godot/core/image.cpp
Juan Linietsky b59c86f6f9 -Ability to debug video memory usage
-Small fix to xml saver (swapping > and <)
2015-10-21 09:50:44 -03:00

2416 lines
51 KiB
C++

/*************************************************************************/
/* image.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2015 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "image.h"
#include "hash_map.h"
#include "core/io/image_loader.h"
#include "core/os/copymem.h"
#include "print_string.h"
#include <stdio.h>
const char* Image::format_names[Image::FORMAT_MAX]={
"Grayscale",
"Intensity",
"GrayscaleAlpha",
"RGB",
"RGBA",
"Indexed",
"IndexedAlpha",
"YUV422",
"YUV444",
"BC1",
"BC2",
"BC3",
"BC4",
"BC5",
"PVRTC2",
"PVRTC2Alpha",
"PVRTC4",
"PVRTC4Alpha",
"ETC",
"ATC",
"ATCAlphaExp",
"ATCAlphaInterp",
};
SavePNGFunc Image::save_png_func = NULL;
void Image::_put_pixel(int p_x,int p_y, const BColor& p_color, unsigned char *p_data) {
_put_pixelw(p_x,p_y,width,p_color,p_data);
}
void Image::_put_pixelw(int p_x,int p_y, int p_width, const BColor& p_color, unsigned char *p_data) {
int ofs=p_y*p_width+p_x;
switch(format) {
case FORMAT_GRAYSCALE: {
p_data[ofs]=p_color.gray();
} break;
case FORMAT_INTENSITY: {
p_data[ofs]=p_color.a;
} break;
case FORMAT_GRAYSCALE_ALPHA: {
p_data[ofs*2]=p_color.gray();
p_data[ofs*2+1]=p_color.a;
} break;
case FORMAT_RGB: {
p_data[ofs*3+0]=p_color.r;
p_data[ofs*3+1]=p_color.g;
p_data[ofs*3+2]=p_color.b;
} break;
case FORMAT_RGBA: {
p_data[ofs*4+0]=p_color.r;
p_data[ofs*4+1]=p_color.g;
p_data[ofs*4+2]=p_color.b;
p_data[ofs*4+3]=p_color.a;
} break;
case FORMAT_INDEXED:
case FORMAT_INDEXED_ALPHA: {
ERR_FAIL();
} break;
default: {};
}
}
void Image::_get_mipmap_offset_and_size(int p_mipmap,int &r_offset, int &r_width,int &r_height) const {
int w=width;
int h=height;
int ofs=0;
int pixel_size = get_format_pixel_size(format);
int pixel_rshift = get_format_pixel_rshift(format);
int minw,minh;
_get_format_min_data_size(format,minw,minh);
for(int i=0;i<p_mipmap;i++) {
int s = w*h;
s*=pixel_size;
s>>=pixel_rshift;
ofs+=s;
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
}
r_offset=ofs;
r_width=w;
r_height=h;
}
int Image::get_mipmap_offset(int p_mipmap) const {
ERR_FAIL_INDEX_V(p_mipmap,(mipmaps+1),-1);
int ofs,w,h;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
return ofs;
}
void Image::get_mipmap_offset_and_size(int p_mipmap,int &r_ofs, int &r_size) const {
int ofs,w,h;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
int ofs2;
_get_mipmap_offset_and_size(p_mipmap+1,ofs2,w,h);
r_ofs=ofs;
r_size=ofs2-ofs;
}
void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap,int &r_ofs, int &r_size,int &w, int& h) const {
int ofs;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
int ofs2,w2,h2;
_get_mipmap_offset_and_size(p_mipmap+1,ofs2,w2,h2);
r_ofs=ofs;
r_size=ofs2-ofs;
}
void Image::put_pixel(int p_x,int p_y, const Color& p_color,int p_mipmap){
ERR_FAIL_INDEX(p_mipmap,mipmaps+1);
int ofs,w,h;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
ERR_FAIL_INDEX(p_x,w);
ERR_FAIL_INDEX(p_y,h);
DVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
_put_pixelw(p_x,p_y,w,BColor(p_color.r*255,p_color.g*255,p_color.b*255,p_color.a*255),&data_ptr[ofs]);
}
Image::BColor Image::_get_pixel(int p_x,int p_y,const unsigned char *p_data,int p_data_size) const{
return _get_pixelw(p_x,p_y,width,p_data,p_data_size);
}
Image::BColor Image::_get_pixelw(int p_x,int p_y,int p_width,const unsigned char *p_data,int p_data_size) const{
int ofs=p_y*p_width+p_x;
BColor result(0,0,0,0);
switch(format) {
case FORMAT_GRAYSCALE: {
result=BColor(p_data[ofs],p_data[ofs],p_data[ofs],255.0);
} break;
case FORMAT_INTENSITY: {
result=BColor(255,255,255,p_data[ofs]);
} break;
case FORMAT_GRAYSCALE_ALPHA: {
result=BColor(p_data[ofs*2],p_data[ofs*2],p_data[ofs*2],p_data[ofs*2+1]);
} break;
case FORMAT_RGB: {
result=BColor(p_data[ofs*3],p_data[ofs*3+1],p_data[ofs*3+2]);
} break;
case FORMAT_RGBA: {
result=BColor(p_data[ofs*4],p_data[ofs*4+1],p_data[ofs*4+2],p_data[ofs*4+3]);
} break;
case FORMAT_INDEXED_ALPHA: {
int pitch = 4;
const uint8_t* pal = &p_data[ p_data_size - pitch * 256 ];
int idx = p_data[ofs];
result=BColor(pal[idx * pitch + 0] , pal[idx * pitch + 1] , pal[idx * pitch + 2] , pal[idx * pitch + 3] );
} break;
case FORMAT_INDEXED: {
int pitch = 3;
const uint8_t* pal = &p_data[ p_data_size - pitch * 256 ];
int idx = p_data[ofs];
result=BColor(pal[idx * pitch + 0] , pal[idx * pitch + 1] , pal[idx * pitch + 2] ,255);
} break;
case FORMAT_YUV_422: {
int y, u, v;
if (p_x % 2) {
const uint8_t* yp = &p_data[p_width * 2 * p_y + p_x * 2];
u = *(yp-1);
y = yp[0];
v = yp[1];
} else {
const uint8_t* yp = &p_data[p_width * 2 * p_y + p_x * 2];
y = yp[0];
u = yp[1];
v = yp[3];
};
int32_t r = 1.164 * (y - 16) + 1.596 * (v - 128);
int32_t g = 1.164 * (y - 16) - 0.813 * (v - 128) - 0.391 * (u - 128);
int32_t b = 1.164 * (y - 16) + 2.018 * (u - 128);
result = BColor(CLAMP(r, 0, 255), CLAMP(g, 0, 255), CLAMP(b, 0, 255));
} break;
case FORMAT_YUV_444: {
uint8_t y, u, v;
const uint8_t* yp = &p_data[p_width * 3 * p_y + p_x * 3];
y = yp[0];
u = yp[1];
v = yp[2];
int32_t r = 1.164 * (y - 16) + 1.596 * (v - 128);
int32_t g = 1.164 * (y - 16) - 0.813 * (v - 128) - 0.391 * (u - 128);
int32_t b = 1.164 * (y - 16) + 2.018 * (u - 128);
result = BColor(CLAMP(r, 0, 255), CLAMP(g, 0, 255), CLAMP(b, 0, 255));
} break;
default:{}
}
return result;
}
void Image::put_indexed_pixel(int p_x, int p_y, uint8_t p_idx,int p_mipmap) {
ERR_FAIL_COND(format != FORMAT_INDEXED && format != FORMAT_INDEXED_ALPHA);
ERR_FAIL_INDEX(p_mipmap,mipmaps+1);
int ofs,w,h;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
ERR_FAIL_INDEX(p_x,w);
ERR_FAIL_INDEX(p_y,h);
data.set(ofs + p_y * w + p_x, p_idx);
};
uint8_t Image::get_indexed_pixel(int p_x, int p_y,int p_mipmap) const {
ERR_FAIL_COND_V(format != FORMAT_INDEXED && format != FORMAT_INDEXED_ALPHA, 0);
ERR_FAIL_INDEX_V(p_mipmap,mipmaps+1,0);
int ofs,w,h;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
ERR_FAIL_INDEX_V(p_x,w,0);
ERR_FAIL_INDEX_V(p_y,h,0);
return data[ofs + p_y * w + p_x];
};
void Image::set_pallete(const DVector<uint8_t>& p_data) {
int len = p_data.size();
ERR_FAIL_COND(format != FORMAT_INDEXED && format != FORMAT_INDEXED_ALPHA);
ERR_FAIL_COND(format == FORMAT_INDEXED && len!=(256*3));
ERR_FAIL_COND(format == FORMAT_INDEXED_ALPHA && len!=(256*4));
