mirror of
https://github.com/godotengine/godot.git
synced 2024-12-21 10:25:24 +08:00
476479419b
Despaghettify NavigationServer path queries.
981 lines
40 KiB
C++
981 lines
40 KiB
C++
/**************************************************************************/
|
|
/* nav_mesh_queries_3d.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef _3D_DISABLED
|
|
|
|
#include "nav_mesh_queries_3d.h"
|
|
|
|
#include "../nav_base.h"
|
|
#include "../nav_map.h"
|
|
|
|
#include "core/math/geometry_3d.h"
|
|
#include "servers/navigation/navigation_utilities.h"
|
|
|
|
#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
|
|
|
|
bool NavMeshQueries3D::emit_callback(const Callable &p_callback) {
|
|
ERR_FAIL_COND_V(!p_callback.is_valid(), false);
|
|
|
|
Callable::CallError ce;
|
|
Variant result;
|
|
p_callback.callp(nullptr, 0, result, ce);
|
|
|
|
return ce.error == Callable::CallError::CALL_OK;
|
|
}
|
|
|
|
Vector3 NavMeshQueries3D::polygons_get_random_point(const LocalVector<gd::Polygon> &p_polygons, uint32_t p_navigation_layers, bool p_uniformly) {
|
|
const LocalVector<gd::Polygon> ®ion_polygons = p_polygons;
|
|
|
|
if (region_polygons.is_empty()) {
|
|
return Vector3();
|
|
}
|
|
|
|
if (p_uniformly) {
|
|
real_t accumulated_area = 0;
|
|
RBMap<real_t, uint32_t> region_area_map;
|
|
|
|
for (uint32_t rp_index = 0; rp_index < region_polygons.size(); rp_index++) {
|
|
const gd::Polygon ®ion_polygon = region_polygons[rp_index];
|
|
real_t polyon_area = region_polygon.surface_area;
|
|
|
|
if (polyon_area == 0.0) {
|
|
continue;
|
|
}
|
|
region_area_map[accumulated_area] = rp_index;
|
|
accumulated_area += polyon_area;
|
|
}
|
|
if (region_area_map.is_empty() || accumulated_area == 0) {
|
|
// All polygons have no real surface / no area.
|
|
return Vector3();
|
|
}
|
|
|
|
real_t region_area_map_pos = Math::random(real_t(0), accumulated_area);
|
|
|
|
RBMap<real_t, uint32_t>::Iterator region_E = region_area_map.find_closest(region_area_map_pos);
|
|
ERR_FAIL_COND_V(!region_E, Vector3());
|
|
uint32_t rrp_polygon_index = region_E->value;
|
|
ERR_FAIL_UNSIGNED_INDEX_V(rrp_polygon_index, region_polygons.size(), Vector3());
|
|
|
|
const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];
|
|
|
|
real_t accumulated_polygon_area = 0;
|
|
RBMap<real_t, uint32_t> polygon_area_map;
|
|
|
|
for (uint32_t rpp_index = 2; rpp_index < rr_polygon.points.size(); rpp_index++) {
|
|
real_t face_area = Face3(rr_polygon.points[0].pos, rr_polygon.points[rpp_index - 1].pos, rr_polygon.points[rpp_index].pos).get_area();
|
|
|
|
if (face_area == 0.0) {
|
|
continue;
|
|
}
|
|
polygon_area_map[accumulated_polygon_area] = rpp_index;
|
|
accumulated_polygon_area += face_area;
|
|
}
|
|
if (polygon_area_map.is_empty() || accumulated_polygon_area == 0) {
|
|
// All faces have no real surface / no area.
|
|
return Vector3();
|
|
}
|
|
|
|
real_t polygon_area_map_pos = Math::random(real_t(0), accumulated_polygon_area);
|
|
|
|
RBMap<real_t, uint32_t>::Iterator polygon_E = polygon_area_map.find_closest(polygon_area_map_pos);
|
|
ERR_FAIL_COND_V(!polygon_E, Vector3());
|
|
uint32_t rrp_face_index = polygon_E->value;
|
|
ERR_FAIL_UNSIGNED_INDEX_V(rrp_face_index, rr_polygon.points.size(), Vector3());
|
|
|
|
const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);
|
|
|
|
Vector3 face_random_position = face.get_random_point_inside();
|
|
return face_random_position;
|
|
|
|
} else {
|
|
uint32_t rrp_polygon_index = Math::random(int(0), region_polygons.size() - 1);
|
|
|
|
const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];
|
|
|
|
uint32_t rrp_face_index = Math::random(int(2), rr_polygon.points.size() - 1);
|
|
|
|
const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);
|
|
|
|
Vector3 face_random_position = face.get_random_point_inside();
|
|
return face_random_position;
|
|
}
|
|
}
|
|
|
|
void NavMeshQueries3D::_query_task_create_same_polygon_two_point_path(NavMeshPathQueryTask3D &p_query_task, const gd::Polygon *begin_poly, Vector3 begin_point, const gd::Polygon *end_poly, Vector3 end_point) {
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
|
|
p_query_task.path_meta_point_types.resize(2);
|
|
p_query_task.path_meta_point_types[0] = begin_poly->owner->get_type();
|
|
p_query_task.path_meta_point_types[1] = end_poly->owner->get_type();
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
|
|
p_query_task.path_meta_point_rids.resize(2);
|
|
p_query_task.path_meta_point_rids[0] = begin_poly->owner->get_self();
|
|
p_query_task.path_meta_point_rids[1] = end_poly->owner->get_self();
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
|
|
p_query_task.path_meta_point_owners.resize(2);
|
|
p_query_task.path_meta_point_owners[0] = begin_poly->owner->get_owner_id();
|
|
p_query_task.path_meta_point_owners[1] = end_poly->owner->get_owner_id();
|
|
}
|
|
|
|
p_query_task.path_points.resize(2);
|
|
p_query_task.path_points[0] = begin_point;
|
|
p_query_task.path_points[1] = end_point;
|
|
}
|
|
|
|
