godot/servers/rendering/renderer_rd/shaders/canvas.glsl
clayjohn 0e5a98cdd8 Fix drawing of 2D skeletons in the RD renderer.
Also clean up skeleton code in preparation for adding them to GLES3

Properly update Mesh2D AABBs when skeleton is updated
2022-11-18 23:36:40 -08:00

697 lines
23 KiB
GLSL

#[vertex]
#version 450
#VERSION_DEFINES
#ifdef USE_ATTRIBUTES
layout(location = 0) in vec2 vertex_attrib;
layout(location = 3) in vec4 color_attrib;
layout(location = 4) in vec2 uv_attrib;
layout(location = 10) in uvec4 bone_attrib;
layout(location = 11) in vec4 weight_attrib;
#endif
#include "canvas_uniforms_inc.glsl"
layout(location = 0) out vec2 uv_interp;
layout(location = 1) out vec4 color_interp;
layout(location = 2) out vec2 vertex_interp;
#ifdef USE_NINEPATCH
layout(location = 3) out vec2 pixel_size_interp;
#endif
#ifdef MATERIAL_UNIFORMS_USED
layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
#GLOBALS
void main() {
vec4 instance_custom = vec4(0.0);
#ifdef USE_PRIMITIVE
//weird bug,
//this works
vec2 vertex;
vec2 uv;
vec4 color;
if (gl_VertexIndex == 0) {
vertex = draw_data.points[0];
uv = draw_data.uvs[0];
color = vec4(unpackHalf2x16(draw_data.colors[0]), unpackHalf2x16(draw_data.colors[1]));
} else if (gl_VertexIndex == 1) {
vertex = draw_data.points[1];
uv = draw_data.uvs[1];
color = vec4(unpackHalf2x16(draw_data.colors[2]), unpackHalf2x16(draw_data.colors[3]));
} else {
vertex = draw_data.points[2];
uv = draw_data.uvs[2];
color = vec4(unpackHalf2x16(draw_data.colors[4]), unpackHalf2x16(draw_data.colors[5]));
}
uvec4 bones = uvec4(0, 0, 0, 0);
vec4 bone_weights = vec4(0.0);
#elif defined(USE_ATTRIBUTES)
vec2 vertex = vertex_attrib;
vec4 color = color_attrib * draw_data.modulation;
vec2 uv = uv_attrib;
uvec4 bones = bone_attrib;
vec4 bone_weights = weight_attrib;
#else
vec2 vertex_base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
vec2 vertex_base = vertex_base_arr[gl_VertexIndex];
vec2 uv = draw_data.src_rect.xy + abs(draw_data.src_rect.zw) * ((draw_data.flags & FLAGS_TRANSPOSE_RECT) != 0 ? vertex_base.yx : vertex_base.xy);
vec4 color = draw_data.modulation;
vec2 vertex = draw_data.dst_rect.xy + abs(draw_data.dst_rect.zw) * mix(vertex_base, vec2(1.0, 1.0) - vertex_base, lessThan(draw_data.src_rect.zw, vec2(0.0, 0.0)));
uvec4 bones = uvec4(0, 0, 0, 0);
#endif
mat4 model_matrix = mat4(vec4(draw_data.world_x, 0.0, 0.0), vec4(draw_data.world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(draw_data.world_ofs, 0.0, 1.0));
#define FLAGS_INSTANCING_MASK 0x7F
#define FLAGS_INSTANCING_HAS_COLORS (1 << 7)
#define FLAGS_INSTANCING_HAS_CUSTOM_DATA (1 << 8)
uint instancing = draw_data.flags & FLAGS_INSTANCING_MASK;
#ifdef USE_ATTRIBUTES
if (instancing > 1) {
// trails
uint stride = 2 + 1 + 1; //particles always uses this format
uint trail_size = instancing;
uint offset = trail_size * stride * gl_InstanceIndex;
vec4 pcolor;
vec2 new_vertex;
{
uint boffset = offset + bone_attrib.x * stride;
new_vertex = (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.x;
pcolor = transforms.data[boffset + 2] * weight_attrib.x;
}
if (weight_attrib.y > 0.001) {
uint boffset = offset + bone_attrib.y * stride;
new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.y;
pcolor += transforms.data[boffset + 2] * weight_attrib.y;
}
if (weight_attrib.z > 0.001) {
uint boffset = offset + bone_attrib.z * stride;
new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.z;
pcolor += transforms.data[boffset + 2] * weight_attrib.z;
}
if (weight_attrib.w > 0.001) {
uint boffset = offset + bone_attrib.w * stride;
new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.w;
pcolor += transforms.data[boffset + 2] * weight_attrib.w;
}
instance_custom = transforms.data[offset + 3];
vertex = new_vertex;
color *= pcolor;
} else
#endif // USE_ATTRIBUTES
{
if (instancing == 1) {