int ofs,w,h;
_get_mipmap_offset_and_size(mipmaps+1,ofs,w,h);
int pal_ofs = ofs;
data.resize(pal_ofs + p_data.size());
DVector<uint8_t>::Write wp = data.write();
unsigned char *dst=wp.ptr() + pal_ofs;
DVector<uint8_t>::Read r = data.read();
const unsigned char *src=r.ptr();
copymem(dst, src, len);
};
int Image::get_width() const {
return width;
}
int Image::get_height() const{
return height;
}
int Image::get_mipmaps() const {
return mipmaps;
}
Color Image::get_pixel(int p_x,int p_y,int p_mipmap) const {
ERR_FAIL_INDEX_V(p_mipmap,mipmaps+1,Color());
int ofs,w,h;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
ERR_FAIL_INDEX_V(p_x,w,Color());
ERR_FAIL_INDEX_V(p_y,h,Color());
int len = data.size();
DVector<uint8_t>::Read r = data.read();
const unsigned char*data_ptr=r.ptr();
BColor c = _get_pixelw(p_x,p_y,w,&data_ptr[ofs],len);
return Color( c.r/255.0,c.g/255.0,c.b/255.0,c.a/255.0 );
}
void Image::convert( Format p_new_format ){
if (data.size()==0)
return;
if (p_new_format==format)
return;
if (format>=FORMAT_BC1 || p_new_format>=FORMAT_BC1) {
ERR_EXPLAIN("Cannot convert to <-> from compressed/custom image formats (for now).");
ERR_FAIL();
}
if (p_new_format==FORMAT_INDEXED || p_new_format==FORMAT_INDEXED_ALPHA) {
return;
}
Image new_img(width,height,0,p_new_format);
int len=data.size();
DVector<uint8_t>::Read r = data.read();
DVector<uint8_t>::Write w = new_img.data.write();
const uint8_t *rptr = r.ptr();
uint8_t *wptr = w.ptr();
if (p_new_format==FORMAT_RGBA && format==FORMAT_INDEXED_ALPHA) {
//optimized unquantized form
int dataend = len-256*4;
const uint32_t *palpos = (const uint32_t*)&rptr[dataend];
uint32_t *dst32 = (uint32_t *)wptr;
for(int i=0;i<dataend;i++)
dst32[i]=palpos[rptr[i]]; //since this is read/write, endianness is not a problem
} else {
//this is temporary, must find a faster way to do it.
for(int i=0;i<width;i++)
for(int j=0;j<height;j++)
new_img._put_pixel(i,j,_get_pixel(i,j,rptr,len),wptr);
}
r = DVector<uint8_t>::Read();
w = DVector<uint8_t>::Write();
bool gen_mipmaps=mipmaps>0;
*this=new_img;
if (gen_mipmaps)
generate_mipmaps();
}
Image::Format Image::get_format() const{
return format;
}
static double _bicubic_interp_kernel( double x ) {
x = ABS(x);
double bc = 0;
if ( x <= 1 )
bc = ( 1.5 * x - 2.5 ) * x * x + 1;
else if ( x < 2 )
bc = ( ( -0.5 * x + 2.5 ) * x - 4 ) * x + 2;
return bc;
}
template<int CC>
static void _scale_cubic(const uint8_t* p_src, uint8_t* p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
// get source image size
int width = p_src_width;
int height = p_src_height;
double xfac = (double) width / p_dst_width;
double yfac = (double) height / p_dst_height;
// coordinates of source points and cooefficiens
double ox, oy, dx, dy, k1, k2;
int ox1, oy1, ox2, oy2;
// destination pixel values
// width and height decreased by 1
int ymax = height - 1;
int xmax = width - 1;
// temporary pointer
for ( int y = 0; y < p_dst_height; y++ ) {
// Y coordinates
oy = (double) y * yfac - 0.5f;
oy1 = (int) oy;
dy = oy - (double) oy1;
for ( int x = 0; x < p_dst_width; x++ ) {
// X coordinates
ox = (double) x * xfac - 0.5f;
ox1 = (int) ox;
dx = ox - (double) ox1;
// initial pixel value
uint8_t *dst=p_dst + (y*p_dst_width+x)*CC;
double color[CC];
for(int i=0;i<CC;i++) {
color[i]=0;
}
for ( int n = -1; n < 3; n++ ) {
// get Y cooefficient
k1 = _bicubic_interp_kernel( dy - (double) n );
oy2 = oy1 + n;
if ( oy2 < 0 )
oy2 = 0;
if ( oy2 > ymax )
oy2 = ymax;
for ( int m = -1; m < 3; m++ ) {
// get X cooefficient
k2 = k1 * _bicubic_interp_kernel( (double) m - dx );
ox2 = ox1 + m;
if ( ox2 < 0 )
ox2 = 0;
if ( ox2 > xmax )
ox2 = xmax;
// get pixel of original image
const uint8_t *p = p_src + (oy2 * p_src_width + ox2)*CC;
for(int i=0;i<CC;i++) {
color[i]+=p[i]*k2;
}
}
}
for(int i=0;i<CC;i++) {
dst[i]=CLAMP(Math::fast_ftoi(color[i]),0,255);
}
}
}
}
template<int CC>
static void _scale_bilinear(const uint8_t* p_src, uint8_t* p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
enum {
FRAC_BITS=8,
FRAC_LEN=(1<<FRAC_BITS),
FRAC_MASK=FRAC_LEN-1
};
for(uint32_t i=0;i<p_dst_height;i++) {
uint32_t src_yofs_up_fp = (i*p_src_height*FRAC_LEN/p_dst_height);
uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK;
uint32_t src_yofs_up = src_yofs_up_fp >> FRAC_BITS;
uint32_t src_yofs_down = (i+1)*p_src_height/p_dst_height;
if (src_yofs_down>=p_src_height)
src_yofs_down=p_src_height-1;
//src_yofs_up*=CC;
//src_yofs_down*=CC;
uint32_t y_ofs_up = src_yofs_up * p_src_width * CC;
uint32_t y_ofs_down = src_yofs_down * p_src_width * CC;
for(uint32_t j=0;j<p_dst_width;j++) {
uint32_t src_xofs_left_fp = (j*p_src_width*FRAC_LEN/p_dst_width);
uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK;
uint32_t src_xofs_left = src_xofs_left_fp >> FRAC_BITS;
uint32_t src_xofs_right = (j+1)*p_src_width/p_dst_width;
if (src_xofs_right>=p_src_width)
src_xofs_right=p_src_width-1;
src_xofs_left*=CC;
src_xofs_right*=CC;
for(uint32_t l=0;l<CC;l++) {
uint32_t p00=p_src[y_ofs_up+src_xofs_left+l]<<FRAC_BITS;
uint32_t p10=p_src[y_ofs_up+src_xofs_right+l]<<FRAC_BITS;
uint32_t p01=p_src[y_ofs_down+src_xofs_left+l]<<FRAC_BITS;
uint32_t p11=p_src[y_ofs_down+src_xofs_right+l]<<FRAC_BITS;
uint32_t interp_up = p00+(((p10-p00)*src_xofs_frac)>>FRAC_BITS);
uint32_t interp_down = p01+(((p11-p01)*src_xofs_frac)>>FRAC_BITS);
uint32_t interp = interp_up+(((interp_down-interp_up)*src_yofs_frac)>>FRAC_BITS);
interp>>=FRAC_BITS;
p_dst[i*p_dst_width*CC+j*CC+l]=interp;
}
}
}
}
template<int CC>
static void _scale_nearest(const uint8_t* p_src, uint8_t* p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
for(uint32_t i=0;i<p_dst_height;i++) {
uint32_t src_yofs = i*p_src_height/p_dst_height;
uint32_t y_ofs = src_yofs * p_src_width * CC;
for(uint32_t j=0;j<p_dst_width;j++) {
uint32_t src_xofs = j*p_src_width/p_dst_width;
src_xofs*=CC;
for(uint32_t l=0;l<CC;l++) {
uint32_t p=p_src[y_ofs+src_xofs+l];
p_dst[i*p_dst_width*CC+j*CC+l]=p;
}
}
}
}
void Image::resize_to_po2(bool p_square) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats.");
ERR_FAIL();
}
int w = nearest_power_of_2(width);
int h = nearest_power_of_2(height);
if (w==width && h==height) {
if (!p_square || w==h)
return; //nothing to do
}
resize(w,h);
}
Image Image::resized( int p_width, int p_height, int p_interpolation ) {
Image ret = *this;
ret.resize(p_width, p_height, (Interpolation)p_interpolation);