void NavMeshQueries3D::_query_task_push_back_point_with_metadata(NavMeshPathQueryTask3D &p_query_task, Vector3 p_point, const gd::Polygon *p_point_polygon) {
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
|
|
p_query_task.path_meta_point_types.push_back(p_point_polygon->owner->get_type());
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
|
|
p_query_task.path_meta_point_rids.push_back(p_point_polygon->owner->get_self());
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
|
|
p_query_task.path_meta_point_owners.push_back(p_point_polygon->owner->get_owner_id());
|
|
}
|
|
|
|
p_query_task.path_points.push_back(p_point);
|
|
}
|
|
|
|
void NavMeshQueries3D::map_query_path(NavMap *map, const Ref<NavigationPathQueryParameters3D> &p_query_parameters, Ref<NavigationPathQueryResult3D> p_query_result, const Callable &p_callback) {
|
|
ERR_FAIL_NULL(map);
|
|
ERR_FAIL_COND(p_query_parameters.is_null());
|
|
ERR_FAIL_COND(p_query_result.is_null());
|
|
|
|
using namespace NavigationUtilities;
|
|
|
|
NavMeshQueries3D::NavMeshPathQueryTask3D query_task;
|
|
query_task.start_position = p_query_parameters->get_start_position();
|
|
query_task.target_position = p_query_parameters->get_target_position();
|
|
query_task.navigation_layers = p_query_parameters->get_navigation_layers();
|
|
query_task.callback = p_callback;
|
|
|
|
switch (p_query_parameters->get_pathfinding_algorithm()) {
|
|
case NavigationPathQueryParameters3D::PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR: {
|
|
query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
|
|
} break;
|
|
default: {
|
|
WARN_PRINT("No match for used PathfindingAlgorithm - fallback to default");
|
|
query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
|
|
} break;
|
|
}
|
|
|
|
switch (p_query_parameters->get_path_postprocessing()) {
|
|
case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
|
|
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
|
|
} break;
|
|
case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
|
|
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED;
|
|
} break;
|
|
case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_NONE: {
|
|
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_NONE;
|
|
} break;
|
|
default: {
|
|
WARN_PRINT("No match for used PathPostProcessing - fallback to default");
|
|
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
|
|
} break;
|
|
}
|
|
|
|
query_task.metadata_flags = (int64_t)p_query_parameters->get_metadata_flags();
|
|
query_task.simplify_path = p_query_parameters->get_simplify_path();
|
|
query_task.simplify_epsilon = p_query_parameters->get_simplify_epsilon();
|
|
query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_STARTED;
|
|
|
|
map->query_path(query_task);
|
|
|
|
const uint32_t path_point_size = query_task.path_points.size();
|
|
|
|
Vector<Vector3> path_points;
|
|
Vector<int32_t> path_meta_point_types;
|
|
TypedArray<RID> path_meta_point_rids;
|
|
Vector<int64_t> path_meta_point_owners;
|
|
|
|
{
|
|
path_points.resize(path_point_size);
|
|
Vector3 *w = path_points.ptrw();
|
|
const Vector3 *r = query_task.path_points.ptr();
|
|
for (uint32_t i = 0; i < path_point_size; i++) {
|
|
w[i] = r[i];
|
|
}
|
|
}
|
|
|
|
if (query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
|
|
path_meta_point_types.resize(path_point_size);
|
|
int32_t *w = path_meta_point_types.ptrw();
|
|
const int32_t *r = query_task.path_meta_point_types.ptr();
|
|
for (uint32_t i = 0; i < path_point_size; i++) {
|
|
w[i] = r[i];
|
|
}
|
|
}
|
|
if (query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
|
|
path_meta_point_rids.resize(path_point_size);
|
|
for (uint32_t i = 0; i < path_point_size; i++) {
|
|
path_meta_point_rids[i] = query_task.path_meta_point_rids[i];
|
|
}
|
|
}
|
|
if (query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
|
|
path_meta_point_owners.resize(path_point_size);
|
|
int64_t *w = path_meta_point_owners.ptrw();
|
|
const int64_t *r = query_task.path_meta_point_owners.ptr();
|
|
for (uint32_t i = 0; i < path_point_size; i++) {
|
|
w[i] = r[i];
|
|
}
|
|
}
|
|
|
|
p_query_result->set_path(path_points);
|
|
p_query_result->set_path_types(path_meta_point_types);
|
|
p_query_result->set_path_rids(path_meta_point_rids);
|
|
p_query_result->set_path_owner_ids(path_meta_point_owners);
|
|
|
|
if (query_task.callback.is_valid()) {
|
|
if (emit_callback(query_task.callback)) {
|
|
query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_DISPATCHED;
|
|
} else {
|
|
query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_FAILED;
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshQueries3D::query_task_polygons_get_path(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_map_up, uint32_t p_link_polygons_size) {
|
|
p_query_task.path_points.clear();
|
|
p_query_task.path_meta_point_types.clear();
|
|
p_query_task.path_meta_point_rids.clear();
|
|
p_query_task.path_meta_point_owners.clear();
|
|
|
|
// Find begin polyon and begin position closest to start position and
|
|
// end polyon and end position closest to target position on the map.
