godot/modules/openxr/scene/openxr_composition_layer_equirect.cpp

243 lines
10 KiB
C++

/**************************************************************************/
/* openxr_composition_layer_equirect.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "openxr_composition_layer_equirect.h"
#include "../extensions/openxr_composition_layer_extension.h"
#include "../openxr_api.h"
#include "../openxr_interface.h"
#include "scene/3d/mesh_instance_3d.h"
#include "scene/main/viewport.h"
#include "scene/resources/mesh.h"
OpenXRCompositionLayerEquirect::OpenXRCompositionLayerEquirect() :
OpenXRCompositionLayer((XrCompositionLayerBaseHeader *)&composition_layer) {
XRServer::get_singleton()->connect("reference_frame_changed", callable_mp(this, &OpenXRCompositionLayerEquirect::update_transform));
}
OpenXRCompositionLayerEquirect::~OpenXRCompositionLayerEquirect() {
}
void OpenXRCompositionLayerEquirect::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &OpenXRCompositionLayerEquirect::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &OpenXRCompositionLayerEquirect::get_radius);
ClassDB::bind_method(D_METHOD("set_central_horizontal_angle", "angle"), &OpenXRCompositionLayerEquirect::set_central_horizontal_angle);
ClassDB::bind_method(D_METHOD("get_central_horizontal_angle"), &OpenXRCompositionLayerEquirect::get_central_horizontal_angle);
ClassDB::bind_method(D_METHOD("set_upper_vertical_angle", "angle"), &OpenXRCompositionLayerEquirect::set_upper_vertical_angle);
ClassDB::bind_method(D_METHOD("get_upper_vertical_angle"), &OpenXRCompositionLayerEquirect::get_upper_vertical_angle);
ClassDB::bind_method(D_METHOD("set_lower_vertical_angle", "angle"), &OpenXRCompositionLayerEquirect::set_lower_vertical_angle);
ClassDB::bind_method(D_METHOD("get_lower_vertical_angle"), &OpenXRCompositionLayerEquirect::get_lower_vertical_angle);
ClassDB::bind_method(D_METHOD("set_fallback_segments", "segments"), &OpenXRCompositionLayerEquirect::set_fallback_segments);
ClassDB::bind_method(D_METHOD("get_fallback_segments"), &OpenXRCompositionLayerEquirect::get_fallback_segments);
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_NONE, ""), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "central_horizontal_angle", PROPERTY_HINT_RANGE, "0,360,0.1,or_less,or_greater,radians_as_degrees"), "set_central_horizontal_angle", "get_central_horizontal_angle");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "upper_vertical_angle", PROPERTY_HINT_RANGE, "0,90,0.1,or_less,or_greater,radians_as_degrees"), "set_upper_vertical_angle", "get_upper_vertical_angle");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "lower_vertical_angle", PROPERTY_HINT_RANGE, "0,90,0.1,or_less,or_greater,radians_as_degrees"), "set_lower_vertical_angle", "get_lower_vertical_angle");
ADD_PROPERTY(PropertyInfo(Variant::INT, "fallback_segments", PROPERTY_HINT_NONE, ""), "set_fallback_segments", "get_fallback_segments");
}
Ref<Mesh> OpenXRCompositionLayerEquirect::_create_fallback_mesh() {
Ref<ArrayMesh> mesh;
mesh.instantiate();
Array arrays;
arrays.resize(ArrayMesh::ARRAY_MAX);
Vector<Vector3> vertices;
Vector<Vector3> normals;
Vector<Vector2> uvs;
Vector<int> indices;
float step_horizontal = central_horizontal_angle / fallback_segments;
float step_vertical = (upper_vertical_angle + lower_vertical_angle) / fallback_segments;
float start_horizontal_angle = Math_PI - (central_horizontal_angle / 2.0);
for (uint32_t i = 0; i < fallback_segments + 1; i++) {
for (uint32_t j = 0; j < fallback_segments + 1; j++) {
float horizontal_angle = start_horizontal_angle + (step_horizontal * i);
float vertical_angle = -lower_vertical_angle + (step_vertical * j);
Vector3 vertex(
radius * Math::cos(vertical_angle) * Math::sin(horizontal_angle),
radius * Math::sin(vertical_angle),
radius * Math::cos(vertical_angle) * Math::cos(horizontal_angle));
vertices.push_back(vertex);
normals.push_back(vertex.normalized());
uvs.push_back(Vector2(1.0 - ((float)i / fallback_segments), 1.0 - (float(j) / fallback_segments)));
}
}
for (uint32_t i = 0; i < fallback_segments; i++) {
for (uint32_t j = 0; j < fallback_segments; j++) {
uint32_t index = i * (fallback_segments + 1) + j;