uint stride = 2;
{
if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_COLORS)) {
stride += 1;
}
if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
stride += 1;
}
}
uint offset = stride * gl_InstanceIndex;
mat4 matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
offset += 2;
if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_COLORS)) {
color *= transforms.data[offset];
offset += 1;
}
if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
instance_custom = transforms.data[offset];
}
matrix = transpose(matrix);
model_matrix = model_matrix * matrix;
}
}
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
if (bool(draw_data.flags & FLAGS_USING_PARTICLES)) {
//scale by texture size
vertex /= draw_data.color_texture_pixel_size;
}
#endif
#ifdef USE_POINT_SIZE
float point_size = 1.0;
#endif
{
#CODE : VERTEX
}
#ifdef USE_NINEPATCH
pixel_size_interp = abs(draw_data.dst_rect.zw) * vertex_base;
#endif
#if !defined(SKIP_TRANSFORM_USED)
vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy;
#endif
color_interp = color;
if (canvas_data.use_pixel_snap) {
vertex = floor(vertex + 0.5);
// precision issue on some hardware creates artifacts within texture
// offset uv by a small amount to avoid
uv += 1e-5;
}
vertex = (canvas_data.canvas_transform * vec4(vertex, 0.0, 1.0)).xy;
vertex_interp = vertex;
uv_interp = uv;
gl_Position = canvas_data.screen_transform * vec4(vertex, 0.0, 1.0);
#ifdef USE_POINT_SIZE
gl_PointSize = point_size;
#endif
}
#[fragment]
#version 450
#VERSION_DEFINES
#include "canvas_uniforms_inc.glsl"
layout(location = 0) in vec2 uv_interp;
layout(location = 1) in vec4 color_interp;
layout(location = 2) in vec2 vertex_interp;
#ifdef USE_NINEPATCH
layout(location = 3) in vec2 pixel_size_interp;
#endif
layout(location = 0) out vec4 frag_color;
#ifdef MATERIAL_UNIFORMS_USED
layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
vec2 screen_uv_to_sdf(vec2 p_uv) {
return canvas_data.screen_to_sdf * p_uv;
}
float texture_sdf(vec2 p_sdf) {
vec2 uv = p_sdf * canvas_data.sdf_to_tex.xy + canvas_data.sdf_to_tex.zw;
float d = texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv).r;
d *= SDF_MAX_LENGTH;
return d * canvas_data.tex_to_sdf;
}
vec2 texture_sdf_normal(vec2 p_sdf) {
vec2 uv = p_sdf * canvas_data.sdf_to_tex.xy + canvas_data.sdf_to_tex.zw;
const float EPSILON = 0.001;
return normalize(vec2(
texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv + vec2(EPSILON, 0.0)).r - texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv - vec2(EPSILON, 0.0)).r,
texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv + vec2(0.0, EPSILON)).r - texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv - vec2(0.0, EPSILON)).r));
}
vec2 sdf_to_screen_uv(vec2 p_sdf) {
return p_sdf * canvas_data.sdf_to_screen;
}
#GLOBALS
#ifdef LIGHT_CODE_USED
vec4 light_compute(
vec3 light_vertex,
vec3 light_position,
vec3 normal,
vec4 light_color,
float light_energy,
vec4 specular_shininess,
inout vec4 shadow_modulate,
vec2 screen_uv,
vec2 uv,
vec4 color, bool is_directional) {
vec4 light = vec4(0.0);
vec3 light_direction = vec3(0.0);
if (is_directional) {
light_direction = normalize(mix(vec3(light_position.xy, 0.0), vec3(0, 0, 1), light_position.z));
light_position = vec3(0.0);
} else {
light_direction = normalize(light_position - light_vertex);
}
#CODE : LIGHT
return light;
}
#endif
#ifdef USE_NINEPATCH
float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) {
float tex_size = 1.0 / tex_pixel_size;
if (pixel < margin_begin) {
return pixel * tex_pixel_size;
} else if (pixel >= draw_size - margin_end) {
return (tex_size - (draw_size - pixel)) * tex_pixel_size;
} else {
if (!bool(draw_data.flags & FLAGS_NINEPACH_DRAW_CENTER)) {
draw_center--;
}
// np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum.
if (np_repeat == 0) { // Stretch.