|
|
const gd::Polygon *begin_poly = nullptr;
|
|
const gd::Polygon *end_poly = nullptr;
|
|
Vector3 begin_point;
|
|
Vector3 end_point;
|
|
|
|
_query_task_find_start_end_positions(p_query_task, p_polygons, &begin_poly, begin_point, &end_poly, end_point);
|
|
|
|
// Check for trivial cases
|
|
if (!begin_poly || !end_poly) {
|
|
p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FAILED;
|
|
return;
|
|
}
|
|
|
|
if (begin_poly == end_poly) {
|
|
_query_task_create_same_polygon_two_point_path(p_query_task, begin_poly, begin_point, end_poly, end_point);
|
|
return;
|
|
}
|
|
|
|
_query_task_build_path_corridor(p_query_task, p_polygons, p_map_up, p_link_polygons_size, begin_poly, begin_point, end_poly, end_point);
|
|
|
|
// Post-Process path.
|
|
switch (p_query_task.path_postprocessing) {
|
|
case PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
|
|
_path_corridor_post_process_corridorfunnel(p_query_task, p_query_task.least_cost_id, begin_poly, begin_point, end_poly, end_point, p_map_up);
|
|
} break;
|
|
case PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
|
|
_path_corridor_post_process_edgecentered(p_query_task, p_query_task.least_cost_id, begin_poly, begin_point, end_poly, end_point);
|
|
} break;
|
|
case PathPostProcessing::PATH_POSTPROCESSING_NONE: {
|
|
_path_corridor_post_process_nopostprocessing(p_query_task, p_query_task.least_cost_id, begin_poly, begin_point, end_poly, end_point);
|
|
} break;
|
|
default: {
|
|
WARN_PRINT("No match for used PathPostProcessing - fallback to default");
|
|
_path_corridor_post_process_corridorfunnel(p_query_task, p_query_task.least_cost_id, begin_poly, begin_point, end_poly, end_point, p_map_up);
|
|
} break;
|
|
}
|
|
|
|
p_query_task.path_points.invert();
|
|
p_query_task.path_meta_point_types.invert();
|
|
p_query_task.path_meta_point_rids.invert();
|
|
p_query_task.path_meta_point_owners.invert();
|
|
|
|
if (p_query_task.simplify_path) {
|
|
_query_task_simplified_path_points(p_query_task);
|
|
}
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
// Ensure post conditions as path meta arrays if used MUST match in array size with the path points.
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
|
|
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_types.size());
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
|
|
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_rids.size());
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
|
|
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_owners.size());
|
|
}
|
|
#endif // DEBUG_ENABLED
|
|
|
|
p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
|
|
}
|
|
|
|
void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_map_up, uint32_t p_link_polygons_size, const gd::Polygon *begin_poly, Vector3 begin_point, const gd::Polygon *end_poly, Vector3 end_point) {
|
|
// List of all reachable navigation polys.
|
|
LocalVector<gd::NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
|
|
for (gd::NavigationPoly &polygon : navigation_polys) {
|
|
polygon.reset();
|
|
}
|
|
|
|
DEV_ASSERT(navigation_polys.size() == p_polygons.size() + p_link_polygons_size);
|
|
|
|
// Initialize the matching navigation polygon.
|
|
gd::NavigationPoly &begin_navigation_poly = navigation_polys[begin_poly->id];
|
|
begin_navigation_poly.poly = begin_poly;
|
|
begin_navigation_poly.entry = begin_point;
|
|
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
|
|
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
|
|
|
|
// Heap of polygons to travel next.
|
|
gd::Heap<gd::NavigationPoly *, gd::NavPolyTravelCostGreaterThan, gd::NavPolyHeapIndexer>
|
|
&traversable_polys = p_query_task.path_query_slot->traversable_polys;
|
|
traversable_polys.clear();
|
|
traversable_polys.reserve(p_polygons.size() * 0.25);
|
|
|
|
// This is an implementation of the A* algorithm.