return ret;
};
void Image::resize( int p_width, int p_height, Interpolation p_interpolation ) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats.");
ERR_FAIL();
}
ERR_FAIL_COND(p_width<=0);
ERR_FAIL_COND(p_height<=0);
ERR_FAIL_COND(p_width>MAX_WIDTH);
ERR_FAIL_COND(p_height>MAX_HEIGHT);
if (p_width==width && p_height==height)
return;
Image dst( p_width, p_height, 0, format );
if (format==FORMAT_INDEXED)
p_interpolation=INTERPOLATE_NEAREST;
DVector<uint8_t>::Read r = data.read();
const unsigned char*r_ptr=r.ptr();
DVector<uint8_t>::Write w = dst.data.write();
unsigned char*w_ptr=w.ptr();
switch(p_interpolation) {
case INTERPOLATE_NEAREST: {
switch(get_format_pixel_size(format)) {
case 1: _scale_nearest<1>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 2: _scale_nearest<2>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 3: _scale_nearest<3>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 4: _scale_nearest<4>(r_ptr,w_ptr,width,height,p_width,p_height); break;
}
} break;
case INTERPOLATE_BILINEAR: {
switch(get_format_pixel_size(format)) {
case 1: _scale_bilinear<1>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 2: _scale_bilinear<2>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 3: _scale_bilinear<3>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 4: _scale_bilinear<4>(r_ptr,w_ptr,width,height,p_width,p_height); break;
}
} break;
case INTERPOLATE_CUBIC: {
switch(get_format_pixel_size(format)) {
case 1: _scale_cubic<1>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 2: _scale_cubic<2>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 3: _scale_cubic<3>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 4: _scale_cubic<4>(r_ptr,w_ptr,width,height,p_width,p_height); break;
}
} break;
}
r = DVector<uint8_t>::Read();
w = DVector<uint8_t>::Write();
if (mipmaps>0)
dst.generate_mipmaps();
*this=dst;
}
void Image::crop( int p_width, int p_height ) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot crop in indexed, compressed or custom image formats.");
ERR_FAIL();
}
ERR_FAIL_COND(p_width<=0);
ERR_FAIL_COND(p_height<=0);
ERR_FAIL_COND(p_width>MAX_WIDTH);
ERR_FAIL_COND(p_height>MAX_HEIGHT);
/* to save memory, cropping should be done in-place, however, since this function
will most likely either not be used much, or in critical areas, for now it wont, because
it's a waste of time. */
if (p_width==width && p_height==height)
return;
Image dst( p_width, p_height,0, format );
for (int y=0;y<p_height;y++) {
for (int x=0;x<p_width;x++) {
Color col = (x>=width || y>=height)? Color() : get_pixel(x,y);
dst.put_pixel(x,y,col);
}
}
if (mipmaps>0)
dst.generate_mipmaps();
*this=dst;
}
void Image::flip_y() {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot flip_y in indexed, compressed or custom image formats.");
ERR_FAIL();
}
bool gm=mipmaps;
if (gm)
clear_mipmaps();;
for (int y=0;y<(height/2);y++) {
for (int x=0;x<width;x++) {
Color up = get_pixel(x,y);
Color down = get_pixel(x,height-y-1);
put_pixel(x,y,down);
put_pixel(x,height-y-1,up);
}
}
if (gm)
generate_mipmaps();;
}
void Image::flip_x() {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot flip_x in indexed, compressed or custom image formats.");
ERR_FAIL();
}
bool gm=mipmaps;
if (gm)
clear_mipmaps();;
for (int y=0;y<(height/2);y++) {
for (int x=0;x<width;x++) {
Color up = get_pixel(x,y);
Color down = get_pixel(width-x-1,y);
put_pixel(x,y,down);
put_pixel(width-x-1,y,up);
}
}
if (gm)
generate_mipmaps();;
}
int Image::_get_dst_image_size(int p_width, int p_height, Format p_format,int &r_mipmaps,int p_mipmaps) {
int size=0;
int w=p_width;
int h=p_height;
int mm=0;
int pixsize=get_format_pixel_size(p_format);
int pixshift=get_format_pixel_rshift(p_format);
int minw,minh;
_get_format_min_data_size(p_format,minw,minh);
switch(p_format) {
case FORMAT_INDEXED: pixsize=1; size=256*3; break;
case FORMAT_INDEXED_ALPHA: pixsize=1; size=256*4;break;
default: {}
} ;
while(true) {
int s = w*h;
s*=pixsize;
s>>=pixshift;
size+=s;
if (p_mipmaps>=0 && mm==p_mipmaps)
break;
if (p_mipmaps>=0) {
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
} else {
if (w==minw && h==minh)
break;
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
}
mm++;
};
r_mipmaps=mm;
return size;
}
bool Image::_can_modify(Format p_format) const {
switch(p_format) {
//these are OK
case FORMAT_GRAYSCALE:
case FORMAT_INTENSITY:
case FORMAT_GRAYSCALE_ALPHA:
case FORMAT_RGB:
case FORMAT_RGBA:
return true;
default:
return false;
}
return false;
}
template<int CC>
static void _generate_po2_mipmap(const uint8_t* p_src, uint8_t* p_dst, uint32_t p_width, uint32_t p_height) {
//fast power of 2 mipmap generation
uint32_t dst_w = p_width >> 1;
uint32_t dst_h = p_height >> 1;
for(uint32_t i=0;i<dst_h;i++) {
const uint8_t *rup_ptr = &p_src[i*2*p_width*CC];
const uint8_t *rdown_ptr = rup_ptr + p_width * CC;
uint8_t *dst_ptr = &p_dst[i*dst_w*CC];
uint32_t count=dst_w;
while(count--) {
for(int j=0;j<CC;j++) {
uint16_t val=0;
val+=rup_ptr[j];
val+=rup_ptr[j+CC];
val+=rdown_ptr[j];
val+=rdown_ptr[j+CC];
dst_ptr[j]=val>>2;
}
dst_ptr+=CC;
rup_ptr+=CC*2;
rdown_ptr+=CC*2;
}
}
}
Error Image::generate_mipmaps(int p_mipmaps,bool p_keep_existing) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot generate mipmaps in indexed, compressed or custom image formats.");
ERR_FAIL_V(ERR_UNAVAILABLE);
}
int from_mm=1;
if (p_keep_existing) {
from_mm=mipmaps+1;
}
int size = _get_dst_image_size(width,height,format,mipmaps,p_mipmaps);
data.resize(size);
DVector<uint8_t>::Write wp=data.write();
if (nearest_power_of_2(width)==uint32_t(width) && nearest_power_of_2(height)==uint32_t(height)) {
//use fast code for powers of 2
int prev_ofs=0;
int prev_h=height;
int prev_w=width;
for(int i=1;i<mipmaps;i++) {
int ofs,w,h;
_get_mipmap_offset_and_size(i,ofs, w,h);
if (i>=from_mm) {
switch(format) {
case FORMAT_GRAYSCALE:
case FORMAT_INTENSITY: _generate_po2_mipmap<1>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h); break;
case FORMAT_GRAYSCALE_ALPHA: _generate_po2_mipmap<2>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h); break;
case FORMAT_RGB: _generate_po2_mipmap<3>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h); break;
case FORMAT_RGBA: _generate_po2_mipmap<4>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h); break;
default: {}
}
}
prev_ofs=ofs;
prev_w=w;
prev_h=h;
}
} else {
//use slow code..
