mirror of
https://github.com/godotengine/godot.git
synced 2025-01-18 20:40:57 +08:00
fe52458154
Happy new year to the wonderful Godot community!
152 lines
6.3 KiB
C++
152 lines
6.3 KiB
C++
/*************************************************************************/
|
|
/* import_utils.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "import_utils.h"
|
|
|
|
Vector3 ImportUtils::deg2rad(const Vector3 &p_rotation) {
|
|
return p_rotation / 180.0 * Math_PI;
|
|
}
|
|
|
|
Vector3 ImportUtils::rad2deg(const Vector3 &p_rotation) {
|
|
return p_rotation / Math_PI * 180.0;
|
|
}
|
|
|
|
Basis ImportUtils::EulerToBasis(FBXDocParser::Model::RotOrder mode, const Vector3 &p_rotation) {
|
|
Basis ret;
|
|
|
|
// FBX is using intrinsic euler, we can convert intrinsic to extrinsic (the one used in godot
|
|
// by simply invert its order: https://www.cs.utexas.edu/~theshark/courses/cs354/lectures/cs354-14.pdf
|
|
switch (mode) {
|
|
case FBXDocParser::Model::RotOrder_EulerXYZ:
|
|
ret.set_euler(p_rotation, Basis::EULER_ORDER_XYZ);
|
|
break;
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerXZY:
|
|
ret.set_euler(p_rotation, Basis::EULER_ORDER_XZY);
|
|
break;
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerYZX:
|
|
ret.set_euler(p_rotation, Basis::EULER_ORDER_YZX);
|
|
break;
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerYXZ:
|
|
ret.set_euler(p_rotation, Basis::EULER_ORDER_YXZ);
|
|
break;
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerZXY:
|
|
ret.set_euler(p_rotation, Basis::EULER_ORDER_ZXY);
|
|
break;
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerZYX:
|
|
ret.set_euler(p_rotation, Basis::EULER_ORDER_ZYX);
|
|
break;
|
|
|
|
case FBXDocParser::Model::RotOrder_SphericXYZ:
|
|
// TODO do this.
|
|
break;
|
|
|
|
default:
|
|
// If you land here, Please integrate all enums.
|
|
CRASH_NOW_MSG("This is not unreachable.");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
Quaternion ImportUtils::EulerToQuaternion(FBXDocParser::Model::RotOrder mode, const Vector3 &p_rotation) {
|
|
return ImportUtils::EulerToBasis(mode, p_rotation);
|
|
}
|
|
|
|
Vector3 ImportUtils::BasisToEuler(FBXDocParser::Model::RotOrder mode, const Basis &p_rotation) {
|
|
// FBX is using intrinsic euler, we can convert intrinsic to extrinsic (the one used in godot
|
|
// by simply invert its order: https://www.cs.utexas.edu/~theshark/courses/cs354/lectures/cs354-14.pdf
|
|
switch (mode) {
|
|
case FBXDocParser::Model::RotOrder_EulerXYZ:
|
|
return p_rotation.get_euler(Basis::EULER_ORDER_XYZ);
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerXZY:
|
|
return p_rotation.get_euler(Basis::EULER_ORDER_XZY);
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerYZX:
|
|
return p_rotation.get_euler(Basis::EULER_ORDER_YZX);
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerYXZ:
|
|
return p_rotation.get_euler(Basis::EULER_ORDER_YXZ);
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerZXY:
|
|
return p_rotation.get_euler(Basis::EULER_ORDER_ZXY);
|
|
|
|
case FBXDocParser::Model::RotOrder_EulerZYX:
|
|
return p_rotation.get_euler(Basis::EULER_ORDER_ZYX);
|
|
|
|
case FBXDocParser::Model::RotOrder_SphericXYZ:
|
|
// TODO
|
|
return Vector3();
|
|
|
|
default:
|
|
// If you land here, Please integrate all enums.
|
|
CRASH_NOW_MSG("This is not unreachable.");
|
|
return Vector3();
|
|
}
|
|
}
|
|
|
|
Vector3 ImportUtils::QuaternionToEuler(FBXDocParser::Model::RotOrder mode, const Quaternion &p_rotation) {
|
|
return BasisToEuler(mode, p_rotation);
|
|
}
|
|
|
|
Transform3D get_unscaled_transform(const Transform3D &p_initial, real_t p_scale) {
|
|
Transform3D unscaled = Transform3D(p_initial.basis, p_initial.origin * p_scale);
|
|
ERR_FAIL_COND_V_MSG(unscaled.basis.determinant() == 0, Transform3D(), "det is zero unscaled?");
|
|
return unscaled;
|
|
}
|
|
|
|
Vector3 get_poly_normal(const std::vector<Vector3> &p_vertices) {
|
|
ERR_FAIL_COND_V_MSG(p_vertices.size() < 3, Vector3(0, 0, 0), "At least 3 vertices are necessary");
|
|
// Using long double to make sure that normal is computed for even really tiny objects.
|
|
typedef long double ldouble;
|
|
ldouble x = 0.0;
|
|
ldouble y = 0.0;
|
|
ldouble z = 0.0;
|
|
for (size_t i = 0; i < p_vertices.size(); i += 1) {
|
|
const Vector3 current = p_vertices[i];
|
|
const Vector3 next = p_vertices[(i + 1) % p_vertices.size()];
|
|
x += (ldouble(current.y) - ldouble(next.y)) * (ldouble(current.z) + ldouble(next.z));
|
|
y += (ldouble(current.z) - ldouble(next.z)) * (ldouble(current.x) + ldouble(next.x));
|
|
z += (ldouble(current.x) - ldouble(next.x)) * (ldouble(current.y) + ldouble(next.y));
|
|
}
|
|
const ldouble l2 = x * x + y * y + z * z;
|
|
if (l2 == 0.0) {
|
|
return (p_vertices[0] - p_vertices[1]).normalized().cross((p_vertices[0] - p_vertices[2]).normalized()).normalized();
|
|
} else {
|
|
const double l = Math::sqrt(double(l2));
|
|
return Vector3(x / l, y / l, z / l);
|
|
}
|
|
}
|