quadrant].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
|
|
should_redraw = shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].version != p_light_version;
|
|
|
|
if (!should_realloc) {
|
|
shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = p_light_version;
|
|
//already existing, see if it should redraw or it's just OK
|
|
return should_redraw;
|
|
}
|
|
|
|
old_subdivision = shadow_atlas->quadrants[old_quadrant].subdivision;
|
|
}
|
|
|
|
bool is_omni = li->light_type == RS::LIGHT_OMNI;
|
|
bool found_shadow = false;
|
|
int new_quadrant = -1;
|
|
int new_shadow = -1;
|
|
|
|
if (is_omni) {
|
|
found_shadow = _shadow_atlas_find_omni_shadows(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow);
|
|
} else {
|
|
found_shadow = _shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow);
|
|
}
|
|
|
|
if (found_shadow) {
|
|
if (old_quadrant != ShadowAtlas::SHADOW_INVALID) {
|
|
shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = 0;
|
|
shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].owner = RID();
|
|
|
|
if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) {
|
|
shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].version = 0;
|
|
shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].owner = RID();
|
|
}
|
|
}
|
|
|
|
uint32_t new_key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
|
|
new_key |= new_shadow;
|
|
|
|
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
|
|
_shadow_atlas_invalidate_shadow(sh, p_atlas, shadow_atlas, new_quadrant, new_shadow);
|
|
|
|
sh->owner = p_light_instance;
|
|
sh->alloc_tick = tick;
|
|
sh->version = p_light_version;
|
|
|
|
if (is_omni) {
|
|
new_key |= ShadowAtlas::OMNI_LIGHT_FLAG;
|
|
|
|
int new_omni_shadow = new_shadow + 1;
|
|
ShadowAtlas::Quadrant::Shadow *extra_sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_omni_shadow];
|
|
_shadow_atlas_invalidate_shadow(extra_sh, p_atlas, shadow_atlas, new_quadrant, new_omni_shadow);
|
|
|
|
extra_sh->owner = p_light_instance;
|
|
extra_sh->alloc_tick = tick;
|
|
extra_sh->version = p_light_version;
|
|
}
|
|
|
|
li->shadow_atlases.insert(p_atlas);
|
|
|
|
//update it in map
|
|
shadow_atlas->shadow_owners[p_light_instance] = new_key;
|
|
//make it dirty, as it should redraw anyway
|
|
return true;
|
|
}
|
|
|
|
return should_redraw;
|
|
}
|
|
|
|
void RendererSceneRenderRD::_shadow_atlas_invalidate_shadow(RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, RendererSceneRenderRD::ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx) {
|
|
if (p_shadow->owner.is_valid()) {
|
|
LightInstance *sli = light_instance_owner.get_or_null(p_shadow->owner);
|
|
uint32_t old_key = p_shadow_atlas->shadow_owners[p_shadow->owner];
|
|
|
|
if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) {
|
|
uint32_t s = old_key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
uint32_t omni_shadow_idx = p_shadow_idx + (s == (uint32_t)p_shadow_idx ? 1 : -1);
|
|
RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *omni_shadow = &p_shadow_atlas->quadrants[p_quadrant].shadows.write[omni_shadow_idx];
|
|
omni_shadow->version = 0;
|
|
omni_shadow->owner = RID();
|
|
}
|
|
|
|
p_shadow_atlas->shadow_owners.erase(p_shadow->owner);
|
|
p_shadow->version = 0;
|
|
p_shadow->owner = RID();
|
|
sli->shadow_atlases.erase(p_atlas);
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_update_directional_shadow_atlas() {
|
|
if (directional_shadow.depth.is_null() && directional_shadow.size > 0) {
|
|
RD::TextureFormat tf;
|
|
tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
|
|
tf.width = directional_shadow.size;
|
|
tf.height = directional_shadow.size;
|
|
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
|
|
|
|
directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
Vector<RID> fb_tex;
|
|
fb_tex.push_back(directional_shadow.depth);
|
|
directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex);
|
|
}
|
|
}
|
|
void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
|
|
p_size = nearest_power_of_2_templated(p_size);
|
|
|
|
if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) {
|
|
return;
|
|
}
|
|
|
|
directional_shadow.size = p_size;
|
|
directional_shadow.use_16_bits = p_16_bits;
|
|
|
|
if (directional_shadow.depth.is_valid()) {
|
|
RD::get_singleton()->free(directional_shadow.depth);
|
|
directional_shadow.depth = RID();
|
|
_base_uniforms_changed();
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::set_directional_shadow_count(int p_count) {
|
|
directional_shadow.light_count = p_count;
|
|
directional_shadow.current_light = 0;
|
|
}
|
|
|
|
static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
|
|
int split_h = 1;
|
|
int split_v = 1;
|
|
|
|
while (split_h * split_v < p_shadow_count) {
|
|
if (split_h == split_v) {
|
|
split_h <<= 1;
|
|
} else {
|
|
split_v <<= 1;
|
|
}
|
|
}
|
|
|
|
Rect2i rect(0, 0, p_size, p_size);
|
|
rect.size.width /= split_h;
|
|
rect.size.height /= split_v;
|
|
|
|
rect.position.x = rect.size.width * (p_shadow_index % split_h);
|
|
rect.position.y = rect.size.height * (p_shadow_index / split_h);
|
|
|
|
return rect;
|
|
}
|
|
|
|
int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) {
|
|
ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
|
|
|
|
Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
|
|
|
|
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_intance);
|
|
ERR_FAIL_COND_V(!light_instance, 0);
|
|
|
|
switch (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light)) {
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
|
|
break; //none
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
|
|
r.size.height /= 2;
|
|
break;
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
|
|
r.size /= 2;
|
|
break;
|
|
}
|
|
|
|
return MAX(r.size.width, r.size.height);
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
|
|
RID RendererSceneRenderRD::light_instance_create(RID p_light) {
|
|
RID li = light_instance_owner.make_rid(LightInstance());
|
|
|
|
LightInstance *light_instance = light_instance_owner.get_or_null(li);
|
|
|
|
light_instance->self = li;
|
|
light_instance->light = p_light;
|
|
light_instance->light_type = RSG::light_storage->light_get_type(p_light);
|
|
if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) {
|
|
light_instance->forward_id = _allocate_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT);
|
|
}
|
|
|
|
return li;
|
|
}
|
|
|
|
void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) {
|
|
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
light_instance->transform = p_transform;
|
|
}
|
|
|
|
void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
|
|
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
light_instance->aabb = p_aabb;
|
|
}
|
|
|
|
void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
|
|
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
ERR_FAIL_INDEX(p_pass, 6);
|
|
|
|
light_instance->shadow_transform[p_pass].camera = p_projection;
|
|
light_instance->shadow_transform[p_pass].transform = p_transform;
|
|
light_instance->shadow_transform[p_pass].farplane = p_far;
|
|
light_instance->shadow_transform[p_pass].split = p_split;
|
|
light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
|
|
light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
|
|
light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
|
|
light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
|
|
}
|
|
|
|
void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) {
|
|
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
light_instance->last_scene_pass = scene_pass;
|
|
}
|
|
|
|
RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) {
|
|
if (!shadow_cubemaps.has(p_size)) {
|
|
ShadowCubemap sc;
|
|
{
|
|
RD::TextureFormat tf;
|
|
tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
|
|
tf.width = p_size;
|
|
tf.height = p_size;
|
|
tf.texture_type = RD::TEXTURE_TYPE_CUBE;
|
|
tf.array_layers = 6;
|
|
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
|
|
sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
}
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
|
|
Vector<RID> fbtex;
|
|
fbtex.push_back(side_texture);
|
|
sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
|
|
}
|
|
|
|
shadow_cubemaps[p_size] = sc;
|
|
}
|
|
|
|
return &shadow_cubemaps[p_size];
|
|
}
|
|
|
|
//////////////////////////
|
|
|
|
RID RendererSceneRenderRD::decal_instance_create(RID p_decal) {
|
|
DecalInstance di;
|
|
di.decal = p_decal;
|
|
di.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_DECAL);
|
|
return decal_instance_owner.make_rid(di);
|
|
}
|
|
|
|
void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) {
|
|
DecalInstance *di = decal_instance_owner.get_or_null(p_decal);
|
|
ERR_FAIL_COND(!di);
|
|
di->transform = p_transform;
|
|
}
|
|
|
|
/////////////////////////////////
|
|
|
|
RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) {
|
|
LightmapInstance li;
|
|
li.lightmap = p_lightmap;
|
|
return lightmap_instance_owner.make_rid(li);
|
|
}
|
|
void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) {
|
|
LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap);
|
|
ERR_FAIL_COND(!li);
|
|
li->transform = p_transform;
|
|
}
|
|
|
|
/////////////////////////////////
|
|
|
|
RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) {
|
|
return gi.voxel_gi_instance_create(p_base);
|
|
}
|
|
|
|
void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
|
|
gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform);
|
|
}
|
|
|
|
bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const {
|
|
if (!is_dynamic_gi_supported()) {
|
|
return false;
|
|
}
|
|
|
|
return gi.voxel_gi_needs_update(p_probe);
|
|
}
|
|
|
|
void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
|
|
if (!is_dynamic_gi_supported()) {
|
|
return;
|
|
}
|
|
|
|
gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects, this);
|
|
}
|
|
|
|
void RendererSceneRenderRD::_debug_sdfgi_probes(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms, bool p_will_continue_color, bool p_will_continue_depth) {
|
|
ERR_FAIL_COND(p_render_buffers.is_null());
|
|
|
|
if (!p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
return; //nothing to debug
|
|
}
|
|
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
|
|
|
|
sdfgi->debug_probes(p_framebuffer, p_view_count, p_camera_with_transforms, p_will_continue_color, p_will_continue_depth);
|
|
}
|
|
|
|
////////////////////////////////
|
|
Ref<RenderSceneBuffers> RendererSceneRenderRD::render_buffers_create() {
|
|
Ref<RenderSceneBuffersRD> rb;
|
|
rb.instantiate();
|
|
|
|
rb->set_can_be_storage(_render_buffers_can_be_storage());
|
|
rb->set_max_cluster_elements(max_cluster_elements);
|
|
rb->set_base_data_format(_render_buffers_get_color_format());
|
|
if (ss_effects) {
|
|
rb->set_sseffects(ss_effects);
|
|
}
|
|
if (vrs) {
|
|
rb->set_vrs(vrs);
|
|
}
|
|
|
|
setup_render_buffer_data(rb);
|
|
|
|
return rb;
|
|
}
|
|
|
|
void RendererSceneRenderRD::_allocate_luminance_textures(Ref<RenderSceneBuffersRD> rb) {
|
|
ERR_FAIL_COND(!rb->luminance.current.is_null());
|
|
|
|
Size2i internal_size = rb->get_internal_size();
|
|
int w = internal_size.x;
|
|
int h = internal_size.y;
|
|
|
|
while (true) {
|
|
w = MAX(w / 8, 1);
|
|
h = MAX(h / 8, 1);
|
|
|
|
RD::TextureFormat tf;
|
|
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
|
|
tf.width = w;
|
|
tf.height = h;
|
|
|
|
bool final = w == 1 && h == 1;
|
|
|
|
if (_render_buffers_can_be_storage()) {
|
|
tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
|
|
if (final) {
|
|
tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
|
|
}
|
|
} else {
|
|
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
|
|
}
|
|
|
|
RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
|
|
rb->luminance.reduce.push_back(texture);
|
|
if (!_render_buffers_can_be_storage()) {
|
|
Vector<RID> fb;
|
|
fb.push_back(texture);
|
|
|
|
rb->luminance.fb.push_back(RD::get_singleton()->framebuffer_create(fb));
|
|
}
|
|
|
|
if (final) {
|
|
rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
|
|
if (!_render_buffers_can_be_storage()) {
|
|
Vector<RID> fb;
|
|
fb.push_back(rb->luminance.current);
|
|
|
|
rb->luminance.current_fb = RD::get_singleton()->framebuffer_create(fb);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_process_sss(Ref<RenderSceneBuffersRD> p_render_buffers, const Projection &p_camera) {
|
|
ERR_FAIL_COND(p_render_buffers.is_null());
|
|
|
|
Size2i internal_size = p_render_buffers->get_internal_size();
|
|
bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8;
|
|
|
|
if (!can_use_effects) {
|
|
//just copy
|
|
return;
|
|
}
|
|
|
|
p_render_buffers->allocate_blur_textures();
|
|
|
|
for (uint32_t v = 0; v < p_render_buffers->get_view_count(); v++) {
|
|
RID internal_texture = p_render_buffers->get_internal_texture(v);
|
|
RID depth_texture = p_render_buffers->get_depth_texture(v);
|
|
ss_effects->sub_surface_scattering(p_render_buffers, internal_texture, depth_texture, p_camera, internal_size, sss_scale, sss_depth_scale, sss_quality);
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_process_ssr(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_dest_framebuffer, const RID *p_normal_slices, RID p_specular_buffer, const RID *p_metallic_slices, RID p_environment, const Projection *p_projections, const Vector3 *p_eye_offsets, bool p_use_additive) {
|
|