//use bilinear filtered code for non powers of 2
int prev_ofs=0;
int prev_h=height;
int prev_w=width;
for(int i=1;i<mipmaps;i++) {
int ofs,w,h;
_get_mipmap_offset_and_size(i,ofs, w,h);
if (i>=from_mm) {
switch(format) {
case FORMAT_GRAYSCALE:
case FORMAT_INTENSITY: _scale_bilinear<1>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h,w,h); break;
case FORMAT_GRAYSCALE_ALPHA: _scale_bilinear<2>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h,w,h); break;
case FORMAT_RGB: _scale_bilinear<3>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h,w,h); break;
case FORMAT_RGBA: _scale_bilinear<4>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h,w,h); break;
default: {}
}
}
prev_ofs=ofs;
prev_w=w;
prev_h=h;
}
}
return OK;
}
void Image::clear_mipmaps() {
if (mipmaps==0)
return;
if (format==FORMAT_CUSTOM) {
ERR_EXPLAIN("Cannot clear mipmaps in indexed, compressed or custom image formats.");
ERR_FAIL();
}
if (empty())
return;
int ofs,w,h;
_get_mipmap_offset_and_size(1,ofs,w,h);
int palsize = get_format_pallete_size(format);
DVector<uint8_t> pallete;
ERR_FAIL_COND(ofs+palsize > data.size()); //bug?
if (palsize) {
pallete.resize(palsize);
DVector<uint8_t>::Read r = data.read();
DVector<uint8_t>::Write w = pallete.write();
copymem(&w[0],&r[data.size()-palsize],palsize);
}
data.resize(ofs+palsize);
if (palsize) {
DVector<uint8_t>::Read r = pallete.read();
DVector<uint8_t>::Write w = data.write();
copymem(&w[ofs],&r[0],palsize);
}
mipmaps=0;
}
void Image::make_normalmap(float p_height_scale) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot crop in indexed, compressed or custom image formats.");
ERR_FAIL();
}
ERR_FAIL_COND( empty() );
Image normalmap(width,height,0, FORMAT_RGB);
/*
for (int y=0;y<height;y++) {
for (int x=0;x<width;x++) {
float center=get_pixel(x,y).gray()/255.0;
float up=(y>0)?get_pixel(x,y-1).gray()/255.0:center;
float down=(y<(height-1))?get_pixel(x,y+1).gray()/255.0:center;
float left=(x>0)?get_pixel(x-1,y).gray()/255.0:center;
float right=(x<(width-1))?get_pixel(x+1,y).gray()/255.0:center;
// uhm, how do i do this? ....
Color result( (uint8_t)((normal.x+1.0)*127.0), (uint8_t)((normal.y+1.0)*127.0), (uint8_t)((normal.z+1.0)*127.0) );
normalmap.put_pixel( x, y, result );
}
}
*/
*this=normalmap;
}
bool Image::empty() const {
return (data.size()==0);
}
DVector<uint8_t> Image::get_data() const {
return data;
}
void Image::create(int p_width, int p_height, bool p_use_mipmaps,Format p_format) {
int mm=0;
int size = _get_dst_image_size(p_width,p_height,p_format,mm,p_use_mipmaps?-1:0);
data.resize( size );
{
DVector<uint8_t>::Write w= data.write();
zeromem(w.ptr(),size);
}
width=p_width;
height=p_height;
mipmaps=mm;
format=p_format;
}
void Image::create(int p_width, int p_height, int p_mipmaps, Format p_format, const DVector<uint8_t>& p_data) {
ERR_FAIL_INDEX(p_width-1,MAX_WIDTH);
ERR_FAIL_INDEX(p_height-1,MAX_HEIGHT);
if (p_format < FORMAT_CUSTOM) {
int mm;
int size = _get_dst_image_size(p_width,p_height,p_format,mm,p_mipmaps);
if (size!=p_data.size()) {
ERR_EXPLAIN("Expected data size of "+itos(size)+" in Image::create()");
ERR_FAIL_COND(p_data.size()!=size);
}
};
height=p_height;
width=p_width;
format=p_format;
data=p_data;
mipmaps=p_mipmaps;
}
void Image::create( const char ** p_xpm ) {
int size_width,size_height;
int pixelchars=0;
mipmaps=0;
bool has_alpha=false;
enum Status {
READING_HEADER,
READING_COLORS,
READING_PIXELS,
DONE
};
Status status = READING_HEADER;
int line=0;
HashMap<String,Color> colormap;
int colormap_size;
while (status!=DONE) {
const char * line_ptr = p_xpm[line];
switch (status) {
case READING_HEADER: {
String line_str=line_ptr;
line_str.replace("\t"," ");
size_width=line_str.get_slicec(' ',0).to_int();
size_height=line_str.get_slicec(' ',1).to_int();
colormap_size=line_str.get_slicec(' ',2).to_int();
pixelchars=line_str.get_slicec(' ',3).to_int();
ERR_FAIL_COND(colormap_size > 32766);
ERR_FAIL_COND(pixelchars > 5);
ERR_FAIL_COND(size_width > 32767);
ERR_FAIL_COND(size_height > 32767);
status=READING_COLORS;
} break;
case READING_COLORS: {
String colorstring;
for (int i=0;i<pixelchars;i++) {
colorstring+=*line_ptr;
line_ptr++;
}
//skip spaces
while (*line_ptr==' ' || *line_ptr=='\t' || *line_ptr==0) {
if (*line_ptr==0)
break;
line_ptr++;
}
if (*line_ptr=='c') {
line_ptr++;
while (*line_ptr==' ' || *line_ptr=='\t' || *line_ptr==0) {
if (*line_ptr==0)
break;
line_ptr++;
}
if (*line_ptr=='#') {
line_ptr++;
uint8_t col_r;
uint8_t col_g;
uint8_t col_b;
// uint8_t col_a=255;
for (int i=0;i<6;i++) {
char v = line_ptr[i];
if (v>='0' && v<='9')
v-='0';
else if (v>='A' && v<='F')
v=(v-'A')+10;
else if (v>='a' && v<='f')
v=(v-'a')+10;
else
break;
switch(i) {
case 0: col_r=v<<4; break;
case 1: col_r|=v; break;
case 2: col_g=v<<4; break;
case 3: col_g|=v; break;
case 4: col_b=v<<4; break;
case 5: col_b|=v; break;
};
}
// magenta mask
if (col_r==255 && col_g==0 && col_b==255) {
colormap[colorstring]=Color(0,0,0,0);
has_alpha=true;
} else {
colormap[colorstring]=Color(col_r/255.0,col_g/255.0,col_b/255.0,1.0);
}
}
}
if (line==colormap_size) {
status=READING_PIXELS;
create(size_width,size_height,0,has_alpha?FORMAT_RGBA:FORMAT_RGB);
}