// Convert to ratio.
float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end);
// Scale to source texture.
return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
} else if (np_repeat == 1) { // Tile.
// Convert to offset.
float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end);
// Scale to source texture.
return (margin_begin + ofs) * tex_pixel_size;
} else if (np_repeat == 2) { // Tile Fit.
// Calculate scale.
float src_area = draw_size - margin_begin - margin_end;
float dst_area = tex_size - margin_begin - margin_end;
float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
// Convert to ratio.
float ratio = (pixel - margin_begin) / src_area;
ratio = mod(ratio * scale, 1.0);
// Scale to source texture.
return (margin_begin + ratio * dst_area) * tex_pixel_size;
} else { // Shouldn't happen, but silences compiler warning.
return 0.0;
}
}
}
#endif
#ifdef USE_LIGHTING
vec3 light_normal_compute(vec3 light_vec, vec3 normal, vec3 base_color, vec3 light_color, vec4 specular_shininess, bool specular_shininess_used) {
float cNdotL = max(0.0, dot(normal, light_vec));
if (specular_shininess_used) {
//blinn
vec3 view = vec3(0.0, 0.0, 1.0); // not great but good enough
vec3 half_vec = normalize(view + light_vec);
float cNdotV = max(dot(normal, view), 0.0);
float cNdotH = max(dot(normal, half_vec), 0.0);
float cVdotH = max(dot(view, half_vec), 0.0);
float cLdotH = max(dot(light_vec, half_vec), 0.0);
float shininess = exp2(15.0 * specular_shininess.a + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
float s = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
return specular_shininess.rgb * light_color * s + light_color * base_color * cNdotL;
} else {
return light_color * base_color * cNdotL;
}
}
//float distance = length(shadow_pos);
vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv
#ifdef LIGHT_CODE_USED
,
vec3 shadow_modulate
#endif
) {
float shadow;
uint shadow_mode = light_array.data[light_base].flags & LIGHT_FLAGS_FILTER_MASK;
if (shadow_mode == LIGHT_FLAGS_SHADOW_NEAREST) {
shadow = textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
} else if (shadow_mode == LIGHT_FLAGS_SHADOW_PCF5) {
vec4 shadow_pixel_size = vec4(light_array.data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0);
shadow = 0.0;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 2.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 2.0, 0.0).x;
shadow /= 5.0;
} else { //PCF13
vec4 shadow_pixel_size = vec4(light_array.data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0);
shadow = 0.0;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 6.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 5.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 4.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 3.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 2.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 2.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 3.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 4.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 5.0, 0.0).x;
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 6.0, 0.0).x;
shadow /= 13.0;
}
vec4 shadow_color = unpackUnorm4x8(light_array.data[light_base].shadow_color);
#ifdef LIGHT_CODE_USED
shadow_color.rgb *= shadow_modulate;
#endif
shadow_color.a *= light_color.a; //respect light alpha
return mix(light_color, shadow_color, shadow);
}
void light_blend_compute(uint light_base, vec4 light_color, inout vec3 color) {
uint blend_mode = light_array.data[light_base].flags & LIGHT_FLAGS_BLEND_MASK;
switch (blend_mode) {
case LIGHT_FLAGS_BLEND_MODE_ADD: {
color.rgb += light_color.rgb * light_color.a;
} break;
case LIGHT_FLAGS_BLEND_MODE_SUB: {
color.rgb -= light_color.rgb * light_color.a;
} break;
case LIGHT_FLAGS_BLEND_MODE_MIX: {
color.rgb = mix(color.rgb, light_color.rgb, light_color.a);
} break;
}
}
#endif
float msdf_median(float r, float g, float b, float a) {
return min(max(min(r, g), min(max(r, g), b)), a);
}
void main() {