ERR_FAIL_NULL(ss_effects);
|
|
ERR_FAIL_COND(p_render_buffers.is_null());
|
|
|
|
Size2i internal_size = p_render_buffers->get_internal_size();
|
|
bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8;
|
|
uint32_t view_count = p_render_buffers->get_view_count();
|
|
|
|
if (!can_use_effects) {
|
|
//just copy
|
|
copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), RID(), view_count);
|
|
return;
|
|
}
|
|
|
|
ERR_FAIL_COND(p_environment.is_null());
|
|
ERR_FAIL_COND(!environment_get_ssr_enabled(p_environment));
|
|
|
|
Size2i half_size = Size2i(internal_size.x / 2, internal_size.y / 2);
|
|
if (p_render_buffers->ssr.output.is_null()) {
|
|
ss_effects->ssr_allocate_buffers(p_render_buffers->ssr, _render_buffers_get_color_format(), ssr_roughness_quality, half_size, view_count);
|
|
}
|
|
RID texture_slices[RendererSceneRender::MAX_RENDER_VIEWS];
|
|
RID depth_slices[RendererSceneRender::MAX_RENDER_VIEWS];
|
|
for (uint32_t v = 0; v < view_count; v++) {
|
|
texture_slices[v] = p_render_buffers->get_internal_texture(v);
|
|
depth_slices[v] = p_render_buffers->get_depth_texture(v);
|
|
}
|
|
ss_effects->screen_space_reflection(p_render_buffers->ssr, texture_slices, p_normal_slices, ssr_roughness_quality, p_metallic_slices, depth_slices, half_size, environment_get_ssr_max_steps(p_environment), environment_get_ssr_fade_in(p_environment), environment_get_ssr_fade_out(p_environment), environment_get_ssr_depth_tolerance(p_environment), view_count, p_projections, p_eye_offsets);
|
|
copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), p_render_buffers->ssr.output, view_count);
|
|
}
|
|
|
|
void RendererSceneRenderRD::_process_ssao(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection) {
|
|
ERR_FAIL_NULL(ss_effects);
|
|
ERR_FAIL_COND(p_render_buffers.is_null());
|
|
ERR_FAIL_COND(p_environment.is_null());
|
|
|
|
RENDER_TIMESTAMP("Process SSAO");
|
|
|
|
RendererRD::SSEffects::SSAOSettings settings;
|
|
settings.radius = environment_get_ssao_radius(p_environment);
|
|
settings.intensity = environment_get_ssao_intensity(p_environment);
|
|
settings.power = environment_get_ssao_power(p_environment);
|
|
settings.detail = environment_get_ssao_detail(p_environment);
|
|
settings.horizon = environment_get_ssao_horizon(p_environment);
|
|
settings.sharpness = environment_get_ssao_sharpness(p_environment);
|
|
|
|
settings.quality = ssao_quality;
|
|
settings.half_size = ssao_half_size;
|
|
settings.adaptive_target = ssao_adaptive_target;
|
|
settings.blur_passes = ssao_blur_passes;
|
|
settings.fadeout_from = ssao_fadeout_from;
|
|
settings.fadeout_to = ssao_fadeout_to;
|
|
settings.full_screen_size = p_render_buffers->get_internal_size();
|
|
|
|
ss_effects->ssao_allocate_buffers(p_render_buffers->ss_effects.ssao, settings, p_render_buffers->ss_effects.linear_depth);
|
|
ss_effects->generate_ssao(p_render_buffers->ss_effects.ssao, p_normal_buffer, p_projection, settings);
|
|
}
|
|
|
|
void RendererSceneRenderRD::_process_ssil(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection, const Transform3D &p_transform) {
|
|
ERR_FAIL_NULL(ss_effects);
|
|
ERR_FAIL_COND(p_render_buffers.is_null());
|
|
ERR_FAIL_COND(p_environment.is_null());
|
|
|
|
RENDER_TIMESTAMP("Process SSIL");
|
|
|
|
RendererRD::SSEffects::SSILSettings settings;
|
|
settings.radius = environment_get_ssil_radius(p_environment);
|
|
settings.intensity = environment_get_ssil_intensity(p_environment);
|
|
settings.sharpness = environment_get_ssil_sharpness(p_environment);
|
|
settings.normal_rejection = environment_get_ssil_normal_rejection(p_environment);
|
|
|
|
settings.quality = ssil_quality;
|
|
settings.half_size = ssil_half_size;
|
|
settings.adaptive_target = ssil_adaptive_target;
|
|
settings.blur_passes = ssil_blur_passes;
|
|
settings.fadeout_from = ssil_fadeout_from;
|
|
settings.fadeout_to = ssil_fadeout_to;
|
|
settings.full_screen_size = p_render_buffers->get_internal_size();
|
|
|
|
Projection correction;
|
|
correction.set_depth_correction(true);
|
|
Projection projection = correction * p_projection;
|
|
Transform3D transform = p_transform;
|
|
transform.set_origin(Vector3(0.0, 0.0, 0.0));
|
|
Projection last_frame_projection = p_render_buffers->ss_effects.last_frame_projection * Projection(p_render_buffers->ss_effects.last_frame_transform.affine_inverse()) * Projection(transform) * projection.inverse();
|
|
|
|
ss_effects->ssil_allocate_buffers(p_render_buffers->ss_effects.ssil, settings, p_render_buffers->ss_effects.linear_depth);
|
|
ss_effects->screen_space_indirect_lighting(p_render_buffers->ss_effects.ssil, p_normal_buffer, p_projection, last_frame_projection, settings);
|
|
p_render_buffers->ss_effects.last_frame_projection = projection;
|
|
p_render_buffers->ss_effects.last_frame_transform = transform;
|
|
}
|
|
|
|
void RendererSceneRenderRD::_copy_framebuffer_to_ssil(Ref<RenderSceneBuffersRD> p_render_buffers) {
|
|
ERR_FAIL_COND(p_render_buffers.is_null());
|
|
|
|
if (p_render_buffers->ss_effects.ssil.last_frame.is_valid()) {
|
|
Size2i size = p_render_buffers->get_internal_size();
|
|
RID texture = p_render_buffers->get_internal_texture();
|
|
copy_effects->copy_to_rect(texture, p_render_buffers->ss_effects.ssil.last_frame, Rect2i(0, 0, size.x, size.y));
|
|
|
|
int width = size.x;
|
|
int height = size.y;
|
|
for (int i = 0; i < p_render_buffers->ss_effects.ssil.last_frame_slices.size() - 1; i++) {
|
|
width = MAX(1, width >> 1);
|
|
height = MAX(1, height >> 1);
|
|
copy_effects->make_mipmap(p_render_buffers->ss_effects.ssil.last_frame_slices[i], p_render_buffers->ss_effects.ssil.last_frame_slices[i + 1], Size2i(width, height));
|
|
}
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_render_buffers_copy_screen_texture(const RenderDataRD *p_render_data) {
|
|
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
|
|
ERR_FAIL_COND(rb.is_null());
|
|
|
|
RD::get_singleton()->draw_command_begin_label("Copy screen texture");
|
|
|
|
rb->allocate_blur_textures();
|
|
|
|
bool can_use_storage = _render_buffers_can_be_storage();
|
|
Size2i size = rb->get_internal_size();
|
|
|
|
for (uint32_t v = 0; v < rb->get_view_count(); v++) {
|
|
RID texture = rb->get_internal_texture(v);
|
|
int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0).mipmaps);
|
|
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, 0);
|
|
|
|
if (can_use_storage) {
|
|
copy_effects->copy_to_rect(texture, dest, Rect2i(0, 0, size.x, size.y));
|
|
} else {
|
|
RID fb = FramebufferCacheRD::get_singleton()->get_cache(dest);
|
|
copy_effects->copy_to_fb_rect(texture, fb, Rect2i(0, 0, size.x, size.y));
|
|
}
|
|
|
|
for (int i = 1; i < mipmaps; i++) {
|
|
RID source = dest;
|
|
dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i);
|
|
Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i);
|
|
|
|
if (can_use_storage) {
|
|
copy_effects->make_mipmap(source, dest, msize);
|
|
} else {
|
|
copy_effects->make_mipmap_raster(source, dest, msize);
|
|
}
|
|
}
|
|
}
|
|
|
|
RD::get_singleton()->draw_command_end_label();
|
|
}
|
|
|
|
void RendererSceneRenderRD::_render_buffers_copy_depth_texture(const RenderDataRD *p_render_data) {
|
|
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
|
|
ERR_FAIL_COND(rb.is_null());
|
|
|
|
RD::get_singleton()->draw_command_begin_label("Copy depth texture");
|
|
|
|
// note, this only creates our back depth texture if we haven't already created it.
|
|
uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
|
|
usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
|
|
usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; // set this as color attachment because we're copying data into it, it's not actually used as a depth buffer
|
|
|
|
rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, RD::DATA_FORMAT_R32_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1);
|
|
|
|
bool can_use_storage = _render_buffers_can_be_storage();
|
|
Size2i size = rb->get_internal_size();
|
|
for (uint32_t v = 0; v < p_render_data->scene_data->view_count; v++) {
|
|
RID depth_texture = rb->get_depth_texture(v);
|
|
RID depth_back_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, v, 0);
|
|
|
|
if (can_use_storage) {
|
|
copy_effects->copy_to_rect(depth_texture, depth_back_texture, Rect2i(0, 0, size.x, size.y));
|
|
} else {
|
|
RID depth_back_fb = FramebufferCacheRD::get_singleton()->get_cache(depth_back_texture);
|
|
copy_effects->copy_to_fb_rect(depth_texture, depth_back_fb, Rect2i(0, 0, size.x, size.y));
|
|
}
|
|
}
|
|
|
|
RD::get_singleton()->draw_command_end_label();
|
|
}
|
|
|
|
void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) {
|
|
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
|
|
|
|
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
|
|
ERR_FAIL_COND(rb.is_null());
|
|
|
|
// Glow, auto exposure and DoF (if enabled).
|
|
|
|
Size2i internal_size = rb->get_internal_size();
|
|
Size2i target_size = rb->get_target_size();
|
|
|
|
bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; // FIXME I think this should check internal size, we do all our post processing at this size...
|
|
bool can_use_storage = _render_buffers_can_be_storage();
|
|
|
|
RID render_target = rb->get_render_target();
|
|
RID internal_texture = rb->get_internal_texture();
|
|
|
|
if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_dof(p_render_data->camera_attributes)) {
|
|
RENDER_TIMESTAMP("Depth of Field");
|
|
RD::get_singleton()->draw_command_begin_label("DOF");
|
|
|
|
rb->allocate_blur_textures();
|
|
|
|
RendererRD::BokehDOF::BokehBuffers buffers;
|
|
|
|
// Textures we use
|
|
buffers.base_texture_size = rb->get_internal_size();
|
|
buffers.secondary_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 0);
|
|
buffers.half_texture[0] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
|
|
buffers.half_texture[1] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 1);
|
|
|
|
if (can_use_storage) {
|
|
for (uint32_t i = 0; i < rb->get_view_count(); i++) {
|
|
buffers.base_texture = rb->get_internal_texture(i);
|
|
buffers.depth_texture = rb->get_depth_texture(i);
|
|
|
|
// In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum
|
|
float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
|
|
float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
|
|
bokeh_dof->bokeh_dof_compute(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
|
|
};
|
|
} else {
|
|
// Set framebuffers.
|
|
buffers.secondary_fb = rb->weight_buffers[1].fb;
|
|
buffers.half_fb[0] = rb->weight_buffers[2].fb;
|
|
buffers.half_fb[1] = rb->weight_buffers[3].fb;
|
|
buffers.weight_texture[0] = rb->weight_buffers[0].weight;
|
|
buffers.weight_texture[1] = rb->weight_buffers[1].weight;
|
|
buffers.weight_texture[2] = rb->weight_buffers[2].weight;
|
|
buffers.weight_texture[3] = rb->weight_buffers[3].weight;
|
|
|
|
// Set weight buffers.
|
|
buffers.base_weight_fb = rb->weight_buffers[0].fb;
|
|
|
|
for (uint32_t i = 0; i < rb->get_view_count(); i++) {
|
|
buffers.base_texture = rb->get_internal_texture(i);
|
|
buffers.depth_texture = rb->get_depth_texture(i);
|
|
buffers.base_fb = FramebufferCacheRD::get_singleton()->get_cache(buffers.base_texture); // TODO move this into bokeh_dof_raster, we can do this internally
|
|
|
|
// In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum
|
|
float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
|
|
float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
|
|
bokeh_dof->bokeh_dof_raster(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
|
|
}
|
|
}
|
|
RD::get_singleton()->draw_command_end_label();
|
|
}
|
|
|
|
float auto_exposure_scale = 1.0;
|
|
|
|
if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
|
|
RENDER_TIMESTAMP("Auto exposure");
|
|
|
|
RD::get_singleton()->draw_command_begin_label("Auto exposure");
|
|
if (rb->luminance.current.is_null()) {
|
|
_allocate_luminance_textures(rb);
|
|
}
|
|
uint64_t auto_exposure_version = RSG::camera_attributes->camera_attributes_get_auto_exposure_version(p_render_data->camera_attributes);
|
|
bool set_immediate = auto_exposure_version != rb->get_auto_exposure_version();
|
|
rb->set_auto_exposure_version(auto_exposure_version);
|
|
|
|
double step = RSG::camera_attributes->camera_attributes_get_auto_exposure_adjust_speed(p_render_data->camera_attributes) * time_step;
|
|
float auto_exposure_min_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_min_sensitivity(p_render_data->camera_attributes);
|
|
float auto_exposure_max_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_max_sensitivity(p_render_data->camera_attributes);
|
|
if (can_use_storage) {
|
|
RendererCompositorRD::singleton->get_effects()->luminance_reduction(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
|
|
} else {
|
|
RendererCompositorRD::singleton->get_effects()->luminance_reduction_raster(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.fb, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
|
|
}
|
|
// Swap final reduce with prev luminance.
|
|
SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
|
|
if (!can_use_storage) {
|
|
SWAP(rb->luminance.current_fb, rb->luminance.fb.write[rb->luminance.fb.size() - 1]);
|
|
}
|
|
|
|
auto_exposure_scale = RSG::camera_attributes->camera_attributes_get_auto_exposure_scale(p_render_data->camera_attributes);
|
|
|
|
RenderingServerDefault::redraw_request(); // Redraw all the time if auto exposure rendering is on.