} break;
case READING_PIXELS: {
int y=line-colormap_size-1;
for (int x=0;x<size_width;x++) {
char pixelstr[6]={0,0,0,0,0,0};
for (int i=0;i<pixelchars;i++)
pixelstr[i]=line_ptr[x*pixelchars+i];
Color *colorptr = colormap.getptr(pixelstr);
ERR_FAIL_COND(!colorptr);
put_pixel(x,y,*colorptr);
}
if (y==(size_height-1))
status=DONE;
} break;
default:{}
}
line++;
}
}
#define DETECT_ALPHA_MAX_TRESHOLD 254
#define DETECT_ALPHA_MIN_TRESHOLD 2
#define DETECT_ALPHA( m_value )\
{ \
uint8_t value=m_value;\
if (value<DETECT_ALPHA_MIN_TRESHOLD)\
bit=true;\
else if (value<DETECT_ALPHA_MAX_TRESHOLD) {\
\
detected=true;\
break;\
}\
}
#define DETECT_NON_ALPHA( m_value )\
{ \
uint8_t value=m_value;\
if (value>0) {\
\
detected=true;\
break;\
}\
}
bool Image::is_invisible() const {
if (format==FORMAT_GRAYSCALE ||
format==FORMAT_RGB ||
format==FORMAT_INDEXED)
return false;
int len = data.size();
if (len==0)
return true;
if (format >= FORMAT_YUV_422 && format <= FORMAT_YUV_444)
return false;
int w,h;
_get_mipmap_offset_and_size(1,len,w,h);
DVector<uint8_t>::Read r = data.read();
const unsigned char *data_ptr=r.ptr();
bool detected=false;
switch(format) {
case FORMAT_INTENSITY: {
for(int i=0;i<len;i++) {
DETECT_NON_ALPHA(data_ptr[i]);
}
} break;
case FORMAT_GRAYSCALE_ALPHA: {
for(int i=0;i<(len>>1);i++) {
DETECT_NON_ALPHA(data_ptr[(i<<1)+1]);
}
} break;
case FORMAT_RGBA: {
for(int i=0;i<(len>>2);i++) {
DETECT_NON_ALPHA(data_ptr[(i<<2)+3])
}
} break;
case FORMAT_INDEXED: {
return false;
} break;
case FORMAT_INDEXED_ALPHA: {
return false;
} break;
case FORMAT_PVRTC2_ALPHA:
case FORMAT_PVRTC4_ALPHA:
case FORMAT_BC2:
case FORMAT_BC3: {
detected=true;
} break;
default: {}
}
return !detected;
}
Image::AlphaMode Image::detect_alpha() const {
if (format==FORMAT_GRAYSCALE ||
format==FORMAT_RGB ||
format==FORMAT_INDEXED)
return ALPHA_NONE;
int len = data.size();
if (len==0)
return ALPHA_NONE;
if (format >= FORMAT_YUV_422 && format <= FORMAT_YUV_444)
return ALPHA_NONE;
int w,h;
_get_mipmap_offset_and_size(1,len,w,h);
DVector<uint8_t>::Read r = data.read();
const unsigned char *data_ptr=r.ptr();
bool bit=false;
bool detected=false;
switch(format) {
case FORMAT_INTENSITY: {
for(int i=0;i<len;i++) {
DETECT_ALPHA(data_ptr[i]);
}
} break;
case FORMAT_GRAYSCALE_ALPHA: {
for(int i=0;i<(len>>1);i++) {
DETECT_ALPHA(data_ptr[(i<<1)+1]);
}
} break;
case FORMAT_RGBA: {
for(int i=0;i<(len>>2);i++) {
DETECT_ALPHA(data_ptr[(i<<2)+3])
}
} break;
case FORMAT_INDEXED: {
return ALPHA_NONE;
} break;
case FORMAT_INDEXED_ALPHA: {
return ALPHA_BLEND;
} break;
case FORMAT_PVRTC2_ALPHA:
case FORMAT_PVRTC4_ALPHA:
case FORMAT_BC2:
case FORMAT_BC3: {
detected=true;
} break;
default: {}
}
if (detected)
return ALPHA_BLEND;
else if (bit)
return ALPHA_BIT;
else
return ALPHA_NONE;
}
Error Image::load(const String& p_path) {
return ImageLoader::load_image(p_path, this);
}
Error Image::save_png(const String& p_path) {
if (save_png_func == NULL)
return ERR_UNAVAILABLE;
return save_png_func(p_path, *this);
};
bool Image::operator==(const Image& p_image) const {
if (data.size() == 0 && p_image.data.size() == 0)
return true;
DVector<uint8_t>::Read r = data.read();
DVector<uint8_t>::Read pr = p_image.data.read();
return r.ptr() == pr.ptr();
}
int Image::get_format_pixel_size(Format p_format) {
switch(p_format) {
case FORMAT_GRAYSCALE: {
return 1;
} break;
case FORMAT_INTENSITY: {
return 1;
} break;
case FORMAT_GRAYSCALE_ALPHA: {
return 2;
} break;
case FORMAT_RGB: {
return 3;
} break;
case FORMAT_RGBA: {
return 4;
} break;
case FORMAT_INDEXED: {
return 1;
} break;
case FORMAT_INDEXED_ALPHA: {
return 1;
} break;
case FORMAT_BC1:
case FORMAT_BC2:
case FORMAT_BC3:
case FORMAT_BC4:
case FORMAT_BC5: {
return 1;
} break;
case FORMAT_PVRTC2:
case FORMAT_PVRTC2_ALPHA: {
return 1;
} break;
case FORMAT_PVRTC4:
case FORMAT_PVRTC4_ALPHA: {
return 1;
} break;
case FORMAT_ATC:
case FORMAT_ATC_ALPHA_EXPLICIT:
case FORMAT_ATC_ALPHA_INTERPOLATED: {
return 1;
} break;
case FORMAT_ETC: {
return 1;
} break;
case FORMAT_YUV_422: {
return 2;
};
case FORMAT_YUV_444: {
return 3;
} break;
case FORMAT_CUSTOM: {
ERR_EXPLAIN("pixel size requested for custom image format, and it's unknown obviously");
ERR_FAIL_V(1);
} break;
default:{
ERR_EXPLAIN("Cannot obtain pixel size from this format");
ERR_FAIL_V(1);
}
}
return 0;
}
int Image::get_image_data_size(int p_width, int p_height, Format p_format,int p_mipmaps) {
int mm;
return _get_dst_image_size(p_width,p_height,p_format,mm,p_mipmaps);
}
int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) {
int mm;
_get_dst_image_size(p_width,p_height,p_format,mm,-1);
return mm;
}
void Image::_get_format_min_data_size(Format p_format,int &r_w, int &r_h) {
switch(p_format) {
case FORMAT_BC1:
case FORMAT_BC2:
case FORMAT_BC3:
case FORMAT_BC4:
case FORMAT_BC5: {
r_w=4;
r_h=4;
} break;
case FORMAT_PVRTC2:
case FORMAT_PVRTC2_ALPHA: {
r_w=16;
r_h=8;
} break;
case FORMAT_PVRTC4_ALPHA:
case FORMAT_PVRTC4: {
r_w=8;
r_h=8;
} break;
case FORMAT_ATC:
case FORMAT_ATC_ALPHA_EXPLICIT:
case FORMAT_ATC_ALPHA_INTERPOLATED: {
r_w=8;
r_h=8;
} break;
case FORMAT_ETC: {
r_w=4;
r_h=4;
} break;
default: {
r_w=1;
r_h=1;
} break;
}
}