vec4 color = color_interp;
vec2 uv = uv_interp;
vec2 vertex = vertex_interp;
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
#ifdef USE_NINEPATCH
int draw_center = 2;
uv = vec2(
map_ninepatch_axis(pixel_size_interp.x, abs(draw_data.dst_rect.z), draw_data.color_texture_pixel_size.x, draw_data.ninepatch_margins.x, draw_data.ninepatch_margins.z, int(draw_data.flags >> FLAGS_NINEPATCH_H_MODE_SHIFT) & 0x3, draw_center),
map_ninepatch_axis(pixel_size_interp.y, abs(draw_data.dst_rect.w), draw_data.color_texture_pixel_size.y, draw_data.ninepatch_margins.y, draw_data.ninepatch_margins.w, int(draw_data.flags >> FLAGS_NINEPATCH_V_MODE_SHIFT) & 0x3, draw_center));
if (draw_center == 0) {
color.a = 0.0;
}
uv = uv * draw_data.src_rect.zw + draw_data.src_rect.xy; //apply region if needed
#endif
if (bool(draw_data.flags & FLAGS_CLIP_RECT_UV)) {
uv = clamp(uv, draw_data.src_rect.xy, draw_data.src_rect.xy + abs(draw_data.src_rect.zw));
}
#endif
#ifndef USE_PRIMITIVE
if (bool(draw_data.flags & FLAGS_USE_MSDF)) {
float px_range = draw_data.ninepatch_margins.x;
float outline_thickness = draw_data.ninepatch_margins.y;
//float reserved1 = draw_data.ninepatch_margins.z;
//float reserved2 = draw_data.ninepatch_margins.w;
vec4 msdf_sample = texture(sampler2D(color_texture, texture_sampler), uv);
vec2 msdf_size = vec2(textureSize(sampler2D(color_texture, texture_sampler), 0));
vec2 dest_size = vec2(1.0) / fwidth(uv);
float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0);
float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5;
if (outline_thickness > 0) {
float cr = clamp(outline_thickness, 0.0, px_range / 2) / px_range;
float a = clamp((d + cr) * px_size, 0.0, 1.0);
color.a = a * color.a;
} else {
float a = clamp(d * px_size + 0.5, 0.0, 1.0);
color.a = a * color.a;
}
} else if (bool(draw_data.flags & FLAGS_USE_LCD)) {
vec4 lcd_sample = texture(sampler2D(color_texture, texture_sampler), uv);
if (lcd_sample.a == 1.0) {
color.rgb = lcd_sample.rgb * color.a;
} else {
color = vec4(0.0, 0.0, 0.0, 0.0);
}
} else {
#else
{
#endif
color *= texture(sampler2D(color_texture, texture_sampler), uv);
}
uint light_count = (draw_data.flags >> FLAGS_LIGHT_COUNT_SHIFT) & 0xF; //max 16 lights
bool using_light = light_count > 0 || canvas_data.directional_light_count > 0;
vec3 normal;
#if defined(NORMAL_USED)
bool normal_used = true;
#else
bool normal_used = false;
#endif
if (normal_used || (using_light && bool(draw_data.flags & FLAGS_DEFAULT_NORMAL_MAP_USED))) {
normal.xy = texture(sampler2D(normal_texture, texture_sampler), uv).xy * vec2(2.0, -2.0) - vec2(1.0, -1.0);
normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
normal_used = true;
} else {
normal = vec3(0.0, 0.0, 1.0);
}
vec4 specular_shininess;
#if defined(SPECULAR_SHININESS_USED)
bool specular_shininess_used = true;
#else
bool specular_shininess_used = false;
#endif
if (specular_shininess_used || (using_light && normal_used && bool(draw_data.flags & FLAGS_DEFAULT_SPECULAR_MAP_USED))) {
specular_shininess = texture(sampler2D(specular_texture, texture_sampler), uv);
specular_shininess *= unpackUnorm4x8(draw_data.specular_shininess);
specular_shininess_used = true;
} else {
specular_shininess = vec4(1.0);
}
#if defined(SCREEN_UV_USED)
vec2 screen_uv = gl_FragCoord.xy * canvas_data.screen_pixel_size;
#else
vec2 screen_uv = vec2(0.0);
#endif
vec3 light_vertex = vec3(vertex, 0.0);
vec2 shadow_vertex = vertex;
{
float normal_map_depth = 1.0;
#if defined(NORMAL_MAP_USED)
vec3 normal_map = vec3(0.0, 0.0, 1.0);
normal_used = true;
#endif
#CODE : FRAGMENT
#if defined(NORMAL_MAP_USED)
normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth);
#endif
}
if (normal_used) {
//convert by item transform
normal.xy = mat2(normalize(draw_data.world_x), normalize(draw_data.world_y)) * normal.xy;
//convert by canvas transform
normal = normalize((canvas_data.canvas_normal_transform * vec4(normal, 0.0)).xyz);
}
vec4 base_color = color;
if (bool(draw_data.flags & FLAGS_USING_LIGHT_MASK)) {