|
|
RD::get_singleton()->draw_command_end_label();
|
|
}
|
|
|
|
int max_glow_level = -1;
|
|
|
|
if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
|
|
RENDER_TIMESTAMP("Glow");
|
|
RD::get_singleton()->draw_command_begin_label("Gaussian Glow");
|
|
|
|
rb->allocate_blur_textures();
|
|
|
|
for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
|
|
if (environment_get_glow_levels(p_render_data->environment)[i] > 0.0) {
|
|
int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps);
|
|
if (i >= mipmaps) {
|
|
max_glow_level = mipmaps - 1;
|
|
} else {
|
|
max_glow_level = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
float luminance_multiplier = _render_buffers_get_luminance_multiplier();
|
|
for (uint32_t l = 0; l < rb->get_view_count(); l++) {
|
|
for (int i = 0; i < (max_glow_level + 1); i++) {
|
|
Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
|
|
|
|
if (i == 0) {
|
|
RID luminance_texture;
|
|
if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) {
|
|
luminance_texture = rb->luminance.current;
|
|
}
|
|
RID source = rb->get_internal_texture(l);
|
|
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
|
|
if (can_use_storage) {
|
|
copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
|
|
} else {
|
|
RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
|
|
copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
|
|
}
|
|
} else {
|
|
RID source = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i - 1);
|
|
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
|
|
|
|
if (can_use_storage) {
|
|
copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality);
|
|
} else {
|
|
RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
|
|
copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
RD::get_singleton()->draw_command_end_label();
|
|
}
|
|
|
|
{
|
|
RENDER_TIMESTAMP("Tonemap");
|
|
RD::get_singleton()->draw_command_begin_label("Tonemap");
|
|
|
|
RendererRD::ToneMapper::TonemapSettings tonemap;
|
|
|
|
if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) {
|
|
tonemap.use_auto_exposure = true;
|
|
tonemap.exposure_texture = rb->luminance.current;
|
|
tonemap.auto_exposure_scale = auto_exposure_scale;
|
|
} else {
|
|
tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
|
|
}
|
|
|
|
if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
|
|
tonemap.use_glow = true;
|
|
tonemap.glow_mode = RendererRD::ToneMapper::TonemapSettings::GlowMode(environment_get_glow_blend_mode(p_render_data->environment));
|
|
tonemap.glow_intensity = environment_get_glow_blend_mode(p_render_data->environment) == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment);
|
|
for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
|
|
tonemap.glow_levels[i] = environment_get_glow_levels(p_render_data->environment)[i];
|
|
}
|
|
|
|
Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
|
|
tonemap.glow_texture_size.x = msize.width;
|
|
tonemap.glow_texture_size.y = msize.height;
|
|
tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
|
|
tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1);
|
|
if (environment_get_glow_map(p_render_data->environment).is_valid()) {
|
|
tonemap.glow_map_strength = environment_get_glow_map_strength(p_render_data->environment);
|
|
tonemap.glow_map = texture_storage->texture_get_rd_texture(environment_get_glow_map(p_render_data->environment));
|
|
} else {
|
|
tonemap.glow_map_strength = 0.0f;
|
|
tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
|
|
}
|
|
|
|
} else {
|
|
tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
|
|
tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
|
|
}
|
|
|
|
if (rb->get_screen_space_aa() == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
|
|
tonemap.use_fxaa = true;
|
|
}
|
|
|
|
tonemap.use_debanding = rb->get_use_debanding();
|
|
tonemap.texture_size = Vector2i(rb->get_internal_size().x, rb->get_internal_size().y);
|
|
|
|
if (p_render_data->environment.is_valid()) {
|
|
tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
|
|
tonemap.white = environment_get_white(p_render_data->environment);
|
|
tonemap.exposure = environment_get_exposure(p_render_data->environment);
|
|
}
|
|
|
|
tonemap.use_color_correction = false;
|
|
tonemap.use_1d_color_correction = false;
|
|
tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
|
|
|
|
if (can_use_effects && p_render_data->environment.is_valid()) {
|
|
tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
|
|
tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
|
|
tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
|
|
tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
|
|
if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
|
|
tonemap.use_color_correction = true;
|
|
tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
|
|
tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment));
|
|
}
|
|
}
|
|
|
|
tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
|
|
tonemap.view_count = rb->get_view_count();
|
|
|
|
RID dest_fb;
|
|
if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) {
|
|
// If we use FSR to upscale we need to write our result into an intermediate buffer.
|
|
// Note that this is cached so we only create the texture the first time.
|
|
RID dest_texture = rb->create_texture(SNAME("Tonemapper"), SNAME("destination"), _render_buffers_get_color_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT);
|
|
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
|
|
} else {
|
|
// If we do a bilinear upscale we just render into our render target and our shader will upscale automatically.
|
|
// Target size in this case is lying as we never get our real target size communicated.
|
|
// Bit nasty but...
|
|
dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
|
|
}
|
|
|
|
tone_mapper->tonemapper(internal_texture, dest_fb, tonemap);
|
|
|
|
RD::get_singleton()->draw_command_end_label();
|
|
}
|
|
|
|
if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) {
|
|
// TODO Investigate? Does this work? We never write into our render target and we've already done so up above in our tonemapper.
|
|
// I think FSR should either work before our tonemapper or as an alternative of our tonemapper.
|
|
|
|
RD::get_singleton()->draw_command_begin_label("FSR 1.0 Upscale");
|
|
|
|
for (uint32_t v = 0; v < rb->get_view_count(); v++) {
|
|
RID source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0);
|
|
RID dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v);
|
|
|
|
fsr->fsr_upscale(rb, source_texture, dest_texture);
|
|
}
|
|
|
|
RD::get_singleton()->draw_command_end_label();
|
|
}
|
|
|
|
texture_storage->render_target_disable_clear_request(render_target);
|
|
}
|
|
|
|
void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data) {
|
|
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
|
|
RD::get_singleton()->draw_command_begin_label("Post Process Subpass");
|
|
|
|
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
|
|
ERR_FAIL_COND(rb.is_null());
|
|
|
|
// FIXME: Our input it our internal_texture, shouldn't this be using internal_size ??
|
|
// Seeing we don't support FSR in our mobile renderer right now target_size = internal_size...
|
|
Size2i target_size = rb->get_target_size();
|
|
bool can_use_effects = target_size.x >= 8 && target_size.y >= 8;
|
|
|
|
RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass();
|
|
|
|
RendererRD::ToneMapper::TonemapSettings tonemap;
|
|
|
|
if (p_render_data->environment.is_valid()) {
|
|
tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
|
|
tonemap.exposure = environment_get_exposure(p_render_data->environment);
|
|
tonemap.white = environment_get_white(p_render_data->environment);
|
|
}
|
|
|
|
// We don't support glow or auto exposure here, if they are needed, don't use subpasses!
|
|
// The problem is that we need to use the result so far and process them before we can
|
|
// apply this to our results.
|
|
if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
|
|
ERR_FAIL_MSG("Glow is not supported when using subpasses.");
|
|
}
|
|
|
|
if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
|
|
ERR_FAIL_MSG("Auto Exposure is not supported when using subpasses.");
|
|
}
|
|
|
|
tonemap.use_glow = false;
|
|
tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
|
|
tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
|
|
tonemap.use_auto_exposure = false;
|
|
tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
|
|
|
|
tonemap.use_color_correction = false;
|
|
tonemap.use_1d_color_correction = false;
|
|
tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
|
|
|
|
if (can_use_effects && p_render_data->environment.is_valid()) {
|
|
tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
|
|
tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
|
|
tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
|
|
tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
|
|
if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
|
|
tonemap.use_color_correction = true;
|
|
tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
|
|
tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment));
|
|
}
|
|
}
|
|
|
|
tonemap.use_debanding = rb->get_use_debanding();
|
|
tonemap.texture_size = Vector2i(target_size.x, target_size.y);
|
|
|
|
tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
|
|
tonemap.view_count = rb->get_view_count();
|
|
|
|
tone_mapper->tonemapper(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap);
|
|
|
|
RD::get_singleton()->draw_command_end_label();
|
|
}
|
|
|
|
void RendererSceneRenderRD::_disable_clear_request(const RenderDataRD *p_render_data) {
|
|
ERR_FAIL_COND(p_render_data->render_buffers.is_null());
|
|
|
|
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
|
|
texture_storage->render_target_disable_clear_request(p_render_data->render_buffers->get_render_target());
|
|
}
|
|
|
|
void RendererSceneRenderRD::_render_buffers_debug_draw(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) {
|
|
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
|
|
|
|
ERR_FAIL_COND(p_render_buffers.is_null());
|
|
|
|
RID render_target = p_render_buffers->get_render_target();
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
|
|
if (p_shadow_atlas.is_valid()) {
|
|
RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
|
|
|
|
if (shadow_atlas_texture.is_null()) {
|
|
shadow_atlas_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
|
|
}
|
|
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
|
|
}
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
|
|
if (directional_shadow_get_texture().is_valid()) {
|
|
RID shadow_atlas_texture = directional_shadow_get_texture();
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
|
|
copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
|
|
}
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
|
|
RID decal_atlas = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture();
|
|
|
|
if (decal_atlas.is_valid()) {
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
|
|
copy_effects->copy_to_fb_rect(decal_atlas, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
|
|
}
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
|
|
if (p_render_buffers->luminance.current.is_valid()) {
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
|
|
copy_effects->copy_to_fb_rect(p_render_buffers->luminance.current, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize / 8), false, true);
|
|
}
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && p_render_buffers->ss_effects.ssao.ao_final.is_valid()) {
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssao.ao_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, true);
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSIL && p_render_buffers->ss_effects.ssil.ssil_final.is_valid()) {
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssil.ssil_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) {
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
RID ambient_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_AMBIENT);
|
|
RID reflection_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_REFLECTION);
|
|
copy_effects->copy_to_fb_rect(ambient_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture, p_render_buffers->get_view_count() > 1);
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) {
|
|
if (p_occlusion_buffer.is_valid()) {
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
copy_effects->copy_to_fb_rect(texture_storage->texture_get_rd_texture(p_occlusion_buffer), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize), true, false);
|
|
}
|
|
}
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_MOTION_VECTORS && _render_buffers_get_velocity_texture(p_render_buffers).is_valid()) {
|
|
Size2 rtsize = texture_storage->render_target_get_size(render_target);
|
|
copy_effects->copy_to_fb_rect(_render_buffers_get_velocity_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
|
|
}
|
|
}
|
|
|
|
RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() {
|
|
return gi.default_voxel_gi_buffer;
|
|
}
|
|
|
|
float RendererSceneRenderRD::_render_buffers_get_luminance_multiplier() {
|
|
return 1.0;
|
|
}
|
|
|
|
RD::DataFormat RendererSceneRenderRD::_render_buffers_get_color_format() {
|
|
return RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::_render_buffers_can_be_storage() {
|
|
return true;
|
|
}
|
|
|
|
void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) {
|
|
gi.half_resolution = p_enable;
|
|
}
|
|
|
|
void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
|
|
sss_quality = p_quality;
|
|
}
|
|
|
|
RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const {
|
|
return sss_quality;
|
|
}
|
|
|
|
void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
|
|
sss_scale = p_scale;
|
|
sss_depth_scale = p_depth_scale;
|
|
}
|
|
|
|
void RendererSceneRenderRD::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
|
|
ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
|
|
|
|
if (shadows_quality != p_quality) {
|
|
shadows_quality = p_quality;
|
|
|
|
switch (shadows_quality) {
|
|
case RS::SHADOW_QUALITY_HARD: {
|
|
penumbra_shadow_samples = 4;
|
|
soft_shadow_samples = 0;
|
|
shadows_quality_radius = 1.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
|
|
penumbra_shadow_samples = 4;
|
|
soft_shadow_samples = 1;
|
|
shadows_quality_radius = 1.5;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_LOW: {
|
|
penumbra_shadow_samples = 8;
|
|
soft_shadow_samples = 4;
|
|
shadows_quality_radius = 2.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
|
|
penumbra_shadow_samples = 12;
|
|
soft_shadow_samples = 8;
|
|
shadows_quality_radius = 2.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_HIGH: {
|
|
penumbra_shadow_samples = 24;
|
|
soft_shadow_samples = 16;
|
|
shadows_quality_radius = 3.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_ULTRA: {
|
|
penumbra_shadow_samples = 32;
|
|
soft_shadow_samples = 32;
|
|
shadows_quality_radius = 4.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_MAX:
|
|
break;
|
|
}
|
|
get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
|
|
get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
|
|
}
|
|
|
|
_update_shader_quality_settings();
|
|
}
|
|
|
|
void RendererSceneRenderRD::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
|
|
ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
|
|
|
|
if (directional_shadow_quality != p_quality) {
|
|
directional_shadow_quality = p_quality;
|
|
|
|
switch (directional_shadow_quality) {
|
|
case RS::SHADOW_QUALITY_HARD: {
|
|
directional_penumbra_shadow_samples = 4;
|
|
directional_soft_shadow_samples = 0;
|
|
directional_shadow_quality_radius = 1.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
|
|