int Image::get_format_pixel_rshift(Format p_format) {
if (p_format==FORMAT_BC1 || p_format==FORMAT_BC4 || p_format==FORMAT_ATC || p_format==FORMAT_PVRTC4 || p_format==FORMAT_PVRTC4_ALPHA || p_format==FORMAT_ETC)
return 1;
else if (p_format==FORMAT_PVRTC2 || p_format==FORMAT_PVRTC2_ALPHA)
return 2;
else
return 0;
}
int Image::get_format_pallete_size(Format p_format) {
switch(p_format) {
case FORMAT_GRAYSCALE: {
return 0;
} break;
case FORMAT_INTENSITY: {
return 0;
} break;
case FORMAT_GRAYSCALE_ALPHA: {
return 0;
} break;
case FORMAT_RGB: {
return 0;
} break;
case FORMAT_RGBA: {
return 0;
} break;
case FORMAT_INDEXED: {
return 3*256;
} break;
case FORMAT_INDEXED_ALPHA: {
return 4*256;
} break;
default:{}
}
return 0;
}
Error Image::_decompress_bc() {
print_line("decompressing bc");
int mm;
int size = _get_dst_image_size(width,height,FORMAT_RGBA,mm,mipmaps);
DVector<uint8_t> newdata;
newdata.resize(size);
DVector<uint8_t>::Write w = newdata.write();
DVector<uint8_t>::Read r = data.read();
int rofs=0;
int wofs=0;
int wd=width,ht=height;
for(int i=0;i<=mm;i++) {
switch(format) {
case FORMAT_BC1: {
int len = (wd*ht)/16;
uint8_t* dst=&w[wofs];
uint32_t ofs_table[16];
for(int x=0;x<4;x++) {
for(int y=0;y<4;y++) {
ofs_table[15-(y*4+(3-x))]=(x+y*wd)*4;
}
}
for(int j=0;j<len;j++) {
const uint8_t* src=&r[rofs+j*8];
uint16_t col_a=src[1];
col_a<<=8;
col_a|=src[0];
uint16_t col_b=src[3];
col_b<<=8;
col_b|=src[2];
uint8_t table[4][4]={
{ (col_a>>11)<<3, ((col_a>>5)&0x3f)<<2, ((col_a)&0x1f)<<3, 255 },
{ (col_b>>11)<<3, ((col_b>>5)&0x3f)<<2, ((col_b)&0x1f)<<3, 255 },
{0,0,0,255},
{0,0,0,255}
};
if (col_a<col_b) {
//punchrough
table[2][0]=(int(table[0][0])+int(table[1][0]))>>1;
table[2][1]=(int(table[0][1])+int(table[1][1]))>>1;
table[2][2]=(int(table[0][2])+int(table[1][2]))>>1;
table[3][3]=0; //premul alpha black
} else {
//gradient
table[2][0]=(int(table[0][0])*2+int(table[1][0]))/3;
table[2][1]=(int(table[0][1])*2+int(table[1][1]))/3;
table[2][2]=(int(table[0][2])*2+int(table[1][2]))/3;
table[3][0]=(int(table[0][0])+int(table[1][0])*2)/3;
table[3][1]=(int(table[0][1])+int(table[1][1])*2)/3;
table[3][2]=(int(table[0][2])+int(table[1][2])*2)/3;
}
uint32_t block=src[4];
block<<=8;
block|=src[5];
block<<=8;
block|=src[6];
block<<=8;
block|=src[7];
int y = (j/(wd/4))*4;
int x = (j%(wd/4))*4;
int pixofs = (y*wd+x)*4;
for(int k=0;k<16;k++) {
int idx = pixofs+ofs_table[k];
dst[idx+0]=table[block&0x3][0];
dst[idx+1]=table[block&0x3][1];
dst[idx+2]=table[block&0x3][2];
dst[idx+3]=table[block&0x3][3];
block>>=2;
}
}
rofs+=len*8;
wofs+=wd*ht*4;
wd/=2;
ht/=2;
} break;
case FORMAT_BC2: {
int len = (wd*ht)/16;
uint8_t* dst=&w[wofs];
uint32_t ofs_table[16];
for(int x=0;x<4;x++) {
for(int y=0;y<4;y++) {
ofs_table[15-(y*4+(3-x))]=(x+y*wd)*4;
}
}
for(int j=0;j<len;j++) {
const uint8_t* src=&r[rofs+j*16];
uint64_t ablock=src[1];
ablock<<=8;
ablock|=src[0];
ablock<<=8;
ablock|=src[3];
ablock<<=8;
ablock|=src[2];
ablock<<=8;
ablock|=src[5];
ablock<<=8;
ablock|=src[4];
ablock<<=8;
ablock|=src[7];
ablock<<=8;
ablock|=src[6];
uint16_t col_a=src[8+1];
col_a<<=8;
col_a|=src[8+0];
uint16_t col_b=src[8+3];
col_b<<=8;
col_b|=src[8+2];
uint8_t table[4][4]={
{ (col_a>>11)<<3, ((col_a>>5)&0x3f)<<2, ((col_a)&0x1f)<<3, 255 },
{ (col_b>>11)<<3, ((col_b>>5)&0x3f)<<2, ((col_b)&0x1f)<<3, 255 },
{0,0,0,255},
{0,0,0,255}
};
//always gradient
table[2][0]=(int(table[0][0])*2+int(table[1][0]))/3;
table[2][1]=(int(table[0][1])*2+int(table[1][1]))/3;
table[2][2]=(int(table[0][2])*2+int(table[1][2]))/3;
table[3][0]=(int(table[0][0])+int(table[1][0])*2)/3;
table[3][1]=(int(table[0][1])+int(table[1][1])*2)/3;
table[3][2]=(int(table[0][2])+int(table[1][2])*2)/3;
uint32_t block=src[4+8];
block<<=8;
block|=src[5+8];
block<<=8;
block|=src[6+8];
block<<=8;
block|=src[7+8];
int y = (j/(wd/4))*4;
int x = (j%(wd/4))*4;
int pixofs = (y*wd+x)*4;
for(int k=0;k<16;k++) {
uint8_t alpha = ablock&0xf;
alpha=int(alpha)*255/15; //right way for alpha
int idx = pixofs+ofs_table[k];
dst[idx+0]=table[block&0x3][0];
dst[idx+1]=table[block&0x3][1];
dst[idx+2]=table[block&0x3][2];
dst[idx+3]=alpha;
block>>=2;
ablock>>=4;
}
}
rofs+=len*16;
wofs+=wd*ht*4;
wd/=2;
ht/=2;
} break;
case FORMAT_BC3: {
int len = (wd*ht)/16;
uint8_t* dst=&w[wofs];
uint32_t ofs_table[16];
for(int x=0;x<4;x++) {
for(int y=0;y<4;y++) {
ofs_table[15-(y*4+(3-x))]=(x+y*wd)*4;
}
}
for(int j=0;j<len;j++) {
const uint8_t* src=&r[rofs+j*16];
uint8_t a_start=src[1];
uint8_t a_end=src[0];
uint64_t ablock=src[3];
ablock<<=8;
ablock|=src[2];
ablock<<=8;
ablock|=src[5];
ablock<<=8;
ablock|=src[4];
ablock<<=8;
ablock|=src[7];
ablock<<=8;
ablock|=src[6];
uint8_t atable[8];
if (a_start>a_end) {
atable[0]=(int(a_start)*7+int(a_end)*0)/7;
atable[1]=(int(a_start)*6+int(a_end)*1)/7;
atable[2]=(int(a_start)*5+int(a_end)*2)/7;
atable[3]=(int(a_start)*4+int(a_end)*3)/7;
atable[4]=(int(a_start)*3+int(a_end)*4)/7;
atable[5]=(int(a_start)*2+int(a_end)*5)/7;
atable[6]=(int(a_start)*1+int(a_end)*6)/7;
atable[7]=(int(a_start)*0+int(a_end)*7)/7;
} else {
atable[0]=(int(a_start)*5+int(a_end)*0)/5;
atable[1]=(int(a_start)*4+int(a_end)*1)/5;
atable[2]=(int(a_start)*3+int(a_end)*2)/5;
atable[3]=(int(a_start)*2+int(a_end)*3)/5;