indices.push_back(index);
indices.push_back(index + fallback_segments + 1);
indices.push_back(index + fallback_segments + 2);
indices.push_back(index);
indices.push_back(index + fallback_segments + 2);
indices.push_back(index + 1);
}
}
arrays[ArrayMesh::ARRAY_VERTEX] = vertices;
arrays[ArrayMesh::ARRAY_NORMAL] = normals;
arrays[ArrayMesh::ARRAY_TEX_UV] = uvs;
arrays[ArrayMesh::ARRAY_INDEX] = indices;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arrays);
return mesh;
}
void OpenXRCompositionLayerEquirect::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: {
update_transform();
} break;
}
}
void OpenXRCompositionLayerEquirect::update_transform() {
composition_layer.pose = get_openxr_pose();
}
void OpenXRCompositionLayerEquirect::set_radius(float p_radius) {
ERR_FAIL_COND(p_radius <= 0);
radius = p_radius;
composition_layer.radius = radius;
update_fallback_mesh();
}
float OpenXRCompositionLayerEquirect::get_radius() const {
return radius;
}
void OpenXRCompositionLayerEquirect::set_central_horizontal_angle(float p_angle) {
ERR_FAIL_COND(p_angle <= 0);
central_horizontal_angle = p_angle;
composition_layer.centralHorizontalAngle = central_horizontal_angle;
update_fallback_mesh();
}
float OpenXRCompositionLayerEquirect::get_central_horizontal_angle() const {
return central_horizontal_angle;
}
void OpenXRCompositionLayerEquirect::set_upper_vertical_angle(float p_angle) {
ERR_FAIL_COND(p_angle <= 0 || p_angle > (Math_PI / 2.0));
upper_vertical_angle = p_angle;
composition_layer.upperVerticalAngle = p_angle;
update_fallback_mesh();
}
float OpenXRCompositionLayerEquirect::get_upper_vertical_angle() const {
return upper_vertical_angle;
}
void OpenXRCompositionLayerEquirect::set_lower_vertical_angle(float p_angle) {
ERR_FAIL_COND(p_angle <= 0 || p_angle > (Math_PI / 2.0));
lower_vertical_angle = p_angle;
composition_layer.lowerVerticalAngle = -p_angle;
update_fallback_mesh();
}
float OpenXRCompositionLayerEquirect::get_lower_vertical_angle() const {
return lower_vertical_angle;
}
void OpenXRCompositionLayerEquirect::set_fallback_segments(uint32_t p_fallback_segments) {
ERR_FAIL_COND(p_fallback_segments == 0);
fallback_segments = p_fallback_segments;
update_fallback_mesh();
}
uint32_t OpenXRCompositionLayerEquirect::get_fallback_segments() const {
return fallback_segments;
}
Vector2 OpenXRCompositionLayerEquirect::intersects_ray(const Vector3 &p_origin, const Vector3 &p_direction) const {
Transform3D equirect_transform = get_global_transform();
Vector3 offset = p_origin - equirect_transform.origin;
float a = p_direction.dot(p_direction);
float b = 2.0 * offset.dot(p_direction);
float c = offset.dot(offset) - (radius * radius);
float discriminant = b * b - 4.0 * a * c;
if (discriminant < 0.0) {
return Vector2(-1.0, -1.0);
}
float t0 = (-b - Math::sqrt(discriminant)) / (2.0 * a);
float t1 = (-b + Math::sqrt(discriminant)) / (2.0 * a);
float t = MAX(t0, t1);
if (t < 0.0) {
return Vector2(-1.0, -1.0);
}
Vector3 intersection = p_origin + p_direction * t;
Basis correction = equirect_transform.basis.inverse();
correction.rotate(Vector3(0.0, 1.0, 0.0), -Math_PI / 2.0);
Vector3 relative_point = correction.xform(intersection - equirect_transform.origin);
float horizontal_intersection_angle = Math::atan2(relative_point.z, relative_point.x);
if (Math::abs(horizontal_intersection_angle) > central_horizontal_angle / 2.0) {
return Vector2(-1.0, -1.0);
}
float vertical_intersection_angle = Math::acos(relative_point.y / radius) - (Math_PI / 2.0);
if (vertical_intersection_angle < 0) {
if (Math::abs(vertical_intersection_angle) > upper_vertical_angle) {
return Vector2(-1.0, -1.0);
}
} else if (vertical_intersection_angle > lower_vertical_angle) {
return Vector2(-1.0, -1.0);
}
// Re-center the intersection angle if the vertical angle is uneven between upper and lower.
if (upper_vertical_angle != lower_vertical_angle) {
vertical_intersection_angle -= (-upper_vertical_angle + lower_vertical_angle) / 2.0;
}
float u = 0.5 + (horizontal_intersection_angle / central_horizontal_angle);
float v = 0.5 + (vertical_intersection_angle / (upper_vertical_angle + lower_vertical_angle));
return Vector2(u, v);
}