|
|
p_query_task.least_cost_id = begin_poly->id;
|
|
int prev_least_cost_id = -1;
|
|
bool found_route = false;
|
|
|
|
const gd::Polygon *reachable_end = nullptr;
|
|
real_t distance_to_reachable_end = FLT_MAX;
|
|
bool is_reachable = true;
|
|
|
|
while (true) {
|
|
// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
|
|
for (const gd::Edge &edge : navigation_polys[p_query_task.least_cost_id].poly->edges) {
|
|
// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
|
|
for (uint32_t connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
|
|
const gd::Edge::Connection &connection = edge.connections[connection_index];
|
|
|
|
// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
|
|
if ((p_query_task.navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
|
|
continue;
|
|
}
|
|
|
|
const gd::NavigationPoly &least_cost_poly = navigation_polys[p_query_task.least_cost_id];
|
|
real_t poly_enter_cost = 0.0;
|
|
real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
|
|
|
|
if (prev_least_cost_id != -1 && navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
|
|
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
|
|
}
|
|
prev_least_cost_id = p_query_task.least_cost_id;
|
|
|
|
Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
|
|
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
|
|
const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;
|
|
|
|
// Check if the neighbor polygon has already been processed.
|
|
gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
|
|
if (neighbor_poly.poly != nullptr) {
|
|
// If the neighbor polygon hasn't been traversed yet and the new path leading to
|
|
// it is shorter, update the polygon.
|
|
if (neighbor_poly.traversable_poly_index < traversable_polys.size() &&
|
|
new_traveled_distance < neighbor_poly.traveled_distance) {
|
|
neighbor_poly.back_navigation_poly_id = p_query_task.least_cost_id;
|
|
neighbor_poly.back_navigation_edge = connection.edge;
|
|
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
|
|
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
|
|
neighbor_poly.traveled_distance = new_traveled_distance;
|
|
neighbor_poly.distance_to_destination =
|
|
new_entry.distance_to(end_point) *
|
|
neighbor_poly.poly->owner->get_travel_cost();
|
|
neighbor_poly.entry = new_entry;
|
|
|
|
// Update the priority of the polygon in the heap.
|
|
traversable_polys.shift(neighbor_poly.traversable_poly_index);
|
|
}
|
|
} else {
|
|
// Initialize the matching navigation polygon.
|
|
neighbor_poly.poly = connection.polygon;
|
|
neighbor_poly.back_navigation_poly_id = p_query_task.least_cost_id;
|
|
neighbor_poly.back_navigation_edge = connection.edge;
|
|
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
|
|
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
|
|
neighbor_poly.traveled_distance = new_traveled_distance;
|
|
neighbor_poly.distance_to_destination =
|
|
new_entry.distance_to(end_point) *
|
|
neighbor_poly.poly->owner->get_travel_cost();
|
|
neighbor_poly.entry = new_entry;
|
|
|
|
// Add the polygon to the heap of polygons to traverse next.
|
|
traversable_polys.push(&neighbor_poly);
|
|
}
|
|
}
|
|
}
|
|
|
|
// When the heap of traversable polygons is empty at this point it means the end polygon is
|
|
// unreachable.
|
|
if (traversable_polys.is_empty()) {
|
|
// Thus use the further reachable polygon
|
|
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
|
|
is_reachable = false;
|
|
if (reachable_end == nullptr) {
|
|
// The path is not found and there is not a way out.
|
|
break;
|
|
}
|
|
|
|
// Set as end point the furthest reachable point.
|
|
end_poly = reachable_end;
|
|
real_t end_d = FLT_MAX;
|
|
for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
|
|
Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
|
|
Vector3 spoint = f.get_closest_point_to(p_query_task.target_position);
|
|
real_t dpoint = spoint.distance_to(p_query_task.target_position);
|
|
if (dpoint < end_d) {
|
|
end_point = spoint;
|
|
end_d = dpoint;
|
|
}
|
|
}
|
|
|
|
// Search all faces of start polygon as well.
|
|
bool closest_point_on_start_poly = false;
|
|
for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
|
|
Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
|
|
Vector3 spoint = f.get_closest_point_to(p_query_task.target_position);
|
|
real_t dpoint = spoint.distance_to(p_query_task.target_position);
|
|
if (dpoint < end_d) {
|
|
end_point = spoint;
|
|
end_d = dpoint;
|
|
closest_point_on_start_poly = true;
|
|
}
|
|
}
|
|
|
|
if (closest_point_on_start_poly) {
|
|
_query_task_create_same_polygon_two_point_path(p_query_task, begin_poly, begin_point, end_poly, end_point);
|
|
return;
|
|
}
|
|
|
|
for (gd::NavigationPoly &nav_poly : navigation_polys) {
|
|
nav_poly.poly = nullptr;
|
|
}
|
|
navigation_polys[begin_poly->id].poly = begin_poly;
|
|
|
|
p_query_task.least_cost_id = begin_poly->id;
|
|
prev_least_cost_id = -1;
|
|
|
|
reachable_end = nullptr;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
|
|
p_query_task.least_cost_id = traversable_polys.pop()->poly->id;
|
|
|
|
// Store the farthest reachable end polygon in case our goal is not reachable.
|
|
if (is_reachable) {
|
|
real_t distance = navigation_polys[p_query_task.least_cost_id].entry.distance_to(p_query_task.target_position);
|
|
if (distance_to_reachable_end > distance) {
|
|
distance_to_reachable_end = distance;
|
|
reachable_end = navigation_polys[p_query_task.least_cost_id].poly;
|
|
}
|
|
}
|
|
|
|
// Check if we reached the end
|
|
if (navigation_polys[p_query_task.least_cost_id].poly == end_poly) {
|
|
found_route = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We did not find a route but we have both a start polygon and an end polygon at this point.
