godot/servers/physics_2d/body_pair_2d_sw.cpp
PouleyKetchoupp 829fb4fba1 Fix RayShape collision detection
One-way collision is disabled for both rigid bodies and character
bodies.

Kinematic margin is now applied to ray shapes to help getting consistent
results in slopes and flat surfaces.

Convex shapes don't return inverted normals when a segment test starts
inside (raycasting will be made consistent in a separate patch).

Ray shapes also discard contacts when fully contained inside a shape
and when the contact direction is inverted, so the behavior is
consistent with all shape types. Now they always separate only when
intersecting the top of a shape (for downward rays).
2021-08-24 16:03:05 -07:00

546 lines
17 KiB
C++

/*************************************************************************/
/* body_pair_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_pair_2d_sw.h"
#include "collision_solver_2d_sw.h"
#include "space_2d_sw.h"
#define POSITION_CORRECTION
#define ACCUMULATE_IMPULSES
void BodyPair2DSW::_add_contact(const Vector2 &p_point_A, const Vector2 &p_point_B, void *p_self) {
BodyPair2DSW *self = (BodyPair2DSW *)p_self;
self->_contact_added_callback(p_point_A, p_point_B);
}
void BodyPair2DSW::_contact_added_callback(const Vector2 &p_point_A, const Vector2 &p_point_B) {
// check if we already have the contact
Vector2 local_A = A->get_inv_transform().basis_xform(p_point_A);
Vector2 local_B = B->get_inv_transform().basis_xform(p_point_B - offset_B);
int new_index = contact_count;
ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1));
Contact contact;
contact.acc_normal_impulse = 0;
contact.acc_bias_impulse = 0;
contact.acc_tangent_impulse = 0;
contact.local_A = local_A;
contact.local_B = local_B;
contact.reused = true;
contact.normal = (p_point_A - p_point_B).normalized();
contact.mass_normal = 0; // will be computed in setup()
// attempt to determine if the contact will be reused
real_t recycle_radius_2 = space->get_contact_recycle_radius() * space->get_contact_recycle_radius();
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
if (
c.local_A.distance_squared_to(local_A) < (recycle_radius_2) &&
c.local_B.distance_squared_to(local_B) < (recycle_radius_2)) {
contact.acc_normal_impulse = c.acc_normal_impulse;
contact.acc_tangent_impulse = c.acc_tangent_impulse;
contact.acc_bias_impulse = c.acc_bias_impulse;
new_index = i;
break;
}
}
// figure out if the contact amount must be reduced to fit the new contact
if (new_index == MAX_CONTACTS) {
// remove the contact with the minimum depth
int least_deep = -1;
real_t min_depth = 1e10;
const Transform2D &transform_A = A->get_transform();
const Transform2D &transform_B = B->get_transform();
for (int i = 0; i <= contact_count; i++) {
Contact &c = (i == contact_count) ? contact : contacts[i];
Vector2 global_A = transform_A.basis_xform(c.local_A);
Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
Vector2 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth < min_depth) {
min_depth = depth;
least_deep = i;
}
}
ERR_FAIL_COND(least_deep == -1);
if (least_deep < contact_count) { //replace the last deep contact by the new one
contacts[least_deep] = contact;
}
return;
}
contacts[new_index] = contact;
if (new_index == contact_count) {
contact_count++;
}
}
void BodyPair2DSW::_validate_contacts() {
//make sure to erase contacts that are no longer valid
real_t max_separation = space->get_contact_max_separation();
real_t max_separation2 = max_separation * max_separation;
const Transform2D &transform_A = A->get_transform();
const Transform2D &transform_B = B->get_transform();
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
bool erase = false;
if (!c.reused) {
//was left behind in previous frame
erase = true;
} else {
c.reused = false;
Vector2 global_A = transform_A.basis_xform(c.local_A);
Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
Vector2 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
erase = true;
}
}
if (erase) {
// contact no longer needed, remove
if ((i + 1) < contact_count) {
// swap with the last one
SWAP(contacts[i], contacts[contact_count - 1]);
}
i--;
contact_count--;
}
}
}
bool BodyPair2DSW::_test_ccd(real_t p_step, Body2DSW *p_A, int p_shape_A, const Transform2D &p_xform_A, Body2DSW *p_B, int p_shape_B, const Transform2D &p_xform_B, bool p_swap_result) {
Vector2 motion = p_A->get_linear_velocity() * p_step;
real_t mlen = motion.length();
if (mlen < CMP_EPSILON) {
return false;
}
Vector2 mnormal = motion / mlen;
real_t min, max;