directional_penumbra_shadow_samples = 4;
|
|
directional_soft_shadow_samples = 1;
|
|
directional_shadow_quality_radius = 1.5;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_LOW: {
|
|
directional_penumbra_shadow_samples = 8;
|
|
directional_soft_shadow_samples = 4;
|
|
directional_shadow_quality_radius = 2.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
|
|
directional_penumbra_shadow_samples = 12;
|
|
directional_soft_shadow_samples = 8;
|
|
directional_shadow_quality_radius = 2.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_HIGH: {
|
|
directional_penumbra_shadow_samples = 24;
|
|
directional_soft_shadow_samples = 16;
|
|
directional_shadow_quality_radius = 3.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_SOFT_ULTRA: {
|
|
directional_penumbra_shadow_samples = 32;
|
|
directional_soft_shadow_samples = 32;
|
|
directional_shadow_quality_radius = 4.0;
|
|
} break;
|
|
case RS::SHADOW_QUALITY_MAX:
|
|
break;
|
|
}
|
|
get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
|
|
get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
|
|
}
|
|
|
|
_update_shader_quality_settings();
|
|
}
|
|
|
|
void RendererSceneRenderRD::decals_set_filter(RenderingServer::DecalFilter p_filter) {
|
|
if (decals_filter == p_filter) {
|
|
return;
|
|
}
|
|
decals_filter = p_filter;
|
|
_update_shader_quality_settings();
|
|
}
|
|
void RendererSceneRenderRD::light_projectors_set_filter(RenderingServer::LightProjectorFilter p_filter) {
|
|
if (light_projectors_filter == p_filter) {
|
|
return;
|
|
}
|
|
light_projectors_filter = p_filter;
|
|
_update_shader_quality_settings();
|
|
}
|
|
|
|
int RendererSceneRenderRD::get_roughness_layers() const {
|
|
return sky.roughness_layers;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
|
|
return sky.sky_use_cubemap_array;
|
|
}
|
|
|
|
void RendererSceneRenderRD::_setup_reflections(RenderDataRD *p_render_data, const PagedArray<RID> &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment) {
|
|
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
|
|
cluster.reflection_count = 0;
|
|
|
|
for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) {
|
|
if (cluster.reflection_count == cluster.max_reflections) {
|
|
break;
|
|
}
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_reflections[i]);
|
|
if (!rpi) {
|
|
continue;
|
|
}
|
|
|
|
cluster.reflection_sort[cluster.reflection_count].instance = rpi;
|
|
cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z;
|
|
cluster.reflection_count++;
|
|
}
|
|
|
|
if (cluster.reflection_count > 0) {
|
|
SortArray<Cluster::InstanceSort<ReflectionProbeInstance>> sort_array;
|
|
sort_array.sort(cluster.reflection_sort, cluster.reflection_count);
|
|
}
|
|
|
|
bool using_forward_ids = _uses_forward_ids();
|
|
for (uint32_t i = 0; i < cluster.reflection_count; i++) {
|
|
ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance;
|
|
|
|
if (using_forward_ids) {
|
|
_map_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id, i);
|
|
}
|
|
|
|
RID base_probe = rpi->probe;
|
|
|
|
Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
|
|
|
|
Vector3 extents = light_storage->reflection_probe_get_extents(base_probe);
|
|
|
|
rpi->cull_mask = light_storage->reflection_probe_get_cull_mask(base_probe);
|
|
|
|
reflection_ubo.box_extents[0] = extents.x;
|
|
reflection_ubo.box_extents[1] = extents.y;
|
|
reflection_ubo.box_extents[2] = extents.z;
|
|
reflection_ubo.index = rpi->atlas_index;
|
|
|
|
Vector3 origin_offset = light_storage->reflection_probe_get_origin_offset(base_probe);
|
|
|
|
reflection_ubo.box_offset[0] = origin_offset.x;
|
|
reflection_ubo.box_offset[1] = origin_offset.y;
|
|
reflection_ubo.box_offset[2] = origin_offset.z;
|
|
reflection_ubo.mask = light_storage->reflection_probe_get_cull_mask(base_probe);
|
|
|
|
reflection_ubo.intensity = light_storage->reflection_probe_get_intensity(base_probe);
|
|
reflection_ubo.ambient_mode = light_storage->reflection_probe_get_ambient_mode(base_probe);
|
|
|
|
reflection_ubo.exterior = !light_storage->reflection_probe_is_interior(base_probe);
|
|
reflection_ubo.box_project = light_storage->reflection_probe_is_box_projection(base_probe);
|
|
reflection_ubo.exposure_normalization = 1.0;
|
|
|
|
if (p_render_data->camera_attributes.is_valid()) {
|
|
float exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
|
|
reflection_ubo.exposure_normalization = exposure / light_storage->reflection_probe_get_baked_exposure(base_probe);
|
|
}
|
|
|
|
Color ambient_linear = light_storage->reflection_probe_get_ambient_color(base_probe).srgb_to_linear();
|
|
float interior_ambient_energy = light_storage->reflection_probe_get_ambient_color_energy(base_probe);
|
|
reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
|
|
reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
|
|
reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
|
|
|
|
Transform3D transform = rpi->transform;
|
|
Transform3D proj = (p_camera_inverse_transform * transform).inverse();
|
|
RendererRD::MaterialStorage::store_transform(proj, reflection_ubo.local_matrix);
|
|
|
|
if (current_cluster_builder != nullptr) {
|
|
current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents);
|
|
}
|
|
|
|
rpi->last_pass = RSG::rasterizer->get_frame_number();
|
|
}
|
|
|
|
if (cluster.reflection_count) {
|
|
RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(Cluster::ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_setup_lights(RenderDataRD *p_render_data, const PagedArray<RID> &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count, bool &r_directional_light_soft_shadows) {
|
|
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
|
|
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
|
|
|
|
Transform3D inverse_transform = p_camera_transform.affine_inverse();
|
|
|
|
r_directional_light_count = 0;
|
|
r_positional_light_count = 0;
|
|
|
|
Plane camera_plane(-p_camera_transform.basis.get_column(Vector3::AXIS_Z).normalized(), p_camera_transform.origin);
|
|
|
|
cluster.omni_light_count = 0;
|
|
cluster.spot_light_count = 0;
|
|
|
|
r_directional_light_soft_shadows = false;
|
|
|
|
for (int i = 0; i < (int)p_lights.size(); i++) {
|
|
LightInstance *li = light_instance_owner.get_or_null(p_lights[i]);
|
|
if (!li) {
|
|
continue;
|
|
}
|
|
RID base = li->light;
|
|
|
|
ERR_CONTINUE(base.is_null());
|
|
|
|
RS::LightType type = light_storage->light_get_type(base);
|
|
switch (type) {
|
|
case RS::LIGHT_DIRECTIONAL: {
|
|
if (r_directional_light_count >= cluster.max_directional_lights || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
|
|
continue;
|
|
}
|
|
|
|
Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
|
|
|
|
Transform3D light_transform = li->transform;
|
|
|
|
Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
|
|
|
|
light_data.direction[0] = direction.x;
|
|
light_data.direction[1] = direction.y;
|
|
light_data.direction[2] = direction.z;
|
|
|
|
float sign = light_storage->light_is_negative(base) ? -1 : 1;
|
|
|
|
light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
|
|
|
|
if (is_using_physical_light_units()) {
|
|
light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
|
|
} else {
|
|
light_data.energy *= Math_PI;
|
|
}
|
|
|
|
if (p_render_data->camera_attributes.is_valid()) {
|
|
light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
|
|
}
|
|
|
|
Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
|
|
light_data.color[0] = linear_col.r;
|
|
light_data.color[1] = linear_col.g;
|
|
light_data.color[2] = linear_col.b;
|
|
|
|
light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
|
|
light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY);
|
|
light_data.mask = light_storage->light_get_cull_mask(base);
|
|
|
|
float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
|
|
|
|
light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset
|
|
|
|
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
|
|
WARN_PRINT_ONCE("The DirectionalLight3D PSSM splits debug draw mode is not reimplemented yet.");
|
|
}
|
|
|
|
light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base))
|
|
? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY)
|
|
: 0.0;
|
|
|
|
float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
|
|
if (angular_diameter > 0.0) {
|
|
// I know tan(0) is 0, but let's not risk it with numerical precision.
|
|
// technically this will keep expanding until reaching the sun, but all we care
|
|
// is expand until we reach the radius of the near plane (there can't be more occluders than that)
|
|
angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter));
|
|
if (light_storage->light_has_shadow(base) && light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR) > 0.0) {
|
|
// Only enable PCSS-like soft shadows if blurring is enabled.
|
|
// Otherwise, performance would decrease with no visual difference.
|
|
r_directional_light_soft_shadows = true;
|
|
}
|
|
} else {
|
|
angular_diameter = 0.0;
|
|
}
|
|
|
|
if (light_data.shadow_opacity > 0.001) {
|
|
RS::LightDirectionalShadowMode smode = light_storage->light_directional_get_shadow_mode(base);
|
|
|
|
int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
|
|
light_data.blend_splits = (smode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base);
|
|
for (int j = 0; j < 4; j++) {
|
|
Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
|
|
Projection matrix = li->shadow_transform[j].camera;
|
|
float split = li->shadow_transform[MIN(limit, j)].split;
|
|
|
|
Projection bias;
|
|
bias.set_light_bias();
|
|
Projection rectm;
|
|
rectm.set_light_atlas_rect(atlas_rect);
|
|
|
|
Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
|
|
|
|
Projection shadow_mtx = rectm * bias * matrix * modelview;
|
|
light_data.shadow_split_offsets[j] = split;
|
|
float bias_scale = li->shadow_transform[j].bias_scale;
|
|
light_data.shadow_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale;
|
|
light_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
|
|
light_data.shadow_transmittance_bias[j] = light_storage->light_get_transmittance_bias(base) * bias_scale;
|
|
light_data.shadow_z_range[j] = li->shadow_transform[j].farplane;
|
|
light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin;
|
|
RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
|
|
|
|
Vector2 uv_scale = li->shadow_transform[j].uv_scale;
|
|
uv_scale *= atlas_rect.size; //adapt to atlas size
|
|
switch (j) {
|
|
case 0: {
|
|
light_data.uv_scale1[0] = uv_scale.x;
|
|
light_data.uv_scale1[1] = uv_scale.y;
|
|
} break;
|
|
case 1: {
|
|
light_data.uv_scale2[0] = uv_scale.x;
|
|
light_data.uv_scale2[1] = uv_scale.y;
|
|
} break;
|
|
case 2: {
|
|
light_data.uv_scale3[0] = uv_scale.x;
|
|
light_data.uv_scale3[1] = uv_scale.y;
|
|
} break;
|
|
case 3: {
|
|
light_data.uv_scale4[0] = uv_scale.x;
|
|
light_data.uv_scale4[1] = uv_scale.y;
|
|
} break;
|
|
}
|
|
}
|
|
|
|
float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
|
|
light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
|
|
light_data.fade_to = -light_data.shadow_split_offsets[3];
|
|
|
|
light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
|
|
light_data.softshadow_angle = angular_diameter;
|
|
light_data.bake_mode = light_storage->light_get_bake_mode(base);
|
|
|
|
if (angular_diameter <= 0.0) {
|
|
light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
|
|
}
|
|
}
|
|
|
|
r_directional_light_count++;
|
|
} break;
|
|
case RS::LIGHT_OMNI: {
|
|
if (cluster.omni_light_count >= cluster.max_lights) {
|
|
continue;
|
|
}
|
|
|
|
const real_t distance = camera_plane.distance_to(li->transform.origin);
|
|
|
|
if (light_storage->light_is_distance_fade_enabled(li->light)) {
|
|
const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
|
|
const float fade_length = light_storage->light_get_distance_fade_length(li->light);
|
|
|
|
if (distance > fade_begin) {
|
|
if (distance > fade_begin + fade_length) {
|
|
// Out of range, don't draw this light to improve performance.
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
cluster.omni_light_sort[cluster.omni_light_count].instance = li;
|
|
cluster.omni_light_sort[cluster.omni_light_count].depth = distance;
|
|
cluster.omni_light_count++;
|
|
} break;
|
|
case RS::LIGHT_SPOT: {
|
|
if (cluster.spot_light_count >= cluster.max_lights) {
|
|
continue;
|
|
}
|
|
|
|
const real_t distance = camera_plane.distance_to(li->transform.origin);
|
|
|
|
if (light_storage->light_is_distance_fade_enabled(li->light)) {
|
|
const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
|
|
const float fade_length = light_storage->light_get_distance_fade_length(li->light);
|
|
|
|
if (distance > fade_begin) {
|
|
if (distance > fade_begin + fade_length) {
|
|
// Out of range, don't draw this light to improve performance.
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
cluster.spot_light_sort[cluster.spot_light_count].instance = li;
|
|
cluster.spot_light_sort[cluster.spot_light_count].depth = distance;
|
|
cluster.spot_light_count++;
|
|
} break;
|
|
}
|
|
|
|
li->last_pass = RSG::rasterizer->get_frame_number();
|
|
}
|
|
|
|
if (cluster.omni_light_count) {
|
|
SortArray<Cluster::InstanceSort<LightInstance>> sorter;
|
|
sorter.sort(cluster.omni_light_sort, cluster.omni_light_count);
|
|
}
|
|
|
|
if (cluster.spot_light_count) {
|
|
SortArray<Cluster::InstanceSort<LightInstance>> sorter;
|
|
sorter.sort(cluster.spot_light_sort, cluster.spot_light_count);
|
|
}
|
|
|
|
ShadowAtlas *shadow_atlas = nullptr;
|
|
|
|
if (p_shadow_atlas.is_valid() && p_using_shadows) {
|
|
shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
|
|
}
|
|
|
|
bool using_forward_ids = _uses_forward_ids();
|
|
|
|
for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) {
|
|
uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count);
|
|
Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index];
|
|
RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
|
|
LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance;
|
|
RID base = li->light;
|
|
|
|
if (using_forward_ids) {
|
|
_map_forward_id(type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, li->forward_id, index);
|
|
}
|
|
|
|
Transform3D light_transform = li->transform;
|
|
|
|
float sign = light_storage->light_is_negative(base) ? -1 : 1;
|
|
Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
|
|
|
|
light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
|
|
|
|
// Reuse fade begin, fade length and distance for shadow LOD determination later.
|
|
float fade_begin = 0.0;
|
|
float fade_shadow = 0.0;
|
|
float fade_length = 0.0;
|
|
real_t distance = 0.0;
|
|
|
|
float fade = 1.0;
|
|
float shadow_opacity_fade = 1.0;
|
|
if (light_storage->light_is_distance_fade_enabled(li->light)) {
|
|
fade_begin = light_storage->light_get_distance_fade_begin(li->light);
|
|
fade_shadow = light_storage->light_get_distance_fade_shadow(li->light);
|
|
fade_length = light_storage->light_get_distance_fade_length(li->light);
|
|
distance = camera_plane.distance_to(li->transform.origin);
|
|
|
|
// Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
|
|
if (distance > fade_begin) {
|
|
fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
|
|
}
|
|
|
|
if (distance > fade_shadow) {
|
|
shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length);
|
|
}
|
|
}
|
|
|
|
float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade;
|
|
|
|
if (is_using_physical_light_units()) {
|
|
energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
|
|
|
|
// Convert from Luminous Power to Luminous Intensity
|
|
if (type == RS::LIGHT_OMNI) {
|
|
energy *= 1.0 / (Math_PI * 4.0);
|
|
} else {
|
|
// Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
|
|
// We make this assumption to keep them easy to control.