|
|
// Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon.
|
|
if (!found_route) {
|
|
real_t end_d = FLT_MAX;
|
|
// Search all faces of the start polygon for the closest point to our target position.
|
|
for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
|
|
Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
|
|
Vector3 spoint = f.get_closest_point_to(p_query_task.target_position);
|
|
real_t dpoint = spoint.distance_to(p_query_task.target_position);
|
|
if (dpoint < end_d) {
|
|
end_point = spoint;
|
|
end_d = dpoint;
|
|
}
|
|
}
|
|
_query_task_create_same_polygon_two_point_path(p_query_task, begin_poly, begin_point, begin_poly, end_point);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void NavMeshQueries3D::_query_task_simplified_path_points(NavMeshPathQueryTask3D &p_query_task) {
|
|
if (!p_query_task.simplify_path || p_query_task.path_points.size() <= 2) {
|
|
return;
|
|
}
|
|
|
|
const LocalVector<uint32_t> &simplified_path_indices = NavMeshQueries3D::get_simplified_path_indices(p_query_task.path_points, p_query_task.simplify_epsilon);
|
|
|
|
uint32_t index_count = simplified_path_indices.size();
|
|
|
|
{
|
|
Vector3 *points_ptr = p_query_task.path_points.ptr();
|
|
for (uint32_t i = 0; i < index_count; i++) {
|
|
points_ptr[i] = points_ptr[simplified_path_indices[i]];
|
|
}
|
|
p_query_task.path_points.resize(index_count);
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
|
|
int32_t *types_ptr = p_query_task.path_meta_point_types.ptr();
|
|
for (uint32_t i = 0; i < index_count; i++) {
|
|
types_ptr[i] = types_ptr[simplified_path_indices[i]];
|
|
}
|
|
p_query_task.path_meta_point_types.resize(index_count);
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
|
|
RID *rids_ptr = p_query_task.path_meta_point_rids.ptr();
|
|
for (uint32_t i = 0; i < index_count; i++) {
|
|
rids_ptr[i] = rids_ptr[simplified_path_indices[i]];
|
|
}
|
|
p_query_task.path_meta_point_rids.resize(index_count);
|
|
}
|
|
|
|
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
|
|
int64_t *owners_ptr = p_query_task.path_meta_point_owners.ptr();
|
|
for (uint32_t i = 0; i < index_count; i++) {
|
|
owners_ptr[i] = owners_ptr[simplified_path_indices[i]];
|
|
}
|
|
p_query_task.path_meta_point_owners.resize(index_count);
|
|
}
|
|
}
|
|
|
|
void NavMeshQueries3D::_path_corridor_post_process_corridorfunnel(NavMeshPathQueryTask3D &p_query_task, int p_least_cost_id, const gd::Polygon *p_begin_poly, Vector3 p_begin_point, const gd::Polygon *p_end_polygon, Vector3 p_end_point, const Vector3 &p_map_up) {
|
|
LocalVector<gd::NavigationPoly> &p_path_corridor = p_query_task.path_query_slot->path_corridor;
|
|
|
|
// Set the apex poly/point to the end point
|
|
gd::NavigationPoly *apex_poly = &p_path_corridor[p_least_cost_id];
|
|
|
|
Vector3 back_pathway[2] = { apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end };
|
|
const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(p_end_point, back_pathway);
|
|
if (p_end_point.is_equal_approx(back_edge_closest_point)) {
|
|
// The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing.
|
|
// At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon.
|
|
if (apex_poly->back_navigation_poly_id != -1) {
|
|
apex_poly = &p_path_corridor[apex_poly->back_navigation_poly_id];
|
|
}
|
|
}
|
|
|
|
Vector3 apex_point = p_end_point;
|
|
|
|
gd::NavigationPoly *left_poly = apex_poly;
|
|
Vector3 left_portal = apex_point;
|
|
gd::NavigationPoly *right_poly = apex_poly;
|
|
Vector3 right_portal = apex_point;
|
|
|
|
gd::NavigationPoly *p = apex_poly;
|
|
|
|
_query_task_push_back_point_with_metadata(p_query_task, p_end_point, p_end_polygon);
|
|
|
|
while (p) {
|
|
// Set left and right points of the pathway between polygons.