color = vec4(0.0); //invisible by default due to using light mask
}
#ifdef MODE_LIGHT_ONLY
color = vec4(0.0);
#elif !defined(MODE_UNSHADED)
color *= canvas_data.canvas_modulation;
#endif
#if defined(USE_LIGHTING) && !defined(MODE_UNSHADED)
// Directional Lights
for (uint i = 0; i < canvas_data.directional_light_count; i++) {
uint light_base = i;
vec2 direction = light_array.data[light_base].position;
vec4 light_color = light_array.data[light_base].color;
#ifdef LIGHT_CODE_USED
vec4 shadow_modulate = vec4(1.0);
light_color = light_compute(light_vertex, vec3(direction, light_array.data[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, true);
#else
if (normal_used) {
vec3 light_vec = normalize(mix(vec3(direction, 0.0), vec3(0, 0, 1), light_array.data[light_base].height));
light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
} else {
light_color.rgb *= base_color.rgb;
}
#endif
if (bool(light_array.data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array.data[light_base].shadow_matrix[0], light_array.data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
vec4 shadow_uv = vec4(shadow_pos.x, light_array.data[light_base].shadow_y_ofs, shadow_pos.y * light_array.data[light_base].shadow_zfar_inv, 1.0);
light_color = light_shadow_compute(light_base, light_color, shadow_uv
#ifdef LIGHT_CODE_USED
,
shadow_modulate.rgb
#endif
);
}
light_blend_compute(light_base, light_color, color.rgb);
}
// Positional Lights
for (uint i = 0; i < MAX_LIGHTS_PER_ITEM; i++) {
if (i >= light_count) {
break;
}
uint light_base = draw_data.lights[i >> 2];
light_base >>= (i & 3) * 8;
light_base &= 0xFF;
vec2 tex_uv = (vec4(vertex, 0.0, 1.0) * mat4(light_array.data[light_base].texture_matrix[0], light_array.data[light_base].texture_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
vec2 tex_uv_atlas = tex_uv * light_array.data[light_base].atlas_rect.zw + light_array.data[light_base].atlas_rect.xy;
vec4 light_color = textureLod(sampler2D(atlas_texture, texture_sampler), tex_uv_atlas, 0.0);
vec4 light_base_color = light_array.data[light_base].color;
#ifdef LIGHT_CODE_USED
vec4 shadow_modulate = vec4(1.0);
vec3 light_position = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
light_color.rgb *= light_base_color.rgb;
light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, false);
#else
light_color.rgb *= light_base_color.rgb * light_base_color.a;
if (normal_used) {
vec3 light_pos = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
vec3 pos = light_vertex;
vec3 light_vec = normalize(light_pos - pos);
light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
} else {
light_color.rgb *= base_color.rgb;
}
#endif
if (any(lessThan(tex_uv, vec2(0.0, 0.0))) || any(greaterThanEqual(tex_uv, vec2(1.0, 1.0)))) {
//if outside the light texture, light color is zero
light_color.a = 0.0;
}
if (bool(light_array.data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array.data[light_base].shadow_matrix[0], light_array.data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
vec2 pos_norm = normalize(shadow_pos);
vec2 pos_abs = abs(pos_norm);
vec2 pos_box = pos_norm / max(pos_abs.x, pos_abs.y);
vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot?
float tex_ofs;
float distance;
if (pos_rot.y > 0) {
if (pos_rot.x > 0) {
tex_ofs = pos_box.y * 0.125 + 0.125;
distance = shadow_pos.x;
} else {
tex_ofs = pos_box.x * -0.125 + (0.25 + 0.125);
distance = shadow_pos.y;
}
} else {
if (pos_rot.x < 0) {
tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125);
distance = -shadow_pos.x;
} else {
tex_ofs = pos_box.x * 0.125 + (0.75 + 0.125);
distance = -shadow_pos.y;
}
}
distance *= light_array.data[light_base].shadow_zfar_inv;
//float distance = length(shadow_pos);
vec4 shadow_uv = vec4(tex_ofs, light_array.data[light_base].shadow_y_ofs, distance, 1.0);
light_color = light_shadow_compute(light_base, light_color, shadow_uv
#ifdef LIGHT_CODE_USED
,
shadow_modulate.rgb
#endif
);
}
light_blend_compute(light_base, light_color, color.rgb);
}
#endif
frag_color = color;
}