|
|
energy *= 1.0 / Math_PI;
|
|
}
|
|
} else {
|
|
energy *= Math_PI;
|
|
}
|
|
|
|
if (p_render_data->camera_attributes.is_valid()) {
|
|
energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
|
|
}
|
|
|
|
light_data.color[0] = linear_col.r * energy;
|
|
light_data.color[1] = linear_col.g * energy;
|
|
light_data.color[2] = linear_col.b * energy;
|
|
light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
|
|
light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY);
|
|
light_data.bake_mode = light_storage->light_get_bake_mode(base);
|
|
|
|
float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
|
|
light_data.inv_radius = 1.0 / radius;
|
|
|
|
Vector3 pos = inverse_transform.xform(light_transform.origin);
|
|
|
|
light_data.position[0] = pos.x;
|
|
light_data.position[1] = pos.y;
|
|
light_data.position[2] = pos.z;
|
|
|
|
Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
|
|
|
|
light_data.direction[0] = direction.x;
|
|
light_data.direction[1] = direction.y;
|
|
light_data.direction[2] = direction.z;
|
|
|
|
float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
|
|
|
|
light_data.size = size;
|
|
|
|
light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
|
|
float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle));
|
|
|
|
light_data.mask = light_storage->light_get_cull_mask(base);
|
|
|
|
light_data.atlas_rect[0] = 0;
|
|
light_data.atlas_rect[1] = 0;
|
|
light_data.atlas_rect[2] = 0;
|
|
light_data.atlas_rect[3] = 0;
|
|
|
|
RID projector = light_storage->light_get_projector(base);
|
|
|
|
if (projector.is_valid()) {
|
|
Rect2 rect = texture_storage->decal_atlas_get_texture_rect(projector);
|
|
|
|
if (type == RS::LIGHT_SPOT) {
|
|
light_data.projector_rect[0] = rect.position.x;
|
|
light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
|
|
light_data.projector_rect[2] = rect.size.width;
|
|
light_data.projector_rect[3] = -rect.size.height;
|
|
} else {
|
|
light_data.projector_rect[0] = rect.position.x;
|
|
light_data.projector_rect[1] = rect.position.y;
|
|
light_data.projector_rect[2] = rect.size.width;
|
|
light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
|
|
}
|
|
} else {
|
|
light_data.projector_rect[0] = 0;
|
|
light_data.projector_rect[1] = 0;
|
|
light_data.projector_rect[2] = 0;
|
|
light_data.projector_rect[3] = 0;
|
|
}
|
|
|
|
const bool needs_shadow =
|
|
shadow_atlas &&
|
|
shadow_atlas->shadow_owners.has(li->self) &&
|
|
p_using_shadows &&
|
|
light_storage->light_has_shadow(base);
|
|
|
|
bool in_shadow_range = true;
|
|
if (needs_shadow && light_storage->light_is_distance_fade_enabled(li->light)) {
|
|
if (distance > light_storage->light_get_distance_fade_shadow(li->light) + light_storage->light_get_distance_fade_length(li->light)) {
|
|
// Out of range, don't draw shadows to improve performance.
|
|
in_shadow_range = false;
|
|
}
|
|
}
|
|
|
|
if (needs_shadow && in_shadow_range) {
|
|
// fill in the shadow information
|
|
|
|
light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade;
|
|
|
|
float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
|
|
light_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0;
|
|
|
|
if (type == RS::LIGHT_SPOT) {
|
|
light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0;
|
|
} else { //omni
|
|
light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS);
|
|
}
|
|
|
|
light_data.transmittance_bias = light_storage->light_get_transmittance_bias(base);
|
|
|
|
Vector2i omni_offset;
|
|
Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas, omni_offset);
|
|
|
|
light_data.atlas_rect[0] = rect.position.x;
|
|
light_data.atlas_rect[1] = rect.position.y;
|
|
light_data.atlas_rect[2] = rect.size.width;
|
|
light_data.atlas_rect[3] = rect.size.height;
|
|
|
|
light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
|
|
|
|
if (type == RS::LIGHT_OMNI) {
|
|
Transform3D proj = (inverse_transform * light_transform).inverse();
|
|
|
|
RendererRD::MaterialStorage::store_transform(proj, light_data.shadow_matrix);
|
|
|
|
if (size > 0.0 && light_data.soft_shadow_scale > 0.0) {
|
|
// Only enable PCSS-like soft shadows if blurring is enabled.
|
|
// Otherwise, performance would decrease with no visual difference.
|
|
light_data.soft_shadow_size = size;
|
|
} else {
|
|
light_data.soft_shadow_size = 0.0;
|
|
light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
|
|
}
|
|
|
|
light_data.direction[0] = omni_offset.x * float(rect.size.width);
|
|
light_data.direction[1] = omni_offset.y * float(rect.size.height);
|
|
} else if (type == RS::LIGHT_SPOT) {
|
|
Transform3D modelview = (inverse_transform * light_transform).inverse();
|
|
Projection bias;
|
|
bias.set_light_bias();
|
|
|
|
Projection shadow_mtx = bias * li->shadow_transform[0].camera * modelview;
|
|
RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrix);
|
|
|
|
if (size > 0.0 && light_data.soft_shadow_scale > 0.0) {
|
|
// Only enable PCSS-like soft shadows if blurring is enabled.
|
|
// Otherwise, performance would decrease with no visual difference.
|
|
Projection cm = li->shadow_transform[0].camera;
|
|
float half_np = cm.get_z_near() * Math::tan(Math::deg_to_rad(spot_angle));
|
|
light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
|
|
} else {
|
|
light_data.soft_shadow_size = 0.0;
|
|
light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
|
|
}
|
|
}
|
|
} else {
|
|
light_data.shadow_opacity = 0.0;
|
|
}
|
|
|
|
li->cull_mask = light_storage->light_get_cull_mask(base);
|
|
|
|
if (current_cluster_builder != nullptr) {
|
|
current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
|
|
}
|
|
|
|
r_positional_light_count++;
|
|
}
|
|
|
|
//update without barriers
|
|
if (cluster.omni_light_count) {
|
|
RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
|
|
}
|
|
|
|
if (cluster.spot_light_count) {
|
|
RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
|
|
}
|
|
|
|
if (r_directional_light_count) {
|
|
RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_setup_decals(const PagedArray<RID> &p_decals, const Transform3D &p_camera_inverse_xform) {
|
|
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
|
|
|
|
Transform3D uv_xform;
|
|
uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
|
|
uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
|
|
|
|
uint32_t decal_count = p_decals.size();
|
|
|
|
cluster.decal_count = 0;
|
|
|
|
for (uint32_t i = 0; i < decal_count; i++) {
|
|
if (cluster.decal_count == cluster.max_decals) {
|
|
break;
|
|
}
|
|
|
|
DecalInstance *di = decal_instance_owner.get_or_null(p_decals[i]);
|
|
if (!di) {
|
|
continue;
|
|
}
|
|
RID decal = di->decal;
|
|
|
|
Transform3D xform = di->transform;
|
|
|
|
real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
|
|
|
|
if (texture_storage->decal_is_distance_fade_enabled(decal)) {
|
|
float fade_begin = texture_storage->decal_get_distance_fade_begin(decal);
|
|
float fade_length = texture_storage->decal_get_distance_fade_length(decal);
|
|
|
|
if (distance > fade_begin) {
|
|
if (distance > fade_begin + fade_length) {
|
|
continue; // do not use this decal, its invisible
|
|
}
|
|
}
|
|
}
|
|
|
|
cluster.decal_sort[cluster.decal_count].instance = di;
|
|
cluster.decal_sort[cluster.decal_count].depth = distance;
|
|
cluster.decal_count++;
|
|
}
|
|
|
|
if (cluster.decal_count > 0) {
|
|
SortArray<Cluster::InstanceSort<DecalInstance>> sort_array;
|
|
sort_array.sort(cluster.decal_sort, cluster.decal_count);
|
|
}
|
|
|
|
bool using_forward_ids = _uses_forward_ids();
|
|
for (uint32_t i = 0; i < cluster.decal_count; i++) {
|
|
DecalInstance *di = cluster.decal_sort[i].instance;
|
|
RID decal = di->decal;
|
|
|
|
if (using_forward_ids) {
|
|
_map_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id, i);
|
|
}
|
|
|
|
di->cull_mask = texture_storage->decal_get_cull_mask(decal);
|
|
|
|
Transform3D xform = di->transform;
|
|
float fade = 1.0;
|
|
|
|
if (texture_storage->decal_is_distance_fade_enabled(decal)) {
|
|
const real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
|
|
const float fade_begin = texture_storage->decal_get_distance_fade_begin(decal);
|
|
const float fade_length = texture_storage->decal_get_distance_fade_length(decal);
|
|
|
|
if (distance > fade_begin) {
|
|
// Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
|
|
fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
|
|
}
|
|
}
|
|
|
|
Cluster::DecalData &dd = cluster.decals[i];
|
|
|
|
Vector3 decal_extents = texture_storage->decal_get_extents(decal);
|
|
|
|
Transform3D scale_xform;
|
|
scale_xform.basis.scale(decal_extents);
|
|
Transform3D to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse();
|
|
RendererRD::MaterialStorage::store_transform(to_decal_xform, dd.xform);
|
|
|
|
Vector3 normal = xform.basis.get_column(Vector3::AXIS_Y).normalized();
|
|
normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
|
|
|
|
dd.normal[0] = normal.x;
|
|
dd.normal[1] = normal.y;
|
|
dd.normal[2] = normal.z;
|
|
dd.normal_fade = texture_storage->decal_get_normal_fade(decal);
|
|
|
|
RID albedo_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
|
|
RID emission_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
|
|
if (albedo_tex.is_valid()) {
|
|
Rect2 rect = texture_storage->decal_atlas_get_texture_rect(albedo_tex);
|
|
dd.albedo_rect[0] = rect.position.x;
|
|
dd.albedo_rect[1] = rect.position.y;
|
|
dd.albedo_rect[2] = rect.size.x;
|
|
dd.albedo_rect[3] = rect.size.y;
|
|
} else {
|
|
if (!emission_tex.is_valid()) {
|
|
continue; //no albedo, no emission, no decal.
|
|
}
|
|
dd.albedo_rect[0] = 0;
|
|
dd.albedo_rect[1] = 0;
|
|
dd.albedo_rect[2] = 0;
|
|
dd.albedo_rect[3] = 0;
|
|
}
|
|
|
|
RID normal_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
|
|
|
|
if (normal_tex.is_valid()) {
|
|
Rect2 rect = texture_storage->decal_atlas_get_texture_rect(normal_tex);
|
|
dd.normal_rect[0] = rect.position.x;
|
|
dd.normal_rect[1] = rect.position.y;
|
|
dd.normal_rect[2] = rect.size.x;
|
|
dd.normal_rect[3] = rect.size.y;
|
|
|
|
Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
|
|
RendererRD::MaterialStorage::store_basis_3x4(normal_xform, dd.normal_xform);
|
|
} else {
|
|
dd.normal_rect[0] = 0;
|
|
dd.normal_rect[1] = 0;
|
|
dd.normal_rect[2] = 0;
|
|
dd.normal_rect[3] = 0;
|
|
}
|
|
|
|
RID orm_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
|
|
if (orm_tex.is_valid()) {
|
|
Rect2 rect = texture_storage->decal_atlas_get_texture_rect(orm_tex);
|
|
dd.orm_rect[0] = rect.position.x;
|
|
dd.orm_rect[1] = rect.position.y;
|
|
dd.orm_rect[2] = rect.size.x;
|
|
dd.orm_rect[3] = rect.size.y;
|
|
} else {
|
|
dd.orm_rect[0] = 0;
|
|
dd.orm_rect[1] = 0;
|
|
dd.orm_rect[2] = 0;
|
|
dd.orm_rect[3] = 0;
|
|
}
|
|
|
|
if (emission_tex.is_valid()) {
|
|
Rect2 rect = texture_storage->decal_atlas_get_texture_rect(emission_tex);
|
|
dd.emission_rect[0] = rect.position.x;
|
|
dd.emission_rect[1] = rect.position.y;
|
|
dd.emission_rect[2] = rect.size.x;
|
|
dd.emission_rect[3] = rect.size.y;
|
|
} else {
|
|
dd.emission_rect[0] = 0;
|
|
dd.emission_rect[1] = 0;
|
|
dd.emission_rect[2] = 0;
|
|
dd.emission_rect[3] = 0;
|
|
}
|
|
|
|
Color modulate = texture_storage->decal_get_modulate(decal);
|
|
dd.modulate[0] = modulate.r;
|
|
dd.modulate[1] = modulate.g;
|
|
dd.modulate[2] = modulate.b;
|
|
dd.modulate[3] = modulate.a * fade;
|
|
dd.emission_energy = texture_storage->decal_get_emission_energy(decal) * fade;
|
|
dd.albedo_mix = texture_storage->decal_get_albedo_mix(decal);
|
|
dd.mask = texture_storage->decal_get_cull_mask(decal);
|
|
dd.upper_fade = texture_storage->decal_get_upper_fade(decal);
|
|
dd.lower_fade = texture_storage->decal_get_lower_fade(decal);
|
|
|
|
if (current_cluster_builder != nullptr) {
|
|
current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents);
|
|
}
|
|
}
|
|
|
|
if (cluster.decal_count > 0) {
|
|
RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// FOG SHADER
|
|
|
|
void RendererSceneRenderRD::_update_volumetric_fog(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, const Projection &p_cam_projection, const Transform3D &p_cam_transform, const Transform3D &p_prev_cam_inv_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count, const PagedArray<RID> &p_fog_volumes) {
|
|
ERR_FAIL_COND(!is_clustered_enabled()); // can't use volumetric fog without clustered
|
|
ERR_FAIL_COND(p_render_buffers.is_null());
|
|
|
|