atable[4]=(int(a_start)*1+int(a_end)*4)/5;
atable[5]=(int(a_start)*0+int(a_end)*5)/5;
atable[6]=0;
atable[7]=255;
}
uint16_t col_a=src[8+1];
col_a<<=8;
col_a|=src[8+0];
uint16_t col_b=src[8+3];
col_b<<=8;
col_b|=src[8+2];
uint8_t table[4][4]={
{ (col_a>>11)<<3, ((col_a>>5)&0x3f)<<2, ((col_a)&0x1f)<<3, 255 },
{ (col_b>>11)<<3, ((col_b>>5)&0x3f)<<2, ((col_b)&0x1f)<<3, 255 },
{0,0,0,255},
{0,0,0,255}
};
//always gradient
table[2][0]=(int(table[0][0])*2+int(table[1][0]))/3;
table[2][1]=(int(table[0][1])*2+int(table[1][1]))/3;
table[2][2]=(int(table[0][2])*2+int(table[1][2]))/3;
table[3][0]=(int(table[0][0])+int(table[1][0])*2)/3;
table[3][1]=(int(table[0][1])+int(table[1][1])*2)/3;
table[3][2]=(int(table[0][2])+int(table[1][2])*2)/3;
uint32_t block=src[4+8];
block<<=8;
block|=src[5+8];
block<<=8;
block|=src[6+8];
block<<=8;
block|=src[7+8];
int y = (j/(wd/4))*4;
int x = (j%(wd/4))*4;
int pixofs = (y*wd+x)*4;
for(int k=0;k<16;k++) {
uint8_t alpha = ablock&0x7;
int idx = pixofs+ofs_table[k];
dst[idx+0]=table[block&0x3][0];
dst[idx+1]=table[block&0x3][1];
dst[idx+2]=table[block&0x3][2];
dst[idx+3]=atable[alpha];
block>>=2;
ablock>>=3;
}
}
rofs+=len*16;
wofs+=wd*ht*4;
wd/=2;
ht/=2;
} break;
}
}
w=DVector<uint8_t>::Write();
r=DVector<uint8_t>::Read();
data=newdata;
format=FORMAT_RGBA;
return OK;
}
bool Image::is_compressed() const {
return format>=FORMAT_BC1;
}
Image Image::decompressed() const {
Image img=*this;
img.decompress();
return img;
}
Error Image::decompress() {
if (format>=FORMAT_BC1 && format<=FORMAT_BC5 )
_decompress_bc();//_image_decompress_bc(this);
else if (format>=FORMAT_PVRTC2 && format<=FORMAT_PVRTC4_ALPHA && _image_decompress_pvrtc)
_image_decompress_pvrtc(this);
else if (format==FORMAT_ETC && _image_decompress_etc)
_image_decompress_etc(this);
else
return ERR_UNAVAILABLE;
return OK;
}
Error Image::compress(CompressMode p_mode) {
switch(p_mode) {
case COMPRESS_BC: {
ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE);
_image_compress_bc_func(this);
} break;
case COMPRESS_PVRTC2: {
ERR_FAIL_COND_V(!_image_compress_pvrtc2_func, ERR_UNAVAILABLE);
_image_compress_pvrtc2_func(this);
} break;
case COMPRESS_PVRTC4: {
ERR_FAIL_COND_V(!_image_compress_pvrtc4_func, ERR_UNAVAILABLE);
_image_compress_pvrtc4_func(this);
} break;
case COMPRESS_ETC: {
ERR_FAIL_COND_V(!_image_compress_etc_func, ERR_UNAVAILABLE);
_image_compress_etc_func(this);
} break;
}
return OK;
}
Image Image::compressed(int p_mode) {
Image ret = *this;
ret.compress((Image::CompressMode)p_mode);
return ret;
};
Image::Image(const char **p_xpm) {
width=0;
height=0;
mipmaps=0;
format=FORMAT_GRAYSCALE;
create(p_xpm);
}
Image::Image(int p_width, int p_height,bool p_use_mipmaps, Format p_format) {
width=0;
height=0;
mipmaps=0;
format=FORMAT_GRAYSCALE;
create(p_width,p_height,p_use_mipmaps,p_format);
}
Image::Image(int p_width, int p_height, int p_mipmaps, Format p_format, const DVector<uint8_t>& p_data) {
width=0;
height=0;
mipmaps=0;
format=FORMAT_GRAYSCALE;
create(p_width,p_height,p_mipmaps,p_format,p_data);
}
Image Image::brushed(const Image& p_src, const Image& p_brush, const Point2& p_dest) const {
Image img = *this;
img.brush_transfer(p_src,p_brush,p_dest);
return img;
}
Rect2 Image::get_used_rect() const {
if (format==FORMAT_GRAYSCALE ||
format==FORMAT_RGB ||
format==FORMAT_INDEXED || format>FORMAT_INDEXED_ALPHA)
return Rect2(Point2(),Size2(width,height));
int len = data.size();
if (len==0)
return Rect2();
int data_size = len;
DVector<uint8_t>::Read r = data.read();
const unsigned char *rptr=r.ptr();
int minx=0xFFFFFF,miny=0xFFFFFFF;
int maxx=-1,maxy=-1;
for(int i=0;i<width;i++) {
for(int j=0;j<height;j++) {
bool opaque = _get_pixel(i,j,rptr,data_size).a>2;
if (!opaque)
continue;
if (i>maxx)
maxx=i;
if (j>maxy)
maxy=j;
if (i<minx)
minx=i;
if (j<miny)
miny=j;
}
}
if (maxx==-1)
return Rect2();
else
return Rect2(minx,miny,maxx-minx+1,maxy-miny+1);
}
Image Image::get_rect(const Rect2& p_area) const {
Image img(p_area.size.x, p_area.size.y, mipmaps, format);
img.blit_rect(*this, p_area, Point2(0, 0));
return img;
};
void Image::brush_transfer(const Image& p_src, const Image& p_brush, const Point2& p_dest) {
ERR_FAIL_COND( width != p_src.width || height !=p_src.height);
int dst_data_size = data.size();
DVector<uint8_t>::Write wp = data.write();
unsigned char *dst_data_ptr=wp.ptr();
int src_data_size = p_src.data.size();
DVector<uint8_t>::Read rp = p_src.data.read();
const unsigned char *src_data_ptr=rp.ptr();
int brush_data_size = p_brush.data.size();
DVector<uint8_t>::Read bp = p_brush.data.read();
const unsigned char *src_brush_ptr=bp.ptr();
int bw = p_brush.get_width();
int bh = p_brush.get_height();
int dx=p_dest.x;
int dy=p_dest.y;
for(int i=dy;i<dy+bh;i++) {
if (i<0 || i >= height)
continue;
for(int j=dx;j<dx+bw;j++) {
if (j<0 || j>=width)
continue;
BColor src = p_src._get_pixel(j,i,src_data_ptr,src_data_size);
BColor dst = _get_pixel(j,i,dst_data_ptr,dst_data_size);
BColor brush = p_brush._get_pixel(j-dx,i-dy,src_brush_ptr,brush_data_size);
uint32_t mult = brush.r;
dst.r = dst.r + (((int32_t(src.r)-int32_t(dst.r))*mult)>>8);
dst.g = dst.g + (((int32_t(src.g)-int32_t(dst.g))*mult)>>8);