|
|
Vector3 left = p->back_navigation_edge_pathway_start;
|
|
Vector3 right = p->back_navigation_edge_pathway_end;
|
|
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(p_map_up) < 0) {
|
|
SWAP(left, right);
|
|
}
|
|
|
|
bool skip = false;
|
|
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(p_map_up) >= 0) {
|
|
//process
|
|
if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(p_map_up) > 0) {
|
|
left_poly = p;
|
|
left_portal = left;
|
|
} else {
|
|
clip_path(p_query_task, p_path_corridor, apex_poly, right_portal, right_poly, p_map_up);
|
|
|
|
apex_point = right_portal;
|
|
p = right_poly;
|
|
left_poly = p;
|
|
apex_poly = p;
|
|
left_portal = apex_point;
|
|
right_portal = apex_point;
|
|
|
|
_query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
|
|
|
|
skip = true;
|
|
}
|
|
}
|
|
|
|
if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(p_map_up) <= 0) {
|
|
//process
|
|
if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(p_map_up) < 0) {
|
|
right_poly = p;
|
|
right_portal = right;
|
|
} else {
|
|
clip_path(p_query_task, p_path_corridor, apex_poly, left_portal, left_poly, p_map_up);
|
|
|
|
apex_point = left_portal;
|
|
p = left_poly;
|
|
right_poly = p;
|
|
apex_poly = p;
|
|
right_portal = apex_point;
|
|
left_portal = apex_point;
|
|
|
|
_query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
|
|
}
|
|
}
|
|
|
|
// Go to the previous polygon.
|
|
if (p->back_navigation_poly_id != -1) {
|
|
p = &p_path_corridor[p->back_navigation_poly_id];
|
|
} else {
|
|
// The end
|
|
p = nullptr;
|
|
}
|
|
}
|
|
|
|
// If the last point is not the begin point, add it to the list.
|
|
if (p_query_task.path_points[p_query_task.path_points.size() - 1] != p_begin_point) {
|
|
_query_task_push_back_point_with_metadata(p_query_task, p_begin_point, p_begin_poly);
|
|
}
|
|
}
|
|
|
|
void NavMeshQueries3D::_path_corridor_post_process_edgecentered(NavMeshPathQueryTask3D &p_query_task, int p_least_cost_id, const gd::Polygon *p_begin_poly, Vector3 p_begin_point, const gd::Polygon *p_end_polygon, Vector3 p_end_point) {
|
|
LocalVector<gd::NavigationPoly> &p_path_corridor = p_query_task.path_query_slot->path_corridor;
|
|
|
|
_query_task_push_back_point_with_metadata(p_query_task, p_end_point, p_end_polygon);
|
|
|
|
// Add mid points.
|
|
int np_id = p_least_cost_id;
|
|
while (np_id != -1 && p_path_corridor[np_id].back_navigation_poly_id != -1) {
|
|
if (p_path_corridor[np_id].back_navigation_edge != -1) {
|
|
int prev = p_path_corridor[np_id].back_navigation_edge;
|
|
int prev_n = (p_path_corridor[np_id].back_navigation_edge + 1) % p_path_corridor[np_id].poly->points.size();
|
|
Vector3 point = (p_path_corridor[np_id].poly->points[prev].pos + p_path_corridor[np_id].poly->points[prev_n].pos) * 0.5;
|
|
|
|
_query_task_push_back_point_with_metadata(p_query_task, point, p_path_corridor[np_id].poly);
|
|
} else {
|
|
_query_task_push_back_point_with_metadata(p_query_task, p_path_corridor[np_id].entry, p_path_corridor[np_id].poly);
|
|
}
|
|
|
|
np_id = p_path_corridor[np_id].back_navigation_poly_id;
|
|
}
|
|
|
|
_query_task_push_back_point_with_metadata(p_query_task, p_begin_point, p_begin_poly);
|
|
}
|
|
|
|
void NavMeshQueries3D::_path_corridor_post_process_nopostprocessing(NavMeshPathQueryTask3D &p_query_task, int p_least_cost_id, const gd::Polygon *p_begin_poly, Vector3 p_begin_point, const gd::Polygon *p_end_polygon, Vector3 p_end_point) {
|
|
LocalVector<gd::NavigationPoly> &p_path_corridor = p_query_task.path_query_slot->path_corridor;
|
|
|
|
_query_task_push_back_point_with_metadata(p_query_task, p_end_point, p_end_polygon);
|
|
|
|
// Add mid points.
|
|
int np_id = p_least_cost_id;
|
|
while (np_id != -1 && p_path_corridor[np_id].back_navigation_poly_id != -1) {
|
|
_query_task_push_back_point_with_metadata(p_query_task, p_path_corridor[np_id].entry, p_path_corridor[np_id].poly);
|
|
|
|
np_id = p_path_corridor[np_id].back_navigation_poly_id;
|
|
}
|
|
|
|
_query_task_push_back_point_with_metadata(p_query_task, p_begin_point, p_begin_poly);
|
|
}
|
|
|
|
void NavMeshQueries3D::_query_task_find_start_end_positions(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons, const gd::Polygon **r_begin_poly, Vector3 &r_begin_point, const gd::Polygon **r_end_poly, Vector3 &r_end_point) {
|
|
real_t begin_d = FLT_MAX;
|
|
real_t end_d = FLT_MAX;
|
|
|
|
// Find the initial poly and the end poly on this map.
|
|
for (const gd::Polygon &p : p_polygons) {
|
|
// Only consider the polygon if it in a region with compatible layers.
|
|
if ((p_query_task.navigation_layers & p.owner->get_navigation_layers()) == 0) {
|
|
continue;
|
|
}
|
|
|
|
// For each face check the distance between the origin/destination.