// These should be available for our clustered renderer, at some point _update_volumetric_fog should be called by the renderer implemetentation itself
|
|
ERR_FAIL_COND(!p_render_buffers->has_custom_data(RB_SCOPE_GI));
|
|
Ref<RendererRD::GI::RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
|
|
|
|
Ref<RendererRD::GI::SDFGI> sdfgi;
|
|
if (p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
|
|
}
|
|
|
|
Size2i size = p_render_buffers->get_internal_size();
|
|
float ratio = float(size.x) / float((size.x + size.y) / 2);
|
|
uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
|
|
uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
|
|
|
|
if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
|
|
Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
|
|
//validate
|
|
if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment) || fog->width != target_width || fog->height != target_height || fog->depth != volumetric_fog_depth) {
|
|
p_render_buffers->set_custom_data(RB_SCOPE_FOG, Ref<RenderBufferCustomDataRD>());
|
|
}
|
|
}
|
|
|
|
if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment)) {
|
|
//no reason to enable or update, bye
|
|
return;
|
|
}
|
|
|
|
if (p_environment.is_valid() && environment_get_volumetric_fog_enabled(p_environment) && !p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
|
|
//required volumetric fog but not existing, create
|
|
Ref<RendererRD::Fog::VolumetricFog> fog;
|
|
|
|
fog.instantiate();
|
|
fog->init(Vector3i(target_width, target_height, volumetric_fog_depth), sky.sky_shader.default_shader_rd);
|
|
|
|
p_render_buffers->set_custom_data(RB_SCOPE_FOG, fog);
|
|
}
|
|
|
|
if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
|
|
Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
|
|
|
|
RendererRD::Fog::VolumetricFogSettings settings;
|
|
settings.rb_size = size;
|
|
settings.time = time;
|
|
settings.is_using_radiance_cubemap_array = is_using_radiance_cubemap_array();
|
|
settings.max_cluster_elements = max_cluster_elements;
|
|
settings.volumetric_fog_filter_active = volumetric_fog_filter_active;
|
|
|
|
settings.shadow_sampler = shadow_sampler;
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
|
|
settings.shadow_atlas_depth = shadow_atlas ? shadow_atlas->depth : RID();
|
|
settings.voxel_gi_buffer = rbgi->get_voxel_gi_buffer();
|
|
settings.omni_light_buffer = get_omni_light_buffer();
|
|
settings.spot_light_buffer = get_spot_light_buffer();
|
|
settings.directional_shadow_depth = directional_shadow.depth;
|
|
settings.directional_light_buffer = get_directional_light_buffer();
|
|
|
|
settings.vfog = fog;
|
|
settings.cluster_builder = p_render_buffers->cluster_builder;
|
|
settings.rbgi = rbgi;
|
|
settings.sdfgi = sdfgi;
|
|
settings.env = p_environment;
|
|
settings.sky = &sky;
|
|
settings.gi = &gi;
|
|
|
|
RendererRD::Fog::get_singleton()->volumetric_fog_update(settings, p_cam_projection, p_cam_transform, p_prev_cam_inv_transform, p_shadow_atlas, p_directional_light_count, p_use_directional_shadows, p_positional_light_count, p_voxel_gi_count, p_fog_volumes);
|
|
}
|
|
}
|
|
|
|
bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
|
|
if (p_render_data->render_buffers.is_valid()) {
|
|
if (p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
|
|
if (p_render_data->render_buffers.is_valid() && p_use_gi) {
|
|
if (!p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
return;
|
|
}
|
|
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
|
|
sdfgi->update_probes(p_render_data->environment, sky.sky_owner.get_or_null(environment_get_sky(p_render_data->environment)));
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi) {
|
|
if (p_render_data->render_buffers.is_valid()) {
|
|
if (p_use_gi) {
|
|
RD::get_singleton()->compute_list_end();
|
|
}
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_ssil, bool p_use_gi, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer) {
|
|
// Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time
|
|
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
|
|
|
|
if (p_render_data->render_buffers.is_valid() && p_use_gi && p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
|
|
sdfgi->store_probes();
|
|
}
|
|
|
|
render_state.cube_shadows.clear();
|
|
render_state.shadows.clear();
|
|
render_state.directional_shadows.clear();
|
|
|
|
Plane camera_plane(-p_render_data->scene_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->scene_data->cam_transform.origin);
|
|
float lod_distance_multiplier = p_render_data->scene_data->cam_projection.get_lod_multiplier();
|
|
{
|
|
for (int i = 0; i < render_state.render_shadow_count; i++) {
|
|
LightInstance *li = light_instance_owner.get_or_null(render_state.render_shadows[i].light);
|
|
|
|
if (light_storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) {
|
|
render_state.directional_shadows.push_back(i);
|
|
} else if (light_storage->light_get_type(li->light) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
|
|
render_state.cube_shadows.push_back(i);
|
|
} else {
|
|
render_state.shadows.push_back(i);
|
|
}
|
|
}
|
|
|
|
//cube shadows are rendered in their own way
|
|
for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) {
|
|
_render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, true, true, true, p_render_data->render_info);
|
|
}
|
|
|
|
if (render_state.directional_shadows.size()) {
|
|
//open the pass for directional shadows
|
|
_update_directional_shadow_atlas();
|
|
RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE);
|
|
RD::get_singleton()->draw_list_end();
|
|
}
|
|
}
|
|
|
|
// Render GI
|
|
|
|
bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size();
|
|
bool render_gi = p_render_data->render_buffers.is_valid() && p_use_gi;
|
|
|
|
if (render_shadows && render_gi) {
|
|
RENDER_TIMESTAMP("Render GI + Render Shadows (Parallel)");
|
|
} else if (render_shadows) {
|
|
RENDER_TIMESTAMP("Render Shadows");
|
|
} else if (render_gi) {
|
|
RENDER_TIMESTAMP("Render GI");
|
|
}
|
|
|
|
//prepare shadow rendering
|
|
if (render_shadows) {
|
|
_render_shadow_begin();
|
|
|
|
//render directional shadows
|
|
for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) {
|
|
_render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false, p_render_data->render_info);
|
|
}
|
|
//render positional shadows
|
|
for (uint32_t i = 0; i < render_state.shadows.size(); i++) {
|
|
_render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true, p_render_data->render_info);
|
|
}
|
|
|
|
_render_shadow_process();
|
|
}
|
|
|
|
//start GI
|
|
if (render_gi) {
|
|
gi.process_gi(p_render_data->render_buffers, p_normal_roughness_slices, p_voxel_gi_buffer, p_render_data->environment, p_render_data->scene_data->view_count, p_render_data->scene_data->view_projection, p_render_data->scene_data->view_eye_offset, p_render_data->scene_data->cam_transform, *p_render_data->voxel_gi_instances);
|
|
}
|
|
|
|
//Do shadow rendering (in parallel with GI)
|
|
if (render_shadows) {
|
|
_render_shadow_end(RD::BARRIER_MASK_NO_BARRIER);
|
|
}
|
|
|
|
if (render_gi) {
|
|
RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier
|
|
}
|
|
|
|
if (p_render_data->render_buffers.is_valid() && ss_effects) {
|
|
if (p_use_ssao || p_use_ssil) {
|
|
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
|
|
ERR_FAIL_COND(rb.is_null());
|
|
Size2i size = rb->get_internal_size();
|
|
|
|
bool invalidate_uniform_set = false;
|
|
if (rb->ss_effects.linear_depth.is_null()) {
|
|
RD::TextureFormat tf;
|
|
tf.format = RD::DATA_FORMAT_R16_SFLOAT;
|
|
tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
|
|
tf.width = (size.x + 1) / 2;
|
|
tf.height = (size.y + 1) / 2;
|
|
tf.mipmaps = 5;
|
|
tf.array_layers = 4;
|
|
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
|
|
rb->ss_effects.linear_depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
RD::get_singleton()->set_resource_name(rb->ss_effects.linear_depth, "SS Effects Depth");
|
|
for (uint32_t i = 0; i < tf.mipmaps; i++) {
|
|
RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ss_effects.linear_depth, 0, i, 1, RD::TEXTURE_SLICE_2D_ARRAY);
|
|
rb->ss_effects.linear_depth_slices.push_back(slice);
|
|
RD::get_singleton()->set_resource_name(slice, "SS Effects Depth Mip " + itos(i) + " ");
|
|
}
|
|
invalidate_uniform_set = true;
|
|
}
|
|
|
|
RID depth_texture = rb->get_depth_texture();
|
|
ss_effects->downsample_depth(depth_texture, rb->ss_effects.linear_depth_slices, ssao_quality, ssil_quality, invalidate_uniform_set, ssao_half_size, ssil_half_size, size, p_render_data->scene_data->cam_projection);
|
|
}
|
|
|
|
if (p_use_ssao) {
|
|
// TODO make these proper stereo
|
|
_process_ssao(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection);
|
|
}
|
|
|
|
if (p_use_ssil) {
|
|
// TODO make these proper stereo
|
|
_process_ssil(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform);
|
|
}
|
|
}
|
|
|
|
//full barrier here, we need raster, transfer and compute and it depends from the previous work
|
|
RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL);
|
|
|
|
if (current_cluster_builder) {
|
|
current_cluster_builder->begin(p_render_data->scene_data->cam_transform, p_render_data->scene_data->cam_projection, !p_render_data->reflection_probe.is_valid());
|
|
}
|
|
|
|
bool using_shadows = true;
|
|
|
|
if (p_render_data->reflection_probe.is_valid()) {
|
|
if (!RSG::light_storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) {
|
|
using_shadows = false;
|
|
}
|
|
} else {
|
|
//do not render reflections when rendering a reflection probe
|
|
_setup_reflections(p_render_data, *p_render_data->reflection_probes, p_render_data->scene_data->cam_transform.affine_inverse(), p_render_data->environment);
|
|
}
|
|
|
|
uint32_t directional_light_count = 0;
|
|
uint32_t positional_light_count = 0;
|
|
_setup_lights(p_render_data, *p_render_data->lights, p_render_data->scene_data->cam_transform, p_render_data->shadow_atlas, using_shadows, directional_light_count, positional_light_count, p_render_data->directional_light_soft_shadows);
|
|
_setup_decals(*p_render_data->decals, p_render_data->scene_data->cam_transform.affine_inverse());
|
|
|
|
p_render_data->directional_light_count = directional_light_count;
|
|
|
|
if (current_cluster_builder) {
|
|
current_cluster_builder->bake_cluster();
|
|
}
|
|
|
|
if (p_render_data->render_buffers.is_valid()) {
|
|
bool directional_shadows = false;
|
|
for (uint32_t i = 0; i < directional_light_count; i++) {
|
|
if (cluster.directional_lights[i].shadow_opacity > 0.001) {
|
|
directional_shadows = true;
|
|
break;
|
|
}
|
|
}
|
|
if (is_volumetric_supported()) {
|
|
_update_volumetric_fog(p_render_data->render_buffers, p_render_data->environment, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, p_render_data->scene_data->prev_cam_transform.affine_inverse(), p_render_data->shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.voxel_gi_count, *p_render_data->fog_volumes);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) {
|
|
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
|
|
|
|
// getting this here now so we can direct call a bunch of things more easily
|
|
Ref<RenderSceneBuffersRD> rb;
|
|
if (p_render_buffers.is_valid()) {
|
|
rb = p_render_buffers; // cast it...
|
|
ERR_FAIL_COND(rb.is_null());
|
|
}
|
|
|
|
// setup scene data
|
|
RenderSceneDataRD scene_data;
|
|
{
|
|
// Our first camera is used by default
|
|
scene_data.cam_transform = p_camera_data->main_transform;
|
|
scene_data.cam_projection = p_camera_data->main_projection;
|
|
scene_data.cam_orthogonal = p_camera_data->is_orthogonal;
|
|
scene_data.taa_jitter = p_camera_data->taa_jitter;
|
|
|
|
scene_data.view_count = p_camera_data->view_count;
|
|
for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
|
|
scene_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin;
|
|
scene_data.view_projection[v] = p_camera_data->view_projection[v];
|
|
}
|
|
|
|
scene_data.prev_cam_transform = p_prev_camera_data->main_transform;
|
|
scene_data.prev_cam_projection = p_prev_camera_data->main_projection;
|
|
scene_data.prev_taa_jitter = p_prev_camera_data->taa_jitter;
|
|
|
|
for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
|
|
scene_data.prev_view_projection[v] = p_prev_camera_data->view_projection[v];
|
|
}
|
|
|
|
scene_data.z_near = p_camera_data->main_projection.get_z_near();
|
|
scene_data.z_far = p_camera_data->main_projection.get_z_far();
|
|
|
|
// this should be the same for all cameras..