dst.b = dst.b + (((int32_t(src.b)-int32_t(dst.b))*mult)>>8);
dst.a = dst.a + (((int32_t(src.a)-int32_t(dst.a))*mult)>>8);
_put_pixel(j,i,dst,dst_data_ptr);
}
}
}
void Image::blit_rect(const Image& p_src, const Rect2& p_src_rect,const Point2& p_dest) {
int dsize=data.size();
int srcdsize=p_src.data.size();
ERR_FAIL_COND( dsize==0 );
ERR_FAIL_COND( srcdsize==0 );
Rect2 rrect = Rect2(0,0,p_src.width,p_src.height).clip(p_src_rect);
DVector<uint8_t>::Write wp = data.write();
unsigned char *dst_data_ptr=wp.ptr();
DVector<uint8_t>::Read rp = p_src.data.read();
const unsigned char *src_data_ptr=rp.ptr();
if ((format==FORMAT_INDEXED || format == FORMAT_INDEXED_ALPHA) && (p_src.format==FORMAT_INDEXED || p_src.format == FORMAT_INDEXED_ALPHA)) {
Point2i desti(p_dest.x, p_dest.y);
Point2i srci(rrect.pos.x, rrect.pos.y);
for(int i=0;i<rrect.size.y;i++) {
if (i<0 || i >= height)
continue;
for(int j=0;j<rrect.size.x;j++) {
if (j<0 || j>=width)
continue;
dst_data_ptr[width * (desti.y + i) + desti.x + j] = src_data_ptr[p_src.width * (srci.y+i) + srci.x+j];
}
}
} else {
for(int i=0;i<rrect.size.y;i++) {
if (i<0 || i >= height)
continue;
for(int j=0;j<rrect.size.x;j++) {
if (j<0 || j>=width)
continue;
_put_pixel(p_dest.x+j,p_dest.y+i,p_src._get_pixel(rrect.pos.x+j,rrect.pos.y+i,src_data_ptr,srcdsize),dst_data_ptr);
}
}
}
}
Image (*Image::_png_mem_loader_func)(const uint8_t*,int)=NULL;
void (*Image::_image_compress_bc_func)(Image *)=NULL;
void (*Image::_image_compress_pvrtc2_func)(Image *)=NULL;
void (*Image::_image_compress_pvrtc4_func)(Image *)=NULL;
void (*Image::_image_compress_etc_func)(Image *)=NULL;
void (*Image::_image_decompress_pvrtc)(Image *)=NULL;
void (*Image::_image_decompress_bc)(Image *)=NULL;
void (*Image::_image_decompress_etc)(Image *)=NULL;
DVector<uint8_t> (*Image::lossy_packer)(const Image& ,float )=NULL;
Image (*Image::lossy_unpacker)(const DVector<uint8_t>& )=NULL;
DVector<uint8_t> (*Image::lossless_packer)(const Image& )=NULL;
Image (*Image::lossless_unpacker)(const DVector<uint8_t>& )=NULL;
void Image::set_compress_bc_func(void (*p_compress_func)(Image *)) {
_image_compress_bc_func=p_compress_func;
}
void Image::normalmap_to_xy() {
convert(Image::FORMAT_RGBA);
{
int len = data.size()/4;
DVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
for(int i=0;i<len;i++) {
data_ptr[(i<<2)+3]=data_ptr[(i<<2)+0]; //x to w
data_ptr[(i<<2)+0]=data_ptr[(i<<2)+1]; //y to xz
data_ptr[(i<<2)+2]=data_ptr[(i<<2)+1];
}
}
convert(Image::FORMAT_GRAYSCALE_ALPHA);
}
void Image::srgb_to_linear() {
if (data.size()==0)
return;
static const uint8_t srgb2lin[256]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252};
ERR_FAIL_COND( format!=FORMAT_RGB && format!=FORMAT_RGBA );
if (format==FORMAT_RGBA) {
int len = data.size()/4;
DVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
for(int i=0;i<len;i++) {
data_ptr[(i<<2)+0]=srgb2lin[ data_ptr[(i<<2)+0] ];
data_ptr[(i<<2)+1]=srgb2lin[ data_ptr[(i<<2)+1] ];
data_ptr[(i<<2)+2]=srgb2lin[ data_ptr[(i<<2)+2] ];
}
} else if (format==FORMAT_RGB) {
int len = data.size()/3;
DVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
for(int i=0;i<len;i++) {
data_ptr[(i*3)+0]=srgb2lin[ data_ptr[(i*3)+0] ];
data_ptr[(i*3)+1]=srgb2lin[ data_ptr[(i*3)+1] ];
data_ptr[(i*3)+2]=srgb2lin[ data_ptr[(i*3)+2] ];
}
}
}
void Image::premultiply_alpha() {
if (data.size()==0)
return;
if (format!=FORMAT_RGBA)
return; //not needed
DVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
for(int i=0;i<height;i++) {
for(int j=0;j<width;j++) {
BColor bc = _get_pixel(j,i,data_ptr,0);
bc.r=(int(bc.r)*int(bc.a))>>8;
bc.g=(int(bc.g)*int(bc.a))>>8;
bc.b=(int(bc.b)*int(bc.a))>>8;
_put_pixel(j,i,bc,data_ptr);
}
}
}
void Image::fix_alpha_edges() {
if (data.size()==0)
return;
if (format!=FORMAT_RGBA)
return; //not needed
DVector<uint8_t> dcopy = data;
DVector<uint8_t>::Read rp = data.read();
const uint8_t *rptr=rp.ptr();
DVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
const int max_radius=4;
const int alpha_treshold=20;
const int max_dist=0x7FFFFFFF;
for(int i=0;i<height;i++) {
for(int j=0;j<width;j++) {
BColor bc = _get_pixel(j,i,rptr,0);
if (bc.a>=alpha_treshold)
continue;
int closest_dist=max_dist;
BColor closest_color;
closest_color.a=bc.a;
int from_x = MAX(0,j-max_radius);
int to_x = MIN(width-1,j+max_radius);
int from_y = MAX(0,i-max_radius);
int to_y = MIN(height-1,i+max_radius);
for(int k=from_y;k<=to_y;k++) {
for(int l=from_x;l<=to_x;l++) {
int dy = i-k;
int dx = j-l;
int dist = dy*dy+dx*dx;
if (dist>=closest_dist)
continue;
const uint8_t * rp = &rptr[(k*width+l)<<2];
if (rp[3]<alpha_treshold)
continue;
closest_dist=dist;
closest_color.r=rp[0];
closest_color.g=rp[1];
closest_color.b=rp[2];
}
}
if (closest_dist!=max_dist)
_put_pixel(j,i,closest_color,data_ptr);
}
}
}
String Image::get_format_name(Format p_format) {
ERR_FAIL_INDEX_V(p_format,FORMAT_MAX,String());
return format_names[p_format];
}
Image::Image(const uint8_t* p_png,int p_len) {
width=0;
height=0;
mipmaps=0;
format=FORMAT_GRAYSCALE;
if (_png_mem_loader_func) {
*this = _png_mem_loader_func(p_png,p_len);
}
}
Image::Image() {
width=0;
height=0;
mipmaps=0;
format = FORMAT_GRAYSCALE;
}
Image::~Image() {
}