|
|
for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
|
|
const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
|
|
|
|
Vector3 point = face.get_closest_point_to(p_query_task.start_position);
|
|
real_t distance_to_point = point.distance_to(p_query_task.start_position);
|
|
if (distance_to_point < begin_d) {
|
|
begin_d = distance_to_point;
|
|
*r_begin_poly = &p;
|
|
r_begin_point = point;
|
|
}
|
|
|
|
point = face.get_closest_point_to(p_query_task.target_position);
|
|
distance_to_point = point.distance_to(p_query_task.target_position);
|
|
if (distance_to_point < end_d) {
|
|
end_d = distance_to_point;
|
|
*r_end_poly = &p;
|
|
r_end_point = point;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector3 NavMeshQueries3D::polygons_get_closest_point_to_segment(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) {
|
|
bool use_collision = p_use_collision;
|
|
Vector3 closest_point;
|
|
real_t closest_point_distance = FLT_MAX;
|
|
|
|
for (const gd::Polygon &polygon : p_polygons) {
|
|
// For each face check the distance to the segment.
|
|
for (size_t point_id = 2; point_id < polygon.points.size(); point_id += 1) {
|
|
const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos);
|
|
Vector3 intersection_point;
|
|
if (face.intersects_segment(p_from, p_to, &intersection_point)) {
|
|
const real_t d = p_from.distance_to(intersection_point);
|
|
if (!use_collision) {
|
|
closest_point = intersection_point;
|
|
use_collision = true;
|
|
closest_point_distance = d;
|
|
} else if (closest_point_distance > d) {
|
|
closest_point = intersection_point;
|
|
closest_point_distance = d;
|
|
}
|
|
}
|
|
// If segment does not itersect face, check the distance from segment's endpoints.
|
|
else if (!use_collision) {
|
|
const Vector3 p_from_closest = face.get_closest_point_to(p_from);
|
|
const real_t d_p_from = p_from.distance_to(p_from_closest);
|
|
if (closest_point_distance > d_p_from) {
|
|
closest_point = p_from_closest;
|
|
closest_point_distance = d_p_from;
|
|
}
|
|
|
|
const Vector3 p_to_closest = face.get_closest_point_to(p_to);
|
|
const real_t d_p_to = p_to.distance_to(p_to_closest);
|
|
if (closest_point_distance > d_p_to) {
|
|
closest_point = p_to_closest;
|
|
closest_point_distance = d_p_to;
|
|
}
|
|
}
|
|
}
|
|
// Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment.
|
|
if (!use_collision) {
|
|
for (size_t point_id = 0; point_id < polygon.points.size(); point_id += 1) {
|
|
Vector3 a, b;
|
|
|
|
Geometry3D::get_closest_points_between_segments(
|
|
p_from,
|
|
p_to,
|
|
polygon.points[point_id].pos,
|
|
polygon.points[(point_id + 1) % polygon.points.size()].pos,
|
|
a,
|
|
b);
|
|
|
|
const real_t d = a.distance_to(b);
|
|
if (d < closest_point_distance) {
|
|
closest_point_distance = d;
|
|
closest_point = b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return closest_point;
|
|
}
|
|
|
|
Vector3 NavMeshQueries3D::polygons_get_closest_point(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
|
|
gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
|
|
return cp.point;
|
|
}
|
|
|
|
Vector3 NavMeshQueries3D::polygons_get_closest_point_normal(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
|
|
gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
|
|
return cp.normal;
|
|
}
|
|
|
|
gd::ClosestPointQueryResult NavMeshQueries3D::polygons_get_closest_point_info(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
|
|
gd::ClosestPointQueryResult result;
|
|
real_t closest_point_distance_squared = FLT_MAX;
|
|
|
|
for (const gd::Polygon &polygon : p_polygons) {
|
|
Vector3 plane_normal = (polygon.points[1].pos - polygon.points[0].pos).cross(polygon.points[2].pos - polygon.points[0].pos);
|
|
Vector3 closest_on_polygon;
|
|
real_t closest = FLT_MAX;
|
|
bool inside = true;
|
|
Vector3 previous = polygon.points[polygon.points.size() - 1].pos;
|
|
for (size_t point_id = 0; point_id < polygon.points.size(); ++point_id) {
|
|
Vector3 edge = polygon.points[point_id].pos - previous;
|
|
Vector3 to_point = p_point - previous;
|
|
Vector3 edge_to_point_pormal = edge.cross(to_point);
|
|
bool clockwise = edge_to_point_pormal.dot(plane_normal) > 0;
|
|
// If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge.
|
|
if (!clockwise) {
|
|
inside = false;
|
|
real_t point_projected_on_edge = edge.dot(to_point);
|
|
real_t edge_square = edge.length_squared();
|
|
|
|
if (point_projected_on_edge > edge_square) {
|
|
real_t distance = polygon.points[point_id].pos.distance_squared_to(p_point);
|
|
if (distance < closest) {
|
|
closest_on_polygon = polygon.points[point_id].pos;
|
|
closest = distance;
|
|
}
|
|
} else if (point_projected_on_edge < 0.f) {
|
|
real_t distance = previous.distance_squared_to(p_point);
|
|
if (distance < closest) {
|
|
closest_on_polygon = previous;
|
|
closest = distance;
|
|
}
|
|
} else {
|
|
// If we project on this edge, this will be the closest point.