p_A->get_shape(p_shape_A)->project_rangev(mnormal, p_xform_A, min, max);
bool fast_object = mlen > (max - min) * 0.3; //going too fast in that direction
if (!fast_object) { //did it move enough in this direction to even attempt raycast? let's say it should move more than 1/3 the size of the object in that axis
return false;
}
//cast a segment from support in motion normal, in the same direction of motion by motion length
//support is the worst case collision point, so real collision happened before
int a;
Vector2 s[2];
p_A->get_shape(p_shape_A)->get_supports(p_xform_A.basis_xform(mnormal).normalized(), s, a);
Vector2 from = p_xform_A.xform(s[0]);
Vector2 to = from + motion;
Transform2D from_inv = p_xform_B.affine_inverse();
Vector2 local_from = from_inv.xform(from - mnormal * mlen * 0.1); //start from a little inside the bounding box
Vector2 local_to = from_inv.xform(to);
Vector2 rpos, rnorm;
if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm)) {
return false;
}
//ray hit something
Vector2 hitpos = p_xform_B.xform(rpos);
Vector2 contact_A = to;
Vector2 contact_B = hitpos;
//create a contact
if (p_swap_result) {
_contact_added_callback(contact_B, contact_A);
} else {
_contact_added_callback(contact_A, contact_B);
}
return true;
}
real_t combine_bounce(Body2DSW *A, Body2DSW *B) {
return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1);
}
real_t combine_friction(Body2DSW *A, Body2DSW *B) {
return ABS(MIN(A->get_friction(), B->get_friction()));
}
bool BodyPair2DSW::setup(real_t p_step) {
if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) {
collided = false;
return false;
}
collide_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && A->collides_with(B);
collide_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && B->collides_with(A);
report_contacts_only = false;
if (!collide_A && !collide_B) {
if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) {
report_contacts_only = true;
} else {
collided = false;
return false;
}
}
//use local A coordinates to avoid numerical issues on collision detection
offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();
_validate_contacts();
const Vector2 &offset_A = A->get_transform().get_origin();
Transform2D xform_Au = A->get_transform().untranslated();
Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A);
Transform2D xform_Bu = B->get_transform();
xform_Bu.elements[2] -= offset_A;
Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B);
Shape2DSW *shape_A_ptr = A->get_shape(shape_A);
Shape2DSW *shape_B_ptr = B->get_shape(shape_B);
Vector2 motion_A, motion_B;
if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) {
motion_A = A->get_motion();
}
if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) {
motion_B = B->get_motion();
}
bool prev_collided = collided;
collided = CollisionSolver2DSW::solve(shape_A_ptr, xform_A, motion_A, shape_B_ptr, xform_B, motion_B, _add_contact, this, &sep_axis);
if (!collided) {
//test ccd (currently just a raycast)
if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) {
if (_test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B)) {
collided = true;
}
}
if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) {
if (_test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A, true)) {
collided = true;
}
}
if (!collided) {
oneway_disabled = false;
return false;
}
}
if (oneway_disabled) {
return false;
}
if (!prev_collided) {
if (shape_B_ptr->allows_one_way_collision() && A->is_shape_set_as_one_way_collision(shape_A)) {
Vector2 direction = xform_A.get_axis(1).normalized();
bool valid = false;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
if (!c.reused) {
continue;
}
if (c.normal.dot(direction) > -CMP_EPSILON) { //greater (normal inverted)
continue;
}
valid = true;
break;
}
if (!valid) {
collided = false;
oneway_disabled = true;
return false;
}
}
if (shape_A_ptr->allows_one_way_collision() && B->is_shape_set_as_one_way_collision(shape_B)) {
Vector2 direction = xform_B.get_axis(1).normalized();
bool valid = false;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
if (!c.reused) {
continue;
}
if (c.normal.dot(direction) < CMP_EPSILON) { //less (normal ok)
continue;
}
valid = true;
break;
}
if (!valid) {
collided = false;
oneway_disabled = true;
return false;
}
}
}
return true;
}
bool BodyPair2DSW::pre_solve(real_t p_step) {
if (!collided || oneway_disabled) {
return false;
}
real_t max_penetration = space->get_contact_max_allowed_penetration();
real_t bias = 0.3;
Shape2DSW *shape_A_ptr = A->get_shape(shape_A);