|
|
scene_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
|
|
scene_data.lod_camera_plane = Plane(-p_camera_data->main_transform.basis.get_column(Vector3::AXIS_Z), p_camera_data->main_transform.get_origin());
|
|
|
|
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
|
|
scene_data.screen_mesh_lod_threshold = 0.0;
|
|
} else {
|
|
scene_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
|
|
}
|
|
|
|
if (p_shadow_atlas.is_valid()) {
|
|
Vector2 sas = shadow_atlas_get_size(p_shadow_atlas);
|
|
scene_data.shadow_atlas_pixel_size.x = 1.0 / sas.x;
|
|
scene_data.shadow_atlas_pixel_size.y = 1.0 / sas.y;
|
|
}
|
|
{
|
|
Vector2 dss = directional_shadow_get_size();
|
|
scene_data.directional_shadow_pixel_size.x = 1.0 / dss.x;
|
|
scene_data.directional_shadow_pixel_size.y = 1.0 / dss.y;
|
|
}
|
|
|
|
scene_data.time = time;
|
|
scene_data.time_step = time_step;
|
|
}
|
|
|
|
//assign render data
|
|
RenderDataRD render_data;
|
|
{
|
|
render_data.render_buffers = rb;
|
|
render_data.scene_data = &scene_data;
|
|
|
|
render_data.instances = &p_instances;
|
|
render_data.lights = &p_lights;
|
|
render_data.reflection_probes = &p_reflection_probes;
|
|
render_data.voxel_gi_instances = &p_voxel_gi_instances;
|
|
render_data.decals = &p_decals;
|
|
render_data.lightmaps = &p_lightmaps;
|
|
render_data.fog_volumes = &p_fog_volumes;
|
|
render_data.environment = p_environment;
|
|
render_data.camera_attributes = p_camera_attributes;
|
|
render_data.shadow_atlas = p_shadow_atlas;
|
|
render_data.reflection_atlas = p_reflection_atlas;
|
|
render_data.reflection_probe = p_reflection_probe;
|
|
render_data.reflection_probe_pass = p_reflection_probe_pass;
|
|
|
|
render_state.render_shadows = p_render_shadows;
|
|
render_state.render_shadow_count = p_render_shadow_count;
|
|
render_state.render_sdfgi_regions = p_render_sdfgi_regions;
|
|
render_state.render_sdfgi_region_count = p_render_sdfgi_region_count;
|
|
render_state.sdfgi_update_data = p_sdfgi_update_data;
|
|
render_data.render_info = r_render_info;
|
|
}
|
|
|
|
PagedArray<RID> empty;
|
|
|
|
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
|
|
render_data.lights = ∅
|
|
render_data.reflection_probes = ∅
|
|
render_data.voxel_gi_instances = ∅
|
|
}
|
|
|
|
// sdfgi first
|
|
if (rb.is_valid() && rb->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
|
|
float exposure_normalization = 1.0;
|
|
|
|
if (p_camera_attributes.is_valid()) {
|
|
exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes);
|
|
}
|
|
for (int i = 0; i < render_state.render_sdfgi_region_count; i++) {
|
|
sdfgi->render_region(rb, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances, this, exposure_normalization);
|
|
}
|
|
if (render_state.sdfgi_update_data->update_static) {
|
|
sdfgi->render_static_lights(&render_data, rb, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights, this);
|
|
}
|
|
}
|
|
|
|
Color clear_color;
|
|
if (p_render_buffers.is_valid()) {
|
|
clear_color = texture_storage->render_target_get_clear_request_color(rb->get_render_target());
|
|
} else {
|
|
clear_color = RSG::texture_storage->get_default_clear_color();
|
|
}
|
|
|
|
//assign render indices to voxel_gi_instances
|
|
if (is_dynamic_gi_supported()) {
|
|
for (uint32_t i = 0; i < (uint32_t)p_voxel_gi_instances.size(); i++) {
|
|
gi.voxel_gi_instance_set_render_index(p_voxel_gi_instances[i], i);
|
|
}
|
|
}
|
|
|
|
if (rb.is_valid()) {
|
|
// render_data.render_buffers == p_render_buffers so we can use our already retrieved rb
|
|
current_cluster_builder = rb->cluster_builder;
|
|
} else if (reflection_probe_instance_owner.owns(render_data.reflection_probe)) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(render_data.reflection_probe);
|
|
ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(rpi->atlas);
|
|
if (!ra) {
|
|
ERR_PRINT("reflection probe has no reflection atlas! Bug?");
|
|
current_cluster_builder = nullptr;
|
|
} else {
|
|
current_cluster_builder = ra->cluster_builder;
|
|
}
|
|
if (p_camera_attributes.is_valid()) {
|
|
RendererRD::LightStorage::get_singleton()->reflection_probe_set_baked_exposure(rpi->probe, RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes));
|
|
}
|
|
} else {
|
|
ERR_PRINT("No render buffer nor reflection atlas, bug"); //should never happen, will crash
|
|
current_cluster_builder = nullptr;
|
|
}
|
|
|
|
render_state.voxel_gi_count = 0;
|
|
|
|
if (rb.is_valid() && is_dynamic_gi_supported()) {
|
|
if (rb->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
|
|
if (sdfgi.is_valid()) {
|
|
sdfgi->update_cascades();
|
|
sdfgi->pre_process_gi(scene_data.cam_transform, &render_data, this);
|
|
sdfgi->update_light();
|
|
}
|
|
}
|
|
|
|
gi.setup_voxel_gi_instances(&render_data, render_data.render_buffers, scene_data.cam_transform, *render_data.voxel_gi_instances, render_state.voxel_gi_count, this);
|
|
}
|
|
|
|
render_state.depth_prepass_used = false;
|
|
//calls _pre_opaque_render between depth pre-pass and opaque pass
|
|
if (current_cluster_builder != nullptr) {
|
|
render_data.cluster_buffer = current_cluster_builder->get_cluster_buffer();
|
|
render_data.cluster_size = current_cluster_builder->get_cluster_size();
|
|
render_data.cluster_max_elements = current_cluster_builder->get_max_cluster_elements();
|
|
}
|
|
|
|
if (rb.is_valid() && vrs) {
|
|
RS::ViewportVRSMode vrs_mode = texture_storage->render_target_get_vrs_mode(rb->get_render_target());
|
|
if (vrs_mode != RS::VIEWPORT_VRS_DISABLED) {
|
|
RID vrs_texture = rb->get_texture(RB_SCOPE_VRS, RB_TEXTURE);
|
|
|
|
// We use get_cache_multipass instead of get_cache_multiview because the default behavior is for
|
|
// our vrs_texture to be used as the VRS attachment. In this particular case we're writing to it
|
|
// so it needs to be set as our color attachment
|
|
|
|
Vector<RID> textures;
|
|
textures.push_back(vrs_texture);
|
|
|
|
Vector<RD::FramebufferPass> passes;
|
|
RD::FramebufferPass pass;
|
|
pass.color_attachments.push_back(0);
|
|
passes.push_back(pass);
|
|
|
|
RID vrs_fb = FramebufferCacheRD::get_singleton()->get_cache_multipass(textures, passes, rb->get_view_count());
|
|
|
|
vrs->update_vrs_texture(vrs_fb, rb->get_render_target());
|
|
}
|
|
}
|
|
|
|
_render_scene(&render_data, clear_color);
|
|
|
|
if (rb.is_valid()) {
|
|
_render_buffers_debug_draw(rb, p_shadow_atlas, p_occluder_debug_tex);
|
|
|
|
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI && rb->has_custom_data(RB_SCOPE_SDFGI)) {
|
|
Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
|
|
Vector<RID> view_rids;
|
|
|
|
// SDFGI renders at internal resolution, need to check if our debug correctly supports outputting upscaled.
|
|
Size2i size = rb->get_internal_size();
|
|
RID source_texture = rb->get_internal_texture();
|
|
for (uint32_t v = 0; v < rb->get_view_count(); v++) {
|
|
view_rids.push_back(rb->get_internal_texture(v));
|
|
}
|
|
|
|
sdfgi->debug_draw(scene_data.view_count, scene_data.view_projection, scene_data.cam_transform, size.x, size.y, rb->get_render_target(), source_texture, view_rids);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_debug_draw_cluster(Ref<RenderSceneBuffersRD> p_render_buffers) {
|
|
if (p_render_buffers.is_valid() && current_cluster_builder != nullptr) {
|
|
RS::ViewportDebugDraw dd = get_debug_draw_mode();
|
|
|
|
if (dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) {
|
|
ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX;
|
|
switch (dd) {
|
|
case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS:
|
|
elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT;
|
|
break;
|
|
case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS:
|
|
elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT;
|
|
break;
|
|
case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS:
|
|
elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL;
|
|
break;
|
|
case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES:
|
|
elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE;
|
|
break;
|
|
default: {
|
|
}
|
|
}
|
|
current_cluster_builder->debug(elem_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<RenderGeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region, RenderingMethod::RenderInfo *p_render_info) {
|
|
LightInstance *light_instance = light_instance_owner.get_or_null(p_light);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
Rect2i atlas_rect;
|
|
uint32_t atlas_size = 1;
|
|
RID atlas_fb;
|
|
|
|
bool using_dual_paraboloid = false;
|
|
bool using_dual_paraboloid_flip = false;
|
|
Vector2i dual_paraboloid_offset;
|
|
RID render_fb;
|
|
RID render_texture;
|
|
float zfar;
|
|
|
|
bool use_pancake = false;
|
|
bool render_cubemap = false;
|
|
bool finalize_cubemap = false;
|
|
|
|
bool flip_y = false;
|
|
|
|
Projection light_projection;
|
|
Transform3D light_transform;
|
|
|
|
if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
|
|
//set pssm stuff
|
|
if (light_instance->last_scene_shadow_pass != scene_pass) {
|
|
light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
|
|
directional_shadow.current_light++;
|
|
light_instance->last_scene_shadow_pass = scene_pass;
|
|
}
|
|
|
|
use_pancake = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
|
|
light_projection = light_instance->shadow_transform[p_pass].camera;
|
|
light_transform = light_instance->shadow_transform[p_pass].transform;
|
|
|
|
atlas_rect = light_instance->directional_rect;
|
|
|
|
if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
|
|
atlas_rect.size.width /= 2;
|
|
atlas_rect.size.height /= 2;
|
|
|
|
if (p_pass == 1) {
|
|
atlas_rect.position.x += atlas_rect.size.width;
|
|
} else if (p_pass == 2) {
|
|
atlas_rect.position.y += atlas_rect.size.height;
|
|
} else if (p_pass == 3) {
|
|
atlas_rect.position += atlas_rect.size;
|
|
}
|
|
} else if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
|
|
atlas_rect.size.height /= 2;
|
|
|
|
if (p_pass == 0) {
|
|
} else {
|
|
atlas_rect.position.y += atlas_rect.size.height;
|
|
}
|
|
}
|
|
|
|
light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
|
|
|
|
light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
|
|
light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
|
|
|
|
zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
|
|
|
|
render_fb = directional_shadow.fb;
|
|
render_texture = RID();
|
|
flip_y = true;
|
|
|
|
} else {
|
|
//set from shadow atlas
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
|
|
|
|
_update_shadow_atlas(shadow_atlas);
|
|
|
|
uint32_t key = shadow_atlas->shadow_owners[p_light];
|
|
|
|
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
|
|
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
|
|
|
|
uint32_t quadrant_size = shadow_atlas->size >> 1;
|
|
|
|
atlas_rect.position.x = (quadrant & 1) * quadrant_size;
|
|
atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
|
|
|
|
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
|
|
atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
|
|
atlas_rect.size.width = shadow_size;
|
|
atlas_rect.size.height = shadow_size;
|
|
|
|
zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
|
|
|
|
if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
|
|
bool wrap = (shadow + 1) % shadow_atlas->quadrants[quadrant].subdivision == 0;
|
|
dual_paraboloid_offset = wrap ? Vector2i(1 - shadow_atlas->quadrants[quadrant].subdivision, 1) : Vector2i(1, 0);
|
|
|
|
if (RSG::light_storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
|
|
ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
|
|
|
|
render_fb = cubemap->side_fb[p_pass];
|
|
render_texture = cubemap->cubemap;
|
|
|
|
light_projection = light_instance->shadow_transform[p_pass].camera;
|
|
light_transform = light_instance->shadow_transform[p_pass].transform;
|
|
render_cubemap = true;
|
|
finalize_cubemap = p_pass == 5;
|
|
atlas_fb = shadow_atlas->fb;
|
|
|
|
atlas_size = shadow_atlas->size;
|
|
|
|
if (p_pass == 0) {
|
|
_render_shadow_begin();
|
|
}
|
|
|
|
} else {
|
|
atlas_rect.position.x += 1;
|
|
atlas_rect.position.y += 1;
|
|
atlas_rect.size.x -= 2;
|
|
atlas_rect.size.y -= 2;
|
|
|
|
atlas_rect.position += p_pass * atlas_rect.size * dual_paraboloid_offset;
|
|
|
|
light_projection = light_instance->shadow_transform[0].camera;
|
|
light_transform = light_instance->shadow_transform[0].transform;
|
|
|
|
using_dual_paraboloid = true;
|
|
using_dual_paraboloid_flip = p_pass == 1;
|
|
render_fb = shadow_atlas->fb;
|
|
flip_y = true;
|
|
}
|
|
|
|
} else if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
|
|
light_projection = light_instance->shadow_transform[0].camera;
|
|
light_transform = light_instance->shadow_transform[0].transform;
|
|
|
|
render_fb = shadow_atlas->fb;
|
|
|
|
flip_y = true;
|
|
}
|
|
}
|
|
|
|
if (render_cubemap) {
|
|
//rendering to cubemap
|
|
_render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, Rect2(), false, true, true, true, p_render_info);
|
|
if (finalize_cubemap) {
|
|
_render_shadow_process();
|
|
_render_shadow_end();
|
|
//reblit
|
|
Rect2 atlas_rect_norm = atlas_rect;
|
|
atlas_rect_norm.position /= float(atlas_size);
|
|
atlas_rect_norm.size /= float(atlas_size);
|
|
copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), false);
|
|
atlas_rect_norm.position += Vector2(dual_paraboloid_offset) * atlas_rect_norm.size;
|
|
copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), true);
|
|
|
|
//restore transform so it can be properly used
|
|
light_instance_set_shadow_transform(p_light, Projection(), light_instance->transform, zfar, 0, 0, 0);
|
|
}
|
|
|
|
} else {
|
|
//render shadow
|
|
_render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass, p_render_info);
|
|
}
|
|
}
|
|
|
|
void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray<RenderGeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
|
|
_render_material(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_instances, p_framebuffer, p_region, 1.0);
|
|
}
|
|
|
|
void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<RenderGeometryInstance *> &p_instances) {
|
|
RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton();
|
|
|
|
ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider));
|
|
Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
|
|
Projection cm;
|
|
cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
|
|
|
|
Vector3 cam_pos = p_transform.origin;
|
|
cam_pos.y += extents.y;
|
|
|
|
Transform3D cam_xform;
|
|
cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized());
|
|
|
|
RID fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider);
|
|
|
|
_render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
|
|
}
|
|
|
|
bool RendererSceneRenderRD::free(RID p_rid) {
|
|
if (is_environment(p_rid)) {
|
|
environment_free(p_rid);
|
|
} else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) {
|
|
RSG::camera_attributes->camera_attributes_free(p_rid);
|
|
} else if (reflection_atlas_owner.owns(p_rid)) {
|
|
reflection_atlas_set_size(p_rid, 0, 0);
|
|
ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_rid);
|
|
if (ra->cluster_builder) {
|
|
memdelete(ra->cluster_builder);
|
|
}
|
|
reflection_atlas_owner.free(p_rid);
|
|
} else if (reflection_probe_instance_owner.owns(p_rid)) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_rid);
|
|
_free_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id);
|
|
reflection_probe_release_atlas_index(p_rid);
|
|
reflection_probe_instance_owner.free(p_rid);
|
|
} else if (decal_instance_owner.owns(p_rid)) {
|
|
DecalInstance *di = decal_instance_owner.get_or_null(p_rid);
|
|
_free_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id);
|
|
decal_instance_owner.free(p_rid);
|
|
} else if (lightmap_instance_owner.owns(p_rid)) {
|
|
lightmap_instance_owner.free(p_rid);
|
|
} else if (gi.voxel_gi_instance_owns(p_rid)) {
|
|
gi.voxel_gi_instance_free(p_rid);
|
|
} else if (sky.sky_owner.owns(p_rid)) {
|
|
sky.update_dirty_skys();
|
|
sky.free_sky(p_rid);
|
|
} else if (light_instance_owner.owns(p_rid)) {
|
|
LightInstance *light_instance = light_instance_owner.get_or_null(p_rid);
|
|
|
|
//remove from shadow atlases..