|
|
real_t percent = point_projected_on_edge / edge_square;
|
|
closest_on_polygon = previous + percent * edge;
|
|
break;
|
|
}
|
|
}
|
|
previous = polygon.points[point_id].pos;
|
|
}
|
|
|
|
if (inside) {
|
|
Vector3 plane_normalized = plane_normal.normalized();
|
|
real_t distance = plane_normalized.dot(p_point - polygon.points[0].pos);
|
|
real_t distance_squared = distance * distance;
|
|
if (distance_squared < closest_point_distance_squared) {
|
|
closest_point_distance_squared = distance_squared;
|
|
result.point = p_point - plane_normalized * distance;
|
|
result.normal = plane_normal;
|
|
result.owner = polygon.owner->get_self();
|
|
|
|
if (Math::is_zero_approx(distance)) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
real_t distance = closest_on_polygon.distance_squared_to(p_point);
|
|
if (distance < closest_point_distance_squared) {
|
|
closest_point_distance_squared = distance;
|
|
result.point = closest_on_polygon;
|
|
result.normal = plane_normal;
|
|
result.owner = polygon.owner->get_self();
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
RID NavMeshQueries3D::polygons_get_closest_point_owner(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
|
|
gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
|
|
return cp.owner;
|
|
}
|
|
|
|
void NavMeshQueries3D::clip_path(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::NavigationPoly> &p_navigation_polys, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly, const Vector3 &p_map_up) {
|
|
Vector3 from = p_query_task.path_points[p_query_task.path_points.size() - 1];
|
|
|
|
if (from.is_equal_approx(p_to_point)) {
|
|
return;
|
|
}
|
|
|
|
Plane cut_plane;
|
|
cut_plane.normal = (from - p_to_point).cross(p_map_up);
|
|
if (cut_plane.normal == Vector3()) {
|
|
return;
|
|
}
|
|
cut_plane.normal.normalize();
|
|
cut_plane.d = cut_plane.normal.dot(from);
|
|
|
|
while (from_poly != p_to_poly) {
|
|
Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
|
|
Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
|
|
|
|
ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
|
|
from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
|
|
|
|
if (!pathway_start.is_equal_approx(pathway_end)) {
|
|
Vector3 inters;
|
|
if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
|
|
if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(p_query_task.path_points[p_query_task.path_points.size() - 1])) {
|
|
_query_task_push_back_point_with_metadata(p_query_task, inters, from_poly->poly);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LocalVector<uint32_t> NavMeshQueries3D::get_simplified_path_indices(const LocalVector<Vector3> &p_path, real_t p_epsilon) {
|
|
p_epsilon = MAX(0.0, p_epsilon);
|
|
real_t squared_epsilon = p_epsilon * p_epsilon;
|
|
|
|
LocalVector<bool> valid_points;
|
|
valid_points.resize(p_path.size());
|
|
for (uint32_t i = 0; i < valid_points.size(); i++) {
|
|
valid_points[i] = false;
|
|
}
|
|
|
|
simplify_path_segment(0, p_path.size() - 1, p_path, squared_epsilon, valid_points);
|
|
|
|
int valid_point_index = 0;
|
|
|
|
for (bool valid : valid_points) {
|
|
if (valid) {
|
|
valid_point_index += 1;
|
|
}
|
|
}
|
|
|
|
LocalVector<uint32_t> simplified_path_indices;
|
|
simplified_path_indices.resize(valid_point_index);
|
|
valid_point_index = 0;
|
|
|
|
for (uint32_t i = 0; i < valid_points.size(); i++) {
|
|
if (valid_points[i]) {
|
|
simplified_path_indices[valid_point_index] = i;
|
|
valid_point_index += 1;
|
|
}
|
|
}
|
|
|
|
return simplified_path_indices;
|
|
}
|
|
|
|
void NavMeshQueries3D::simplify_path_segment(int p_start_inx, int p_end_inx, const LocalVector<Vector3> &p_points, real_t p_epsilon, LocalVector<bool> &r_valid_points) {
|
|
r_valid_points[p_start_inx] = true;
|
|
r_valid_points[p_end_inx] = true;
|
|
|
|
Vector3 path_segment[2] = { p_points[p_start_inx], p_points[p_end_inx] };
|
|
|
|
real_t point_max_distance = 0.0;
|
|
int point_max_index = 0;
|
|
|
|
for (int i = p_start_inx; i < p_end_inx; i++) {
|
|
const Vector3 &checked_point = p_points[i];
|
|
|
|
const Vector3 closest_point = Geometry3D::get_closest_point_to_segment(checked_point, path_segment);
|
|
real_t distance_squared = closest_point.distance_squared_to(checked_point);
|
|
|
|
if (distance_squared > point_max_distance) {
|
|
point_max_index = i;
|
|
point_max_distance = distance_squared;
|
|
}
|
|
}
|
|
|
|
if (point_max_distance > p_epsilon) {
|
|
simplify_path_segment(p_start_inx, point_max_index, p_points, p_epsilon, r_valid_points);
|
|
simplify_path_segment(point_max_index, p_end_inx, p_points, p_epsilon, r_valid_points);
|
|
}
|
|
}
|
|
|
|
#endif // _3D_DISABLED
|