Shape2DSW *shape_B_ptr = B->get_shape(shape_B);
if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
if (shape_A_ptr->get_custom_bias() == 0) {
bias = shape_B_ptr->get_custom_bias();
} else if (shape_B_ptr->get_custom_bias() == 0) {
bias = shape_A_ptr->get_custom_bias();
} else {
bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
}
}
real_t inv_dt = 1.0 / p_step;
bool do_process = false;
const Vector2 &offset_A = A->get_transform().get_origin();
const Transform2D &transform_A = A->get_transform();
const Transform2D &transform_B = B->get_transform();
real_t inv_inertia_A = collide_A ? A->get_inv_inertia() : 0.0;
real_t inv_inertia_B = collide_B ? B->get_inv_inertia() : 0.0;
real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
c.active = false;
Vector2 global_A = transform_A.basis_xform(c.local_A);
Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
Vector2 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth <= 0.0 || !c.reused) {
continue;
}
#ifdef DEBUG_ENABLED
if (space->is_debugging_contacts()) {
space->add_debug_contact(global_A + offset_A);
space->add_debug_contact(global_B + offset_A);
}
#endif
c.rA = global_A;
c.rB = global_B - offset_B;
if (A->can_report_contacts()) {
Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB + B->get_linear_velocity());
}
if (B->can_report_contacts()) {
Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
B->add_contact(global_B + offset_A, c.normal, depth, shape_B, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA + A->get_linear_velocity());
}
if (report_contacts_only) {
collided = false;
continue;
}
// Precompute normal mass, tangent mass, and bias.
real_t rnA = c.rA.dot(c.normal);
real_t rnB = c.rB.dot(c.normal);
real_t kNormal = inv_mass_A + inv_mass_B;
kNormal += inv_inertia_A * (c.rA.dot(c.rA) - rnA * rnA) + inv_inertia_B * (c.rB.dot(c.rB) - rnB * rnB);
c.mass_normal = 1.0f / kNormal;
Vector2 tangent = c.normal.orthogonal();
real_t rtA = c.rA.dot(tangent);
real_t rtB = c.rB.dot(tangent);
real_t kTangent = inv_mass_A + inv_mass_B;
kTangent += inv_inertia_A * (c.rA.dot(c.rA) - rtA * rtA) + inv_inertia_B * (c.rB.dot(c.rB) - rtB * rtB);
c.mass_tangent = 1.0f / kTangent;
c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
c.depth = depth;
//c.acc_bias_impulse=0;
#ifdef ACCUMULATE_IMPULSES
{
// Apply normal + friction impulse
Vector2 P = c.acc_normal_impulse * c.normal + c.acc_tangent_impulse * tangent;
if (collide_A) {
A->apply_impulse(-P, c.rA);
}
if (collide_B) {
B->apply_impulse(P, c.rB);
}
}
#endif
c.bounce = combine_bounce(A, B);
if (c.bounce) {
Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
c.bounce = c.bounce * dv.dot(c.normal);
}
c.active = true;
do_process = true;
}
return do_process;
}
void BodyPair2DSW::solve(real_t p_step) {
if (!collided || oneway_disabled) {
return;
}
for (int i = 0; i < contact_count; ++i) {
Contact &c = contacts[i];
if (!c.active) {
continue;
}
// Relative velocity at contact
Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
Vector2 crbA(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x);
Vector2 crbB(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x);
Vector2 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
real_t vn = dv.dot(c.normal);
real_t vbn = dbv.dot(c.normal);
Vector2 tangent = c.normal.orthogonal();
real_t vt = dv.dot(tangent);
real_t jbn = (c.bias - vbn) * c.mass_normal;
real_t jbnOld = c.acc_bias_impulse;
c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
Vector2 jb = c.normal * (c.acc_bias_impulse - jbnOld);
if (collide_A) {
A->apply_bias_impulse(-jb, c.rA);
}
if (collide_B) {
B->apply_bias_impulse(jb, c.rB);
}
real_t jn = -(c.bounce + vn) * c.mass_normal;
real_t jnOld = c.acc_normal_impulse;
c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
real_t friction = combine_friction(A, B);
real_t jtMax = friction * c.acc_normal_impulse;
real_t jt = -vt * c.mass_tangent;
real_t jtOld = c.acc_tangent_impulse;
c.acc_tangent_impulse = CLAMP(jtOld + jt, -jtMax, jtMax);
Vector2 j = c.normal * (c.acc_normal_impulse - jnOld) + tangent * (c.acc_tangent_impulse - jtOld);
if (collide_A) {
A->apply_impulse(-j, c.rA);
}
if (collide_B) {
B->apply_impulse(j, c.rB);
}
}
}
BodyPair2DSW::BodyPair2DSW(Body2DSW *p_A, int p_shape_A, Body2DSW *p_B, int p_shape_B) :
Constraint2DSW(_arr, 2) {
A = p_A;
B = p_B;
shape_A = p_shape_A;
shape_B = p_shape_B;
space = A->get_space();
A->add_constraint(this, 0);
B->add_constraint(this, 1);
}
BodyPair2DSW::~BodyPair2DSW() {
A->remove_constraint(this, 0);
B->remove_constraint(this, 1);
}