|
|
for (const RID &E : light_instance->shadow_atlases) {
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(E);
|
|
ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
|
|
uint32_t key = shadow_atlas->shadow_owners[p_rid];
|
|
uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
|
|
uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
|
|
|
|
if (key & ShadowAtlas::OMNI_LIGHT_FLAG) {
|
|
// Omni lights use two atlas spots, make sure to clear the other as well
|
|
shadow_atlas->quadrants[q].shadows.write[s + 1].owner = RID();
|
|
}
|
|
|
|
shadow_atlas->shadow_owners.erase(p_rid);
|
|
}
|
|
|
|
if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) {
|
|
_free_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, light_instance->forward_id);
|
|
}
|
|
light_instance_owner.free(p_rid);
|
|
|
|
} else if (shadow_atlas_owner.owns(p_rid)) {
|
|
shadow_atlas_set_size(p_rid, 0);
|
|
shadow_atlas_owner.free(p_rid);
|
|
} else if (RendererRD::Fog::get_singleton()->owns_fog_volume_instance(p_rid)) {
|
|
RendererRD::Fog::get_singleton()->fog_instance_free(p_rid);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
|
|
debug_draw = p_debug_draw;
|
|
}
|
|
|
|
void RendererSceneRenderRD::update() {
|
|
sky.update_dirty_skys();
|
|
}
|
|
|
|
void RendererSceneRenderRD::set_time(double p_time, double p_step) {
|
|
time = p_time;
|
|
time_step = p_step;
|
|
}
|
|
|
|
void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
|
|
screen_space_roughness_limiter = p_enable;
|
|
screen_space_roughness_limiter_amount = p_amount;
|
|
screen_space_roughness_limiter_limit = p_limit;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
|
|
return screen_space_roughness_limiter;
|
|
}
|
|
|
|
float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
|
|
return screen_space_roughness_limiter_amount;
|
|
}
|
|
|
|
float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
|
|
return screen_space_roughness_limiter_limit;
|
|
}
|
|
|
|
TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) {
|
|
RD::TextureFormat tf;
|
|
tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
|
|
tf.width = p_image_size.width; // Always 64x64
|
|
tf.height = p_image_size.height;
|
|
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
|
|
|
|
RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
|
|
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
|
|
RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
|
|
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
|
|
RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
|
|
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
|
|
tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
|
|
RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
|
|
|
|
Vector<RID> fb_tex;
|
|
fb_tex.push_back(albedo_alpha_tex);
|
|
fb_tex.push_back(normal_tex);
|
|
fb_tex.push_back(orm_tex);
|
|
fb_tex.push_back(emission_tex);
|
|
fb_tex.push_back(depth_write_tex);
|
|
fb_tex.push_back(depth_tex);
|
|
|
|
RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
|
|
|
|
//RID sampled_light;
|
|
|
|
RenderGeometryInstance *gi = geometry_instance_create(p_base);
|
|
ERR_FAIL_NULL_V(gi, TypedArray<Image>());
|
|
|
|
uint32_t sc = RSG::mesh_storage->mesh_get_surface_count(p_base);
|
|
Vector<RID> materials;
|
|
materials.resize(sc);
|
|
|
|
for (uint32_t i = 0; i < sc; i++) {
|
|
if (i < (uint32_t)p_material_overrides.size()) {
|
|
materials.write[i] = p_material_overrides[i];
|
|
}
|
|
}
|
|
|
|
gi->set_surface_materials(materials);
|
|
|
|
if (cull_argument.size() == 0) {
|
|
cull_argument.push_back(nullptr);
|
|
}
|
|
cull_argument[0] = gi;
|
|
_render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
|
|
|
|
geometry_instance_free(gi);
|
|
|
|
TypedArray<Image> ret;
|
|
|
|
{
|
|
PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
|
|
Ref<Image> img;
|
|
img.instantiate();
|
|
img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
|
|
RD::get_singleton()->free(albedo_alpha_tex);
|
|
ret.push_back(img);
|
|
}
|
|
|
|
{
|
|
PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
|
|
Ref<Image> img;
|
|
img.instantiate();
|
|
img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
|
|
RD::get_singleton()->free(normal_tex);
|
|
ret.push_back(img);
|
|
}
|
|
|
|
{
|
|
PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
|
|
Ref<Image> img;
|
|
img.instantiate();
|
|
img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
|
|
RD::get_singleton()->free(orm_tex);
|
|
ret.push_back(img);
|
|
}
|
|
|
|
{
|
|
PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
|
|
Ref<Image> img;
|
|
img.instantiate();
|
|
img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
|
|
RD::get_singleton()->free(emission_tex);
|
|
ret.push_back(img);
|
|
}
|
|
|
|
RD::get_singleton()->free(depth_write_tex);
|
|
RD::get_singleton()->free(depth_tex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
|
|
gi.sdfgi_debug_probe_pos = p_position;
|
|
gi.sdfgi_debug_probe_dir = p_dir;
|
|
}
|
|
|
|
RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;
|
|
|
|
RID RendererSceneRenderRD::get_reflection_probe_buffer() {
|
|
return cluster.reflection_buffer;
|
|
}
|
|
RID RendererSceneRenderRD::get_omni_light_buffer() {
|
|
return cluster.omni_light_buffer;
|
|
}
|
|
|
|
RID RendererSceneRenderRD::get_spot_light_buffer() {
|
|
return cluster.spot_light_buffer;
|
|
}
|
|
|
|
RID RendererSceneRenderRD::get_directional_light_buffer() {
|
|
return cluster.directional_light_buffer;
|
|
}
|
|
RID RendererSceneRenderRD::get_decal_buffer() {
|
|
return cluster.decal_buffer;
|
|
}
|
|
int RendererSceneRenderRD::get_max_directional_lights() const {
|
|
return cluster.max_directional_lights;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::is_vrs_supported() const {
|
|
return RD::get_singleton()->has_feature(RD::SUPPORTS_ATTACHMENT_VRS);
|
|
}
|
|
|
|
bool RendererSceneRenderRD::is_dynamic_gi_supported() const {
|
|
// usable by default (unless low end = true)
|
|
return true;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::is_clustered_enabled() const {
|
|
// used by default.
|
|
return true;
|
|
}
|
|
|
|
bool RendererSceneRenderRD::is_volumetric_supported() const {
|
|
// usable by default (unless low end = true)
|
|
return true;
|
|
}
|
|
|
|
uint32_t RendererSceneRenderRD::get_max_elements() const {
|
|
return GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements");
|
|
}
|
|
|
|
RendererSceneRenderRD::RendererSceneRenderRD() {
|
|
singleton = this;
|
|
}
|
|
|
|
void RendererSceneRenderRD::init() {
|
|
max_cluster_elements = get_max_elements();
|
|
|
|
directional_shadow.size = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/size");
|
|
directional_shadow.use_16_bits = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/16_bits");
|
|
|
|
/* SKY SHADER */
|
|
|
|
sky.init();
|
|
|
|
/* GI */
|
|
|
|
if (is_dynamic_gi_supported()) {
|
|
gi.init(&sky);
|
|
}
|
|
|
|
{ //decals
|
|
cluster.max_decals = max_cluster_elements;
|
|
uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
|
|
cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
|
|
cluster.decal_sort = memnew_arr(Cluster::InstanceSort<DecalInstance>, cluster.max_decals);
|
|
cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
|
|
}
|
|
|
|
{ //reflections
|
|
|
|
cluster.max_reflections = max_cluster_elements;
|
|
cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
|
|
cluster.reflection_sort = memnew_arr(Cluster::InstanceSort<ReflectionProbeInstance>, cluster.max_reflections);
|
|
cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections);
|
|
}
|
|
|
|
{ //lights
|
|
cluster.max_lights = max_cluster_elements;
|
|
|
|
uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
|
|
cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
|
|
cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
|
|
cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
|
|
cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
|
|
cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
|
|
cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
|
|
//defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
|
|
|
|
cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS;
|
|
uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
|
|
cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
|
|
cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
|
|
}
|
|
|
|
if (is_volumetric_supported()) {
|
|
RendererRD::Fog::get_singleton()->init_fog_shader(cluster.max_directional_lights, get_roughness_layers(), is_using_radiance_cubemap_array());
|
|
}
|
|
|
|
{
|
|
RD::SamplerState sampler;
|
|
sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST;
|
|
sampler.min_filter = RD::SAMPLER_FILTER_NEAREST;
|
|
sampler.enable_compare = true;
|
|
sampler.compare_op = RD::COMPARE_OP_LESS;
|
|
shadow_sampler = RD::get_singleton()->sampler_create(sampler);
|
|
}
|
|
|
|
RSG::camera_attributes->camera_attributes_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape"))));
|
|
RSG::camera_attributes->camera_attributes_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter"));
|
|
use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units");
|
|
|
|
environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to"));
|
|
screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled");
|
|
screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount");
|
|
screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit");
|
|
glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0;
|
|
glow_high_quality = GLOBAL_GET("rendering/environment/glow/use_high_quality");
|
|
ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality")));
|
|
sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality")));
|
|
sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale");
|
|
sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale");
|
|
|
|
environment_set_ssil_quality(RS::EnvironmentSSILQuality(int(GLOBAL_GET("rendering/environment/ssil/quality"))), GLOBAL_GET("rendering/environment/ssil/half_size"), GLOBAL_GET("rendering/environment/ssil/adaptive_target"), GLOBAL_GET("rendering/environment/ssil/blur_passes"), GLOBAL_GET("rendering/environment/ssil/fadeout_from"), GLOBAL_GET("rendering/environment/ssil/fadeout_to"));
|
|
|
|
directional_penumbra_shadow_kernel = memnew_arr(float, 128);
|
|
directional_soft_shadow_kernel = memnew_arr(float, 128);
|
|
penumbra_shadow_kernel = memnew_arr(float, 128);
|
|
soft_shadow_kernel = memnew_arr(float, 128);
|
|
positional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality"))));
|
|
directional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality"))));
|
|
|
|
environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth"));
|
|
environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter"));
|
|
|
|
decals_set_filter(RS::DecalFilter(int(GLOBAL_GET("rendering/textures/decals/filter"))));
|
|
light_projectors_set_filter(RS::LightProjectorFilter(int(GLOBAL_GET("rendering/textures/light_projectors/filter"))));
|
|
|
|
cull_argument.set_page_pool(&cull_argument_pool);
|
|
|
|
bool can_use_storage = _render_buffers_can_be_storage();
|
|
bokeh_dof = memnew(RendererRD::BokehDOF(!can_use_storage));
|
|
copy_effects = memnew(RendererRD::CopyEffects(!can_use_storage));
|
|
tone_mapper = memnew(RendererRD::ToneMapper);
|
|
vrs = memnew(RendererRD::VRS);
|
|
if (can_use_storage) {
|
|
fsr = memnew(RendererRD::FSR);
|
|
ss_effects = memnew(RendererRD::SSEffects);
|
|
}
|
|
}
|
|
|
|
RendererSceneRenderRD::~RendererSceneRenderRD() {
|
|
if (bokeh_dof) {
|
|
memdelete(bokeh_dof);
|
|
}
|
|
if (copy_effects) {
|
|
memdelete(copy_effects);
|
|
}
|
|
if (tone_mapper) {
|
|
memdelete(tone_mapper);
|
|
}
|
|
if (vrs) {
|
|
memdelete(vrs);
|
|
}
|
|
if (fsr) {
|
|
memdelete(fsr);
|
|
}
|
|
if (ss_effects) {
|
|
memdelete(ss_effects);
|
|
}
|
|
|
|
for (const KeyValue<int, ShadowCubemap> &E : shadow_cubemaps) {
|
|
RD::get_singleton()->free(E.value.cubemap);
|
|
}
|
|
|
|
if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) {
|
|
RD::get_singleton()->free(sky.sky_scene_state.uniform_set);
|
|
}
|
|
|
|
if (is_dynamic_gi_supported()) {
|
|
gi.free();
|
|
}
|
|
|
|
if (is_volumetric_supported()) {
|
|
RendererRD::Fog::get_singleton()->free_fog_shader();
|
|
}
|
|
|
|
memdelete_arr(directional_penumbra_shadow_kernel);
|
|
memdelete_arr(directional_soft_shadow_kernel);
|
|
memdelete_arr(penumbra_shadow_kernel);
|
|
memdelete_arr(soft_shadow_kernel);
|
|
|
|
{
|
|
RD::get_singleton()->free(cluster.directional_light_buffer);
|
|
RD::get_singleton()->free(cluster.omni_light_buffer);
|
|
RD::get_singleton()->free(cluster.spot_light_buffer);
|
|
RD::get_singleton()->free(cluster.reflection_buffer);
|
|
RD::get_singleton()->free(cluster.decal_buffer);
|
|
memdelete_arr(cluster.directional_lights);
|
|
memdelete_arr(cluster.omni_lights);
|
|
memdelete_arr(cluster.spot_lights);
|
|
memdelete_arr(cluster.omni_light_sort);
|
|
memdelete_arr(cluster.spot_light_sort);
|
|
memdelete_arr(cluster.reflections);
|
|
memdelete_arr(cluster.reflection_sort);
|
|
memdelete_arr(cluster.decals);
|
|
memdelete_arr(cluster.decal_sort);
|
|
}
|
|
|
|
RD::get_singleton()->free(shadow_sampler);
|
|
|
|
directional_shadow_atlas_set_size(0);
|
|
cull_argument.reset(); //avoid exit error
|
|
}
|